Variáveis Aleatórias Discretas

Ciências Contábeis - FEA - Noturno

1º Semestre 2023

Profs. Leonardo T. Rolla e Nikolai Kolev

(baseado em material previamente desenvolvido pelo Prof. Gilberto Alvarenga Paula)

Sumário

Variável Aleatória Discreta

Função de Probabilidade e Função de Distribuição

Esperança e Variância

Sumário

Variável Aleatória Discreta

Função de Probabilidade e Função de Distribuição

Esperança e Variância

Variável Aleatória

Definição

Uma **variável aleatória** é uma característica numérica resultante de um experimento aleatório.

Variável Aleatória Discreta

Definição

Uma variável aleatória é definida como sendo **discreta** quando o número de valores possíveis que a variável assume for finito ou infinito enumerável $(\mathbb{Z}, \mathbb{N}, \text{ etc.})$.

Variável Aleatória Discreta

Exemplos

- nº de chamadas na central do Corpo de Bombeiros no período da manhã
- nº de alunos aprovados numa disciplina com 80 alunos matriculados
- nº de acessos a um determinado site, das 0h às 6h
- nº de inadimplentes dentre 500 pessoas que pegaram empréstimo num banco no último ano
- nº de consultas ao médico num determinado ano
- nº de domicílios com crianças menores de 6 anos
- variação no nº de acidentes de um ano para o outro ano numa determinada rodovia
- Nota obtida na prova quando corrige-se com apenas uma casa decimal

Experimento Aleatório

Observa-se a face superior no lançamento de duas moedas. Nesse caso o espaço amostral pode ser definido na forma

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\},\$$

em que $\omega_1 = \{\text{cara,cara}\}, \, \omega_2 = \{\text{cara,coroa}\}, \, \omega_3 = \{\text{coroa,cara}\}$ e $\omega_4 = \{\text{coroa,coroa}\}.$

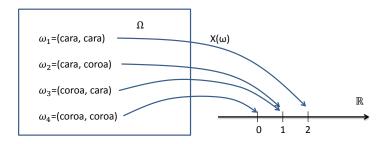
Variável Aleatória

Se definimos a variável aleatória X= número de caras no lançamento de duas moedas, então obtemos

$$X(\omega_1) = 2$$
, $X(\omega_2) = 1$, $X(\omega_3) = 1$ e $X(\omega_4) = 0$.

Ou seja, a variável aleatória X assume os valores X = 0, 1, 2.

Descrição da variável aleatória X: número de caras no lançamento de duas moedas



Sumário

Variável Aleatória Discreta

Função de Probabilidade e Função de Distribuição

3 Esperança e Variância

Função de probabilidade

Função de probabilidade

A função de probabilidade de X é dada por

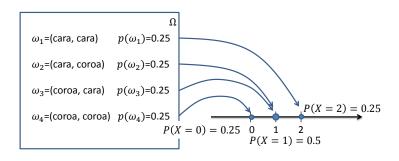
$$p(x) = P(X = x)$$

e pode ser representada pela tabela abaixo

\overline{x}	x_1	x_2	 x_k
P(X=x)	$p(x_1)$	$p(x_2)$	 $p(x_k)$

- $p(x_i) \ge 0$
- $p(x_1) + p(x_2) + \cdots + p(x_k) = 1$

Descrição do cálculo da probabilidade da variável aleatória X: número de caras no lançamento de duas moedas



Função de probabilidade

Portanto, a função de probabilidade da variável aleatória X = número de caras no lançamento de duas moedas fica dada por

\overline{x}	0	1	2
P(X=x)	0, 25	0,50	0, 25

Função de distribuição

Função de distribuição

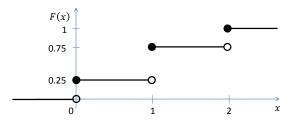
Uma maneira de descrever a distribuição de uma variável aleatória é através da função de distribuição acumulada, definida por

$$F(x) = P(X \le x),$$

em que x é um número real e F(x) pertence ao intervalo [0,1].

Descrição da função de distribuição acumulada $F(x) = P(X \le x)$ da variável aleatória X: número de caras no lançamento de duas moedas

х	0	1	2
P(X=x)	0,25	0,50	0,25



Duas moedas

Portanto, a função de distribuição acumulada da variável aleatória X = número de caras no lançamento de duas moedas fica dada por

$$F(x) = \left\{ \begin{array}{ll} 0 & \text{se } x < 0 \\ 0, 25 & \text{se } 0 \leq x < 1 \\ 0, 75 & \text{se } 1 \leq x < 2 \\ 1 & \text{se } x \geq 2 \end{array} \right.$$

Sumário

Variável Aleatória Discreta

Função de Probabilidade e Função de Distribuição

Seperança e Variância

Esperança

Definição

Seja X uma variável aleatória discreta que assume os valores x_1, x_2, \ldots, x_k . Chamamos de valor médio, ou valor esperado, ou esperança de X o valor

$$E(X) = x_1 p(x_1) + x_2 p(x_2) + \dots + x_k p(x_k)$$
$$= \sum_{i=1}^k x_i p(x_i),$$

em que $p(x_i) = P(X = x_i)$. Notação $\mu = \mathsf{E}(X)$.

Cálculo Esperança

A função de probabilidade da variável aleatória X= número de caras no lançamento de duas moedas é dada por

\overline{x}	0	1	2
P(X=x)	0,25	0,50	0, 25

A esperança de X fica então dada por

$$E(X) = 0 \times 0,25 + 1 \times 0,50 + 2 \times 0,25$$

= 1,0.

Espera-se, portanto, 1 cara.

Cálculo Esperança

A função de probabilidade da variável aleatória X =soma das faces superiores é dada por

\overline{x}	2	3	4	5	6	7	8	9	10	11	12
P(X=x)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

A esperança de X fica então dada por

$$\mathsf{E}(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + \dots + 11 \times \frac{2}{36} + 12 \times \frac{1}{36}$$
$$= \frac{252}{36} = 7, 0.$$

Espera-se, portanto, soma 7.

Variância

Definição

Seja X uma variável aleatória discreta que assume os valores x_1,x_2,\ldots,x_k . Chamamos de variância de X o valor esperado da variável $(X-\mu)^2$, ou seja

$$Var(X) = (x_1 - \mu)^2 p(x_1) + \dots + (x_k - \mu)^2 p(x_k)$$
$$= \sum_{i=1}^k (x_i - \mu)^2 p(x_i),$$

em que $p(x_i) = P(X = x_i)$. Notação $\sigma^2 = \text{Var}(X)$.

Desvio Padrão

O desvio padrão de X é definido por

$$\sigma = \mathsf{DP}(X) = \sqrt{\mathsf{Var}(X)}.$$

Fórmula Alternativa

A variância de X pode, alternativamente, ser expressa na forma

$$\mathsf{Var}(X) = \mathsf{E}(X^2) - \mu^2,$$

em que

$$E(X^{2}) = x_{1}^{2}p(x_{1}) + \dots + x_{k}^{2}p(x_{k})$$
$$= \sum_{i=1}^{k} x_{i}^{2}p(x_{i}).$$

Cálculo Variância

Para a variável X = número de caras no lançamento de duas moedas obtemos

$$\mathbf{E}(X^2) = 0^2 \times 0,25 + 1^2 \times 0,50 + 2^2 \times 0,25$$
$$= 0 + 0,50 + 1,0 = 1,50.$$

Portanto, a variância de X fica dada por

$$\sigma^2 = \mathsf{Var}(X) = 1,50 - (1,0)^2 = 1,50 - 1,0 = 0,50.$$

E o desvio padrão

$$\sigma = \mathsf{DP}(X) = \sqrt{0,50} \cong 0,707.$$

Propriedades

Propriedades

$$\begin{split} \mathsf{E}(aX+bY) &= a\,\mathsf{E}(X) + b\,\mathsf{E}(Y) \\ \mathsf{E}(a) &= a \\ \mathsf{Var}(aX+b) &= a^2\,\mathsf{Var}(X) \end{split}$$

Uma empresa oferece quatro modalidades de serviço A, B, C e D cobrando 100, 200, 300 e 400 (unidades monetárias), respectivamente. Sabe-se que um cliente contrata a modalidade A com probabilidade 0,2; a modalidade B com probabilidade 0,4; a C com probabilidade 0,3 e a D com probabilidade 0,1. Defina por X a variável que representa o ganho da empresa por cliente.

- (a) Construa a distribuição de probabilidades de X.
- (b) Calcule o ganho médio da empresa por cliente.
- (c) Calcule o desvio padrão do ganho da empresa por cliente.

Se
$$\mathsf{E}[X] = 1$$
 e $\mathsf{Var}(X) = 5$, determine

- (a) $E[2 + X^2]$
- (b) Var(4 3X)

Uma florista faz estoque de uma flor de curta duração que lhe custa R\$ 3,50 a unidade e que ela a vende a R\$ 10,00 no primeiro dia em que a flor está na loja. Toda flor que não for vendida nesse primeiro dia não serve mais e é jogada fora. Seja X a variável aleatória que denota o número de flores que os fregueses compram em um dia casualmente escolhido. A florista descobriu que a função de probabilidade da procura de X é dada pela seguinte tabela.

Quantas flores a florista deveria ter em estoque a fim de maximizar a média (o valor esperado) do seu lucro?

Calcule
$$P(X \le 0.7 \mid X \le 2.5)$$
.

Faça o gráfico da função da distribuição (acumulada) ${\cal F}$ da variável aleatória ${\cal X}$, cuja função de probabilidade é

$$\begin{array}{c|ccccc} x & -3 & 2 & 6 \\ \hline p(x) & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \end{array}$$

Determine a função de probabilidade de uma variável aleatória X cuja função de distribuição acumulada é dada por

$$F(x) = \begin{cases} 0 & x < 0 \\ 1/2 & 0 \le x < 1 \\ 3/5 & 1 \le x < 2 \\ 4/5 & 2 \le x < 3 \\ 9/10 & 3 \le x < 3, 5 \\ 1 & x \ge 3, 5. \end{cases}$$