
The Refactory, Inc. 

Design Patterns Day 1 – Page 1

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 1

Design Patterns
“In Java”

Joseph W. Yoder

The Refactory, Inc.
www.refactory.com

joe@refactory.com

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 2

The Refactory, Inc.

The Refactory, Inc. was founded in 1998 as a consortium 
of object-oriented experts dedicated to helping 
organizations succeed with objects.

Founders and Affiliates have a total of over 120 years of 
combined software development experience with over 
80 years dedicated to Object-Oriented development.



The Refactory, Inc. 

Design Patterns Day 1 – Page 2

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 3

The Refactory Principals
John Brant

Brian Foote

Don Roberts

Ralph Johnson

Joe Yoder

Refactory Affiliates
Dragos Manolescu

Brian Marick

Bill Opdyke

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 4

The Refactory principles are experienced in software development, especially in object-oriented technology. We've been studying and developing software since 1973. Our current focus has been object-oriented technology, software architecture, and patterns. We have developed frameworks using Smalltalk, C++, and Java, have helped design several applications, and mentored many new Smalltalk, Java, and C++, C# developers.  Highly experienced with Frameworks, Software Evolution, Refactoring, Objects, Flexible and Adaptable Systems (Adaptive Object-Models), Testing, Workflow Systems, and Agile Software Development including methods like eXtreme Programming (XP).

The Refactory, Inc.



The Refactory, Inc. 

Design Patterns Day 1 – Page 3

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 5

Design Patterns

• A new category of knowledge

• Knowledge is not new, but talking about it is

• Make you a better designer

• Improves communication between designers

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 6

Why Patterns?

People do not design from first principles.

People design by reusing things they've seen before.

Same techniques appear over and over.

Software industry needs to document what we do.



The Refactory, Inc. 

Design Patterns Day 1 – Page 4

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 7

Patterns in solutions come from patterns in problems.

"A pattern is a solution to a problem in a context."

"Each pattern describes a problem which occurs 
over and over again in our environment, and then 
describes the core of the solution to that problem, 
in such a way that you can use this solution a 
million times over, without ever doing it the
same way twice."

Christopher Alexander --A Pattern Language

Patterns

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 8

Patterns

A pattern is a balance of forces

Forces: all the issues that affect a problem.

Typical software design forces: efficiency, clarity, 
maintainability, safety.

Design is the art of making trade-offs.

Patterns should make trade-offs explicit.



The Refactory, Inc. 

Design Patterns Day 1 – Page 5

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 9

Patterns are not

�Patterns are not idioms

�Patterns are not algorithms

�Patterns are not components

�Patterns are not a “silver bullet”

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 10

Object-Oriented
Design Patterns

Repeating organization of classes (objects)

Design Patterns: Elements of Reusable 
Object-Oriented Software

Erich Gamma, Richard Helm, 
Ralph Johnson, and John Vlissides

Addison-Wesley,  1995.      Gang of Four (GOF)

A landmark book that changed the way 
programmers think about building 
object-oriented programs



The Refactory, Inc. 

Design Patterns Day 1 – Page 6

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 11

Overall Goals

You will be able to:

•describe what patterns are, and why they are important

•recognize all the patterns in “Design Patterns”

•use patterns to solve specific design problems

•use patterns to document a design

•learn new patterns when you need them

You will not:

•learn everything there is to know about patterns

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 12

Class Overview

�Presentation

�Reading Groups

�Exercises



The Refactory, Inc. 

Design Patterns Day 1 – Page 7

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 13

Patterns in Java and

Java libraries and frameworks were influenced by the 
Design Patterns from GoF

• black-box
• use patterns (they’re everywhere)

Java has features that affect implementation of the design 
patterns

• interfaces
• serialization
• distribution
• concurrency
• GUI (AWT, Swing)
• inner classes
• protection

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 14

Outline of 
Course

• Day 1
What are patterns? – Composite, Chain of Responsibility, 

Template Method

More Patterns –Decorator, NullObject, Strategy, 
Memento, Observer, State

• Day 2
How patterns work together

Abstract Factory, Adapter, Builder, 
Factory Method, Prototype, Singleton

Documenting system designs with patterns

How patterns work together

Centralized vs. distributed - Interpreter, Visitor, Iterator



The Refactory, Inc. 

Design Patterns Day 1 – Page 8

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 15

• Day 3
The rest of the Design Patterns

Bridge, Proxy, Command, Facade, Flyweight, Mediator

Frameworks vs Patterns

Other kinds of patterns

Learning about patterns

Outline of 
Course

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 16

Notation
Design Patterns Book uses OMT

We use this to show the correlation

Sometimes we use UML which is similar



The Refactory, Inc. 

Design Patterns Day 1 – Page 9

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 17

More Notation
Class Diagrams:

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 18

Yet More Notation

Object Diagrams:
Interaction Diagrams:



The Refactory, Inc. 

Design Patterns Day 1 – Page 10

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 19

Template Method
Problem:  Some classes have a similar algorithm, but it is a 

little different for each class.

Solution:  Define the skeleton of the algorithm as a method 
in a superclass, deferring some steps to subclasses.

AbstractClass
templateMethod()
primOperation1()
primOperation2()

ConcreteClass
primOperation1()
primOperation2()

…

primOperation1();

…

primOperation2();

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 20

A template method calls abstract methods.

Usually a template method is created by generalizing 
several existing methods.

Template Method separates the invariant part of an 
algorithm from the parts that vary with each subclass.

Template Method



The Refactory, Inc. 

Design Patterns Day 1 – Page 11

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 21

Template Method
(example)

public abstract class View {
public abstract doDisplay();
public void display() {

setFocus();
doDisplay();
resetFocus();

}
}
public class ButtonView extends View {

public void doDisplay() {
setButtonWidth();
…}

}

public class ListView extends View {
public void doDisplay() {

setListWidth();
…}

}

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 22

Composite

Context:

Developing OO software

Problem:

Complex part-whole hierarchy has lots of similar classes.

Example:  document, chapter, section, paragraph.

Forces

• simplicity -- treat composition of parts like a part

• power -- create new kind of part by composing existing ones

• safety -- no special cases, treat everything the same



The Refactory, Inc. 

Design Patterns Day 1 – Page 12

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 23

Document as a Tree

Chapter

Book

Subsection

ChapterChapter

Section

Paragraph

Figure

Section

Paragraph

Paragraph Paragraph

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 24

Composite
Idea: make abstract "component" class.

Alternative 1:  every component has a (possibly 
empty) set of components.

Component
Children

ParagraphChapter ...

Problem:  many components have no components



The Refactory, Inc. 

Design Patterns Day 1 – Page 13

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 25

Composite Pattern

Component

container
children

CompositeLeaf

Composite and Component have the exact sameinterface.

• interface for enumerating children

• Component implements children() by returning empty set

• interface for adding/removing children?

1

*

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 26

Two Design Alternatives

Component does not know what it is a part of.

Component can be in many composite.

Component can be accessed only through composite.

Component knows what it is a part of.

Component can be in only one composite.

Component can be accessed directly.



The Refactory, Inc. 

Design Patterns Day 1 – Page 14

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 27

Component Knows its Composite

Rules when component knows its single composite.

A is a part of B if and only if B is the composite of A.

Duplicating information is dangerous!

Problem:  how to ensure that pointers from components to 
composite and composite to components are consistent.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 28

Ensuring Consistency

Solution:

Only public operations that change container are 
addComponent/removeComponent

These operations update the container of the 
component.  

There is no other way to change the container.

Composite addComponent(Component c) {
components.add(c);
c.parent = this;

}



The Refactory, Inc. 

Design Patterns Day 1 – Page 15

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 29

Example: Equipment

Equipment

weight
cost

CompositeEq.FloppyDisk ...

class CompositeEquipment { 
int weight() {

int total = 0; Equipment item;
for (Enumeration e = children() ; e.hasMoreElements(); 

item = (Equipment) e.nextElement())
{

total += item.weight();
}
return total;

}
}

*

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 30

Example: Views and Figures

Big window can contain smaller windows.



The Refactory, Inc. 

Design Patterns Day 1 – Page 16

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 31

The Java Component Class

Component

x, y, width, height
font, ...

Window

Button ...

Public interface

paint()

validate()

addNotify()

List Container

Applet

Panel

an Applet

a TextField

a Window

a Button

*

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 32

Adding Container

Standard questions for adding:

• Where is the collection stored?

• Add at front or rear?

• How do you update back pointer to parent?

• What if component already is in a container?

• Does a component need to know if its position changed?



The Refactory, Inc. 

Design Patterns Day 1 – Page 17

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 33

Painting

If Container used only the Composite pattern, it would implement Paint like:

public void paint(Graphics g) {

for (int i = 0; ++i <= ncomponents; ) {

component[i] .paint(g);

}

}

But it also uses the Bridge pattern, which changes things.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 34

Summary of Composite

Composite is a kind of Component

Permits arbitrary hierarchies

Add/remove Component from Composite

Operations on Composite iterate over Components



The Refactory, Inc. 

Design Patterns Day 1 – Page 18

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 35

Chain of 
Responsibility

Avoid coupling the sender of a request to its receiver by 
giving more than one object a chance to handle the request.  
Chain the receiving objects and pass the request along the 
chain until an object handles it.

Examples:

“inheriting” color from car

event handlers in GUI

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 36

Avoid coupling the sender of a request to its receiver by 
giving more than one object a chance to handle the request.  
Chain the receiving objects and pass the request along the 
chain until an object handles it.

Usually found with Composite - chain of parents.

Example: GUI System (Windows, Button Widgets, …)

onMouseClick() {…

if hookmethod available handle request
else parent.onMouseClick();

…}

Chain of 
Responsibility



The Refactory, Inc. 

Design Patterns Day 1 – Page 19

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 37

Chain of 
Responsibility

Handler

handleRequest()

ConcreteHandler2

handleRequest()

ConcreteHandler1

handleRequest()

Client

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 38

Chain of 
Responsibility

Usually mixed with other patterns

• Composite often has Chain of Responsibility up the tree.

• Sometimes request is encoded as a Command

• Sometimes request sent to Strategy



The Refactory, Inc. 

Design Patterns Day 1 – Page 20

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 39

What is a Design 
Pattern?

Design Pattern:  repeating structure of design elements

Pattern is about design, but includes low-level coding details.

Pattern includes both problem and solution.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 40

What is a Design 
Pattern?

Details of implementing pattern depend on language and 
environment.

Pattern is often not the most obvious solution.

Pattern can be applied to many kinds of problems.



The Refactory, Inc. 

Design Patterns Day 1 – Page 21

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 41

Parts of a Pattern 
(Alexander)

Problem - when to use the pattern

Solution - what to do to solve problem

Context - when to consider the pattern

Forces  - pattern is a balance of forces

Consequences, positive and negative

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 42

Parts of a Pattern

Examples:

Teach both problem and solution

Are the best teacher

Are proof of pattern-hood



The Refactory, Inc. 

Design Patterns Day 1 – Page 22

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 43

Parts of a Pattern
(Gamma et. al.)

Intent - brief description of problem and solution

Also Known As

Motivation - prototypical example 

Applicability - problem, forces, context

Structure/Participants/Collaborations - solution

Consequences - forces

Implementation/Sample Code - solution

Known Uses

Related Patterns

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 44

GoF Design Patterns
Creational patterns

Abstract factory 2

Builder               2, 3

Factory method  2

Prototype            2

Singleton            2

Structural patterns

Adapter  2, 3

Bridge 3

Composite       1, 2

Decorator        1

Facade          3

Flyweight 3

Proxy 3

Behavioral Patterns

Chain of Responsibility   1

Command   3

Interpreter   2

Iterator      2

Mediator 3

Memento 1

Observer    1

State            1, 3

Strategy     1, 3

Template Method  1

Visitor 2

Numbers are the day that the
pattern is covered/used.



The Refactory, Inc. 

Design Patterns Day 1 – Page 23

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 45

Goals of this session

Learn Decorator, Null Object, Strategy

Start to learn how patterns work together

Patterns often share the same context.

Problems produced by one pattern are sometimes 
resolved by another.

A complex design consists of many patterns.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 46

Decorators

“Reading Group”

Decorators add a responsibility to an object by 
• making the object a component
• forwarding messages to component and handling others

Possible examples from Java
Double, Integer, Float, etc.

Decorators add an attribute to an object.

Decorator forwards operations to the component.

Component gets values from its decorator.



The Refactory, Inc. 

Design Patterns Day 1 – Page 24

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 47

Decorator Structure

Element

DecoratorPrimitive

specialized
operations

Decorator forwards most operations to the
object it is decorating.

1

1

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 48

Decorator

Decorators add an attribute to an object.

Decorator forwards operations to the component.

Component gets values from its decorator.

Component
Component

Decorator

Decorator
Decorator

Composite



The Refactory, Inc. 

Design Patterns Day 1 – Page 25

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 49

Decorator Example

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 50

Strategy Pattern

Define a family of algorithms, encapsulate each one, and 
make them interchangeable.

Strategy pattern means:

• easy to replace one algorithm with another

• can change dynamically

• can make a class hierarchy of algorithms

• can factor algorithms into smaller reusable pieces

• can encapsulate private data of algorithm

• can define an algorithm in one place



The Refactory, Inc. 

Design Patterns Day 1 – Page 26

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 51

Strategy Pattern

For procedural languages you would have conditional code spread 
throughout your application for dealing with special cases.

onDisplayButton()

• case OS of:

‘NT’ : setButtonWidth: 100;

‘UNIX’: setButtonWidth: 125;

...

onMousePressed()

• case OS of:

‘NT’ : setButtonShadowWidth: 10;

‘UNIX’: setButtonShadowWidth: 15;

...

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 52

AbstractStrategy

doIt

ConcreteStrategy

doItInContext

Context

doItInContext

Strategy



The Refactory, Inc. 

Design Patterns Day 1 – Page 27

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 53

Strategy
(an example)

+doSomethingUseful()
#myPrivateDraw()

-attr1
-attr2

Client

#setButtonWidth(in width : int)
#setButtonShadowWidth(in width : Integer)
#buttonWidth() : int
#shadowWidth() : int

ButtonDisplay

#buttonWidth() : int
#shadowWidth() : int

NTButtonDisplay UNIXButtonDisplay

*

*

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 54

Moving Code
“Refactoring” 

To move a function to a different class, add an argument 
to refer to the original class of which it was a member 
and change all references to member variables to use 
the new argument.

If you are moving it to the class of one of the arguments, 
you can make the argument be the receiver.

Moving function f from class X to class B

class X {
int f(A anA, B aB){

return (anA.size + size) / aB.size;
} ...

class B {
int f(A anA, X anX){

return (anA.size + anX.size) / size;
} ...



The Refactory, Inc. 

Design Patterns Day 1 – Page 28

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 55

Moving 
Code

You can also pass in a 
parameter object which 
gives the algorithm all of 
the values that it will need.

Inner Classes can help by 
providing access to values 
that the algorithm may 
need….you would have to 
use pointers in C++.

Car f(a, b, c)
{if this.x > a then

this.x = a+b
else if this.x < a then
this.y = a+b

else
this.x = a+b }

Car FStrategy

f(CarParameters carValues)
{if carValues.x > carValues.a then

this.carValues.x = carValues.a
+ carValues.b

else if carValues.x < carValues.a then
carValues.y = carValues.a

+ carValues.b
else

carValues.x = . carValues a
+ carValues.b }

CarParameters
a, b, c
x, y

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 56

NullObject

AuthorAuthorAuthorAuthor: Bobby Woolf, PLoPD 3

Intent:Intent:Intent:Intent:
• provide surrogate for another object that shares same interface 

• usually does nothing but can provide default behavior

• encapsulate implementation decisions of how to do nothing

Structure:Structure:Structure:Structure:



The Refactory, Inc. 

Design Patterns Day 1 – Page 29

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 57

NullObject 
“Example”

public class Person {

private Name name;

private Address address;

private Phone phone;

public void printDetails() {

if (name == null) this.print(“”);

else name printDetails;

if (address == null) this.print(“”);

else address printDetails;

if (phone == null) this.print(“”);

else phone printDetails;

…}

…}

public class NullObject {

public void printDetails() {

this.print(“”);}

…}
public class Person {

private Name name;

private Address address;

private Phone phone;

public void printDetails() {

name printDetails;

address printDetails;

phone printDetails;

…}

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 58

Goals of Next Session

Learn State and Observer (Listeners)

Learn Memento

See more about how Patterns work together



The Refactory, Inc. 

Design Patterns Day 1 – Page 30

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 59

State Pattern

Problem:  an object whose behavior changes as its state 
changes

Solution:  make the state be a separate object, and delegate to 
it.

This results in a new class hierarchy of states.

Design of state is closely coupled to design of object.

Operations on states will change the state of the object.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 60

Toolbar State Example



The Refactory, Inc. 

Design Patterns Day 1 – Page 31

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 61

State

Behavior of drawing editor changes when you select a 
different tool.

Tools are the "current state" of the DrawingController; it 
delegates operations to the current state.

Make a class hierarchy of Tools.  

DrawingController points to its "current Tool".  

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 62

State
Figure

Display

DrawingController Tool

Drawing

current tool

SelectionTool CreationTool



The Refactory, Inc. 

Design Patterns Day 1 – Page 32

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 63

Observer Pattern

Intent:  Define a one-to-many dependency between objects so that when one object 
changes state, all its dependents are notified and updated automatically.

Example:  Graphics system - moving box causes connecting lines to move.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 64

Observer Pattern

Intent:  Define a one-to-many dependency between objects 
so that when one object changes state, all its dependents 
are notified and updated automatically.

Observer

update

Subject

addDependent 
removeDependent 
notify

Observer - interface

LineFigure

update

observer/dependent

endPointRectangleFigure

Observable - class



The Refactory, Inc. 

Design Patterns Day 1 – Page 33

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 65

Observer Pattern

Observer

update

DrawingController Tool

Drawing

current tool

defaultTools

Figure

display
update

Subject

addDependent,
etc.

observer/dependent

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 66

Design Patterns in AWT

1.0 Event-handling by Chain of Responsibility

problem, either Mediator or lots of 
subclasses

1.1 Event-handling by Observer and Adapter



The Refactory, Inc. 

Design Patterns Day 1 – Page 34

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 67

Event Handling

AWT 1.0 uses Chain of Responsibility

AWT 1.1 uses Observer 

Shows the trade-offs between patterns

Shows Patterns != Good

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 68

Using Observer

Decide whether object is Subject, Observer, or both

Subjects must call notify() when they change state

Observers must define update()

Observers must register with Subjects

What are the arguments of notify() and update()?



The Refactory, Inc. 

Design Patterns Day 1 – Page 35

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 69

Observer in Java

Original implementation of the Observer pattern:

Observer/Observable.

Observer is an interface.

Observable is a class that implements the ability to keep 
track of a set of Observers.

More modern implementation is the Listeners.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 70

Listening instead of 
Observing

EventSource is a subject

EventListener is an observer

Many kinds of EventListeners, 
each with their own interface



The Refactory, Inc. 

Design Patterns Day 1 – Page 36

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 71

Different Kinds of 
Listeners

ActionListener

actionPerformed(ActionEvent)

ComponentListener

componentResized(ComponentEvent)

componentMoved(ComponentEvent)

componentShown(ComponentEvent)

componentHidden(ComponentEvent)

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 72

Events in AWT 1.1

Applet is a “Listener”

Button has methods

addActionListener()

processActionEvent()

Applet registers with Button.

When Button processes action event, 
it calls applet

an Applet

a TextField

a Window

a Button



The Refactory, Inc. 

Design Patterns Day 1 – Page 37

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 73

Memento

Undo is not enough in the presence of a constraint system.
Must go back to same state, not just reverse operation.

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 74

Memento

Without violating encapsulation, capture and 
externalize an object’s internal state so that the object 
can be restored to this state later.

Mement
o

GetState
SetState

state
Originator

set(Memento)
createMemento

state

Originator

return new Memento(state)

state = m.getState()



The Refactory, Inc. 

Design Patterns Day 1 – Page 38

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 75

Design Patterns

Teaching

• help novices learn to act like experts

Design

• vocabulary for design alternatives

• help see and evaluate tradeoffs

Documentation

• vocabulary for describing a design

• describes "why" more than other techniques

Copyright  2008 Joseph Yoder,  Brian Foote, & Ralph Johnson. Day 1 -- Slide 76

Conclusions

Patterns:  solutions to recurring problems

OO design patterns:  Recurring structures of objects that  
solve design problems

Stretch from design to code

We have seen: Chain of Responsibility, Composite, 
Decorator, Memento, Observer, NullObject, 
State, Strategy, Template Method


