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Importance

2

Modern distributed computer systems offer fundamentally

new opportunities to increase computing power

• scalability,

• ability to flexibly manage the load,

• reliability and fault tolerance,

• extensibility,

etc.

• But there is significant instability during resource access

and utilization.

• This creates additional challenges

• for end users, resource providers, service providers,

and scheduling systems.
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Importance
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Imperfect methods and models of job management

• lead to a significant underutilization of the capabilities of

computing systems and high energy consumption.

Scheduling can

• Ensure resource efficiency,

• overcome the negative consequences of non-stationarity,

,

We need

• scientific fundamentals of nonstationary resource scheduling ,

• mathematical models that consider the lack of accurate

knowledge in the formation of the work plan.

• development of new adaptive algorithms for various scenarios.
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Data Centers
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Switch-centric Server-centric Hybrid
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Three-tier topology
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48 Servers

Up to 8 Core 

switches



Execution 

time

Number of 

processors

Parallelism overhead due to communications

Profitable part

moldablerigid malleable
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Scheduling: type of jobs 
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Parallel Tasks Scheduling

by Denis Trystram



Scheduling: on-line vs off-line

On-line: no knowledge about 

the future

We take the scheduling 

decision while other jobs arrive
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by Denis Trystram



Scheduling: on-line vs off-line

Off-line: we have a finite set of 

works

We try to find a good 

arrangement
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by Denis Trystram



A generic scheme

10CICESE Parallel Computing Laboratory

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

processors

time

1   2   3    4    5

Phase 2

Phase 1

List of jobs

On-line scheduling

Processing time is not

known until the release

time

rigid, moldable or malleable

less than m jobs



Scheduler

Schedule

ti
m

e

Job-Queue

Computer 

Resource

Resources

Processing Nodes

Time

Queue

1.

2.

3.

4…

by Ramin Yahyapour
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FCFS Schedule



Idle Regulation for Rigid Jobs
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Job submission
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J1

users

time

by Denis Trystram



Job submission
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J1J2

users

time



Job submission
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J1J2J3…

users

time



Job allocation
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J1J2J3… …

…

……

…

…

Broker
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J1J2J3… …

…

Broker

Job allocation



Resource

Broker

Grid Resource 

Manager

Grid Resource 

Manager

Grid Resource 

Manager

Information 

Services

Monitoring

Services

Security

Services

Core Grid 

Infrastructure Services

Grid

Middleware

PBS LSF …

Resource Resource Resource

Local Resource 

Management

Higher-Level 

Services
User/

Application

by Ramin Yahyapour
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Middleware

acts as a mediator 

between user and 

resources
• Resource discovery,

• Resource selection,

• Binding of software, 

• Data, and hardware,

• Initiating computations 

• Adapting to changes in 

Grid resources
Presenting the Grid 

to the user as 

a single, unified resource.



List Scheduling

Processors Processors

Time

Non clairvoyant scheduling
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Processors Processors

Time

Cmax(LIST)=17

Cmax*=9

20CICESE Parallel Computing Laboratory

List Scheduling



Sequential Tasks Scheduling 
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Scientific workflows

Other aplications:

-Epigenomics, 

-Genome,

-LIGO

-SIPHT

Montage

CyberShake

Space mosaics Montage

Earthquake
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PEGASUS



• Two categories of scheduling

– Economic-based

– Performance-based
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Scheduling



Performance-based optimization criteria
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2-level strategies

MODEL PARAMETERS DESCRIPTION

I WGS_ALLOC+PS PRIO = FCFS

PS = EASY

9 STRATEGIES:

MLP, MAXAR, MLB, MWT, MCT, 

MST, 

CPOP, RAND Y HEFT

II MPS_ALLOC+PRIO+

PS

WGS_LABEL{DR, CR},

WGS_ALLOC=

{MLP, MAXAR, MLB, 

MST},

PRIO{SCF, LCF},

PS = EASY

16+3 best from 1:

DR+MLP+LCF, DR+MAXAR+LCF, 

DR+MLB+LCF, DR+MST+LCF, 

DR+MLP+SCF, DR+MAXAR+SCF,  

DR+MLB+SCF, DR+MST+SCF, 

CR+MLP+LCF, CR+MAXAR+LCF, 

CR+MLB+LCF, CR+MST+LCF

CR+MLP+SCF, CR+MAXAR+SCF, 

CR+MLB+SCF, CR+MST+SCF, 

MLP, MAXAR Y MLB
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Cloud Computing
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Grid Computing

WorkstationWorkstation

PCPC

ClusterCluster

(by Christophe Jacquet)

mainframemainframe
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Computational GRID

Grid Computing
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Cloud Computing

SaaS 

Software as a Service

PaaS 

Platform as a Service

IaaS 

Infrastructure as a 

Service

HPCaaS

High Performance 

Computing as a Service

Cloud Computing
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Challenges in cloud computing.

30

Energy efficiency

Quality of service

Load balancing

•  Increases provider’s profits.

•  Achieves higher user satisfaction.

•  Enables scalability. 

•  Avoids bottlenecks.

• Ensures sufficient amount of 

resources.

• Service Level Agreements.

•  Impacts the users in terms of 

resource usage costs.

•  Hardware efficiency. 

•  Jobs running on the system.

Jobs

Job distribution decision-making 

process used in distributed and 

parallel computing.

Resource 

Orchestration
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Cloud Computing

Dynamic Resource Provisioning

• Elastic

• Efficient

• Green

Provider goals

• Cost reduction

• Customer satisfaction
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Resource Provisioning

Allocate

• Processors

• Storage

• Network

Optimize

• Load balance

• Performance

• Costs

• Online and offline scheduling

https://www.cloudberrylab.com/dedup-server.aspx



Knowledge-free
non-clairvoyant
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Machines with different numbers of processors

Cmax(LIST)=4
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List Scheduling



Time

Machines with different numbers of processors

Cmax*=2
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List Scheduling



Scheduling Algorithm

2. A job is assigned to the first machine that can execute it.

Group A: >= half of the processors on this machine are required.

Group B:  < half of the processors on this machine are required.

1. The machines are arranged in ascending order of processor 

numbers.
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3. Any machine applies a priority order when selecting jobs for 

execution:

Jobs of its group A

Jobs of its group B

Jobs that are enabled for execution on its previous machine.

CICESE Parallel Computing Laboratory 37

Scheduling Algorithm



• Theoretical evaluation

– Cmax(LIST)/Cmax* < 3 in the offline case

– Cmax(LIST)/Cmax* < 5 in the online case
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Performance of the Algorithm

IEEE IPDPS, 2008

(Klaus Jansen, Denis Trystram et. al…) 

5/2, 7/3, 2 + ε, 2 –approximations

Improved by …



Workload Uncertainty
Adaptive Admissible Allocation

Future Generation Computer Systems 2012

Journal of Scheduling, 2010

Andrei Tchernykh CICESE Research Center

José Luis González-García Mexico                                                

Vanessa Miranda-López

Uwe Schwiegelshohn University of Dortmund

Germany

Ramin Yahyapour University of Göttingen

Germany
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Time

Cmax(LIST)=4
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List Scheduling

Machines with different numbers of processors

a=1

100% 100%



Time

Machines with different numbers of processors

Cmax(LIST)=2

CICESE Parallel Computing Laboratory 42

Admissible Allocation

a=0.5a=1
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For a set of machines with identical processors, and for a set of rigid jobs

with admissible range

Approximation factor (off-line)

Min_LB-a + Best_PS

10  a

Adaptive optimization
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Competitive factor (on-line)

Min_LB-a + Best_PS

Tchernykh, et al 2012 

Future Generation Computer Systems, Elsevier 

Tchernykh, et al 2010

Journal of Scheduling, Springer



Theoretical Evaluation
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Grid
scheduling

On-line

No clarivoyant

Different machine 
sizes

Off-line

No clarivoyant

Clarivoyant

Equal machine sizes

Different
machine sizes

(Schwiegelshon et al. 2008)   
3--approximation

(Pascual et al. 2008)
4--approximation

(Klaus Jansen, Denis Trystram) 5/2, 
7/3, 2 + ε, 2 –approximation
(Zhuk et al. 2004)           10--approximation
(Tchernykh et al. 2005) 10—approximation
(Tchernykh et al. 2012)  3—approximation

(Tchernykh et al. 2008) 5-competitive
(Tchernykh et al. 2010) 17-competitive
(Schwiegelshon 2010) (2e+1)-competitive
(Tchernykh et al. 2012) 5-competitive

• Future Generation Computer Systems, Elsevier

• Journal of Scheduling, Springer

• Discrete Applied Mathematics, Elsevier

• Tran Fund Elec, Comm. & Comp. Science, IEICE

• Parallel and Distributed Processing, IEEE

• Computers & Industrial Engineering, Elsevier



Scheduling for Cloud Computing with 

Quality of Service
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rj dj 
1

pj

f1 . pj f2 . pj

dj 
2

The provider guarantees to deliver the requested processing time within 

a certain time frame: slack or stretch factor fi

f1 =2: guarantees to deliver at least 50% of powerf2 =4: guarantees to deliver at least 25% of power

Quality of Service



Quality of Service
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Deadline Service Level (slack factor)Service Level (slack factor) Execution timeExecution time

ProfitProfit

❑ Response time in relation to the requested processing time 

price per time unitprice per time unit



Competitive

Factor

Obtained IncomeObtained Income

Optimal incomeOptimal income
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Competitive Factor



Scheduling
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f=3P1,2,3=4

P4=1

2 4 6 8 10 12

d2=d3=d4=12d1=3r1=r2=r3=r4=0

f=3

2 4 6 8 10 12

Optimal



Competitive Factor
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SSL-SM

SSL-MM

Das Gupta and Palis, 2001 

Schwiegelshohn,Tchernykh 2012



Competitive Factor
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MSL-SM

MSL-MM

Schwiegelshohn,Tchernykh, IPDPS 2012 
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5

4

Green Computing?

• Global networks is growing at a rapid pace. 

• Need to be kept constantly running in order to be available on-

demand 

• Their power consumption grows.

CICESE Parallel Computing Laboratory

Such new technologies have the power to do significant damage to our 
ecosystems.
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5

Green Computing? 

Traditional heuristic-based approaches to resource optimization 
become insufficient

Efficient eco-friendly power-aware computing resources 

optimization

• reducing the environmental impact 

• reducing costs

CICESE Parallel Computing Laboratory
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Important issues – fossil fuels 

Average desktop computer with monitor requires

• 10 times its weight in chemicals and fossil fuels to 

produce

• 266 kg of fossil fuel for LCD monitor

• 4 litres of oil for laser toner cartridge

CICESE Parallel Computing Laboratory



5

7

Important issues – electronic-waste

• Over 130,000 PCs dumped in US homes & businesses…each day 

• Less than 10% of electronics are recycled 

• Est. 50 million tons of e-waste is generated globally each year 

CICESE Parallel Computing Laboratory
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Disposal Electronic Waste
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Important issues – toxic waste

Electronic waste

• up to 70% of all hazardous waste.

• many toxic materials (heavy metals, plastics)

• can easily leach into ground water and bio-accumulate 

Chip manufacturing uses some of the deadliest gases and 

chemicals

• CRT – graphite/zinc leachate (monitors are hazardous waste)

• Lead (plumbum): can attack proteins and DNA

• LCD – 4-12 mg mercury /unit

CICESE Parallel Computing Laboratory
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0

Important issues – wasting electricity

PC wastes half the power
• approximately one-third of their power as heat 

The more powerful the machine, 

• the more cool air needed to keep it from overheating. 

CICESE Parallel Computing Laboratory

Cooling towers



Important issues – Improving reliability

For every 10°C increase in temperature, the failure rate of a system doubles

CICESE Parallel Computing Laboratory

• Reliability of 

Supercomputer

• Estimated Cost of 

an hour of system 

downtime

by Rajkumar Buyya
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• Energy-efficient  manufacturing of computer parts 

• Replacing petroleum-filled plastic with bioplastics

• Best use of the device by upgrading and repairing in time

• Avoiding the discarding: less e-waste

• Power-sucking displays can be replaced with green light displays made 

of OLEDs, or organic light-emitting diodes

• Toxic materials can be replaced by silver and copper making recycling of 

computers more effective

• Use of non-toxic material make the worker safe from health problem

Green computing 
• minimizes the energy consumption 

• saves the resource of the country as a whole.

• In the long term - green equipment will be less costly without any hidden 

cost of waste

CICESE Parallel Computing Laboratory

The way out
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• More-efficient processors

• Setting the Power Options of computer to sleep mode 

CICESE Parallel Computing Laboratory

The way out

• It is better to do computer-related tasks during  blocks of time

• Flat panel monitors

• Smaller form factor (e.g. 2.5 inch) hard disk drives

• Solid-state drives store data in flash memory or DRAM (no moving parts, 

power consumption may be reduced)

Sophisticated power management

Operating system support

Power supply

Storage, Display

Video card

Materials recycling
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Algorithmic efficiency
• has an impact on the amount of computer resources required for any 

given computing function (consolidation)

Resource allocation
• cut energy usage by routing traffic and resource usage

Virtualization
• Use what you need (Cloud computing)

CICESE Parallel Computing Laboratory

The way out



Adaptive Consolidation for
Energy Saving
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48 Servers

Up to 8 Core 

switches

Three-tier topology
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Definition

67

• 𝑫𝑪𝟑𝒕|𝒓𝒋, 𝒍𝒋
𝒄𝒑
, 𝒍𝒋
𝒄𝒎 |𝑬𝑰𝑻, 𝑺 Scheduling model

– 𝑫𝑪𝟑𝒕 three-tier data center, identical processors, different power 

consumption profiles.

– 𝒓𝒋 release time

– 𝒍𝒋
𝒄𝒑

, 𝒍𝒋
𝒄𝒎 computational and communication requirements for job j

given in MIPS and Mbps respectively

.

– 𝑬𝑰𝑻 amount of energy consumed by IT equipment in data center.

– 𝑺 mean SLA violations. 

𝑆 =
𝑉𝑀𝑏𝑝𝑠

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑗𝑜𝑏𝑠
, 𝑽𝑴𝒃𝒑𝒔 number of jobs that didn’t meet Mbps requirements
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Computing 

Server

Links

10 Gb

Nodes

1 Gb L3 Switch L2/L3 Rack 

Switch

Access

Network 

Aggregation

Network 

Core

Network 

Сonsolidation

68

Most of energy saving is due to consolidation procedures. 

Increase number of server that can be put into “sleep” mode. 
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Computing 

Server

Links

10 Gb

Nodes

1 Gb L3 Switch L2/L3 Rack 

Switch

Access

Network 

Aggregation

Network 

Core

Network 

Uncertainty of communication

69

Most of energy saving is due to consolidation procedures. 

Increase number of server that can be put into “sleep” mode. 

Network congestion!!!

Jobs with high

communication 

requirement
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Network balancing

70

Scheduler should tradeoff workload concentration with load 

balancing of network traffic

Network is balanced !!!

Computing Server
Links

10 Gb

Nodes

1 Gb L3 Switch L2/L3 Rack Switch
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Adaptive consolidation-communication model

71

• 𝑓𝑖 = α𝑓𝑖
𝑐𝑝
+ 1 − α 𝑓𝑖

𝑐𝑚

• 𝑓𝑖
𝑐𝑝

= βഥ𝑓𝑖 + 1 − β EPC𝑖
𝑐𝑝

– ഥ𝑓𝑖 - function of server load 𝑙𝑖
𝑐𝑝 𝑡

– EPC𝑖
𝑐𝑝

- Energy proportionality of machine I

• 𝑓𝑖
𝑐𝑚 1 = γ 1 −

1

1+𝑒
−10𝑙

𝑖
𝑝 + 1 − δ EPC𝑖

𝑐𝑚

– EPC𝑖
𝑐𝑚 =

1

𝑛
σ𝑘=0
𝑛 EPC𝑠𝑘

– EPC𝑠𝑘 value of EPC of switch 𝑠𝑘 ϵ 𝑝𝑖 ⟶ G

– 𝑛 number of switches in the path

• EPC - Energy Proportionality Coefficient

– EPCi = 1 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑒𝑟𝑣𝑒𝑟 𝑙𝑜𝑎𝑑 → 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦

– EPCi= −1 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑒𝑟𝑣𝑒𝑟 𝑙𝑜𝑎𝑑 → 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦

– EPCi= 0 (energy consumption does not depend on the load)

• Allocate jobs to the suitable server 𝑖 with the highest 𝑓𝑖

• α, β, 𝛾 can be tuned or dynamically adapted

0 1

α
Energy saveNetwork 

Balance

0 1

𝛽
Server

Utilization

Efficient 

Server

0 1

𝛾Efficient 

Switches
Low Loaded 

Path
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Score function

72

Computation component  Communication component 

Server utilization

EPC=0.5
k = 0.25

Path average utilization

𝑓𝑖
𝑐𝑝

𝑓𝑖
𝑐𝑚
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Balancing

73
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SERVERS

0.25-1 (Network balancing)

Energy 5220 Wh

SLA violation rate 0

0.75-0.75

Energy 4455 Wh

SLA violation rate 0

1-0 (Consolidation)

Energy 4204 Wh

SLA violation rate 0.31

α - β



CICESE Parallel Computing Laboratory

Adaptive approach

74

• Adaptation criteria

– Amax-ACCURATE (Am-ACCURATE). If Max bandwidth > 90%

– Aaverage-ACCURATE (Aa-ACCURATE). If Average bandwidth > 90%

90%

85%

Bandwidth to module

Energy to 

Network
Network to

Energy 

Module



Adaptive consolidation 
by 

Job type Concentration
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Motivation

CPU intensive CI
scientific computation, encryption and

decryption, compression and

decompression

Disk I/O intensive DI file serving, data mining applications

Memory intensive MI
in-memory caching servers, in-memory 

database servers

Network I/O intensive NI
Web servers, as well as network load 

balancers

Resource contention results in a poor performance and high energy 
consumption
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Benchmarks

Benchmark CI MI NI DI

LINPACK 

STREAM 

SysBench   

iperf 

IOR 

IOzone 

NPB   

Netperf 

SPEC  
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Typical energy models
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A. Beloglazov, et.al “Energy-aware resource allocation heuristics for 

efficient management of data centers for Cloud computing” 2012.

C.-H. Hsu, et. al, “Optimizing Energy Consumption with 

Task Consolidation in Clouds,” 2014.

Y. Gao, et. al “An Energy and Deadline Aware Resource Provisioning, 

Scheduling and Optimization Framework for Cloud Systems,” 2013.
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Concentration
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Processor’s power consumption depends on

• Utilization

• Job type combination (Contention)

If no job combination is considered𝑔 𝛼𝑎𝑖 𝑡 = 1

𝑒 𝑡 = 𝑜 𝑡 ሻ𝑒𝑖𝑑𝑙𝑒 + 𝑒𝑢𝑠𝑒𝑑(𝑡

𝑒 𝑡 = 𝑜 𝑡 𝑒𝑖𝑑𝑙𝑒 + 𝑒𝑚𝑎𝑥 − 𝑒𝑖𝑑𝑙𝑒 ∗ 𝑭(𝒕ሻ ∗ 𝒈 𝜶𝒂𝒊 𝒕

Proposed energy model

To consider job combinations, we use “job concentration” approach



CICESE - Parallel Computing Laboratory 81

Power distribution

LIKWID

likwid-pin

likwid-powermeter

Power Distribution Unit (PDU) 

Benchmark: SysBench
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Utilization function 𝑭(𝒕ሻ

𝑓𝑑 𝑈𝑑 𝑡 - fraction of power consumption when a CI or MI application is executed

F 𝑡 = ෍

∀𝑑

𝑓𝑑 𝑈𝑑 𝑡 , 0 ≤ 𝐹 𝑡 ≤ 1, d ∈ {CI, MI}

𝑈𝑇 𝑡 - the total CPU utilization at time 𝑡:

𝑈𝑇 𝑡 = 𝑈𝐶𝐼 𝑡 + 𝑈𝑀𝐼 𝑡
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𝒈(𝜶𝒂𝒊(𝒕ሻሻ

𝑈𝑇 𝑡 = ෍

∀ 𝑎𝑖 ∈ 𝐴

𝑈𝑎𝑖(𝑡ሻ 𝛼𝑎𝑖 𝑡 =
𝑈𝑎𝑖 𝑡

𝑈𝑇 𝑡

𝛼𝑀𝐼 𝑡 = 1 − 𝛼𝐶𝐼 𝑡 .

Total server memory 100%

𝒈(𝜶𝑪𝑰(𝒕ሻሻ

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.125 0.25 0.375 0.50 0.63 0.75 0.88 1.00

C
o

m
b

in
at

io
n

 c
o

ef
fi

ci
en

t 
𝒈

( 
𝜶

)

Concentration αCI

PDU MI=100%



CICESE Parallel Computing Laboratory 84

Energy consumption PDU vs LIKWID
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Type Strategy Description

K
n
o
w

le
d

g
e 

F
re

e

Rand
Allocates job 𝑗 to a suitable machine randomly using a uniform distribution in the range  

[1. . 𝑚].

FFit (First Fit) Allocates job 𝑗 to the first machine available and capable to execute it.

RR (Round Robin) Allocates job 𝑗 to the machine available and capable to execute by Round Robin strategy

E
n
er

g
y

-a
w

ar
e

Min_e

(Min-energy)

Allocates job 𝑗 to the machine with minimum power consumption at time 𝑟𝑗 : 

𝑚𝑖𝑛𝑖=1..𝑚 𝑒𝑖
𝑝𝑟𝑜𝑐

𝑟𝑗

U
ti

li
za

ti
o
n
 

A
w

ar
e

Min_u

(Min-utilization)
Allocates job 𝑗 to the machine with minimum total utilization at time 𝑟𝑗 𝑚𝑖𝑛𝑖=1..𝑚 𝑢𝑖

𝑝𝑟𝑜𝑐

Max_u

(Max-utilization)
Allocates job 𝑗 to the machine with maximum total utilization at time 𝑟𝑗 𝑚𝑎𝑥𝑖=1..𝑚 𝑢𝑖

𝑝𝑟𝑜𝑐

Jo
b
 t

y
p
e

MinU_MinC

(Min utilization 

and Min 

concentration)

Allocates job 𝑗 to the machine in the subset of machines with minimum total utilization at 

time 𝑟𝑗 𝑚𝑖𝑛𝑖=1..𝑚 𝑢𝑖
𝑝𝑟𝑜𝑐

and minimum concentration of jobs of the same type.

MaxU_MinC

(Max utilization 

and Min 

concentration)

Allocates job j to the machine in the subset of machines with maximum total utilization at 

time 𝑟𝑗 𝑚𝑎𝑥𝑖=1..𝑚 𝑢𝑖
𝑝𝑟𝑜𝑐

and minimum concentration of jobs of the same type.

Min_ujt (Min-

util_job_type)
Allocates job 𝑗 to the machine with minimum utilization of jobs of the same type at time 𝑟𝑗

Min_c (Min-

concentration)
Allocates job 𝑗 to the machine with minimum concentration of jobs of the same type at time 𝑟𝑗

Job allocation strategies



Modeling applications with 
communications and uncertainty
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Modeling Applications

– CU-DAG Communication-unaware model

– EB-DAG Edges-based model

How to model applications with communication 
processes?

Two known approaches:

- CA-DAG Communication-aware model

New approach:
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Communication-unaware model

– vertex represents both 
computing and 
communication 

– Edges: dependencies

• Main drawback
– Difficult to make separate 

scheduling decisions

1

3

2

4

Communication work of a task

Computing  work of a task

Ordinary edge
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Edge-based model

– Vertex represents 
computing

– Edges represent 
communication

• Main drawback
– Two computing tasks cannot have 

the same data transfer to input

– singe edge cannot lead to two 
different vertices

1

3

2

4

Edge with task communications

Computing  work of a task

Ordinary edge
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CA-DAG: Communication-Aware

model

– Two types of vertices: 
• one for computing 

• one for communications

– Edges define dependences 
between tasks and order of 
execution

• Main advantage
– Allows separate resource allocation decisions, 

– assigning processors to handle computing jobs

– network resources for information 
transmissions

1

3

2

4

Communication task

Computing  task

Ordinary edge
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CA-DAG: Communication-Aware DAG

Computing task

Communcation task

T0

T1

T2 T4

T3 T5 T6

T7

T8

processing requests

identifying a user, 

preparing database query

analysing 

user profile

database query for 

email messages 

prepare a 

list of emails

group messages 

into conversations

retrieve personalized 

advertisement from 

databases
combine outputs of T3, T5, and T6,

generate a complete HTML page

send output to user

Webmail

cloud application
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CA-DAG: Communication-Aware DAG

Example of webmail cloud application

• Step 1: Receive user request and process it

• Step 2: Generate personalized 
advertisement

• Step 3: Request list of email messages from 
database

• Step 4: Generate HTML pages and send it 
to the user

S
te

p
 1

S
te

p
 2

S
te

p
 3

S
te

p
 4

0

Receive User 

Request

0

Receive User 

Request

1

Process 

User 

Data

1

Process 

User 

Data2

Analyze 

user 

social 

profile

2

Analyze 

user 

social 

profile

4

Request 

Database

4

Request 

Database

3

Retrieve 

Personalized 

Ad

3

Retrieve 

Personalized 

Ad

5

Generate 

list of 

email 

messages

5

Generate 

list of 

email 

messages

6

Group 

conversa

tions

6

Group 

conversa

tions7

Generate 

HTML 

page

7

Generate 

HTML 

page

8

Send 

output to 

user

8

Send 

output to 

user

by Dzmitry Kliazovich IEEE Cloud’13



Schedules

93CICESE Parallel Computing Laboratory

0

1

2

3

4

5 6

7

8

S
te

p
1

S
te

p
2

S
te

p
3

S
te

p
4



0

3

4

8

Network link

I1

Processor

p1

6

0

1

2

3

4

5

7

8

Processor

p1

Network link
l1

0

4

3

8

1

2

5

6

7

Network link

I1

0

4

3

8

6

0

1

2

3

7

8

Processor

p1

4

5

Processor

p2

Communication-aware CA-DAG model Communication-unaware model

CA-DAG

Cmax

Cmax

Communication-unaware model and two processor

Network link

I1

0

4

3

8

Network link

I2

4

Processor

p1

1

2

5

6

7

Processor

p1

1

2

5

6

7

Network link

I1

0

4

3

8

4

Cmax

Edge-based communication model and one network linkEdge-based communication model and two network link



Comparison of schedules

CA-DAG model Communication-unaware model Edges-based model
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# of

Processors

# of

Network links

Communication-

unaware model

Edges-based 

model

Proposed CA-DAG

model

1 1 9 8 7

1 2 9 7 7

2 1 7 8 7

CA-DAG: Achieves minimum makespan with the least resources
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Task Parallelization

• Each communication task/vertex can be divided into 𝑛
different independent communication tasks that can be 

executed in parallel

22

11

33 44

11

33 44

2.12.1 2.22.2 2.n2.n…
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Communication uncertainty

• Static mapping of DAG to communication 
system with uncertainty is not efficient

CA-DAG can adapt to:

• Communication uncertainty

• Calculation uncertainty

• Available connections and bandwidth

• Parallel transmission

Used bandwidth

Link capacity

Total capacity
(includes buffers)



Adaptive energy efficient scheduling

in Peer-to-Peer desktop grids
Knowledge Free Scheduling

Future Generation Computer Systems. 2013

Andrei Tchernykh CICESE Research Center, Mexico 

Aritz Barrondo

Johnatan E. Pecero University of Luxembourg, Luxembourg

Elisa Schaeffer Universidad Autónoma de Nuevo León,
Mexico



Knowledge Free Scheduling
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Knowledge-Free Scheduling

OurGrid, BOINC

SETI@home, folding@home, Rosetta@home

Einstein@home, 

+50 projects



by Geoffrey Fox

P2P Grids
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Berkeley Open Infrastructure for 

Network Computing - BOINC has about 

527,880 active computers (hosts) worldwide processing on 

average 5.428 petaFLOPS as of August 8, 2010

SETI@home

folding@home

http://en.wikipedia.org/wiki/FLOPS
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Peer-to-Peer Grid

Knowledge-Free Scheduling

SETI@home
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)



11

2
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Work Queue with Replication (WQR)
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3
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Work Queue with Replication (WQR)
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Work Queue with Replication (WQR)

Time

Resources

Time+Resources



Smart

Anything

Everywhere

Integrating technologies and data 
to meet

current challenges and service innovation 

• simulation,
• modelling;
• data-analytics;
• advanced smart sensors;
• cyber-physical systems
• Internet of Things (IoT).



CICESE Parallel Computing Laboratory 116

Smart Things 

THE INTERNET OF THINGS: MAPPING THE VALUE BEYOND THE HYPE // McKinsey Global Institute (MGI), 2015.

• Fundamentally new approaches to digital design based on complete 
mathematical modeling and optimization technologies;

• Virtual tests, which significantly reduce the amount of expensive field tests;
• Advanced technologies and digital smart production
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Smart Everything

• Smart Industry, Factories of the Future, Industry 4.0

• Smart City 

• Smart Home

• Smart Service

• Smart Healthcare

• Smart Economy

• Smart Networking 

• Smart Analytics

• Smart Security and Privacy

• Smart autonomous driving

• Smart Oil and Gas Industry

• etc.
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Smart Home
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Smart Healthcare

119
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Smart Industry 

Technological evolution
• from embedded systems to cyber-physical systems

Merging of the virtual and physical worlds
• through cyber-physical systems

Fusion of
• technical processes and business processes

“Industrial Internet of Things” (IIOT) -
driving operational efficiencies through

• Automation
• Connectivity
• Analytics

Intellectual sensors → models → Digital twins

operational security – data security Amazon: 
warehousing

ABB: 
Smart 

robotics

Hitachi: 
An integrated IIoT approach

http://www.ioti.com/industrial-iot-iiot
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Smart Factory

Tomado de https://www.analog.com/en/applications/markets/industrial-automation-technology-pavilion-home/industry-4-pt-0.html
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Digital Twin

[Industry 4.0 and the digital twin. Deloitte University Press]
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Digital twins

Database of 
historical data

Physical
model

Mathematical 
model

Device / 
technical process Digital twin

Intellectual 
sensor

The current state of 
the system / process

Current and 
predicted 
performance

Identifying sources 
of risks

Forecasting 
economic efficiency

Energy efficiency
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Main objectives

Prediction and prevention of emergency situations and 
ensuring economic sustainability

Accumulation and effective processing of technological 
knowledge

Transition from line production to customizable one

Internetization of manufacturing

Education on process management using digital simulators and 
augmented reality

1

2

3

4

5
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Pipeline 

Animation Link 

Animation/Pipeline.html
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Workflow

Animation Link 

Animation/WorkFlow.html


CICESE Parallel Computing Laboratory 127

Platform for Connected Smart Objects
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Internet of Things

Edge computing

Integrates sensing, communications, and analytics

Remote
monitoring

Remote 
services

Data
mining

Analytics

Storage

Computational
models

Intelligent 
sensors

Fog computing

Cloud computing
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More than half the population (54%) are located in urban areas, as oppose to the 30% in 1950.

It’s expected an estimated increase at 66% of the world population living in cities in 2050 [United

Nations 2014].

Cities are 2%
of earth 

surface but 

75% of 

energy 

consumption

100+ new 

cities of 

1 million+ 
people  in 

next 10 years

Smart City 

Moscow, Russia
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❑ Improving the personal mobility, comfort, connivance, and safety. 

❑ Increasing economic productivity for transport service providers. 

❑ Enhancing efficiency and capacity.

❑ Reducing gas consumption and negative environmental impact. 

Smart Mobility



CICESE Parallel Computing Laboratory 131

Smart Transport
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Three solutions: what to select
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𝑐𝑖
𝑔𝑎𝑠

: Fuel cost for each vehicle.

𝑐𝑖
𝑑𝑟𝑖𝑣𝑒𝑟 : Hourly pay cost of the bus driver.

𝑐𝑖
𝑏𝑢𝑠 : Vehicle maintenance and operation cost.

𝑐𝑖 : Cost involved in using a vehicle of type 𝑖.

𝑚𝑖
: Number of vehicles required of type i to 

service all trips in 𝑇.

𝜔𝑖
: Total cost involved in using 𝑚𝑖 vehicles of 

type i

𝑃𝑗
𝑚𝑎𝑥 : Maximum number of passengers at any 

stop.

𝑃𝑗
𝑠 : Number of passengers on a s stop during 

period j.
𝑓𝑗 : Frequency for period 𝑗.
𝑓𝑚𝑖𝑛 : Minimum required frequency.
𝐿𝐹𝑗 : Load factor during period 𝑗.

𝐿𝐹𝑚𝑎𝑥 : Maximum load factor.

𝐿𝑄𝑠
: Passengers demand at the s stop that 

exceed the vehicles capacity.

𝑀𝑗 : Set of vehicles used during the period 𝑗

𝐶𝐴𝑃𝑖 : Capacity of a vehicle of type 𝑖.

Minimize

𝑓1 = σ𝑖=1
𝑛 𝜔𝑖,

𝑓2 = σ𝑠∈𝑅 𝐿𝑄𝑠.

subject to:

𝑐𝑖 = 𝑐𝑖
𝑏𝑢𝑠 + 𝑐𝑖

𝑔𝑎𝑠
+ 𝑐𝑖

𝑑𝑟𝑖𝑣𝑒𝑟,

𝜔𝑖 = 𝑐𝑖𝑚𝑖 ,
𝑓𝑗 ≥ 𝑓𝑚𝑖𝑛 ,

LFj =
𝑃𝑗
𝑚𝑎𝑥

CAPi × fj
≤ LFmax,

LQs = max 𝑃𝑗
𝑠 − σi∈Mj

LFj × CAPi , 0 .

𝑡3

𝑇𝑖𝑚𝑒: 6: 00 6: 10 6: 30 6: 50

𝑝𝑒𝑟𝑖𝑜𝑑 𝑗

𝑡2 𝑡4𝑡1
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P
a
s
s
e
n

g
e
r 
lo

a
d

a
t 

s
p

e
c
if
ic

 h
o

u
r

Distance traveled (m)

:𝐿𝑄𝑠(Passengers without picking up at each stop)

:Vehicle’s empty space during period 16: 00 𝑡𝑜 17: 00

𝑓2 defines the number of passengers that cannot be moved satisfactorily,

which implies more waiting time and overload in the selected vehicles to

cover the route in this period.

𝑓𝑗 ≥ 𝑓𝑚𝑖𝑛

𝐶𝐴𝑃𝑖

Route= 𝑅Route= 𝑅

𝓁2

𝑡2𝑡1

𝑡3

𝑡4

𝑡5

𝑡6

𝑃2
𝑚𝑎𝑥

σi∈M2
LF2 × CAPi.

16: 00 𝑡𝑜 17: 00

20: 00 𝑡𝑜 21: 00

7: 00 𝑡𝑜 8: 00

Unsatisfied demand (𝒇𝟐) 



CICESE Parallel Computing Laboratory

Uncertainty

Communication failure

Break-down of a vehicle 

Failures in the transport network 

Passenger demand 

Weather changes

Modification of the transportation 

requests

135



A set of vehicles of different types is assigned to cover trips of a

route. The MOP is to find an appropriate distribution of multiple

vehicle-types, with the goal of to simultaneously to reduce the

unsatisfied user demand and GHG emissions, related to the

fuel consumption from vehicles used for a specific route.

Environmental protection



Quality of service, cost, pollution
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𝑇 Departure time Vehicle

𝑡1 6:00 AM

𝑡2 6:30 AM

𝑡3 7:00 AM

⋮ ⋮ ⋮

𝑡7 10:00 AM

k

4. Add to non-dominated set

k

2. Recombination3. Mutation

1. Selection

5. Replacement6. Feedback

0 2 3 1 0 2 1 0 3 2

Start of period j

k

a) b)

Neighborhood of 

the individual k

=

a) Example of solution representation

(chromosome).

b) Reproduction steps in asynchronous

cGAs.

c) Timetables obtained by selecting

different solutions of the Pareto front

approximation for one execution of

the proposed algorithm.

Operating cost (𝑓1)

L
o

s
t 
q
u

a
lit

y
 o

f 
s
e

rv
ic

e
 (
𝑓 2

)
Multiobjective cGAs (MOcell)

𝑇 Time Vehicle

t1 6:00

t2 6:30

t3 7:00

⋮ ⋮ ⋮

t7 10:00

𝑇 Time Vehicle

t1 6:00

t2 6:30

t3 7:00

⋮ ⋮ ⋮

t7 10:00

𝑇 Time Vehicle

t1 6:00

t2 6:30

t3 7:00

⋮ ⋮ ⋮

t7 10:00

c)
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RideSchedules.com, Official LA Metro Bus Data, Updated: May 2, 2017, viewed  May 14, 2017. <https://rideschedules.com/schedule.html?23467>.       

P
a
s
s
e

n
g

e
rs 400

200

0

7:00-8:00

9:00-10:00
11:00-12:00

13:00-14:00
15:00-16:00

17:00-18:00
19:00-20:00

21:00-20:00
23:00-24:00 Adams/ Washingt

Fairfax/ Saturn

Fairfax/ Drexel

Fairfax/ Sunset

Hollywood/ Highland

Grower/ Franklin

Beachwood/ Westshir

Route 217 Metro Local Line – Los Angeles, California. (a) Passenger

demand, ride-check data for 19 time-periods of one hour and 59 stops,

maximum load 481 in Fairfax/Rosewood between 17:00 to 18:00 (peak

hour). b) Route map with its stops (Rideschedules, 2017)

a) b)

Experiments design

https://rideschedules.com/schedule.html?23467
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Results

The main objective of multiobjective optimization algorithms is to obtain an

approximation of the true Pareto front of a given MOP. In general, MOPs can

have a Pareto front composed by a huge (possibly infinite) number of solutions.

Initial population

Last population 
for one run of 
the purposed 
algorithm 
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Cloud Voice over IP

Area A

Voice Switch

IP phone
Voice Switch

IP phone

Voice Switch

IP phone

Internet 

network

Area B

Super Node (SN)

VM1 VM2

VM1

VM2
VM3

Super Node Cluster (SNC) is a set of SNs

Operating system

SecuritySecurity

MonitoringMonitoring

Voice node Voice node

Voice node Voice node

Voice node Voice nodeTelephone system features: voice 

mail, call transfer, music on hold, 

conference function, etc.

Execute VoIP software 

(Asterisk)

Access to the server such as 

SSH, FTP sessions

Monitor the use of the resources

Advantages

• Granularity of hardware

• Scalability

• Cost

• Geographic distribution

• Robustness of the solution

Disadvantages

• Call quality reduction

• Load imbalance
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Problem

Two objectives:

- Provider cost optimization

- Voice Quality 

Bin-packing approach (well-known) 

• one-dimensional, on-line 

• classic NP-hard optimization problem

The principal novelty 

• state of the bin is determined not only 

by actions of the decision maker during 

item allocations, 

• but also by item completions after their 

lifespan.

Unlike in standard formulation, 

• bins are always open 

• dynamic 

• items in bins can be terminated (call 

termination)

• utilization can be changed

143
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VoIP quality of service

144

Quality of service (QoS) is a very important factor and its degradation

is determined by: call delivery and call processing

A possible generalization of the voice quality is processor

utilization:

• Jitters and broken audio appear when CPU utilization is high

• Memory does not influence on the voice quality reduction

• Codec increases the bandwidth but it is less significant [3]

Call 
processing

Quality of 
voice

Codec
CPU 

Utilization

CPU can not handle the stress when utilization is up to a threshold
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Optimization criteria

145

Billing hours 

(ത𝑏)

Degradation performance

The analysis assumes equal importance of 

each metric [5]

Quality reduction 

(ത𝑞)
Calls to Queue 

( ҧ𝑐)

Multi-objective optimization 

problem:  

min(ത𝑏), min(ത𝑞), min( ҧ𝑐)

Evaluation method
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Problem with startup time delay.

Two objectives:

- Provider cost optimization.

- Voice quality.

- Calls to queue.

Bin-packing approach (well-known) 

• one-dimensional, on-line 

• classic NP-hard optimization problem

The principal novelty 

• Bin startup time delay is determined by 

instance type, Operation system 

(Linux, Windows), OS image size, etc.

• It affects time sensitive applications 

and resource auto-scaling

Unlike in standard formulation, 

• Bins are always open 

• Dynamic 

• Items in bins can be terminated (call 

termination)

• Utilization can be changed

146

Cloud OS stUp (sec.)

EC2
Linux 96.9

Windows 810.2

Azure

WebRole 374.8

WorkedRole 406.2

VMRole 356.6

Rackspace
Linux 44.2

Windows 429.2

Cloud stUp (sec.)

Google Cloud 31

AWS 47

Vexxhost 47

Linode 57

DigitalOcean 89

Rackspace 128

Windows 138

Average VM startup time delay (stUp).
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Call quality reduction

CPU stress

VMs startup time 

delay

Voice quality 

degradation

VM1

Calls on hold

VM2

time

V
M

 u
ti
liz

a
ti
o
n

Calls allocation with startup time delay.

Call processing is a main issue which determine the quality of calls (QoS) and it 

focuses on:

• The voice quality influenced by CPU stress

• Calls delayed "on hold" due to the under-provisioning of resources

During VM startup time delay (StUp):

• VM continues call processing with voice quality degradation

• VM does not have enough resources, the system places calls on hold, waiting for 

available resources
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Call allocation with load prediction

V
M

. 
u
ti
liz

a
ti
o
n

CPU stress

VMs startup 

time delay

Voice quality 

degradation

VM1

VM2

Prediction of voice 

quality degradation
time

The goals of traffic prediction on cloud computing is to minimize the infrastructure 

costs and improve the QoS to the end user.

Calls allocation with prediction and startup time delay.

Advantages:

• Adequate VM provisioning

Call allocation and prediction can reduce the billing hours, calls on hold, and quality 

reduction

Disadvantages

• Incorrect over-provisioning

• Under-provisioning

An accurate prediction model that does not increase the overhead considerately
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Rate of change

A

A’

B

B’

C

C’

D’

D
F’

E’

E

F

G G’

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

H’

I’

I
J J’

K

K’

L

L’

M
M’

UT

U
ti
liz

a
ti
o

n

H

Rate of Change is a dynamic distributed load 

balancing algorithm:

• Resources calculate the change in load 

between two Sample Intervals (SI)

• Difference in load (∆) is an estimation on 

load for the next SI

• ∆ is a mechanism to predict requests for 

new resources (VMs)

Let 𝑢𝑖(𝑡ሻ be the utilization of 𝑆𝑁𝐶𝑖 at time 𝑡, the rate of load change during 𝑆𝐼=[𝑡 − 𝑆𝑖, 𝑡] is
defined by:

∆𝑖(𝑡ሻ = (𝑢𝑖 𝑡 − 𝑢𝑖 𝑡 − 𝑆𝑖 ሻ

CVoIP system is more vulnerable when the number of VMs is small, so prediction considers
the number of VMs running in the system.

∆𝑖(𝑡ሻ = (𝑢𝑖(𝑡ሻ − 𝑢𝑖(𝑡 − 𝑆𝑖ሻ Τሻ 𝑘𝑖 (𝑡ሻ

Where 𝑘𝑖(𝑡ሻ defines the number of VMs running on 𝑆𝑁𝐶𝑖 at time 𝑡.
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Call allocation strategies

150

Name Description

K
F Rand

Allocates job j to VM randomly using a uniform 

distribution.

RR Allocates job j to VM using a Round Robin algorithm.

U
A

Ffit Allocates job j to the first VM capable to execute it.

Bfit Allocates job j to VM with smallest utilization left.

WFit Allocates job j to VM with largest utilization left.

R
A

MaxFTFit Allocates job j to VM with farthest finish time.

MidFTFit
Allocates job j to VM with shortest time to the half of its 

rental time.

MinFTFit Allocates job j to VM with closest finish time.

Rand_05

Allocates job j to VM that finishes not less than in 5, 10, 

15 minutes using the Rand, and RR strategies.

K
F

 +
 T

A

Rand_10

Rand_15

RR_05

RR_10

RR_15

U
A

 +
 T

A

BFit_05

Allocates job j to VM that finishes not less than in 5, 10, 

and 15 minutes using the Bfit, FFit, and WFit strategies.

BFit_10

BFit_15

FFit_05

FFit_10

FFit_15

WFit_05

WFit_10

WFit_15

Name Description

L
A

Rand_stU

p

Allocates job j to VM using the 

Rand, and RR strategies. They use 

intervals of 10, 20, 30 and stUp

seconds to estimate future load 

Rand_s10

Rand_s20

Rand_s30

RR_stUp

RR_s10

RR_s20

RR_s30

U
A

 +
 L

A

BFit_stUp

Allocates job j to VM using BFit, 

FFit, and WFit strategies. They 

use intervals of 10, 20, 30 and 

stUp seconds to estimate future 

load

BFit_s10

BFit_s20

BFit_s30

FFit_stUp

FFit_s10

FFit_s20

FFit_s30

WFit_stU

p

WFit_s10

WFit_s20

WFit_s30

Call allocation strategies.
Call allocation strategies with 

prediction.



CICESE - Parallel Computing Laboratory 151


	Slide 1
	Slide 2: Importance
	Slide 3: Importance
	Slide 4: Data Centers
	Slide 5: Three-tier topology
	Slide 6
	Slide 7
	Slide 8: Scheduling: on-line vs off-line
	Slide 9: Scheduling: on-line vs off-line
	Slide 10: A generic scheme
	Slide 11
	Slide 12: Idle Regulation for Rigid Jobs
	Slide 13: Job submission
	Slide 14: Job submission
	Slide 15: Job submission
	Slide 16: Job allocation
	Slide 17: Job allocation
	Slide 18
	Slide 19: List Scheduling
	Slide 20: List Scheduling
	Slide 21: Sequential Tasks Scheduling 
	Slide 22: Scientific workflows
	Slide 23
	Slide 24: Performance-based optimization criteria
	Slide 25: 2-level strategies
	Slide 26
	Slide 27: Grid Computing
	Slide 28: Grid Computing
	Slide 29: Cloud Computing
	Slide 30: Challenges in cloud computing.
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Scheduling Algorithm
	Slide 37: Scheduling Algorithm
	Slide 38
	Slide 39: Workload Uncertainty Adaptive Admissible Allocation
	Slide 40: Allocation uncertainty
	Slide 41
	Slide 42
	Slide 43: Adaptive optimization
	Slide 44: Theoretical Evaluation
	Slide 45: Scheduling for Cloud Computing with Quality of Service
	Slide 46
	Slide 47: Quality of Service
	Slide 48: Competitive Factor
	Slide 49: Scheduling
	Slide 50: Competitive Factor
	Slide 51: Competitive Factor
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Adaptive Consolidation for  Energy Saving
	Slide 66: Three-tier topology
	Slide 67: Definition
	Slide 68: Сonsolidation
	Slide 69: Uncertainty of communication
	Slide 70: Network balancing
	Slide 71: Adaptive consolidation-communication model
	Slide 72: Score function
	Slide 73: Balancing
	Slide 74: Adaptive approach
	Slide 75
	Slide 76: Motivation
	Slide 77: Benchmarks
	Slide 78
	Slide 79: Concentration
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98: Adaptive energy efficient scheduling  in Peer-to-Peer desktop grids Knowledge Free Scheduling
	Slide 99: Knowledge Free Scheduling
	Slide 100
	Slide 101: P2P Grids
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141: A VoIP Service for Cloud Infrastructure
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150: Call allocation strategies
	Slide 151

