
© 2023 A. Tchernykh. Scheduling    Preliminaries 1` 

 

 

 

 

 

 

Topic 1: Preliminaries 
 

Basic Notions 

Scheduling Models 

 

  



© 2023 A. Tchernykh. Scheduling    Preliminaries 2` 

 

 

 

 

 

 
 

 
 
 
 
 

Basic Notions 
  



© 2023 A. Tchernykh. Scheduling    Preliminaries 3` 

Basic Notions. Introduction 

 

The notion of task is used to express some well-defined activity or piece of work  
 

Planning in practical applications requires some knowledge about the tasks  

This knowledge does not regard their nature, but rather general properties such as  

− processing times, 

− relations between the tasks concerning the order in which the tasks can be 
processed, 

− release times which inform about the earliest times the tasks can be started, 

− deadlines that define the times by which the tasks must be completed, 

− due dates by which the tasks should be completed together with cost 
functions that define penalties in case of due date violations, 

− additional resources (for example, tools, storage space, data) 

Based on these data one could try to develop a work plan or time schedule that 
specifies for each task when it should be processed, on which machine or 
processor, including preemption points, etc.  
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Basic Notions. Introduction 

 

Depending on how much is known about the tasks to be processed, we distinguish 
between three main directions in scheduling theory: 

Deterministic or static or off-line scheduling assumes that all information 

required to develop a schedule is known in advance, before the actual processing 
takes place 

Especially in production scheduling and in real-time applications the deterministic 
scheduling discipline plays an important role  

  

Non-deterministic scheduling is less restrictive: only partial information is 

known 
for example, computer applications where tasks are pieces of software with 
unknown run-time 
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Basic Notions. Introduction 

 

On-line scheduling: In many situations detailed knowledge of the nature of 

the tasks is available, but the time at which tasks occur is open  

If the demand of executing a task arises a decision upon acceptance or rejection is 
required, and, in case of acceptance, the task start time has to be fixed  

In this situation schedules cannot be determined off-line, and we then talk about 
on-line scheduling or dynamic scheduling  

 Non-clairvoyant scheduling: consider problems of scheduling jobs with 

unspecied execution time requirements 

 Stochastic scheduling: only probabilistic information about parameters is 

available  

In this situation probability analysis is typical means to receive information about 
the system behavior  

➢ For each type of scheduling one can find justifying applications 

Here, off-line scheduling (occasionally also on-line scheduling) is considered  
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Deterministic Scheduling Problems 

 

• Between tasks there are relations describing the relative order in which the 
tasks are to be performed 

order of task execution can be restricted by conditions like precedence constraints 

• Preemption of task execution can be allowed or forbidden  

• Timing conditions such as task release times, deadlines or due dates may 
be given  

In case of due dates cost functions may define penalties depending on the amount of 
lateness  

• There may be conditions for time lags between pairs of tasks, such as setup 
delays  

• In so-called shop problems sequences of tasks, each to be performed on some 
specified machine, are defined  

An example is the well-known flow shop or assembly line processing 

Scheduling problems are characterized not only by the tasks and their specific 
properties, but also by information about the processing devices  

Processors or machines for processing the tasks can be identical, can have 
different speeds (uniform), or their processing capabilities can be unrelated  
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Deterministic Scheduling Problems 

 

The problem is to determine an appropriate schedule, i.e. one that satisfies all 
conditions imposed on the tasks and processors  

A schedule essentially defines the start times of the tasks on a specified processor  

Generally there may exist several possible schedules  

An important is to define an optimization criterion 

Common criteria are:  

- minimization of the makespan of the total task set,  

- minimization of the mean waiting time of the tasks 

The optimization criterion allows to choose an appropriate schedule  

Such schedules are then used as a planning basis for carrying out the various 
activities 

Unfortunately, finding optimal schedules is in general a very difficult process  

Except for simplest cases, these problems turn out to be NP-hard, and hence the 
time required computing an exact solution is beyond all practical means  

In this situation, algorithmic approaches for sub-optimal schedules seem to be the 
only possibility   
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The Scheduling Model 

 
 
 
 
 

• Deterministic Model 

• Optimization Criteria 

• Scheduling Problem and  |  |   - Notation 

• Scheduling Algorithms 
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The Scheduling Model. Deterministic Model 

 

Tasks, Processors, etc. 

Set of tasks T  = {𝑇1, 𝑇2, … , 𝑇𝑛} 

Set of resource types  R  = {𝑅1, 𝑅2, … , 𝑅𝑠} 

Set of processors  P  = {𝑃1, 𝑃2, … , 𝑃𝑚} 

Examples of processors:  

CPUs in e.g. a multiprocessor system  

Computers in a distributed processing environment  

Production machines in a production environment  

Processors may be  

• parallel: they are able to perform the same functions  

• dedicated: they are specialized for the execution of certain tasks  
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The Scheduling Model. Deterministic Model 

 
 
Parallel processors have the same execution capabilities 

Three types of parallel processors are distinguished 

o identical: if all processors from set P  have equal task processing speeds  

o uniform : if the processors differ in their speeds, but the speed 𝑏𝑖 of each 

processor is constant and does not depend on the tasks in T   

o unrelated: if the speeds of the processors depend on the particular task 

unrelated processors are more specialized: on certain tasks, a processor 
may be faster than on others  
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The Scheduling Model. Deterministic Model 

 

Characterization of a task 𝑻𝒋 

− Vector of processing times 𝑝𝑗 =  [𝑝𝑖𝑗, … , 𝑝𝑚𝑗], where 𝑝𝑖𝑗 is the time needed by 

processor 𝑃𝑖 to process 𝑇𝑗 

Identical processors: 𝑝1𝑗 = ⋯ = 𝑝𝑚𝑗 = 𝑝𝑗 

Uniform processors: 𝑝𝑖𝑗 =
𝑝𝑗  

𝑏𝑖
⁄ , 𝑖 = 1, … , 𝑚 

𝑝𝑗  = standard processing time (usually measured on the slowest processor),  

𝑏𝑖 is the processing speed factor of processor 𝑃𝑖 

 

Processing times are usually not known a priori in computer systems  

Instead of exact values of processing times one can take their estimate  

However, in case of deadlines exact processing times or at least upper bounds are 
required 
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The Scheduling Model. Deterministic Model 

 

 Arrival time (or release or ready time) 𝑟𝑗  …  is the time at which task 𝑇𝑗  is ready 

for processing  

if the arrival times are the same for all tasks from T , then 𝑟𝑗 = 0 is assumed 

for all tasks  

− Due date 𝑑𝑗  … specifies a time limit by which 𝑇𝑗  should be completed 

problems where tasks have due dates are often called "soft" real-time 
problems. Usually, penalty functions are defined in accordance with due dates  

− Penalty functions 𝐺𝑗 define penalties in case of due date violations 

− Deadline 𝑑𝑗̃  …  "hard" real time limit, by which 𝑇𝑗  must be completed 

− Weight (priority) 𝑤𝑗  ... expresses the relative urgency of 𝑇𝑗  
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The Scheduling Model. Deterministic Model 

 

− Preemption / non-preemption:  

A scheduling problem is called preemptive if each task may be preempted at 
any time and its processing is resumed later, perhaps on another processor  

 If preemption of tasks is not allowed the problem is called non-preemptive 

− Resource requests:  

besides processors, tasks may require certain additional resources during 
their execution  

 

Resources are usually scarce, which means that they are available only in 
limited amounts  

In computer systems, exclusively accessible devices or data may be 
considered as resources  
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The Scheduling Model. Deterministic Model 

 

We assume without loss of generality that all these parameters,  𝑝𝑗 , 𝑟𝑗 , 𝑑𝑗 , 𝑑𝑗̃, 𝑤𝑗 and 

𝑅𝑙(𝑇𝑗) are integers. This assumption is equivalent to permitting arbitrary rational 

values 

Conditions among the set of tasks T : precedence constraints  

𝑇𝑖   𝑇𝑗  means that the processing of 𝑇𝑖  must be completed before 𝑇𝑗 can be 

started  

We say that a precedence relation  is defined on set T   

mathematically, a precedence relation is a partial order  

The tasks in T are called dependent  

if the relation  is non-empty 

otherwise, the tasks are called independent  
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The Scheduling Model. Deterministic Model 

 

𝑇𝑖 is called a predecessor of 𝑇𝑗 if there is a sequence of asks 𝑇𝛼1
, . . . , 𝑇𝛼𝑙

 (𝑙  0) with 

𝑇𝑖   𝑇𝛼1
  ...  𝑇𝛼𝑙

   𝑇𝑗.  Likewise, 𝑇𝑗  is called a successor of 𝑇𝑖.  

If 𝑇𝑖   𝑇𝑗 .  , but there is no task  𝑇𝛼  with  𝑇𝑖   𝑇𝛼  𝑇𝑗 .   then  𝑇𝑖   is called an 

immediate predecessor of 𝑇𝑗, and 𝑇𝑗   an immediate predecessor of 𝑇𝑖   

 

A task that has no predecessor is called start task  

A task without successor is referred to as final task 

 

Special types of precedence graphs are  

o chain dependencies:  the partial order is the union of linearly ordered disjoint 
subsets of tasks 

o tree dependencies:  the precedence relation is tree-like;  

out-tree: if all task dependencies are oriented away from the root  

in-tree: if all dependencies are oriented towards the root  
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The Scheduling Model. Deterministic Model 

 

Representation of tasks with precedence constraints:  

− task-on-node graph (Hasse diagram)  

 

For each 𝑇𝑖 ≺  𝑇𝑗 , an edge is drawn 

between the corresponding nodes 

The situation 𝑇𝑖 ≺  𝑇𝑗 and 𝑇𝑗 ≺  𝑇𝑘 is 

called transitive dependency between 

𝑇𝑖 and 𝑇𝑘. 

Transitive dependencies are not 
explicitly represented 
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The Scheduling Model. Deterministic Model 

 

 task-on-arc graph, activity network. Arcs represent tasks and nodes time events  

Example 1: T  = {𝑇1, ..., 𝑇10} with precedences as shown by the above Hasse 

diagram. A corresponding activity network: 
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The Scheduling Model. Deterministic Model 

 

Task 𝑇𝑗 is called available at time t if 𝑟𝑗 ≤ t and all its predecessors (with respect to 

the precedence constraints) have been completed by time t  

Schedules 

Schedules or work plans generally … 

 inform about the times and on which processors the tasks are executed 

 

To demonstrate the principles, the schedules are described for the special case of: 

- parallel processors 

- tasks have no deadlines 

- tasks require no additional resources 

Release times and precedence constraints may occur 
  



© 2023 A. Tchernykh. Scheduling    Preliminaries 20` 

 

The Scheduling Model. Schedule representation 3 

 

(3) Graphic representation: Gantt chart - this is a two-dimensional diagram 

The abscissa represents the time axis that usually starts with time 0 at the origin 

Each processor is represented by a line 

For a task 𝑇𝑗  to be processed by 𝑃𝑖 a bar of length p(𝑇𝑗) and that begins at the 

time marked by s(𝑇𝑗), is entered in the line corresponding to 𝑃𝑖 
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The Scheduling Model. Schedule representation 

 

Example 1: T  = {𝑇1, ..., 𝑇12} with precedences as shown by the Hasse 

diagram: 
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The Scheduling Model. Schedule representation 

 

Example 2:  non-preemptive schedule 

In the above example, let (2, 2, 8, 2, 3, 2, 4, 4, 2, 1, 3, 1) be the vector of 

processing times, and assume all release times = 0 

Assume furthermore that there are 3 identical processors (P  = {𝑃1, … , 

𝑃3}) available for processing the tasks  

Gantt chart of a non-preemptive schedule: 
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The Scheduling Model. Schedule representation 
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The Scheduling Model. Deterministic Model 

 

Given a schedule Ϛ, the following can be determined for each task 𝑻𝒋 : 

flow time, turnarround, response  𝐹𝑗:= 𝑐𝑗− 𝑟𝑗 

lateness 𝐿𝑗= 𝑐𝑗 − 𝑑𝑗 

tardiness 𝐷𝑗= max{𝑐𝑗 −𝑑𝑗, 0} 

tardy task 𝑈𝑗 = 


 

 
 

0 if 𝐷𝑗 = 0 

1 else 
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The Scheduling Model. Deterministic Model. Optimization Criteria 

 

Evaluation of schedules 

Maximum makespan 𝐶𝑚𝑎𝑥 = max{𝑐𝑗 | 𝑇𝑗  T } 

Mean flow time  𝐹̅ := (1/n)  𝐹𝑗  

Mean weighted flow time  𝐹𝑤
̅̅ ̅:= (𝑤𝑗𝐹𝑗) / ( 𝑤𝑗) 

Maximum lateness  𝐿𝑚𝑎𝑥= max{𝐿𝑗 | 𝑇𝑗  T } 

Mean tardiness  𝐷̅:= (1/n)  𝐷𝑗 

Mean weighted tardiness  𝐷𝑤
̅̅ ̅̅ := ( 𝑤𝑗𝐷𝑗) / ( 𝑤𝑗) 

Mean sum of tardy tasks  𝑈̅:= (1/n)  𝑈𝑗 

Mean weighted sum of tardy tasks  𝑈𝑤
̅̅ ̅̅ := ( 𝑤𝑗𝑈𝑗) / ( 𝑤𝑗) 
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The Scheduling Model. Deterministic Model. Optimization Criteria 

 

Given a set of tasks and a processor environment there are generally many 
possible schedules  

Evaluating schedules: distinguish between good and bad schedules  

This leads to different optimization criteria  

Minimizing the maximum makespan 𝑪𝒎𝒂𝒙  

𝐶𝑚𝑎𝑥 criterion: 𝐶𝑚𝑎𝑥-optimal schedules have minimum makespan  

 the total time to execute all tasks is minimal  

 

Minimizing schedule length is important from the viewpoint of the owner of a set of 
processors (machines):  
This leads to both, the maximization of the processor utilization factor (within 
schedule length 𝐶𝑚𝑎𝑥), and the minimization of the maximum in-process time of the 
scheduled set of tasks  
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The Scheduling Model. Deterministic Model. Optimization Criteria 

 

Deadline related criteria 

If deadlines are specified for (some of) the tasks we are interested in a schedule in 
which all tasks complete before their deadlines expire  

Question: does there exist a schedule that fulfills all the given conditions?  

Such a schedule is called valid (feasible)  

Here we are faced in principle with a decision problem  

If, however, a valid schedule exits, we would of course like to get it explicitly  

If a valid schedule exists we may wish to find a schedule that has certain additional 
properties, such as minimum makespan or minimum mean flow  

Hence in deadline related problems we often additionally impose one of the other 
criteria  
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The Scheduling Model. Deterministic Model. Optimization Criteria 

 

Minimizing the maximum lateness 𝑳𝒎𝒂𝒙 

This concerns tasks with due dates  

Minimizing 𝐿𝑚𝑎𝑥  expresses the attempt to keep the maximum lateness small, no 
matter how many tasks are late 

Due date involving criteria are of great importance in manufacturing systems, 
especially for specific customer orders 

Minimizing the mean weighted tardiness 𝑫𝒘
̅̅ ̅̅  

This criterion considers a weighted sum of tardinesses  

Minimizing mean weighted tardiness means that a task with large weight should 
have a small tardiness 

Minimizing the weighted sum of tardy tasks 𝑼𝒘
̅̅ ̅̅  

This criterion considers only the number of tardy tasks  

Individual weights for the tasks are again possible 
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 |  |  - Notation 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 

 

Scheduling problem    is defined by a set of parameters for processors, tasks, 

and an optimality criterion  

An instance I of problem   is specified by particular values for the problem 

parameters  

The parameters are grouped in three fields  |  |  :  

 specifies the processor environment, 

 describes properties of the tasks, and 

 the definition of an optimization criterion 

The terminology introduced below aims to classify scheduling problems 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 

 

Component    specifies the processors 

 =𝛼1, 𝛼2 describes the processor environment  

Parameter 𝛼1 ∈{, P, Q, R} characterizes the type of processor  

parameter 𝛼2 ∈{, k} denotes the number of available processors: 

𝛼1 𝛼2 

 single processor  
 
 

the number of processors is 
assumed to be variable 

P identical processors 
k 

 

the number of processors is equal to 

k (k is a positive integer) 

Q uniform processors  
the number of processors is 
unlimited 

R unrelated processors   
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 

 

Component    specifies the tasks 

 =𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 describes task and resource characteristics 

Parameter 𝛽
2

∈{, pmtn} indicates the possibility of task preemption 

𝛽1 

 no preemption is allowed 

pmtn preemptions are allowed 

Parameter 𝛽
3
  {, prec, tree, chains} reflects the precedence constraints 

𝛽
3
= , prec, tree, chains : denotes respectively independent tasks, general 

precedence constraints, tree or a set of chains precedence constraints 

Parameter 𝛽
4
  {, 𝑟𝑗} describes ready times 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 

 

Parameter 𝛽
5
  {, 𝑝𝑗 = p, 𝑝  𝑝𝑗  𝑝̅} describes task processing times 

5 

 

𝑝𝑗 = p 

𝑝  𝑝𝑗  𝑝̅ 

tasks have arbitrary processing times 

all tasks have processing times equal to p units 

no  𝑝𝑗  is less than 𝑝 or greater than 𝑝̅ 

Parameter 𝛽
6
  {, 𝑑𝑗̃} describes deadlines 

𝛽
6
 

 
 

𝑑𝑗̃ 

no deadlines or due dates are assumed in the 
system 

deadlines are imposed on the performance of a task 
set 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 

 

Component  : Specifying the objective criterion 

 description 

𝐶𝑚𝑎𝑥   schedule length or makespan 

𝛴𝐶𝑗 mean flow time 

𝛴𝑤𝑗𝐶𝑗 mean weighted flow time 

𝐿𝑚𝑎𝑥 maximum lateness 

𝛴𝐷𝑗 mean tardiness 

𝛴𝑤𝑗𝐷𝑗 mean weighted tardiness 

𝛴𝑈𝑗 number of tardy tasks 

𝛴𝑤𝑗𝑈𝑗 weighted number of tardy tasks 

− means testing for feasibility  

A schedule for which the value of a particular performance measure   is at its minimum will 

be called optimal : The corresponding value of   is denoted by  *  
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Topic 2 

Scheduling on Parallel Processors 
 

 2.1 Minimizing Schedule Length 

• Identical Processors 

• Uniform Processors 
2.2 Minimizing Mean Flow Time 

• Identical Processors 

• Uniform Processors 
 2.3 Minimizing Due Date Involving Criteria 

• Identical Processors 

• Uniform Processors 
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Independent tasks 
  



© 2023 A. Tchernykh. Scheduling    Preliminaries 37` 

Identical Processors P | | Cmax 

 
The first problem considered is P | | Cmax where  

• a set of 𝑛 independent tasks 𝑝𝑖 

• on 𝑚 identical processors   

• minimize schedule length.  
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Identical Processors P | | Cmax 
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Identical Processors. List Scheduling 

 

𝑊𝑠𝑒𝑞 = ∑ 𝑝𝑖
𝑛
𝑖=1  be the total work of all jobs 

𝑝𝑚𝑎𝑥 is the maximum processing time of a job. 

𝑊𝑖𝑑𝑙𝑒 be the total idle intervals, 𝑊𝑖𝑑𝑙𝑒 ≤ 𝑝𝑚𝑎𝑥(𝑚 − 1)  

𝐶𝑚𝑎𝑥 ≤
𝑊𝑠𝑒𝑞+𝑊𝑖𝑑𝑙𝑒

𝑚
 is the completion time of the set of tasks. 

 

𝐶𝑚𝑎𝑥 ≤
𝑊𝑠𝑒𝑞+𝑝𝑚𝑎𝑥(𝑚−1)

𝑚
, 𝐶𝑚𝑎𝑥 ≤

𝑊𝑠𝑒𝑞

𝑚
+

(𝑚−1)

𝑚
𝑝𝑚𝑎𝑥 

𝑊𝑠𝑒𝑞

𝑚
 and 𝑝𝑚𝑎𝑥 are lower bounds of 𝐶𝑜𝑝𝑡

𝑠𝑒𝑞
, it follows that the worst-case 

performance bound is 𝜌
𝑠𝑒𝑞

≤ 2 −
1

𝑚
.  
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Identical Processors. LPT Algorithm for P | | Cmax 

Approximation algorithm for P | | Cmax:   

One of the simplest algorithms is the LPT algorithm in which the tasks are 
arranged in order of non-increasing pj . 

Algorithm  LPT for P | | Cmax . 

begin 

Order tasks such that p1  ...  pn ; 

for i = 1 to m do si := 0; 

 -- processors Pi are assumed to be idle from time si = 0 on 

j := 1;  
repeat 
 sk := min{ si }; 

 Assign task Tj to processor Pk at time sk; 

   -- the first non-assigned task from the list is scheduled on the first processor that 
becomes free 
 sk := sk + pj;  j := j + 1; 

until j = n; -- all tasks have been scheduled 
end; 
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Identical Processors. LPT Algorithm for P | | Cmax 

 

Theorem   If the LPT algorithm is used to solve problem P | | Cmax, then RLPT = 
4

3
 − 

1

3m
 . 

  

 

an example showing that this bound can be achieved.  

 

Let n = 2m + 1, p = [2m − 1, 2m − 1, 2m − 2, 2m − 2,...,m + 1, m + 1, m, m, m].  

 

For m = 3, Next figure shows two schedules, an optimal one and an LPT schedule.  
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Identical Processors. LPT Algorithm for P | | Cmax 

 

Example: m = 3 identical processors; n = 2m + 1, 

p = [2m − 1, 2m − 1, 2m − 2, 2m − 2, ..., m + 1, m + 1, m, m, m].  

Time complexity of this algorithm is O(nlogn)  

• the most complex activity is to sort the set of tasks.  

For m = 3, p = [5, 5, 4, 4, 3, 3, 3].  
 

 

  

 

 
 (a) an optimal schedule,                      (b) LPT schedule. 
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Identical Processors. LPT Algorithm for P | | Cmax 

 

Example: n = (m − 1)m + 1, p = [1, 1,...,1, 1, m],  is empty,  

L = (Tn , T1 , T2 ,...,Tn−1), L' = (T1 , T1 ,...,Tn).  

The corresponding schedules for m = 4  

 

 

 

 

 

             (a) 
an optimal schedule,               (b) an approximate schedule 
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Preemptions 
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Identical Processors, P | pmtn | Cmax 

 
Problem P | pmtn | Cmax 

• relax some constraints imposed on problem P | | Cmax and allow 

preemptions of tasks.  

• It appears that problem P | pmtn | Cmax can be solved very efficiently.  

 
It is easy to see that the length of a preemptive schedule cannot be smaller than 
the maximum of two values:  

• the maximum processing time of a task and  

• the mean processing requirement on a processor:  

The following algorithm given by McNaughton (1959) constructs a schedule whose 

length is equal to C *  max . 
 

C *  max = max{max
j

{pj}, 1

m
 
j=1

n
 pj} . 
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Identical Processors, P | pmtn | Cmaxю McNaughton's rule  

 

Algorithm McNaughton's rule for P | pmtn | Cmax   
begin 

C * 
max := max{

j=1

n 
 pj/m, max{pj| j = 1,...,n}}; -- min schedule length 

t := 0; i := 1; j := 1; 
repeat 

  if t + pj  C * 
max 

  then begin 
    Assign task Tj to processor Pi , starting at time t; 

    t := t + pj; j := j + 1; 

   -- assignment of the next task continues at time t + pj 

    end 
  else begin 

    Starting at time t, assign task Tj for C * 
max - t units to Pi ; 

 -- task Tj is preempted at time C * 
max, 

 -- assignment of Tj continues on the next processor at time 0 

    pj := pj - (C * 
max - t); t := 0; i := i + 1; 

    end; 
until j = n ;    -- all tasks have been scheduled 
end; 
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Identical Processors, P | pmtn | Cmax 

 

Remarks:  The algorithm is optimal.  Its time complexity is O(n)  

Question of practical applicability:  

Generally preemptions are not free of cost (delays)  

Generally, two kinds of preemption costs have to be considered: time and 
finance. 

Time delays are not crucial if the delay caused by a single preemption is small 
compared to the time the task continuously spends on the processor 

Financial costs connected with preemptions, on the other hand, reduce the total 
benefit gained by preemptive task execution; but again, if the profit gained is 
large compared to the losses caused by the preemptions the schedule will be 
more useful and acceptable. 
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Identical Processors, P | pmtn | Cmax 

 

k-preemptions:  Given k  IN ; (The value for k (preemption granularity) should 

be chosen large enough so that the time delay and cost overheads connected with 
preemptions are negligible). 

− Tasks with processing times less than or equal to k are not preempted  

− Task preemptions are only allowed after the tasks have been processed 

continuously for k time units 

For the remaining part of a preempted task the same condition is applied 

 

If k = 0: the problem reduces to the "classical" preemptive scheduling problem.  

If for a given instance k is larger than the longest processing time among the given 

tasks: no preemption is allowed and we end up with non-preemptive scheduling 

Another variant is the exact-k-preemptive scheduling problem where task 

preemptions are only allowed at those moments when the task has been 

processed exactly an integer multiple of k time units 
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Precedence constraints  
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Identical Processors, P | prec | Cmax 

 

Given: task set T  with  

− vector of processing times p  
− precedence constraints   

− priority list L 
− m identical processors 

Let Cmax be the length of the list schedule  
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Identical Processors, P | prec | Cmax, Graham anomalies 

 

The above parameters can be changed:  

− vector of processing times p'  p (component-wise),  

− relaxed precedence constraints '  ,  

− priority list L'  
− and another number of processors m'  

Let the new value of schedule length be C '   max . 
List scheduling algorithms have unexpected behavior:  
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Identical Processors, P | prec | Cmax, Graham anomalies 

 
 

• the schedule length for problem P | prec | Cmax  

•  

may increase 
 

if: 

 

− the number of processors increases, 

− task processing times decrease, 

− precedence constraints are weakened, or 

− the priority list changes 
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Identical Processors, P | prec | Cmax, Graham anomalies 

 

(a) 

 

(b) 

 

 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8),  
(b) an optimal schedule 
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Identical Processors, P | prec | Cmax, Graham anomalies 

 

 

 A new list  L' = (T1, T2, T3, T4, T5, T6, T8, T7). 
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Identical Processors, P | prec | Cmax, Graham anomalies 
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 (T1, T2, T3, T4, T5, T6, T7,T8). 

Processing times decreased;  p'j = pj − 1,  j = 1, 2, ..., n. 
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 Number of processors increased, m = 3 
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Identical Processors, P | prec | Cmax, Graham anomalies 

 
(a
) 

 

(b
) 

 

Figure 4-6 (a) Precedence constraints weakened, (b) resulting list schedule. 
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Identical Processors, P | prec | Cmax, Graham anomalies 

 

 

These list scheduling anomalies have been discovered by Graham [Gra66], who 
has also evaluated the maximum change in schedule length that may be induced 
by varying one or more problem parameters. 

 

o Let the processing times of the tasks be given by vector p,  

o let T  be scheduled on m processors using list L, and 

o let the obtained value of schedule length be equal to Cmax.  

 

On the other hand, let the above parameters be changed:  

o a vector of processing times p' p (for all the components), 

o relaxed precedence constraints '  ,  

o priority list L' and the number of processors m'. 

o Let the new value of schedule length be C '   max .  

 

Then the following theorem is valid. 
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Identical Processors, P | prec | Cmax, Graham anomalies 

4.1.3.1 Theorem . Under the above assumptions,  

C '   max

Cmax
  1 + 

m−1

m'
  

 

Proof. Let us consider schedule S' obtained by processing task set   with primed 
parameters. 
 Let the interval [0, C '   max) be divided into two subsets, A  and B , defined in the 

following way:  

A  = {t  [0, C '   max) | all processors are busy at time t},  

B  = [0, C '   max) - A . 

 
Notice that both A and B are unions of disjoint half-open intervals. 
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Identical Processors, P | prec | Cmax, Graham anomalies 

 

Corollary  (Graham 1966)  For an arbitrary list scheduling algorithm LS for P | | Cmax we 

have RLS    2 − 1

m
  if m' = m.  

(a)     (b) 

 

 
Schedules for Corollary 
 (a) an optimal schedule, 
 (b) an approximate schedule. 
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Preemptions   
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Identical Processors.  P | pmtn, prec | Cmax 

 

What can be gained by allowing preemptions?  

Coffman and Garey (1991) compared problems P2 | prec | Cmax and 

P2 | pmtn, prec | Cmax :   (3/4)Cmax                   
non-preemptive

  Cmax            
preemptive

  

Cmax                   
non-preemptive

 

Example showing the (3/4)-bound (with three even independent tasks):  

(a) non-preemptive schedule: (b) preemptive schedule: 
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Topic 3 

Scheduling on Parallel Processors 

 

 3.1 Minimizing Schedule Length 

Identical Processors 

Uniform and Unrelated Processors 

3.2 Minimizing Mean Flow Time 

Identical Processors 

Uniform and Unrelated Processors 

 3.3 Minimizing Due Date Involving Criteria 

Identical Processors 

Uniform and Unrelated Processors 
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Model 

 

 Arrival time (or release or ready time)  𝑟𝑗  …  is the time at which task 𝑇𝑗 is ready 

for processing  

if the arrival times are the same for all tasks from T , then   𝑟𝑗 = 0 is assumed 

for all tasks  

− Due date  𝑑𝑗  … specifies a time limit by which 𝑇𝑗 should be completed 

problems where tasks have due dates are often called "soft" real-time 
problems. Usually, penalty functions are defined in accordance with due dates  

− Penalty functions 𝐺𝑗 define penalties in case of due date violations 

− Deadline 𝑑𝑗̃  …  "hard" real time limit, by which 𝑇𝑗 must be completed 

− Weight (priority) 𝑤𝑗  ... expresses the relative urgency of 𝑇𝑗 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| − 

 

If deadlines are given: 

• check if a feasible schedule exists (decision problem) 

Single processor problem  P1 | 𝒑𝒋 = 1, 𝒅𝒋| −  can be solved in polynomial time 

EDF algorithm is optimal  

More than one processor: most problems are known to be NP-complete  

The problems   

P | 𝒑𝒋 = 1, 𝒅𝒋| −     and    P | prec, 𝒑𝒋 {1, 2}, 𝒅𝒋 | −    
are NP-complete 

Algorithmic approaches:  

− exhaustive search 

− heuristic algorithms 

− approximation algorithms 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| − 

 
Scheduling strategies: 

A strategy is called "feasible", if the algorithm generates schedules where all tasks 
observe their deadlines (assuming this is actually possible) 
 
three interesting deadline scheduling strategies: 
 
      EDF        Earliest Deadline First scheduling 
       LL          Least Laxity scheduling 

        
-  

  



© 2023 A. Tchernykh. Scheduling    Preliminaries 69` 

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| − 

 

Earliest Deadline First Scheduling Policy  

− means that the task that has the earliest deadline (task that has to be 

processed first) is to be scheduled next. 

− EDF scheduler views task deadlines as more important than task priorities. 

− Experiments have shown that the earliest deadline first policy is the most fair 

scheduling algorithm.  
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| − 

 
More complex deadline scheduler is the “Least Laxity” (or “LL”) scheduler. 

• takes into account both a task’s deadline and its processing load, 

 
EDF deadline scheduler would allow Task X to run before Task Y, even if Task Y 
normally has higher priority. 

• However, it could cause Task Y to miss its deadline. 

• So perhaps an “LL” scheduler would be better 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| − 

 
Laxity is the value that describes how much computation there is still left before 
the deadline of the task if it ran to completion immediately. Laxity of a task is a 
measure for it's urgency.  

 
Laxity = (Task Deadline – (Current schedule time + Rest of Task Exec. Time). 

LL=D-t-Prest 
 

It is the amount of time that the scheduler can “play with” before causing the task 
to fail to meet its deadline.  

Least Laxity Scheduling Policy: the task that has the smallest laxity (meaning the 
least computation left before it's deadline) is scheduled next.  

Thus, a Least Laxity deadline scheduler takes into account both deadline and 
processing load. 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗̃| − 

 
Example: Comparison of strategies 

Set of independent tasks:   T  = {𝑇1, 𝑇2, ..., 𝑇6} 
Tasks: (deadline, total execution time, arrival time):  

𝑇1= (5, 4, 0), 𝑇2= (6, 3, 0), 𝑇3= (7, 4, 0),  

𝑇4 = (12, 9, 2), 𝑇5= (13, 8, 4), 𝑇6= (15, 12, 2) 

Execution on three identical processors:  
 EDF-schedule (no preemptions): total execution time is 16 

LL-schedule (with preemptions):  8 preemptions,  

total execution time is 15 
 optimal schedule with 3 preemptions, total execution time = 15 

Execution on a single, three times faster processor:  
 possible with no preemptions; total execution time is 40/3 

Hence: a larger number of processors is not necessarily advantageous 
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Feasibility testing of problem P | pmtn, 𝑟𝑗 , 𝑑𝑗̃| −  is done by applying a network flow 

approach (Horn 1974) 

Given an instance of P | pmtn, 𝑟𝑗, 𝑑𝑗̃|,  

let 𝑒0 < 𝑒1 <. . . < 𝑒𝑘, 𝑘   2𝑛−1 be the ordered sequence of release times and 

deadlines together (𝑒𝑖 stands for 𝑟𝑗 or 𝑑𝑗̃)  (time intervals) 

Construct a network with source, sink and two sets of nodes (Figure):  

the first set (nodes 𝑤𝑖) corresponds to time intervals in a schedule;  

node 𝑤𝑖 corresponds to interval [𝑒𝑖−1, 𝑒𝑖], 𝑖 =  1, 2, . . . , 𝑘  

the second set corresponds to the tasks  
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Flow conditions: 

− The capacity of an arc joining the source to node 𝑤𝑖 is m(𝑒𝑖 − 𝑒𝑖−1) 

o this corresponds to the total processing capacity of m processors in this interval 

− If task 𝑇𝑗 is allowed to be processed in interval [𝑒𝑖−1, 𝑒𝑗] 
then 𝑤𝑖  is joined to 𝑇𝑗 by an arc of capacity 𝑒𝑖 − 𝑒𝑖−1 

− Node 𝑇𝑗 is joined to the sink of the network by an arc with lower and upper 

capacity equal to 𝑝𝑗 

Finding a feasible flow pattern corresponds to constructing a feasible schedule; 

this test can be made in 𝑂(𝑛3) time 

the schedule is constructed on the basis of the flow values on arcs between interval 
and task nodes. 
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Example.  n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2, 4, 5, 8]. 
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(b) feasible flow pattern 

 

  

S1 S2

[0,1]

[1,2]

[2,4]

[4,5]

[5,8] 5T

4T

3
T

2
T

1
T

2

2

4

2

4

1

1

1

1

1

2

11

1

3

1

5

2

3

3

1



© 2023 A. Tchernykh. Scheduling    Preliminaries 78` 

 

(c) optimal schedule 
 

 

 

  

t0 1 2 4 5 8

T
2

T
2

T
3

T
1

T
1

T
4

T
3

T
4

T
1

T
4

T
5

P
1

P
2



© 2023 A. Tchernykh. Scheduling    Preliminaries 79` 

 

 

 

 

 

 

Bin Packing Problem 
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Outline  

 

1. Introduction 

 

Metaphorically, there never seem to be enough bins for all one needs to store. 
Mathematics comes to the rescue with the bin packing problem and its relatives. 

The bin packing problem raises the following question: 

• given a finite collection of n weights 𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛, and 

• a collection of identical bins with capacity C (which exceeds the largest of the 
weights), 

• what is the minimum number k of bins into which the weights can be placed 
without exceeding the bin capacity C? 

  



© 2023 A. Tchernykh. Scheduling    Preliminaries 81` 

Outline  

 

We want to know how few bins are needed to store a collection of items.  

This problem, known as the 1-dimensional bin packing problem, is one of many 
mathematical packing problems which are of both theoretical and applied interest. 

It is important to keep in mind that "weights" are to be thought of as indivisible objects 
rather than something like oil or water.  

For oil one can imagine part of a weight being put into one container and any left 
over being put into another container.  

However, in the problem being considered here we are not allowed to have part of 
a weight in one container and part in another. 

One way to visualize the situation is as a collection of rectangles which have height 
equal to the capacity C and a fixed width, whose exact size does not matter. 

When an item is put into the bin it either falls to the bottom or is stopped at a height 
determined by the weights that are already in the bins.  

  

http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK5/NODE192.HTM
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Outline  

 

The diagram below shows a bin of capacity 10 where three identical weights of 
size 2 have been placed in the bin, leaving 4 units of empty space, which are 
shown in blue.  
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Outline  

 

By contrast with the situation above, the bin below has been packed with weights 
of size 2, 2, 2 and 4 in a way that no room is left over. 
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Basic ideas 

 

The bin packing problem asks for the minimum number k of identical bins of 
capacity C needed to store a finite collection of weights 𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛 so that 
no bin has weights stored in it whose sum exceeds the bin's capacity.  

Traditionally 

• capacity C is chosen to be 1 and 

• weights are real numbers which lie between 0 and 1, 

• for convenience of exposition, C is a positive integer and the weights are 
positive integers which are less than the capacity. 

Example 1: 

• Suppose we have bins of size 10. How few of them are required to store 
weights of size 3, 6, 2, 1, 5, 7, 2, 4, 1, 9? 
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Basic ideas 

 

The weights to be packed above have been presented in the form of a list L 
ordered from left to right. 

For the moment we will seek procedures (algorithms) for packing the bins that are 
"driven" by a given list L and a capacity size C for the bins. 

The goal of the procedures is to minimize the number of bins needed to store 
the weights. 

A variety of simple ideas as to how to pack the bins suggest themselves.  

One of the simplest approaches is called Next Fit (NF). 

The idea behind this procedure is to open a bin and place the items into it in the 
order they appear in the list. 

If an item on the list will not fit into the open bin, we close this bin permanently and 
open a new one and continue packing the remaining items in the list. 
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Basic ideas Next Fit (NF) 

 

If some of the consecutive weights on the list exactly fill a bin, the bin is then 
closed and a new bin opened.  

When this procedure is applied to the list above we get the packing shown below.  

 

 
 

Basic ideas Next Fit (NF) 

Next Fit is 
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• very simple,  

• allows for bins to be shipped off quickly, because even if there is some extra 
room in a bin, we do not wait around in the hope that an item will come along 
later in the list which will fill this empty space.  

One can imagine having a fleet of trucks with a weight restriction (the capacity C) 
and one packs weights into the trucks. 

If the next weight cannot be packed into the truck at the loading dock, this truck 
leaves and a new truck pulls into the dock. 

We keep track of how much room remains in the bin open at that moment.  

In terms of how much time is required to find the number of bins for n weights, one 
can answer the question using a procedure that takes a linear amount of time in 
the number of weights (n). 

Clearly, NF does not always produce an optimal packing for a given set of weights. 
You can verify this by finding a way to pack the weights in Example 1 into 4 bins.   
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Basic ideas Next Fit (NF) 

Procedures such as NF are sometimes referred to as heuristics or heuristic 
algorithms because although they were conceived as ways to solve a problem 
optimally, they do not always deliver an optimal solution. 

Can we find a way to improve on NF so as to design an algorithm which will always 
produce an optimal packing? 

A natural thought would be that if we are willing to keep bins open in the hope that 
we will be able to fill empty space with items later in list L, we will typically use 
fewer bins. 
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Basic ideas First Fit (FF) 

 

The simplest way to carry out this idea is known as First Fit.  

We place the next item in the list into the first bin which has not been completely 
filled (thought of as numbered from left to right) into which it will fit.  

• When bins are filled completely they are closed, 

• If an item will not fit into any currently open bin, a new bin is opened. 
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Basic ideas First Fit (FF) 

 

The result of carrying out First Fit for the list in Example 1 and with bins of capacity 
10 is shown below: 
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Basic ideas First Fit (FF) 

 

Both methods we have tried have yielded 5 bins. 

We know that this is not the best we can hope for. 

One simple insight is obtained by computing the total sum of the weights and dividing 
this number by the capacity of the bins. 

Since we are dealing with integers, the number of bins we need must be at least 
⌈𝛺/𝐶⌉ where 𝛺 = ∑ 𝑤𝑖

𝑛
𝑖=1 . 

(Note that ⌈𝑥⌉ denotes the smallest integer that is greater than or equal to x). 

Clearly, the number of bins must always be an integer. In Example 1, since 𝛺 is 40 
and C is 10, we can conclude that there is hope of using only 4 bins. 

However, neither Next Fit nor First Fit achieves this value with the list given in 
Example 1. Perhaps we need a better procedure. 
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Basic ideas Best Fit (BF) and Worst Fit (WF) 

 

Two other simple methods in the spirit of Next Fit and First Fit have also been looked 
at. 

These are known as Best Fit (BF) and Worst Fit (WF). 

For Best Fit, one again keeps bins open even when the next item in the list will not 
fit in previously opened bins, in the hope that a later smaller item will fit. 

The criterion for placement is that we put the next item into the currently open bin 
(e.g. not yet full) which leaves the least room left over. (In the case of a tie we put 
the item in the lowest numbered bin as labeled from left to right.) 

For Worst Fit, one places the item into that currently open bin into which it will fit 
with the most room left over. 
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Basic ideas Best Fit (BF) and Worst Fit (WF) 

 

The amount of time necessary to find the minimum number of bins using either FF, 
WF or BF is higher than for NF. What is involved here is n log n implementation 
time in terms of the number n of weights. 

The distinction between First Fit, Best Fit and Worst Fit: 

o suppose that we currently have only 3 bins open with capacity 10 

o remaining space as follows: 

• Bin 4, 4 units, 

• Bin 6, 7 units, and 

• Bin 9 with 3 units. 

Suppose the next item in the list has size 2. 

First Fit puts this item in Bin 4, Best Fit puts it in Bin 9, and Worst Fit puts it in Bin 6! 

One difficulty is that we are applying "good procedures" but on a "lousy" list. If we 
know all the weights to be packed in advance, is there a way of constructing a 
good list? 


