
© 2023 A. Tchernykh. Scheduling Preliminaries 1`

Topic 1: Preliminaries

Basic Notions

Scheduling Models

© 2023 A. Tchernykh. Scheduling Preliminaries 2`

Basic Notions

© 2023 A. Tchernykh. Scheduling Preliminaries 3`

Basic Notions. Introduction

The notion of task is used to express some well-defined activity or piece of work

Planning in practical applications requires some knowledge about the tasks

This knowledge does not regard their nature, but rather general properties such as

− processing times,

− relations between the tasks concerning the order in which the tasks can be
processed,

− release times which inform about the earliest times the tasks can be started,

− deadlines that define the times by which the tasks must be completed,

− due dates by which the tasks should be completed together with cost
functions that define penalties in case of due date violations,

− additional resources (for example, tools, storage space, data)

Based on these data one could try to develop a work plan or time schedule that
specifies for each task when it should be processed, on which machine or
processor, including preemption points, etc.

© 2023 A. Tchernykh. Scheduling Preliminaries 4`

Basic Notions. Introduction

Depending on how much is known about the tasks to be processed, we distinguish
between three main directions in scheduling theory:

Deterministic or static or off-line scheduling assumes that all information

required to develop a schedule is known in advance, before the actual processing
takes place

Especially in production scheduling and in real-time applications the deterministic
scheduling discipline plays an important role

Non-deterministic scheduling is less restrictive: only partial information is

known
for example, computer applications where tasks are pieces of software with
unknown run-time

© 2023 A. Tchernykh. Scheduling Preliminaries 5`

Basic Notions. Introduction

On-line scheduling: In many situations detailed knowledge of the nature of

the tasks is available, but the time at which tasks occur is open

If the demand of executing a task arises a decision upon acceptance or rejection is
required, and, in case of acceptance, the task start time has to be fixed

In this situation schedules cannot be determined off-line, and we then talk about
on-line scheduling or dynamic scheduling

 Non-clairvoyant scheduling: consider problems of scheduling jobs with

unspecied execution time requirements

 Stochastic scheduling: only probabilistic information about parameters is

available

In this situation probability analysis is typical means to receive information about
the system behavior

➢ For each type of scheduling one can find justifying applications

Here, off-line scheduling (occasionally also on-line scheduling) is considered

© 2023 A. Tchernykh. Scheduling Preliminaries 6`

Deterministic Scheduling Problems

• Between tasks there are relations describing the relative order in which the
tasks are to be performed

order of task execution can be restricted by conditions like precedence constraints

• Preemption of task execution can be allowed or forbidden

• Timing conditions such as task release times, deadlines or due dates may
be given

In case of due dates cost functions may define penalties depending on the amount of
lateness

• There may be conditions for time lags between pairs of tasks, such as setup
delays

• In so-called shop problems sequences of tasks, each to be performed on some
specified machine, are defined

An example is the well-known flow shop or assembly line processing

Scheduling problems are characterized not only by the tasks and their specific
properties, but also by information about the processing devices

Processors or machines for processing the tasks can be identical, can have
different speeds (uniform), or their processing capabilities can be unrelated

© 2023 A. Tchernykh. Scheduling Preliminaries 7`

Deterministic Scheduling Problems

The problem is to determine an appropriate schedule, i.e. one that satisfies all
conditions imposed on the tasks and processors

A schedule essentially defines the start times of the tasks on a specified processor

Generally there may exist several possible schedules

An important is to define an optimization criterion

Common criteria are:

- minimization of the makespan of the total task set,

- minimization of the mean waiting time of the tasks

The optimization criterion allows to choose an appropriate schedule

Such schedules are then used as a planning basis for carrying out the various
activities

Unfortunately, finding optimal schedules is in general a very difficult process

Except for simplest cases, these problems turn out to be NP-hard, and hence the
time required computing an exact solution is beyond all practical means

In this situation, algorithmic approaches for sub-optimal schedules seem to be the
only possibility

© 2023 A. Tchernykh. Scheduling Preliminaries 8`

The Scheduling Model

© 2023 A. Tchernykh. Scheduling Preliminaries 9`

The Scheduling Model

• Deterministic Model

• Optimization Criteria

• Scheduling Problem and  |  |  - Notation

• Scheduling Algorithms

© 2023 A. Tchernykh. Scheduling Preliminaries 10`

The Scheduling Model. Deterministic Model

Tasks, Processors, etc.

Set of tasks T = {𝑇1, 𝑇2, … , 𝑇𝑛}

Set of resource types R = {𝑅1, 𝑅2, … , 𝑅𝑠}

Set of processors P = {𝑃1, 𝑃2, … , 𝑃𝑚}

Examples of processors:

CPUs in e.g. a multiprocessor system

Computers in a distributed processing environment

Production machines in a production environment

Processors may be

• parallel: they are able to perform the same functions

• dedicated: they are specialized for the execution of certain tasks

© 2023 A. Tchernykh. Scheduling Preliminaries 11`

The Scheduling Model. Deterministic Model

Parallel processors have the same execution capabilities

Three types of parallel processors are distinguished

o identical: if all processors from set P have equal task processing speeds

o uniform : if the processors differ in their speeds, but the speed 𝑏𝑖 of each

processor is constant and does not depend on the tasks in T

o unrelated: if the speeds of the processors depend on the particular task

unrelated processors are more specialized: on certain tasks, a processor
may be faster than on others

© 2023 A. Tchernykh. Scheduling Preliminaries 12`

The Scheduling Model. Deterministic Model

Characterization of a task 𝑻𝒋

− Vector of processing times 𝑝𝑗 = [𝑝𝑖𝑗, … , 𝑝𝑚𝑗], where 𝑝𝑖𝑗 is the time needed by

processor 𝑃𝑖 to process 𝑇𝑗

Identical processors: 𝑝1𝑗 = ⋯ = 𝑝𝑚𝑗 = 𝑝𝑗

Uniform processors: 𝑝𝑖𝑗 =
𝑝𝑗

𝑏𝑖
⁄ , 𝑖 = 1, … , 𝑚

𝑝𝑗 = standard processing time (usually measured on the slowest processor),

𝑏𝑖 is the processing speed factor of processor 𝑃𝑖

Processing times are usually not known a priori in computer systems

Instead of exact values of processing times one can take their estimate

However, in case of deadlines exact processing times or at least upper bounds are
required

© 2023 A. Tchernykh. Scheduling Preliminaries 13`

The Scheduling Model. Deterministic Model

 Arrival time (or release or ready time) 𝑟𝑗 … is the time at which task 𝑇𝑗 is ready

for processing

if the arrival times are the same for all tasks from T , then 𝑟𝑗 = 0 is assumed

for all tasks

− Due date 𝑑𝑗 … specifies a time limit by which 𝑇𝑗 should be completed

problems where tasks have due dates are often called "soft" real-time
problems. Usually, penalty functions are defined in accordance with due dates

− Penalty functions 𝐺𝑗 define penalties in case of due date violations

− Deadline 𝑑𝑗̃ … "hard" real time limit, by which 𝑇𝑗 must be completed

− Weight (priority) 𝑤𝑗 ... expresses the relative urgency of 𝑇𝑗

© 2023 A. Tchernykh. Scheduling Preliminaries 14`

The Scheduling Model. Deterministic Model

− Preemption / non-preemption:

A scheduling problem is called preemptive if each task may be preempted at
any time and its processing is resumed later, perhaps on another processor

 If preemption of tasks is not allowed the problem is called non-preemptive

− Resource requests:

besides processors, tasks may require certain additional resources during
their execution

Resources are usually scarce, which means that they are available only in
limited amounts

In computer systems, exclusively accessible devices or data may be
considered as resources

© 2023 A. Tchernykh. Scheduling Preliminaries 15`

The Scheduling Model. Deterministic Model

We assume without loss of generality that all these parameters, 𝑝𝑗 , 𝑟𝑗 , 𝑑𝑗 , 𝑑𝑗̃, 𝑤𝑗 and

𝑅𝑙(𝑇𝑗) are integers. This assumption is equivalent to permitting arbitrary rational

values

Conditions among the set of tasks T : precedence constraints

𝑇𝑖  𝑇𝑗 means that the processing of 𝑇𝑖 must be completed before 𝑇𝑗 can be

started

We say that a precedence relation  is defined on set T

mathematically, a precedence relation is a partial order

The tasks in T are called dependent

if the relation  is non-empty

otherwise, the tasks are called independent

© 2023 A. Tchernykh. Scheduling Preliminaries 16`

The Scheduling Model. Deterministic Model

𝑇𝑖 is called a predecessor of 𝑇𝑗 if there is a sequence of asks 𝑇𝛼1
, . . . , 𝑇𝛼𝑙

 (𝑙  0) with

𝑇𝑖  𝑇𝛼1
  ...  𝑇𝛼𝑙

  𝑇𝑗. Likewise, 𝑇𝑗 is called a successor of 𝑇𝑖.

If 𝑇𝑖  𝑇𝑗 . , but there is no task 𝑇𝛼 with 𝑇𝑖  𝑇𝛼  𝑇𝑗 . then 𝑇𝑖 is called an

immediate predecessor of 𝑇𝑗, and 𝑇𝑗 an immediate predecessor of 𝑇𝑖

A task that has no predecessor is called start task

A task without successor is referred to as final task

Special types of precedence graphs are

o chain dependencies: the partial order is the union of linearly ordered disjoint
subsets of tasks

o tree dependencies: the precedence relation is tree-like;

out-tree: if all task dependencies are oriented away from the root

in-tree: if all dependencies are oriented towards the root

© 2023 A. Tchernykh. Scheduling Preliminaries 17`

The Scheduling Model. Deterministic Model

Representation of tasks with precedence constraints:

− task-on-node graph (Hasse diagram)

For each 𝑇𝑖 ≺ 𝑇𝑗 , an edge is drawn

between the corresponding nodes

The situation 𝑇𝑖 ≺ 𝑇𝑗 and 𝑇𝑗 ≺ 𝑇𝑘 is

called transitive dependency between

𝑇𝑖 and 𝑇𝑘.

Transitive dependencies are not
explicitly represented

T1

T3

T2

T4

T6

T5

T8T7

T9 T10 T11

T12

© 2023 A. Tchernykh. Scheduling Preliminaries 18`

The Scheduling Model. Deterministic Model

 task-on-arc graph, activity network. Arcs represent tasks and nodes time events

Example 1: T = {𝑇1, ..., 𝑇10} with precedences as shown by the above Hasse

diagram. A corresponding activity network:

T1

T2

T3

T4

T5

T6

T8

T7

T9

T10

T11

T12

T10

T6

T8

T5
'

'

'

'

© 2023 A. Tchernykh. Scheduling Preliminaries 19`

The Scheduling Model. Deterministic Model

Task 𝑇𝑗 is called available at time t if 𝑟𝑗 ≤ t and all its predecessors (with respect to

the precedence constraints) have been completed by time t

Schedules

Schedules or work plans generally …

 inform about the times and on which processors the tasks are executed

To demonstrate the principles, the schedules are described for the special case of:

- parallel processors

- tasks have no deadlines

- tasks require no additional resources

Release times and precedence constraints may occur

© 2023 A. Tchernykh. Scheduling Preliminaries 20`

The Scheduling Model. Schedule representation 3

(3) Graphic representation: Gantt chart - this is a two-dimensional diagram

The abscissa represents the time axis that usually starts with time 0 at the origin

Each processor is represented by a line

For a task 𝑇𝑗 to be processed by 𝑃𝑖 a bar of length p(𝑇𝑗) and that begins at the

time marked by s(𝑇𝑗), is entered in the line corresponding to 𝑃𝑖

© 2023 A. Tchernykh. Scheduling Preliminaries 21`

The Scheduling Model. Schedule representation

Example 1: T = {𝑇1, ..., 𝑇12} with precedences as shown by the Hasse

diagram:

T1

T3

T2

T4

T6

T5

T8T7

T9 T10 T11

T12

2 2

8 2 3

2 4 4

2 1 3

1

© 2023 A. Tchernykh. Scheduling Preliminaries 22`

The Scheduling Model. Schedule representation

Example 2: non-preemptive schedule

In the above example, let (2, 2, 8, 2, 3, 2, 4, 4, 2, 1, 3, 1) be the vector of

processing times, and assume all release times = 0

Assume furthermore that there are 3 identical processors (P = {𝑃1, … ,

𝑃3}) available for processing the tasks

Gantt chart of a non-preemptive schedule:

T3T1

T2

T5

T4 T6 T7

T8 T9 T10

T11

T12

0 1 3 4 5 10 132

P1

P2

P3

© 2023 A. Tchernykh. Scheduling Preliminaries 23`

The Scheduling Model. Schedule representation

T3T1

T2

T5

T4 T6 T7

T8 T9 T10

T11

T12

0 1 3 4 5 10 132

P1

P2

P3

© 2023 A. Tchernykh. Scheduling Preliminaries 24`

The Scheduling Model. Deterministic Model

Given a schedule Ϛ, the following can be determined for each task 𝑻𝒋 :

flow time, turnarround, response 𝐹𝑗:= 𝑐𝑗− 𝑟𝑗

lateness 𝐿𝑗= 𝑐𝑗 − 𝑑𝑗

tardiness 𝐷𝑗= max{𝑐𝑗 −𝑑𝑗, 0}

tardy task 𝑈𝑗 =




0 if 𝐷𝑗 = 0

1 else

© 2023 A. Tchernykh. Scheduling Preliminaries 25`

The Scheduling Model. Deterministic Model. Optimization Criteria

Evaluation of schedules

Maximum makespan 𝐶𝑚𝑎𝑥 = max{𝑐𝑗 | 𝑇𝑗  T }

Mean flow time 𝐹̅ := (1/n)  𝐹𝑗

Mean weighted flow time 𝐹𝑤
̅̅ ̅:= (𝑤𝑗𝐹𝑗) / ( 𝑤𝑗)

Maximum lateness 𝐿𝑚𝑎𝑥= max{𝐿𝑗 | 𝑇𝑗  T }

Mean tardiness 𝐷̅:= (1/n)  𝐷𝑗

Mean weighted tardiness 𝐷𝑤
̅̅ ̅̅ := ( 𝑤𝑗𝐷𝑗) / ( 𝑤𝑗)

Mean sum of tardy tasks 𝑈̅:= (1/n)  𝑈𝑗

Mean weighted sum of tardy tasks 𝑈𝑤
̅̅ ̅̅ := ( 𝑤𝑗𝑈𝑗) / ( 𝑤𝑗)

© 2023 A. Tchernykh. Scheduling Preliminaries 26`

The Scheduling Model. Deterministic Model. Optimization Criteria

Given a set of tasks and a processor environment there are generally many
possible schedules

Evaluating schedules: distinguish between good and bad schedules

This leads to different optimization criteria

Minimizing the maximum makespan 𝑪𝒎𝒂𝒙

𝐶𝑚𝑎𝑥 criterion: 𝐶𝑚𝑎𝑥-optimal schedules have minimum makespan

 the total time to execute all tasks is minimal

Minimizing schedule length is important from the viewpoint of the owner of a set of
processors (machines):
This leads to both, the maximization of the processor utilization factor (within
schedule length 𝐶𝑚𝑎𝑥), and the minimization of the maximum in-process time of the
scheduled set of tasks

© 2023 A. Tchernykh. Scheduling Preliminaries 27`

The Scheduling Model. Deterministic Model. Optimization Criteria

Deadline related criteria

If deadlines are specified for (some of) the tasks we are interested in a schedule in
which all tasks complete before their deadlines expire

Question: does there exist a schedule that fulfills all the given conditions?

Such a schedule is called valid (feasible)

Here we are faced in principle with a decision problem

If, however, a valid schedule exits, we would of course like to get it explicitly

If a valid schedule exists we may wish to find a schedule that has certain additional
properties, such as minimum makespan or minimum mean flow

Hence in deadline related problems we often additionally impose one of the other
criteria

© 2023 A. Tchernykh. Scheduling Preliminaries 28`

The Scheduling Model. Deterministic Model. Optimization Criteria

Minimizing the maximum lateness 𝑳𝒎𝒂𝒙

This concerns tasks with due dates

Minimizing 𝐿𝑚𝑎𝑥 expresses the attempt to keep the maximum lateness small, no
matter how many tasks are late

Due date involving criteria are of great importance in manufacturing systems,
especially for specific customer orders

Minimizing the mean weighted tardiness 𝑫𝒘
̅̅ ̅̅

This criterion considers a weighted sum of tardinesses

Minimizing mean weighted tardiness means that a task with large weight should
have a small tardiness

Minimizing the weighted sum of tardy tasks 𝑼𝒘
̅̅ ̅̅

This criterion considers only the number of tardy tasks

Individual weights for the tasks are again possible

© 2023 A. Tchernykh. Scheduling Preliminaries 29`

 |  |  - Notation

© 2023 A. Tchernykh. Scheduling Preliminaries 30`

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Scheduling problem  is defined by a set of parameters for processors, tasks,

and an optimality criterion

An instance I of problem  is specified by particular values for the problem

parameters

The parameters are grouped in three fields  |  |  :

 specifies the processor environment,

 describes properties of the tasks, and

 the definition of an optimization criterion

The terminology introduced below aims to classify scheduling problems

© 2023 A. Tchernykh. Scheduling Preliminaries 31`

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Component  specifies the processors

 =𝛼1, 𝛼2 describes the processor environment

Parameter 𝛼1 ∈{, P, Q, R} characterizes the type of processor

parameter 𝛼2 ∈{, k} denotes the number of available processors:

𝛼1 𝛼2

 single processor


the number of processors is
assumed to be variable

P identical processors
k

the number of processors is equal to

k (k is a positive integer)

Q uniform processors 
the number of processors is
unlimited

R unrelated processors

© 2023 A. Tchernykh. Scheduling Preliminaries 32`

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Component  specifies the tasks

 =𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 describes task and resource characteristics

Parameter 𝛽
2

∈{, pmtn} indicates the possibility of task preemption

𝛽1

 no preemption is allowed

pmtn preemptions are allowed

Parameter 𝛽
3
  {, prec, tree, chains} reflects the precedence constraints

𝛽
3
= , prec, tree, chains : denotes respectively independent tasks, general

precedence constraints, tree or a set of chains precedence constraints

Parameter 𝛽
4
  {, 𝑟𝑗} describes ready times

© 2023 A. Tchernykh. Scheduling Preliminaries 33`

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Parameter 𝛽
5
  {, 𝑝𝑗 = p, 𝑝 𝑝𝑗  𝑝̅} describes task processing times

5



𝑝𝑗 = p

𝑝 𝑝𝑗  𝑝̅

tasks have arbitrary processing times

all tasks have processing times equal to p units

no 𝑝𝑗 is less than 𝑝 or greater than 𝑝̅

Parameter 𝛽
6
  {, 𝑑𝑗̃} describes deadlines

𝛽
6



𝑑𝑗̃

no deadlines or due dates are assumed in the
system

deadlines are imposed on the performance of a task
set

© 2023 A. Tchernykh. Scheduling Preliminaries 34`

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Component  : Specifying the objective criterion

 description

𝐶𝑚𝑎𝑥 schedule length or makespan

𝛴𝐶𝑗 mean flow time

𝛴𝑤𝑗𝐶𝑗 mean weighted flow time

𝐿𝑚𝑎𝑥 maximum lateness

𝛴𝐷𝑗 mean tardiness

𝛴𝑤𝑗𝐷𝑗 mean weighted tardiness

𝛴𝑈𝑗 number of tardy tasks

𝛴𝑤𝑗𝑈𝑗 weighted number of tardy tasks

− means testing for feasibility

A schedule for which the value of a particular performance measure  is at its minimum will

be called optimal : The corresponding value of  is denoted by  *

© 2023 A. Tchernykh. Scheduling Preliminaries 35`

Topic 2

Scheduling on Parallel Processors

 2.1 Minimizing Schedule Length

• Identical Processors

• Uniform Processors
2.2 Minimizing Mean Flow Time

• Identical Processors

• Uniform Processors
 2.3 Minimizing Due Date Involving Criteria

• Identical Processors

• Uniform Processors

© 2023 A. Tchernykh. Scheduling Preliminaries 36`

Independent tasks

© 2023 A. Tchernykh. Scheduling Preliminaries 37`

Identical Processors P | | Cmax

The first problem considered is P | | Cmax where

• a set of 𝑛 independent tasks 𝑝𝑖

• on 𝑚 identical processors

• minimize schedule length.

© 2023 A. Tchernykh. Scheduling Preliminaries 38`

Identical Processors P | | Cmax

© 2023 A. Tchernykh. Scheduling Preliminaries 39`

Identical Processors. List Scheduling

𝑊𝑠𝑒𝑞 = ∑ 𝑝𝑖
𝑛
𝑖=1 be the total work of all jobs

𝑝𝑚𝑎𝑥 is the maximum processing time of a job.

𝑊𝑖𝑑𝑙𝑒 be the total idle intervals, 𝑊𝑖𝑑𝑙𝑒 ≤ 𝑝𝑚𝑎𝑥(𝑚 − 1)

𝐶𝑚𝑎𝑥 ≤
𝑊𝑠𝑒𝑞+𝑊𝑖𝑑𝑙𝑒

𝑚
 is the completion time of the set of tasks.

𝐶𝑚𝑎𝑥 ≤
𝑊𝑠𝑒𝑞+𝑝𝑚𝑎𝑥(𝑚−1)

𝑚
, 𝐶𝑚𝑎𝑥 ≤

𝑊𝑠𝑒𝑞

𝑚
+

(𝑚−1)

𝑚
𝑝𝑚𝑎𝑥

𝑊𝑠𝑒𝑞

𝑚
 and 𝑝𝑚𝑎𝑥 are lower bounds of 𝐶𝑜𝑝𝑡

𝑠𝑒𝑞
, it follows that the worst-case

performance bound is 𝜌
𝑠𝑒𝑞

≤ 2 −
1

𝑚
.

© 2023 A. Tchernykh. Scheduling Preliminaries 40`

Identical Processors. LPT Algorithm for P | | Cmax

Approximation algorithm for P | | Cmax:

One of the simplest algorithms is the LPT algorithm in which the tasks are
arranged in order of non-increasing pj .

Algorithm LPT for P | | Cmax .

begin

Order tasks such that p1  ...  pn ;

for i = 1 to m do si := 0;

 -- processors Pi are assumed to be idle from time si = 0 on

j := 1;
repeat
 sk := min{ si };

 Assign task Tj to processor Pk at time sk;

 -- the first non-assigned task from the list is scheduled on the first processor that
becomes free
 sk := sk + pj; j := j + 1;

until j = n; -- all tasks have been scheduled
end;

© 2023 A. Tchernykh. Scheduling Preliminaries 41`

Identical Processors. LPT Algorithm for P | | Cmax

Theorem If the LPT algorithm is used to solve problem P | | Cmax, then RLPT =
4

3
 −

1

3m
 .

an example showing that this bound can be achieved.

Let n = 2m + 1, p = [2m − 1, 2m − 1, 2m − 2, 2m − 2,...,m + 1, m + 1, m, m, m].

For m = 3, Next figure shows two schedules, an optimal one and an LPT schedule.

© 2023 A. Tchernykh. Scheduling Preliminaries 42`

Identical Processors. LPT Algorithm for P | | Cmax

Example: m = 3 identical processors; n = 2m + 1,

p = [2m − 1, 2m − 1, 2m − 2, 2m − 2, ..., m + 1, m + 1, m, m, m].

Time complexity of this algorithm is O(nlogn)

• the most complex activity is to sort the set of tasks.

For m = 3, p = [5, 5, 4, 4, 3, 3, 3].

 (a) an optimal schedule, (b) LPT schedule.

30 5 6 9 t

P1

P2

P
3

1T

2
T

5T 6T

3T

4
T

7T

0 4 5 8 11 t

P1

P2

P3

1T

2T

3
T

5T

6T

4T

7T

© 2023 A. Tchernykh. Scheduling Preliminaries 43`

Identical Processors. LPT Algorithm for P | | Cmax

Example: n = (m − 1)m + 1, p = [1, 1,...,1, 1, m],  is empty,

L = (Tn , T1 , T2 ,...,Tn−1), L' = (T1 , T1 ,...,Tn).

The corresponding schedules for m = 4

 (a)
an optimal schedule, (b) an approximate schedule

 t0 1 2 3 4

P1

P
2

P
3

P
4

T13

1
T

4
T 7T T10

2
T 5T 8

T T11

3
T 6

T T9 T12

0 31 2 7 t

4
T

P1

P
2

P
3

P
4

1T

2
T

3
T

5T T9 T13

6
T T10

7T T11

8
T T12

© 2023 A. Tchernykh. Scheduling Preliminaries 44`

Preemptions

© 2023 A. Tchernykh. Scheduling Preliminaries 45`

Identical Processors, P | pmtn | Cmax

Problem P | pmtn | Cmax

• relax some constraints imposed on problem P | | Cmax and allow

preemptions of tasks.

• It appears that problem P | pmtn | Cmax can be solved very efficiently.

It is easy to see that the length of a preemptive schedule cannot be smaller than
the maximum of two values:

• the maximum processing time of a task and

• the mean processing requirement on a processor:

The following algorithm given by McNaughton (1959) constructs a schedule whose

length is equal to C * max .

C * max = max{max
j

{pj}, 1

m
 
j=1

n
 pj} .

© 2023 A. Tchernykh. Scheduling Preliminaries 46`

Identical Processors, P | pmtn | Cmaxю McNaughton's rule

Algorithm McNaughton's rule for P | pmtn | Cmax
begin

C *
max := max{

j=1

n
 pj/m, max{pj| j = 1,...,n}}; -- min schedule length

t := 0; i := 1; j := 1;
repeat

 if t + pj  C *
max

 then begin
 Assign task Tj to processor Pi , starting at time t;

 t := t + pj; j := j + 1;

 -- assignment of the next task continues at time t + pj

 end
 else begin

 Starting at time t, assign task Tj for C *
max - t units to Pi ;

 -- task Tj is preempted at time C *
max,

 -- assignment of Tj continues on the next processor at time 0

 pj := pj - (C *
max - t); t := 0; i := i + 1;

 end;
until j = n ; -- all tasks have been scheduled
end;

© 2023 A. Tchernykh. Scheduling Preliminaries 47`

Identical Processors, P | pmtn | Cmax

Remarks: The algorithm is optimal. Its time complexity is O(n)

Question of practical applicability:

Generally preemptions are not free of cost (delays)

Generally, two kinds of preemption costs have to be considered: time and
finance.

Time delays are not crucial if the delay caused by a single preemption is small
compared to the time the task continuously spends on the processor

Financial costs connected with preemptions, on the other hand, reduce the total
benefit gained by preemptive task execution; but again, if the profit gained is
large compared to the losses caused by the preemptions the schedule will be
more useful and acceptable.

© 2023 A. Tchernykh. Scheduling Preliminaries 48`

Identical Processors, P | pmtn | Cmax

k-preemptions: Given k  IN ; (The value for k (preemption granularity) should

be chosen large enough so that the time delay and cost overheads connected with
preemptions are negligible).

− Tasks with processing times less than or equal to k are not preempted

− Task preemptions are only allowed after the tasks have been processed

continuously for k time units

For the remaining part of a preempted task the same condition is applied

If k = 0: the problem reduces to the "classical" preemptive scheduling problem.

If for a given instance k is larger than the longest processing time among the given

tasks: no preemption is allowed and we end up with non-preemptive scheduling

Another variant is the exact-k-preemptive scheduling problem where task

preemptions are only allowed at those moments when the task has been

processed exactly an integer multiple of k time units

© 2023 A. Tchernykh. Scheduling Preliminaries 49`

Precedence constraints

© 2023 A. Tchernykh. Scheduling Preliminaries 50`

Identical Processors, P | prec | Cmax

Given: task set T with

− vector of processing times p
− precedence constraints 

− priority list L
− m identical processors

Let Cmax be the length of the list schedule

© 2023 A. Tchernykh. Scheduling Preliminaries 51`

Identical Processors, P | prec | Cmax, Graham anomalies

The above parameters can be changed:

− vector of processing times p'  p (component-wise),

− relaxed precedence constraints '  ,

− priority list L'
− and another number of processors m'

Let the new value of schedule length be C ' max .
List scheduling algorithms have unexpected behavior:

© 2023 A. Tchernykh. Scheduling Preliminaries 52`

Identical Processors, P | prec | Cmax, Graham anomalies

• the schedule length for problem P | prec | Cmax

•

may increase

if:

− the number of processors increases,

− task processing times decrease,

− precedence constraints are weakened, or

− the priority list changes

© 2023 A. Tchernykh. Scheduling Preliminaries 53`

Identical Processors, P | prec | Cmax, Graham anomalies

(a)

(b)

 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8),
(b) an optimal schedule

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

P

P

0 3 4 5 9 13 15 17

1
T

3
T

4
T

5
T

6
T

8
T

2
T

7
T

1

2

t

© 2023 A. Tchernykh. Scheduling Preliminaries 54`

Identical Processors, P | prec | Cmax, Graham anomalies

 A new list L' = (T1, T2, T3, T4, T5, T6, T8, T7).

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

1
T

3
T

4
T

6
T

2T 8T 5T
7

T

t

1
P

2P

0 3 4 5 6 9 10 11 23

© 2023 A. Tchernykh. Scheduling Preliminaries 55`

Identical Processors, P | prec | Cmax, Graham anomalies

1
T

3
T

4
T

6
T

2T 8T 5T
7

T

t

1
P

2P

0 3 4 5 6 9 10 11 23

© 2023 A. Tchernykh. Scheduling Preliminaries 56`

 (T1, T2, T3, T4, T5, T6, T7,T8).

Processing times decreased; p'j = pj − 1, j = 1, 2, ..., n.

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

t

1T 4T 6T 8T

7T5T2T

1P

2P

0 2 3 6 7 8 18

3T

© 2023 A. Tchernykh. Scheduling Preliminaries 57`

t

1T 4T 6T 8T

7T5T2T

1P

2P

0 2 3 6 7 8 18

3T

© 2023 A. Tchernykh. Scheduling Preliminaries 58`

Identical Processors, P | prec | Cmax, Graham anomalies

 Number of processors increased, m = 3

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

0 2 3 4 6 7 8 19

3P

t

1T 5T

2T 6T 7T

8T4T3T

2P

1P

© 2023 A. Tchernykh. Scheduling Preliminaries 59`

Identical Processors, P | prec | Cmax, Graham anomalies

(a
)

(b
)

Figure 4-6 (a) Precedence constraints weakened, (b) resulting list schedule.

T /2
3

T /2
6

T /4
5

T /4
4

T /4
2

T /3
1

T /13
7

T /2
8

0 3 4 5 8 9 10 12 22 t

P2

P1 T1

T2

T3

T4

T5

T6 T8

T7

© 2023 A. Tchernykh. Scheduling Preliminaries 60`

Identical Processors, P | prec | Cmax, Graham anomalies

These list scheduling anomalies have been discovered by Graham [Gra66], who
has also evaluated the maximum change in schedule length that may be induced
by varying one or more problem parameters.

o Let the processing times of the tasks be given by vector p,

o let T be scheduled on m processors using list L, and

o let the obtained value of schedule length be equal to Cmax.

On the other hand, let the above parameters be changed:

o a vector of processing times p' p (for all the components),

o relaxed precedence constraints '  ,

o priority list L' and the number of processors m'.

o Let the new value of schedule length be C ' max .

Then the following theorem is valid.

© 2023 A. Tchernykh. Scheduling Preliminaries 61`

Identical Processors, P | prec | Cmax, Graham anomalies

4.1.3.1 Theorem . Under the above assumptions,

C ' max

Cmax
  1 +

m−1

m'

Proof. Let us consider schedule S' obtained by processing task set  with primed
parameters.
 Let the interval [0, C ' max) be divided into two subsets, A and B , defined in the

following way:

A = {t  [0, C ' max) | all processors are busy at time t},

B = [0, C ' max) - A .

Notice that both A and B are unions of disjoint half-open intervals.

© 2023 A. Tchernykh. Scheduling Preliminaries 62`

Identical Processors, P | prec | Cmax, Graham anomalies

Corollary (Graham 1966) For an arbitrary list scheduling algorithm LS for P | | Cmax we

have RLS  2 − 1

m
 if m' = m.

(a) (b)

Schedules for Corollary
 (a) an optimal schedule,
 (b) an approximate schedule.

t0 1 2 3 4 0 31 2 7 t

4T

P1

P2

P3

P4

T13

1T 4T 7T T10

2T 5T 8T T11

3T 6T T9 T12

P1

P2

P3

P4

1T

2T

3T

5T T9 T13

6T T10

7T T11

8T T12

© 2023 A. Tchernykh. Scheduling Preliminaries 63`

Preemptions

© 2023 A. Tchernykh. Scheduling Preliminaries 64`

Identical Processors. P | pmtn, prec | Cmax

What can be gained by allowing preemptions?

Coffman and Garey (1991) compared problems P2 | prec | Cmax and

P2 | pmtn, prec | Cmax : (3/4)Cmax
non-preemptive

  Cmax
preemptive

 

Cmax
non-preemptive

Example showing the (3/4)-bound (with three even independent tasks):

(a) non-preemptive schedule: (b) preemptive schedule:

0 1 2
tnp

C
max

=

P1

P2

T1

T2

T3

0 1
t

1/2 3/2
p

C
max

4/3=

np

p

=

P1

P2

T1 T3

T3 T2

C
max

C
max

© 2023 A. Tchernykh. Scheduling Preliminaries 65`

Topic 3

Scheduling on Parallel Processors

 3.1 Minimizing Schedule Length

Identical Processors

Uniform and Unrelated Processors

3.2 Minimizing Mean Flow Time

Identical Processors

Uniform and Unrelated Processors

 3.3 Minimizing Due Date Involving Criteria

Identical Processors

Uniform and Unrelated Processors

© 2023 A. Tchernykh. Scheduling Preliminaries 66`

Model

 Arrival time (or release or ready time) 𝑟𝑗 … is the time at which task 𝑇𝑗 is ready

for processing

if the arrival times are the same for all tasks from T , then 𝑟𝑗 = 0 is assumed

for all tasks

− Due date 𝑑𝑗 … specifies a time limit by which 𝑇𝑗 should be completed

problems where tasks have due dates are often called "soft" real-time
problems. Usually, penalty functions are defined in accordance with due dates

− Penalty functions 𝐺𝑗 define penalties in case of due date violations

− Deadline 𝑑𝑗̃ … "hard" real time limit, by which 𝑇𝑗 must be completed

− Weight (priority) 𝑤𝑗 ... expresses the relative urgency of 𝑇𝑗

© 2023 A. Tchernykh. Scheduling Preliminaries 67`

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| −

If deadlines are given:

• check if a feasible schedule exists (decision problem)

Single processor problem P1 | 𝒑𝒋 = 1, 𝒅𝒋| − can be solved in polynomial time

EDF algorithm is optimal

More than one processor: most problems are known to be NP-complete

The problems

P | 𝒑𝒋 = 1, 𝒅𝒋| − and P | prec, 𝒑𝒋 {1, 2}, 𝒅𝒋 | −
are NP-complete

Algorithmic approaches:

− exhaustive search

− heuristic algorithms

− approximation algorithms

© 2023 A. Tchernykh. Scheduling Preliminaries 68`

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| −

Scheduling strategies:

A strategy is called "feasible", if the algorithm generates schedules where all tasks
observe their deadlines (assuming this is actually possible)

three interesting deadline scheduling strategies:

 EDF Earliest Deadline First scheduling
 LL Least Laxity scheduling

-

© 2023 A. Tchernykh. Scheduling Preliminaries 69`

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| −

Earliest Deadline First Scheduling Policy

− means that the task that has the earliest deadline (task that has to be

processed first) is to be scheduled next.

− EDF scheduler views task deadlines as more important than task priorities.

− Experiments have shown that the earliest deadline first policy is the most fair

scheduling algorithm.

© 2023 A. Tchernykh. Scheduling Preliminaries 70`

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| −

More complex deadline scheduler is the “Least Laxity” (or “LL”) scheduler.

• takes into account both a task’s deadline and its processing load,

EDF deadline scheduler would allow Task X to run before Task Y, even if Task Y
normally has higher priority.

• However, it could cause Task Y to miss its deadline.

• So perhaps an “LL” scheduler would be better

© 2023 A. Tchernykh. Scheduling Preliminaries 71`

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| −

Laxity is the value that describes how much computation there is still left before
the deadline of the task if it ran to completion immediately. Laxity of a task is a
measure for it's urgency.

Laxity = (Task Deadline – (Current schedule time + Rest of Task Exec. Time).

LL=D-t-Prest

It is the amount of time that the scheduler can “play with” before causing the task
to fail to meet its deadline.

Least Laxity Scheduling Policy: the task that has the smallest laxity (meaning the
least computation left before it's deadline) is scheduled next.

Thus, a Least Laxity deadline scheduler takes into account both deadline and
processing load.

© 2023 A. Tchernykh. Scheduling Preliminaries 72`

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| −

Example: Comparison of strategies

Set of independent tasks: T = {𝑇1, 𝑇2, ..., 𝑇6}
Tasks: (deadline, total execution time, arrival time):

𝑇1= (5, 4, 0), 𝑇2= (6, 3, 0), 𝑇3= (7, 4, 0),

𝑇4 = (12, 9, 2), 𝑇5= (13, 8, 4), 𝑇6= (15, 12, 2)

Execution on three identical processors:
 EDF-schedule (no preemptions): total execution time is 16

LL-schedule (with preemptions):  8 preemptions,

total execution time is 15
 optimal schedule with 3 preemptions, total execution time = 15

Execution on a single, three times faster processor:
 possible with no preemptions; total execution time is 40/3

Hence: a larger number of processors is not necessarily advantageous

© 2023 A. Tchernykh. Scheduling Preliminaries 73`

Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗̃| −

Feasibility testing of problem P | pmtn, 𝑟𝑗 , 𝑑𝑗̃| − is done by applying a network flow

approach (Horn 1974)

Given an instance of P | pmtn, 𝑟𝑗, 𝑑𝑗̃|,

let 𝑒0 < 𝑒1 <. . . < 𝑒𝑘, 𝑘  2𝑛−1 be the ordered sequence of release times and

deadlines together (𝑒𝑖 stands for 𝑟𝑗 or 𝑑𝑗̃) (time intervals)

Construct a network with source, sink and two sets of nodes (Figure):

the first set (nodes 𝑤𝑖) corresponds to time intervals in a schedule;

node 𝑤𝑖 corresponds to interval [𝑒𝑖−1, 𝑒𝑖], 𝑖 = 1, 2, . . . , 𝑘

the second set corresponds to the tasks

© 2023 A. Tchernykh. Scheduling Preliminaries 74`

Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗̃| −

c =m(e −e)
c=e −ek−1k

w
1

w
2

w
k

T1

T2

Tn

k-1kk

b=p
c=p2

2

c =m(e −e)1 1 0

c =m(e −e)12 2

c = e −e1 0

b=p
c=p

1

1

b=p
c=p

n

n

© 2023 A. Tchernykh. Scheduling Preliminaries 75`

Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗̃| −

Flow conditions:

− The capacity of an arc joining the source to node 𝑤𝑖 is m(𝑒𝑖 − 𝑒𝑖−1)

o this corresponds to the total processing capacity of m processors in this interval

− If task 𝑇𝑗 is allowed to be processed in interval [𝑒𝑖−1, 𝑒𝑗]
then 𝑤𝑖 is joined to 𝑇𝑗 by an arc of capacity 𝑒𝑖 − 𝑒𝑖−1

− Node 𝑇𝑗 is joined to the sink of the network by an arc with lower and upper

capacity equal to 𝑝𝑗

Finding a feasible flow pattern corresponds to constructing a feasible schedule;

this test can be made in 𝑂(𝑛3) time

the schedule is constructed on the basis of the flow values on arcs between interval
and task nodes.

© 2023 A. Tchernykh. Scheduling Preliminaries 76`

Example. n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2, 4, 5, 8].

(a) corresponding network

c=6

c=2

c=4

c=2

c=2

c=1

c=1
c=1

c=1
c=1

c=2

c=1

c=1

c=1

c=3

c=2

c=2

c=3

c=2
b=5
c=5

b=2
c=2

b=3
c=3

b=3
c=3

b=1
c=1

S S
1 2

1T

2T

3T

4
T

5
T

[0,1]

[1,2]

[2,4]

[4,5]

[5,8]

© 2023 A. Tchernykh. Scheduling Preliminaries 77`

(b) feasible flow pattern

S1 S2

[0,1]

[1,2]

[2,4]

[4,5]

[5,8] 5T

4T

3
T

2
T

1
T

2

2

4

2

4

1

1

1

1

1

2

11

1

3

1

5

2

3

3

1

© 2023 A. Tchernykh. Scheduling Preliminaries 78`

(c) optimal schedule

t0 1 2 4 5 8

T
2

T
2

T
3

T
1

T
1

T
4

T
3

T
4

T
1

T
4

T
5

P
1

P
2

© 2023 A. Tchernykh. Scheduling Preliminaries 79`

Bin Packing Problem

© 2023 A. Tchernykh. Scheduling Preliminaries 80`

Outline

1. Introduction

Metaphorically, there never seem to be enough bins for all one needs to store.
Mathematics comes to the rescue with the bin packing problem and its relatives.

The bin packing problem raises the following question:

• given a finite collection of n weights 𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛, and

• a collection of identical bins with capacity C (which exceeds the largest of the
weights),

• what is the minimum number k of bins into which the weights can be placed
without exceeding the bin capacity C?

© 2023 A. Tchernykh. Scheduling Preliminaries 81`

Outline

We want to know how few bins are needed to store a collection of items.

This problem, known as the 1-dimensional bin packing problem, is one of many
mathematical packing problems which are of both theoretical and applied interest.

It is important to keep in mind that "weights" are to be thought of as indivisible objects
rather than something like oil or water.

For oil one can imagine part of a weight being put into one container and any left
over being put into another container.

However, in the problem being considered here we are not allowed to have part of
a weight in one container and part in another.

One way to visualize the situation is as a collection of rectangles which have height
equal to the capacity C and a fixed width, whose exact size does not matter.

When an item is put into the bin it either falls to the bottom or is stopped at a height
determined by the weights that are already in the bins.

http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK5/NODE192.HTM

© 2023 A. Tchernykh. Scheduling Preliminaries 82`

Outline

The diagram below shows a bin of capacity 10 where three identical weights of
size 2 have been placed in the bin, leaving 4 units of empty space, which are
shown in blue.

© 2023 A. Tchernykh. Scheduling Preliminaries 83`

Outline

By contrast with the situation above, the bin below has been packed with weights
of size 2, 2, 2 and 4 in a way that no room is left over.

© 2023 A. Tchernykh. Scheduling Preliminaries 84`

Basic ideas

The bin packing problem asks for the minimum number k of identical bins of
capacity C needed to store a finite collection of weights 𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛 so that
no bin has weights stored in it whose sum exceeds the bin's capacity.

Traditionally

• capacity C is chosen to be 1 and

• weights are real numbers which lie between 0 and 1,

• for convenience of exposition, C is a positive integer and the weights are
positive integers which are less than the capacity.

Example 1:

• Suppose we have bins of size 10. How few of them are required to store
weights of size 3, 6, 2, 1, 5, 7, 2, 4, 1, 9?

© 2023 A. Tchernykh. Scheduling Preliminaries 85`

Basic ideas

The weights to be packed above have been presented in the form of a list L
ordered from left to right.

For the moment we will seek procedures (algorithms) for packing the bins that are
"driven" by a given list L and a capacity size C for the bins.

The goal of the procedures is to minimize the number of bins needed to store
the weights.

A variety of simple ideas as to how to pack the bins suggest themselves.

One of the simplest approaches is called Next Fit (NF).

The idea behind this procedure is to open a bin and place the items into it in the
order they appear in the list.

If an item on the list will not fit into the open bin, we close this bin permanently and
open a new one and continue packing the remaining items in the list.

© 2023 A. Tchernykh. Scheduling Preliminaries 86`

Basic ideas Next Fit (NF)

If some of the consecutive weights on the list exactly fill a bin, the bin is then
closed and a new bin opened.

When this procedure is applied to the list above we get the packing shown below.

Basic ideas Next Fit (NF)

Next Fit is

© 2023 A. Tchernykh. Scheduling Preliminaries 87`

• very simple,

• allows for bins to be shipped off quickly, because even if there is some extra
room in a bin, we do not wait around in the hope that an item will come along
later in the list which will fill this empty space.

One can imagine having a fleet of trucks with a weight restriction (the capacity C)
and one packs weights into the trucks.

If the next weight cannot be packed into the truck at the loading dock, this truck
leaves and a new truck pulls into the dock.

We keep track of how much room remains in the bin open at that moment.

In terms of how much time is required to find the number of bins for n weights, one
can answer the question using a procedure that takes a linear amount of time in
the number of weights (n).

Clearly, NF does not always produce an optimal packing for a given set of weights.
You can verify this by finding a way to pack the weights in Example 1 into 4 bins.

© 2023 A. Tchernykh. Scheduling Preliminaries 88`

Basic ideas Next Fit (NF)

Procedures such as NF are sometimes referred to as heuristics or heuristic
algorithms because although they were conceived as ways to solve a problem
optimally, they do not always deliver an optimal solution.

Can we find a way to improve on NF so as to design an algorithm which will always
produce an optimal packing?

A natural thought would be that if we are willing to keep bins open in the hope that
we will be able to fill empty space with items later in list L, we will typically use
fewer bins.

© 2023 A. Tchernykh. Scheduling Preliminaries 89`

Basic ideas First Fit (FF)

The simplest way to carry out this idea is known as First Fit.

We place the next item in the list into the first bin which has not been completely
filled (thought of as numbered from left to right) into which it will fit.

• When bins are filled completely they are closed,

• If an item will not fit into any currently open bin, a new bin is opened.

© 2023 A. Tchernykh. Scheduling Preliminaries 90`

Basic ideas First Fit (FF)

The result of carrying out First Fit for the list in Example 1 and with bins of capacity
10 is shown below:

© 2023 A. Tchernykh. Scheduling Preliminaries 91`

Basic ideas First Fit (FF)

Both methods we have tried have yielded 5 bins.

We know that this is not the best we can hope for.

One simple insight is obtained by computing the total sum of the weights and dividing
this number by the capacity of the bins.

Since we are dealing with integers, the number of bins we need must be at least
⌈𝛺/𝐶⌉ where 𝛺 = ∑ 𝑤𝑖

𝑛
𝑖=1 .

(Note that ⌈𝑥⌉ denotes the smallest integer that is greater than or equal to x).

Clearly, the number of bins must always be an integer. In Example 1, since 𝛺 is 40
and C is 10, we can conclude that there is hope of using only 4 bins.

However, neither Next Fit nor First Fit achieves this value with the list given in
Example 1. Perhaps we need a better procedure.

© 2023 A. Tchernykh. Scheduling Preliminaries 92`

Basic ideas Best Fit (BF) and Worst Fit (WF)

Two other simple methods in the spirit of Next Fit and First Fit have also been looked
at.

These are known as Best Fit (BF) and Worst Fit (WF).

For Best Fit, one again keeps bins open even when the next item in the list will not
fit in previously opened bins, in the hope that a later smaller item will fit.

The criterion for placement is that we put the next item into the currently open bin
(e.g. not yet full) which leaves the least room left over. (In the case of a tie we put
the item in the lowest numbered bin as labeled from left to right.)

For Worst Fit, one places the item into that currently open bin into which it will fit
with the most room left over.

© 2023 A. Tchernykh. Scheduling Preliminaries 93`

Basic ideas Best Fit (BF) and Worst Fit (WF)

The amount of time necessary to find the minimum number of bins using either FF,
WF or BF is higher than for NF. What is involved here is n log n implementation
time in terms of the number n of weights.

The distinction between First Fit, Best Fit and Worst Fit:

o suppose that we currently have only 3 bins open with capacity 10

o remaining space as follows:

• Bin 4, 4 units,

• Bin 6, 7 units, and

• Bin 9 with 3 units.

Suppose the next item in the list has size 2.

First Fit puts this item in Bin 4, Best Fit puts it in Bin 9, and Worst Fit puts it in Bin 6!

One difficulty is that we are applying "good procedures" but on a "lousy" list. If we
know all the weights to be packed in advance, is there a way of constructing a
good list?

