
CPN
A concrete language for
high-level Petri nets

prof.dr.ir. Wil van der Aalst

PAGE 1

Last week ..

5 philosophers

PAGE 2

CPN-3

CPN (Colored Petri nets)

• CPN is the language developed by Kurt Jensen et al.
• CPN supports the extensions with time, color and

hierarchy.
• CPN is based on standard ML.
• CPN is supported by Design/CPN and CPN Tools.
• In 2010, the support and further development of CPN

Tools moved from Aarhus University (Denmark) to
TU/e.

• Version 3 was the first version released by TU/e.
• For more information: http://cpntools.org

CPN-4

Values and types

• Syntax is needed to type places and give values
(colors) to tokens.

• Adopted from Standard ML

Outline:
• Basic types: int, string, bool, (real), and unit.
• Type constructors: with, product, record, list.
• Defining constants.

CPN-5

Basic types

• Integers (int), e.g., 5, 34234, ~32423.
• Reals (real), e.g., 34.34, ~23.0, 7e3, 4e~2.
• Strings (string), e.g., "Hallo", "28-02-2003".
• Booleans (bool): true and false.
• unit: type with just one value ()

 ~32423 means -32423
 ~23.0 means –23, 7e3 means 7000.0, and 4e~2 means 0.04
 unit is used to represent black (i.e., uncolored) tokens
Reals are supported in ML but cannot be used as a color set

because equality is undefined and hence bindings cannot be
calculated

CPN-6

Basic operators

• ~ for the unary minus
• + and – for reals and integers
• * (multiplication) for reals and integers
• / (division) for reals
• div and mod for integers (28 div 10 = 2, 28 mod 10 =

8)
• =, >, <, >=, <=, <> for comparing things (note the

notation for >= (greater than), <= (smaller than), and
<> (not equal)).

• ^ for strings (concatenation "AA"^"BB" = "AABB")

CPN-7

Logical operators

• not (for negation)
• andalso (for logical AND)
• orelse (for logical OR)
• if then else (choice based on Boolean argument, the

then and else part should be of the same type)

not(1=1) results in false
 (1=1) andalso not(0>1 orelse 2>3) results in true
 if "X"="X" then 3 else 4 results in 3

CPN-8

Exercise: Give type and value of each
result

a) if (4>=4) then ("Hello" ^ " " ^ "World") else "X“

b) if true then 20 div 8 else 20 mod 8

c) not(1=1 orelse 1=2)

d) not(1=1 andalso 1=2)

e) if ("Hello" ^ " " ^ "World" = "X") then 20 else 3

CPN-9

Color set declarations

• A color set is a type that is defined using a color set
declaration color ... = ... ,1 e.g.,
• color I = int;
• color S = string;
• color B = bool;
• color U = unit;

• Once declared, it may be used to type places.
• Newly defined types like I,S,B,U may be used in other

color set declarations.

1 "color" is shown as "colset" in CPN Tools, but one can type "color"

CPN-10

Creating subtypes using the "with"
clause

• color Age = int with 0..130;
• color Temp = int with ~30..40;
• color Alphabet = string with "a".."z";
• color YN = bool with (no,yes);
• color BlackToken = unit with null;

CPN-11

Creating new types using the "with"
clause

• color Human = with man | woman | child;
• color ThreeColors = with Green | Red | Yellow;

CPN-12

Creating new types using product,
record, and list constructors

• color Coordinates = product I * I * I;
• color HumanAge = product Human * Age;
• color CoordinatesR = record x:I * y:I * z:I;
• color CD = record artists:S * title:S * noftracks:I;
• color Names = list S;
• color ListOfColors = list ThreeColors;

CPN-13

Possible values (colors)

• Coordinates: (1,2,3), (~4,66,0), ...
• HumanAge: (man,50), (child,3), ...
• CoordinatesR: {x=1, y=2, z=3}, {x=~4, y=66, z=0},

{y=2, x=1, z=3}, ...
• CD: {artists="Havenzangers", title="La La",

noftracks=10}, ...
• Names: ["John", "Liza", "Paul"], [], ...
• ListOfColors = [Green], [Red, Yellow], ...

Note the difference between products and records.

CPN-14

Example

• color Driver = string;
• color Lap = int with 1..80;
• color TimeMS = int with 0..10000000;
• color LapTime = product Lap * TimeMS;
• color LapTimes = list LapTime;
• color DriverResults = record d:Driver * r:LapTimes;
• color Race = list DriverResults;

CPN-15

Example (2)

A possible color of type Race is:

[{d="Jos Verstappen",
r=[(1,31000),(2,33400),(3,32800)]},

{d="Michael Schumacher",
r=[(1,32200),(2,31600),(3,30200),(4,29600)]},

{d="Rubens Barrichello",
r=[(1,34500),(2,32600),(3,37200),(4,42600)]}]

CPN-16

Operations on lists and records

• [] denotes the empty list
• ^^ concatenates two lists, e.g., [1,2,3]^^[4,5]

evaluates to [1,2,3,4,5]
• :: adds an element in front of a list, e.g., "a"::["b","c"]

evaluates to ["a","b","c"]
• # extracts a field of a record #x{x=1,y=2} evaluates to

1

CPN-17

Constants

• It is possible to define constants, e.g.,
• val jv = "Jos Verstappen" : Driver;
• val lap1 = 1 : Lap;
• val start = 0 : Time;
• val seven = 7 : int;

CPN-18

Example

• Determine the value of constant Monaco:
• val jv = "Jos Verstappen" : Driver;
• val r1jos =(1,31000) : LapTime;
• val r2jos =(2,33400) : LapTime;
• val r3jos =(3,32800) : LapTime;
• val r123jos = ((1,31000)::[(2,33400)])^^[(3,32800)] : LapTimes;
• val jos = {d=jv,r=r123jos}: DriverResults;
• val michael = {d="Michael Schumacher",

r=[(1,32200),(2,31600),
• (3,30200),(4,29600)]}:DriverResults;
• val rubens = {d="Rubens Barrichello",

r=[(1,34500),(2,32600),(3,37200), (4,42600)]}:DriverResults;
• val Monaco = jos :: ([michael]^^[rubens]) : Race;

CPN-19

Exercise

• Determine the value of the following constants:
• val e1 = r1jos::[];
• val e2 = #d(michael);
• val e3 = (#r(jos))^^(#r(rubens));

CPN-20

So what?

CPN-21

We can now type and initialize places!

race

Race

Monaco

color Driver = string;
color Lap = int with 1..80;
color Time = real with 0.0..1000.0;
color LapTime = product Lap * Time;
color LapTimes = list LapTime;
color DriverResults = record d:Driver * r:Laptimes;
color Race = List DriverResults;
val Monaco = [{d="Jos Verstappen", r=[(1,31000),(2,33400),(3,32800)]},
{d="Michael Schumacher", r=[(1,32200),(2,31600),(3,30200),(4,29600)]},
{d="Rubens Barrichello", r=[(1,34500),(2,32600),(3,37200),(4,42600)]}];name of

place

type of
place

initial
marking

declarations

CPN-22

Multi-sets

• To initialize places with multiple tokens but also for
various other purposes we need multi-sets also
referred to as bags.

• In CPN multi-sets are denoted using the following
notation: x1`v1 ++ x2`v2 ++ ... ++ xn`vn
where v1 is a value and x1 the number of times this
element appears in the multi-set, etc.

• E.g., 4`"Red" ++ 2`"Green" ++ 1`"Blue" is a multi-set
containing 7 elements

CPN-23

Initialization expressions

p1

INT

p1

INT

1 p1

INT

1`2 ++ 5`4

p2

STR

p2

STR

"John" p2

STR

1`"John" ++ 5`"Sara"

no tokens one token six tokens

CPN-24

Trick

• Multi-sets are implemented as lists, i.e., 4`"Red" ++
2`"Green" ++ 1`"Blue" can also be written as e.g.
["Red","Red","Red","Red","Green","Green",
"Blue"].

• This is useful when using list functions.

INT

[2,4,4,2,4]

INT

1`2 ++ 3`4

CPN-25

Arc inscriptions

• Arc inscriptions are used to define input-output
behavior.

• Arc inscriptions may use variables.
• Variables are typed and need to be declared

p1

STR

"Hello World"color STR = string;
var s:STR;

STR

p2

s

s

t1

CPN-26

Example

• Give final marking.

p1

INT

1`2 ++ 2`3color INT = int;
var x:INT;

INT

p2

x

x+2

t1

CPN-27

Binding

• Given a transition t with variables x1, x2, ..., xn on its
input and output arcs, a binding of t allocates a
concrete value to each of these variables. These values
should be of the corresponding type.

• A binding is enabled if there are tokens matching the
values of the arc inscriptions.

• If a binding is enabled, it can occur, i.e., the transition
fires while consuming and producing the
corresponding tokens.

• The pair (t1,<x1=v1,x2=v2, ...xn=vn>) is called a binding
element.

CPN-28

Example

• Two binding elements: (t1,<x=2>) and (t1,<x=3>)

p1

INT

1`2 ++ 2`3color INT = int;
var x:INT;

INT

p2

x

x+2

t1

CPN-29

Example

• Binding element (t1,<x=0>). After it occurred
(t1,<x=1>), etc.

p1

INT

0color INT = int;
var x:INT;

INT

p2

x

x

t1

x+1

CPN-30

Example

color INT = int;
var x:INT;
var y:INT;

p1

INT

1

INT

p3

x x

t1

x

p2

INT

2 p4

INT

1

INT

p6

x y

t2

x+y

p5

INT

2 p7

INT

1

INT

p9

x y-x

t3

y

p8

INT

2

No binding
possible! (t2,<x=1,y=2>)

(t2,<x=1,y=3>)

CPN-31

Exercise

• Give all possible binding elements and final markings

color INT = int;
var x:INT;
var y:INT;

p1

INT

2`5++3`7

INT

p3

x

x

t1

x
p2

INT

CPN-32

Exercise

• Give all possible binding elements and final markings

color INT = int;
var x:INT;
var y:INT;

p4

INT

2`5++3`7

INT

p6

x

t2

x
p5

INT

if x <=6
then 1`x

else empty
if x >6
then 1`x
else empty

CPN-33

Exercise

• Give all possible binding elements and final markings

color INT = int;
var x:INT;
var y:INT;

if x >6
then 4`x
else 5`x

p7

INT

2`5++3`
7

INT

p9

x

t3

2'x ++ 3'(x-5)

p8

INT

CPN-34

Exercise

• Give all possible binding elements and a final marking

color STR = string;
var x:STR;
var y:STR;
color INT = int;
var z:INT;
color S = list STR;
var s:S;
color R = record a:STR * b:S;
var r:R;

p1

STR

S

p4

x

x::[y]

t1

x^y

p3

STR

p2

STR

" World""Hello "

y

CPN-35

Exercise

• Give all possible binding elements and a final marking

color STR = string;
var x:STR;
var y:STR;
color INT = int;
var z:INT;
color S = list STR;
var s:S;
color R = record a:STR * b:S;
var r:R;

p5

STR

3`"Hi"++2`"Ho"

S

p7

x

t2

z+1
p6

INT

z s x::s

0 []

CPN-37

Example: Voting

color Party = with CDA | PVDA | VVD;
var x:Party;
color Count = int with 0..200000000;
var y:Count;
color PC = product Party * Count;

vote

Party
x

give_vote

votes

(x,y+1)

PC

2`CDA ++
3`PVDA ++
1`VVD

1`(CDA,0) ++
1`(PVDA,0) ++
1`(VVD,0)

(x,y)

CPN-38

CPN-39

Exercise: Bank

• Consider a simple banking system. There are 1000
accounts numbered from 1 to 1000. People can
deposit or withdraw money. Only amounts between 1
EURO and 5000 EURO can be deposited or
withdrawn. The account may have a negative
balance.

• Model this in terms of a CPN model.

CPN-40

Exercise: Article database

• Consider a database system where authors can
submit articles. The articles are stored in such a way
that it is possible to get a sequential list of articles
per author. The list is ordered in such a way that the
oldest articles appear first.

• Note that the system should support two actions:
submit articles (with name of author and article) and
get articles of a given author.

• We assume that each article has a single author and
that only authors already registered in the database
can submit articles.

• Model this in terms of a CPN model.

CPN-41

Exercise (2)

• Extend the CPN model such that each article can
have multiple authors, i.e., the article is stored once
for each author, and that there is an explicit action
to add authors to the database.

CPN-42

Guard

• A guard is a Boolean expression attached to a
transition. Only binding elements which evaluate to
true are enabled.

• Denoted by square brackets.

color INT = int;
var x:INT;
var y:INT;
var z:INT;

p1

INT

1

INT

p3

x y

t1

x

p2

INT

2

[x=y]

guard
evaluates to

false for
binding
(t1,<x=1,

y=2>)

CPN-43

Example

• Give all enabled binding elements and the final
marking

color INT = int;
var x:INT;
var y:INT;
var z:INT;

p4

INT

1

INT

p6

x y

t2

x+y

p5

INT

2 p7

INT

1

INT

p9

x y

t3

z

p8

INT

2

[x>y] [z=x+y]

CPN-44

Exercise

• Give all enabled binding elements and the final
marking

Mail

inbox_John

[#p(x)="John"]

mail

Mail

Mail

{p="John",t="Hello"}

x x

xx

color Person= str;
color Text = str;
color Mail = record p:Person * t:Text;
var x:Mail;

inbox_Sue

get1 get2

[#p(x)="Sue"]

CPN-45

Exercise

• Give all enabled binding elements and all possible
final marking

color INT = int;
var x:INT;

INT

p3p2

[x>5] [x<10]

p1

INT

INT

1`2++1`7++1`15

x x

xx
t1 t2

CPN-46

Exercise

• The CPN model assumes that an account could have
a negative balance. Change the model such that the
balance cannot become negative, i.e., do not accept
transactions which lead to a negative balance.

color Account = int with 1..1000;
color Balance = int;
color Amount = int with 1..5000;
color AB = product Account * Balance;
color AA = product Account * Amount;
var a:Account;
var x:Amount;
var y:Balance;

deposit

AA
 (a,x)

deposit

database

(a,x+y)

AB

(a,y)

(a,y)

(a,y-x)

AA

 (a,x)withdraw

withdraw

CPN-47

Function declarations

color INT = int;
fun fac(x:INT) = if x>1 then x*fac(x-1) else 1;
fun fib(x:INT) = if x<2 then 1 else fib(x-1) + fib(x-2);
color L = list INT;
fun sum(x:L) = if x=[] then 0 else hd(x)+sum(tl(x));
fun odd(x:L) = if x=[] then [] else hd(x)::(if tl(x)=[] then []

else odd(tl(tl(x))));

• Calculate fac(fib(3)) and modify odd such that the odd
lines are returned in reversed order.

Where to find standard functions?

• These sheets.

• cpntools.org, see for example
http://cpntools.org/documentation/concepts/colors/declarations/co
lorsets/list_colour_sets and
http://cpntools.org/documentation/concepts/colors/declarations/co
lorsets/colour_set_functions

• www.standardml.org, see for example
http://www.standardml.org/Basis/list.html#LIST:SIG:SPEC for list
functions,
http://www.standardml.org/Basis/integer.html#INTEGER:SIG:SPEC
for integer functions,
http://www.standardml.org/Basis/string.html#STRING:SIG:SPEC
for string functions, etc.

PAGE 48

http://cpntools.org/documentation/concepts/colors/declarations/colorsets/list_colour_sets�
http://cpntools.org/documentation/concepts/colors/declarations/colorsets/list_colour_sets�
http://cpntools.org/documentation/concepts/colors/declarations/colorsets/colour_set_functions�
http://cpntools.org/documentation/concepts/colors/declarations/colorsets/colour_set_functions�
http://www.standardml.org/Basis/list.html�
http://www.standardml.org/Basis/integer.html�
http://www.standardml.org/Basis/string.html�

CPN-49

Example

color INT:int;
color Author = string;
color Article = string;
color AL = list Article;
color AAL = product Author * AL;
var x:Author;
var y:AL;
fun count(z:AL) = if z=[] then 0 else 1+tl(z)

database

AAL(x,y)

(x,y)Author
x

how_many

count
answer

INT
count(y)

CPN-50

Questions

• Is it possible to have multiple arcs connecting a
place and a transitions?

• Is it possible to have multi-sets as arc inscriptions
on input arcs?

• Is it possible to use constants or other expressions
without variables as arc inscriptions?

• Is it possible to use records, lists, etc. with variables
(e.g., {a=x,b=y} and x::y) in arc inscriptions?

4x

CPN-51

Example: Multiple arcs

color I = int;
color U = unit;
color L = list I;
color R = record a:I * b:I;
var x:I;
var y:I;
var z:I;
var s:L;

I I

I I

x
y

x

x y y
multiple arcs
are allowed

CPN-52

Example: Multi-sets and constants

color I = int;
color U = unit;
color L = list I;
color R = record a:I * b:I;
var x:I;
var y:I;
var z:I;
var s:L;

I

I

1`x++1`y x

x 2`y

I

I

I

I

2`() 5+4*5

() 2`7

U

U

multisets on
input arcs are

allowed

constants are
allowed

CPN-53

Example: Records

color I = int;
color U = unit;
color L = list I;
color R = record a:I * b:I;
var x:I;
var y:I;
var z:I;
var s:L;

I

I

{a=x,b=y} z

x

R

R

records with
variables as

arc inscriptions

{a=y,b=z}

CPN-54

Example: Lists

color I = int;
color U = unit;
color L = list I;
color R = record a:I * b:I;
var x:I;
var y:I;
var z:I;
var s:L;

L

L

y y::s

s s^^[y]

I

L

lists with
variables as arc

inscriptions

CPN-55

Requirement

color I = int;
color U = unit;
color L = list I;
color R = record a:I * b:I;
var x:I;
var y:I;
var z:I;
var s:L;

I

I

x y

z x

I

I

x y

x y

I

I

I

I

[z>4]

ERROR:
z is unbound!

ERROR:
z is unbound!

It should be possible to
bind variables to
concrete token values!!

CPN-56

Trick: use lists on arcs to
produce/consume multi-sets of tokens

Another example

PAGE 57

Priority (no priority P_NORMAL = 1000)

PAGE 58

Priority (same)

PAGE 59

Priority (P_HIGH wins)

PAGE 60

Priority: Guess final state

PAGE 61

Result

PAGE 62

Global property (t2 never fires)

PAGE 63

CPN-64

Time in CPN

• Tokens are either untimed (are always available) or
timed (bear a timestamp).

• Color sets can be made timed color sets by adding
the keyword timed.

• A delay is modeled by v@+d as arc expression on an
outgoing arc where v is the value and d is the delay
of the produced token.

• Delays may depend on the values of tokens to be
consumed (i.e., through the binding of variables).

CPN-65

Example

color STR = string timed;
var x:STR;
color INT = int;
var y:INT;

p1

STR

STR

p4

x

x@+y

t1

x@+1

p3

STR

p2

INT
y

4"Hi"

CPN-66

Exercise

• Determine a possible final state.

color STR = string timed;
var x:STR;
color INT = int;
var y:INT;

p5

STR

2`"Hi"++2`"Ho"

STR

p7

x

t2

y+1
p6

INT

y
0

x@+y

Time (t1 is enabled at time 2)

PAGE 67

t1 fired at time 2; t2 is enabled at time 4

PAGE 68

“Real” time

PAGE 69

Note the types and the @++

PAGE 70

Determine final state

PAGE 71

Final state (time = 10000)

PAGE 72

CPN-74

Overview of CPN (with color and time)

p1

INT

1`2 ++ 2`3

color INT = int;
color STR = string timed;
var x:INT;
var y:STR;
val n = 4:INT;
fun incr(z:INT) = z+1;

STR

p2
x

t1

"Token"[x<n]
y@+2

yincr(x)

color set

declarations
timed color

set

place name

initialization
expression

guard

delay

function
declaration

constant

variable

place type

transition
name

arc inscription

CPN-75

Coffee and tea example (1)

• We need to produce 100 cups of tea
and 100 cups of coffee.

• There are two persons able to
manufacture these drinks: Adam and
Eve.

• Assume "random allocation".
• Production times:

Eve Adam

tea 2 6

coffee 12 4

CPN-76

Coffee and tea example (2)

• Simulate the model a couple of
times and record the makespan.

• Evaluate two control strategies:
• Eve just makes tea and Adam just

makes coffee.
• Adam makes coffee and Eve can make

both.
• Eve makes tea and Adam can make

both.
• Why is it diffcult to model

priorities/preferences?

Eve Adam

tea 2 6

coffee 12 4

Ready @ +/- 620

Eve just makes tea and Adam just makes coffee.

Ready @ 400

Adam makes coffee and Eve can make both

Ready @ +/- 416

Eve makes tea and Adam can make both

Ready @ +/- 460

A smarter strategy

• Eve just makes tea and Adam just makes coffee
unless ...
• Eve can make coffee if there are no tea orders left.
• Adam can make tea if there are no coffee orders left.

• Why is it diffcult to model
priorities/preferences?

• Let us look at an intermediate solution
using counters rather than lists.

CPN model with counters

Almost optimal makespan ...

Ready @ 356
Adam: 87 coffee
Eve: 100 tea and 13 coffee
Makespan = 356

Optimal
Adam: 88 coffee
Eve: 100 tea and 12 coffee
Makespan = 352

M/G/1 queue

Poisson arrival process (expected average interarrival time is 1/0.05=20).
Expected service time is 10 (Normal distribution)

To measure results: CPN monitors

Create monitors

One run

Multiple subruns

CPN'Replications.nreplications 10

Results with confidence intervals

Will be explained in detail …

CPN-96

Coffee and tea example (3)

• Assume a continuous flow of tea and
coffee drinker, i.e., every 5 minutes
there is request for tea and every 10
minutes there is a request of coffee.

• There are two persons able to
manufacture these drinks (Adam and
Eve) and the production times are as
before.

• Process the requests in FIFO (first-in-
first-out) order.

http://www.spiralandcircle.com/tea break mug front.jpg�

Flow

arrival process processing departure process

FIFO

PAGE 99

PAGE 100

Monitors

PAGE 101

PAGE 102

average queue length = 0.74+/-0.09

average utilization = (2-(0.37+/-0.03))/2

average flow time coffee= 10.49+/-0.46

average flow time tea= 6.63+/-0.39

average utilization = (1.63+/-0.03)/2

FIFO

CPN-103

Coffee and tea example (4)

• Assume a continuous flow of tea and
coffee drinker, but now evaluate the
following alternatives:
• LIFO (last-in-first-out) order
• SPT (tea before coffee) order
• FIFO with Eve preferably working on tea

and Adam on coffee.
• Test also your own strategy.

http://www.zapp-net.com/illust/ohno/coffee.jpg�

LIFO

PAGE 104

PAGE 105

average queue length = 0.65+/-0.08

average utilization = (2-(0.35+/-0.02))/2

average flow time coffee= 10.19+/-0.39

average flow time tea= 6.43+/-0.31

average utilization = (1.65+/-0.02)/2

LIFO

SPT

PAGE 106

PAGE 107

PAGE 108

average queue length = 0.23+/-0.02

average utilization = (2-(0.59+/-0.02))/2

average flow time coffee= 8.44+/-0.27

average flow time tea= 4.63+/-0.09

average utilization = (1.41+/-0.02)/2

SPT

SMART

PAGE 109

PAGE 110

PAGE 111

average queue length = 0.21+/-0.01

average utilization = (2-(0.58+/-0.02))/2

average flow time coffee= 7.56+/-0.12

average flow time tea= 4.33+/-0.06

average utilization = (1.42+/-0.02)/2

SMART

Compare (1/2)

PAGE 112

average queue length = 0.74+/-0.09

average queue length = 0.65+/-0.08

average queue length = 0.23+/-0.02

average queue length = 0.21+/-0.01

average utilization = (1.63+/-0.03)/2

average utilization = (1.65+/-0.02)/2

average utilization = (1.41+/-0.02)/2

average utilization = (1.42+/-0.02)/2

++
++

FIFO
LIFO
SPT

SMART

Compare (2/2)

PAGE 113

average flow time coffee= 10.49+/-0.46

average flow time tea= 6.63+/-0.39

average flow time coffee= 10.19+/-0.39

average flow time tea= 6.43+/-0.31

average flow time coffee= 8.44+/-0.27

average flow time tea= 4.63+/-0.09

average flow time coffee= 7.56+/-0.12

average flow time tea= 4.33+/-0.06

+
++

+
++

FIFO
LIFO
SPT

SMART

CPN-114

Example revisited: Punch card desk

Pat

color STR = string;
color INT = int;
color Pat = record Name:STR * Address:STR *
 DateOfBirth:STR * Gender:STR;
color Emp = record EmpNo:INT * Experience:INT;
color EP = product Pat * Emp;
var p:Pat;
var e:Emp;
val Klaas = {Name="Klaas", Address="Plein 10",
 DateOfBirth="13-Dec-1962", Gender="M"};
val Ann = {EmpNo=641112, Experience=7};
fun d(e:Emp) = if #Experience(e) > 5 then 3 else 4;

wait

Pat

1`Klaas

p

done

EP

Emp

free

busy

1`Ann

start stop
p

ee

(p,e)@+d(e) (p,e)

CPN-115

Improved color sets

color Name = string;
color Street = string;
color Number = int;
color Town = string;
color Address = record s:Street * n:Number *

t:Town;
color Day = int with 1..31;
color Month = with Jan | Feb | Mar | Apr | May | Jun |

Jul | Aug | Sep | Oct | Nov | Dec;
color Year = int with 0..2100;
color Date = record d:Day * m:Month * y:Year;
color Gender = with male | female;
color Pat = record name:Name * address:Address *

birthdate:Date * gender:Gender timed;

CPN-116

Improved color sets (2)

color EmpNo = int with 100000..999999;
color Emp = record empno:EmpNo *

experience:Year timed;
color EP = product Pat * Emp timed;
var p:Pat;
var e:Emp;
val Klaas = {name="Klaas",

address={s="Plein",n=10,t="Unknown"},
birthdate={d=13,m=Dec,y=1962},
gender=male}:Pat;

val Ann = {empno=641112, experience=7}:Emp;
fun d(x:Emp) = if #experience(x) > 5 then 3 else 4;

CPN-117

Example revisited: Stock keeping system

StockItem

color Product = string;
color Number = int;
color StockItem = record prod:Product * number:Number;
color Stock = list StockItem;
var x:StockItem;
var s:Stock;
fun incrs(x:StockItem,s:Stock) = if s=[] then [x] else (if (#prod(hd(s)))=(#prod(x))
 then {prod=(#prod(hd(s))),number=((#number(hd(s)))+(#number(x)))}::tl(s)
 else hd(s):: incrs(x,tl(s)));
fun decrs(x:StockItem,s:Stock)= incrs({prod=(#prod(x)),number=(~(#number(x)))},s);
fun check(s:Stock)= if s=[] then true else if (#number(hd(s)))<0 then false
 else check(tl(s));
val initstock = [{prod="bike", number=4},{prod="wheel", number=2},
 {prod="bell", number=3}, {prod="steering wheel", number=3},
 {prod="frame", number=2}];

in

StockItem

1`{prod="bell",
number=3}

x

out

Stock

stock 1`initstock

increase decrease

xss

descrs(x,s)incrs(x,s)

[check(descrs(x,s))]

CPN-118

Store

• Place stock is a so-called store, i.e., it will always
contain a single token.

• Only the value of the token matters (not its
presence).

• Stores that aggregate elements are always of type
list.

• Drawback: complex functions/inscriptions
• Advantage: easy to query the individual items as a

whole, e.g., taking the sum of things ...

CPN-119

Function "totalstock"

fun totalstock(s:Stock) =
if s=[]
then 0
else (#number(hd(s)))+totalstock(tl(s));

StockItem

color Product = string;
color Number = int;
color StockItem = record prod:Product * number:Number;
color Stock = list StockItem;
var x:StockItem;
var s:Stock;
fun incrs(x:StockItem,s:Stock) = if s=[] then [x] else (if (#prod(hd(s)))=(#prod(x))
 then {prod=(#prod(hd(s))),number=((#number(hd(s)))+(#number(x)))}::tl(s)
 else hd(s):: incrs(x,tl(s)));
fun decrs(x:StockItem,s:Stock)= incrs({prod=(#prod(x)),number=(~(#number(x)))},s);
fun check(s:Stock)= if s=[] then true else if (#number(hd(s)))<0 then false
 else check(tl(s));
val initstock = [{prod="bike", number=4},{prod="wheel", number=2},
 {prod="bell", number=3}, {prod="steering wheel", number=3},
 {prod="frame", number=2}];

in

StockItem

1`{prod="bell",
number=3}

x

out

Stock

stock 1`initstock

increase decrease

xss

descrs(x,s)incrs(x,s)

[check(descrs(x,s))]

CPN-120

Alternative model

StockItem

color Product = string;
color Number = int;
color StockItem = product Product*Number;
var p:Product;
var x:Number;
var y:Number;

in

StockItem

1`("bell",2)

(p,x)

out

StockItem

stock

1`("bike",4)++
1`("wheel",2)++
1`("bell",3)++

1`("steering wheel",3)++
1`("frame",2)

increase decrease

(p,x)(p,y)(p,y)

(p,y-x)(p,x+y)

[y>=x]

Note the simplicity/elegance of the arc inscriptions.

CPN-121

Example: Signing documents

• Documents need to be signed by persons.
• Four persons: Tim, Sue, Clare and John.
• Each document requires three signatures.
• No two signatures of the same person.
• Work in progress is limited to five documents.

CPN-122

Signing documents: Declarations

color Doc = string;
color Person = string;
color Signatures = list Person;
color SignedDoc = product Doc * Person;
color BlackToken = unit;
var d:Doc;
var p:Person;
var s:Signatures;
fun notin(p:Person,s:Signatures) =
if s=[] then true else if p=hd(s) then false else notin(p,tl(s));
fun count(s:Signatures) = if s=[] then 0 else 1+count(tl(s));

CPN-123

Signing documents: Network structure

Doc

unsigned_doc

SignedDoc
d

signed_doc

SignedDoc

pile

accept release

(d,s)(d,s)(d,[])
[count(s)>=3]

BlackToken

()
()5`()free

person

Person

(d,s) (d,p::s)

p

p
sign

[count(s)<3 andalso notin(p,s)]

1`"Tim"++
1`"Sue"++

1`"Clare"++
1`"John"

CPN-124

Exercise

• Replace place free by a place always holding one
token.

Doc

color Doc = string;
color Person = string;
color Signatures = list Person;
color SignedDoc = product Doc * Person;
color BlackToken = unit;
var d:Doc;
var p:Person;
var s:Signatures;
fun notin(p:Person,s:Signatures) =
if s=[] then true else if p=hd(s) then false else notin(p,tl(s));
fun count(s:Signatures) = if s=[] then 0 else 1+count(tl(s));

unsigned_doc

SignedDoc
d

signed_doc

SignedDoc

pile

accept release

(d,s)(d,s)(d,[])
[count(s)>=3]

BlackToken

()
()5`()free

person

Person

(d,s) (d,p::s)

p

p
sign

[count(s)<3 andalso notin(p,s)]

1`"Tim"++
1`"Sue"++

1`"Clare"++
1`"John"

CPN-125

Example: Thermostat system

• At any point the room has a temperature (initially 15 degrees
centigrade).

• There is a heater to warm up the house and there is a door which
opens every hour such that part of the warmth escapes.

• When the door opens the temperature in the room suddenly
drops by three degrees centigrade.

• The heater has a capacity of heating the room 1 degree
centigrade every 15 minutes.

• When the heater would be switched on the whole time the
temperature would continue to rise by 1 degree per hour.
Therefore, there is a control system, i.e., the thermostat, which
switches off the heater. The thermostat uses the following rules.

• If the temperature drops below 18, the heater is switched on.
• If the temperature rises above 22, the heater is switched off.

CPN-126

CPN model of thermostat system

color Temp = string;
color B = unit;
color BT = B timed;
var t:Temp;
var a:B;
var b:BT;

on 1`()off

B B

switch_off switch_on

temp

Temp

1`15

warm_up cool_down

heater

BT

1`()

BT

door 1`()

a a
aa a a

b

b@+15 b@+60

b

tt t t

t-3t+1

t t

[t<18][t>22]

CPN-127

Exercise

• Describe the room temperature in time starting in the
initial state shown, i.e., play a timed, colored ``token
game''.

• Extend the model such that there is a day program and
a night program. From midnight to 8am, the thermostat
tries to keep the temperature between 14 and 18
degrees centigrade. (If the temperature drops below 14
the heater is switched on. If the temperature rises
above 18 the heater is switched off.) From 8am to
midnight, the temperature is kept between 18 and 22
degrees, like before.

CPN-128

WARNING
It is not sufficient to understand the

(process) models. You have to be able to
design them yourself !

CPN-129

Exercise:
Train system

• 7 sectors (tracks)
• 2 trains: A and B
• When moving to a new

sector both this sector
and the next one should
be empty.

• Trains drive in one
direction.

• Model as a classical Petri
net.

• Model in terms of CPN
without folding the tracks.

• Model as a CPN with
folding the tracks (i.e., only
two places).

sector 1

sector 5

sector 6

sector 0

sector 4

sector 3

sector 2

Train A

Train B

Unfolded

PAGE 130

Partially folded

PAGE 131

Trains and tracks folded

PAGE 132

CPN-133

Exercise: Philosophers

• 5 philosophers
• 5 chopsticks
• Each philosopher is

either thinking or eating.
• For eating two chopsticks

are needed.
• Chopsticks need to be

shared among neighbors.
• Both chopsticks are

taken and released at the
same time.

• Model as a classical Petri
net.

• Model in terms of CPN
using only three places
and two transitions.

ph5 ph2

ph3ph4

Rice
Dish

ph1

cs2cs1

cs3
cs5

cs4

Classical Petri net

PAGE 134

Folded

PAGE 135

CPN-136

Exercise: Philosophers (2)

• 5 philosophers
• 5 chopsticks
• Each philosopher is either

thinking or eating.
• For eating two chopsticks

are needed.
• Chopsticks need to be

shared among neighbors.
• First the right chopstick is

taken. Then the second one
is taken.

• The two chopstick are
released in reversed order.

• Model in terms of CPN.
• Are deadlocks possible?

ph5 ph2

ph3ph4

Rice
Dish

ph1

cs2cs1

cs3
cs5

cs4

Initial state

PAGE 137

4 is eating, 3 took his right chopstick

PAGE 138

Deadlock

PAGE 139

From state space report

• State Space
− Nodes: 392
− Arcs: 1415

• One home marking
• One dead marking

PAGE 140

Adding philosophers (n=8)

Nodes: 14158
Arcs: 81848

PAGE 141

CPN-142

Exercise: Philosophers (3)

• 5 philosophers
• 5 chopsticks
• Each philosopher is either

thinking or eating.
• For eating two chopsticks

are needed.
• Chopsticks need to be

shared among neighbors.
• First the one chopstick

(either left or right) is taken.
Then the other one is taken.

• Also released in arbitrary
order.

• Model in terms of CPN.
• Are deadlocks possible?

ph5 ph2

ph3ph4

Rice
Dish

ph1

cs2cs1

cs3
cs5

cs4

Model

PAGE 143

State space analysis

• 1473 states
• 6270 transitions
• two dead markings

PAGE 144

Tradeoff

• More information in
tokens
− color sets, functions, etc.
− behavior may be hidden

in “code”
− extreme case: all

behavior folded into one
place and one transition

• More information in
network
− possibly spaghetti networks to

encode simple things
− behavior may be

incomprehensible
− cannot be parameterized
− extreme case: (infinite) classical

Petri net

PAGE 145

CPN-146

More on functions: Recursion

• “fun fac(x:INT) = if x>1 then x*fac(x-1) else 1” is a
recursive function since the function is expressed in
terms of itself.

• Two cases:
• fac(x) = x*fac(x-1)
• fac(1) = 1

• fac(10)=10*fac(9)=10*9*fac(8)=10*9*8*fac(7)= … =
10*9*8*7*6*5*4*3*2*1 = 3628800

CPN-147

Recursion (1)

color Product = string;

color Number = int;

color StockItem = record prod:Product * number:Number;

color Stock = list StockItem;

fun totalstock(s:Stock) =

if s = []

then 0

else (#number(hd(s)))+totalstock(tl(s));

Recursion
in length of

list

Also see http://cpntools.org/documentation/concepts/colors/declarations/colorsets/record_colour_sets

CPN-148

Recursion (2)

fun maxstock(s:Stock) =

if s = []

then 0

else if (#number(hd(s))) >= maxstock(tl(s)) then #number(hd(s))

else maxstock(tl(s));

Instead of
sum the

maximum is
taken

Prod:Product Number:number
"apple" 301
"orange" 504
"pear" 423
“banana" 134
… …

504

CPN-149

Recursion (3)

fun maxstockname(s:Stock) =

if s = []

then "no product found"

else if (#number(hd(s)))=maxstock(tl(s)) then #prod(hd(s))

else maxstockname(tl(s));

Function
calls other
function

Prod:Product Number:number
"apple" 301
"orange" 504
"pear" 423
“banana" 134
… …

"orange"

CPN-150

Recursion (4)

fun enoughstock(s:Stock,n:Number) =

if s = []

then []

else if (#number(hd(s)))>= n then hd(s)::enoughstock(tl(s),n)

else enoughstock(tl(s),n);

Function
has two

arguments

Prod:Product Number:number
"apple" 301
"orange" 504
"pear" 423
“banana" 134
… …

Prod:Product Number:number
"orange" 504
"pear" 423
… …

n=400

CPN-151

Recursion (5)

fun enoughstockn(s:Stock,n:Number) =

if s = []

then 0

else if (#number(hd(s)))>= n then 1+enoughstockn(tl(s),n)

else enoughstockn(tl(s),n);

Length of
list rather
than list

itself

CPN-152

More on functions: Pattern matching

fun lenlist1(s:Stock) =

if s = []

then 0

else 1+lenlist(tl(s));

fun lenlist2([]) = 0 |

lenlist2(si::s) = 1+lenlist2(s);

base case

induction step

No explicit typing!!!

CPN-153

Pattern matching (1)

fun totalstock(s:Stock) =

if s = []

then 0

else (#number(hd(s)))+totalstock(tl(s));

fun totalstock([] : Stock) = 0 |

totalstock(si::s) = (#number(si))+totalstock(s);

CPN-154

Pattern matching (2)

fun maxstock([]:Stock) = 0 |

maxstock(si::s) = if (#number(si))>maxstock(s) then #number(si)

else maxstock(s);

fun maxstock(s:Stock) =

if s=[]

then 0

else if (#number(hd(s))) >= maxstock(tl(s)) then #number(hd(s))

else maxstock(tl(s));

CPN-155

Pattern matching (3)

fun incrs(x:StockItem,[]:Stock) = [x] |

incrs (x,(si::s)) =

if (#prod(si))=(#prod(x))

then {prod=(#prod(si)),

number=((#number(si))+(#number(x)))}

::incrs(x,s)

else (si::incrs(x,s));

Prod:Product Number:number
"apple" 301
"orange" 504
"pear" 423
“banana" 134
… …

x={prod="apple",
number=20}

Prod:Product Number:number
"apple" 321
"orange" 504
"pear" 423
“banana" 134
… …

CPN-156

Pattern matching (3)

fun incrs(x:StockItem,[]:Stock) = [x] |

incrs (x,(si::s)) =

if (#prod(si))=(#prod(x))

then {prod=(#prod(si)),

number=((#number(si))+(#number(x)))}

::incrs(x,s)

else (si::incrs(x,s));

Prod:Product Number:number
"apple" 301
"orange" 504
"pear" 423
“banana" 134
… …

x={prod=“XX",
number=20}

Prod:Product Number:number
"apple" 301
"orange" 504
"pear" 423
“banana" 134
… …
"XX" 20

CPN-157

Pattern matching (4)

fun reverse([]) = [] | reverse(x::y) = reverse(y)^^[x];

fun elt([], a) = false | elt((x::xs), a) = a=x orelse elt(xs, a);

fun del(a,[]) = [] | del(a,(x::xs)) = if a=x then xs else x::(del(a,xs));

fun intersect([], ys) = [] |
intersect(xs, []) = [] |
intersect ((x::xs), ys) = if elt(ys,x)

then x::(intersect(xs,(del(x,ys))))
else intersect(xs, ys);

PAGE 158

CPN-159

Example: Sudoku

colset Index = int with 0..8;
colset Cel = int with ~1..9;
colset Cels = list Cel;
colset Pos = product Index * Index;
colset Val = product Pos * Cel;
colset Sudoku = list Val;

for 9 rows and
columns

~1 and 0 have a
technical reason,

normal values
are 1..9

Write an ML function to solve a Sudoku assuming that
in each step there is a "deterministic candidate", i.e.,
no backtracking needed.

CPN-160

Input

val v4 = [
[6,0,0, 0,8,0, 0,0,9],
[0,7,0, 4,0,6, 0,8,0],
[0,0,0, 5,0,1, 0,0,0],

[0,1,7, 2,0,9, 8,5,0],
[2,0,0, 0,0,0, 0,0,1],
[0,8,4, 1,0,3, 6,7,0],

[0,0,0, 3,0,8, 0,0,0],
[0,4,0, 9,0,5, 0,1,0],
[8,0,0, 0,7,0, 0,0,5]
];

fun readcell(x,i,j) = if x=[] then [] else if
hd(x) = 0 then readcell(tl(x),i,j+1) else
((i,j),hd(x))::readcell(tl(x),i,j+1);

fun readrow(x,i) = if x=[] then [] else
readcell(hd(x),i,0)^^readrow(tl(x),i+1);

fun read(x) = readrow(x,0):Sudoku;

to map “string” (list of lists)
representation to list of ((i,j),c)

values

0 values are empty

0 values are not inserted

CPN-161

Useful functions

fun dom([]) = [] | dom((x,y)::l) = x::dom(l);
fun elt([], a) = false | elt((x::xs), a) = a=x orelse elt(xs,

a);
fun fmap([],z) = 0 | fmap((x,y)::l,z) = if x=z then y else

fmap(l,z);
fun sdiff([],z) = [] | sdiff(x::y,z) = if elt(z,x) then

sdiff(y,z) else x::sdiff(y,z);
infix sdiff;

difference of two
sets

CPN-162

Basic functions

fun row([],k) = [] | row(((i,j),c)::s,k) = if i=k then
c::row(s,k) else row(s,k) : Cels;

fun column([],k) = [] | column(((i,j),c)::s,k) = if j=k then
c::column(s,k) else column(s,k) : Cels;

fun de(i,j) = (i div 3) = (j div 3);
fun block([],i,j) = [] | block(((i1,j1),c)::s,i,j) = if de(i,i1)

andalso de(j,j1) then c::block(s,i,j) else block(s,i,j) :
Cels;

val uni = [1,2,3,4,5,6,7,8,9]: Cels;
fun free(s,i,j) = ((uni sdiff row(s,i)) sdiff column(s,j)) sdiff

block(s,i,j) : Cels;

all cell values in row k
all cell values in

column k

same block values in the block
containing (i,j)

all values

remaining options

CPN-163

Possible moves

fun allpos() = Pos.all();
fun undef(s) = allpos() sdiff dom(s);
fun analyze1(s,[]) = [] | analyze1(s,(i,j)::l) =

((i,j),free(s,i,j))::analyze1(s,l);
fun analyze(s) = analyze1(s,undef(s));

all possible
values of type

Pos, i.e., list of all
cells

given an s of type
Sudoku, all undefined
positions are returned

possible moves per
position

CPN-164

Solve

fun new([]) = [] |
new(((i,j),[])::s) = ((i,j),~1)::new(s) |
new(((i,j),[c])::s) = ((i,j),c)::new(s) |
new(((i,j),c::cs)::s) = new(s);

fun solve(s) =
if new(analyze(s)) = []

then s
else solve(new(analyze(s))^^s);

add error entry
(no options left)

add entry with just
one possible move c

skip if multiple
moves possible

repeatedly call solve until no
entries can be added (done or

non-deterministic choice needed

CPN-165

Sort results

fun sord(((x1,y1),z1),((x2,y2),z2)) = (x1 < x2) orelse
(x1=x2 andalso y1 < y2);

fun solver(s) = sort sord (solve(s));

sort function is built in
“sort lt_fun l” sorts list l using the function lt_fun to
determine when one element in the list is less than

another.
See http://cpntools.org/documentation/concepts/colors/declarations/colorsets/list_colour_sets

CPN-166

Generate string (just for presentation)

fun result1(s,i) = if i>= 81 then "---------------------\n" else
(Int.toString(fmap(s,(i div 9, i mod 9))) ^ (if i mod 9 = 8
then "\n" else " ")^ result1(s,i+1));

fun result(s) =
"\n---------------------\n"^result1(solver(s),0);

CPN-167

PAGE 168

note the
two 1’s in

middle
block

CPN-169

More information

• About Standard ML:
• Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The Definition of

Standard ML: Revised 1997. The MIT Press, 1997.
• J. D. Ullman. Elements of ML Programming (ML 97 edition). Prentice-Hall, 1998.
• http://www.standardml.org/Basis/ (for functions)

• About CPN:
• K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of

Concurrent Systems, Springer-Verlag, 2009.
• W. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net-Oriented

Approach. MIT Press, 2011.
• K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science,
Springer-Verlag, 1997.

• K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 2, Analysis Methods. Monographs in Theoretical Computer Science,
Springer-Verlag, 1997.

• K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 3, Practical Use. Monographs in Theoretical Computer Science,
Springer-Verlag, 1997.

• K. Jensen and G. Rozenberg (eds.): High-level Petri Nets. Theory and Application.
Springer-Verlag, 1991.

	CPN�A concrete language for high-level Petri nets
	Slide Number 2
	5 philosophers
	CPN (Colored Petri nets)
	Values and types
	Basic types
	Basic operators
	Logical operators
	Exercise: Give type and value of each result
	Color set declarations
	Creating subtypes using the "with" clause
	Creating new types using the "with" clause
	Creating new types using product, record, and list constructors
	Possible values (colors)
	Example
	Example (2)
	Operations on lists and records
	Constants
	Example
	Exercise
	So what?
	We can now type and initialize places!
	Multi-sets
	Initialization expressions
	Trick
	Arc inscriptions
	Example
	Binding
	Example
	Example
	Example
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Example: Voting
	Slide Number 39
	Exercise: Bank
	Exercise: Article database
	Exercise (2)
	Guard
	Example
	Exercise
	Exercise
	Exercise
	Function declarations
	Where to find standard functions?
	Example
	Questions
	Example: Multiple arcs
	Example: Multi-sets and constants
	Example: Records
	Example: Lists
	Requirement
	Trick: use lists on arcs to produce/consume multi-sets of tokens
	Another example
	Priority (no priority P_NORMAL = 1000)
	Priority (same)
	Priority (P_HIGH wins)
	Priority: Guess final state
	Result
	Global property (t2 never fires)
	Time in CPN
	Example
	Exercise
	Time (t1 is enabled at time 2)
	t1 fired at time 2; t2 is enabled at time 4
	“Real” time
	Note the types and the @++
	Determine final state
	Final state (time = 10000)
	Overview of CPN (with color and time)
	Coffee and tea example (1)
	Coffee and tea example (2)
	Slide Number 78
	Eve just makes tea and Adam just makes coffee.�
	Adam makes coffee and Eve can make both
	Eve makes tea and Adam can make both
	A smarter strategy
	CPN model with counters
	Almost optimal makespan ...
	Slide Number 85
	M/G/1 queue
	To measure results: CPN monitors
	Create monitors
	Slide Number 89
	Slide Number 90
	One run
	Multiple subruns
	Results with confidence intervals
	Slide Number 94
	Slide Number 95
	Will be explained in detail …
	Coffee and tea example (3)
	Flow
	FIFO
	Slide Number 100
	Slide Number 101
	Monitors
	Slide Number 103
	Coffee and tea example (4)
	LIFO
	Slide Number 106
	SPT
	Slide Number 108
	Slide Number 109
	SMART
	Slide Number 111
	Slide Number 112
	Compare (1/2)
	Compare (2/2)
	Example revisited: Punch card desk
	Improved color sets
	Improved color sets (2)
	Example revisited: Stock keeping system
	Store
	Function "totalstock"
	Alternative model
	Example: Signing documents
	Signing documents: Declarations
	Signing documents: Network structure
	Exercise
	Example: Thermostat system
	CPN model of thermostat system
	Exercise
	WARNING�It is not sufficient to understand the (process) models. You have to be able to design them yourself !
	Exercise: �Train system
	Unfolded
	Partially folded
	Trains and tracks folded
	Exercise: Philosophers
	Classical Petri net
	Folded
	Exercise: Philosophers (2)
	Initial state
	4 is eating, 3 took his right chopstick
	Deadlock
	From state space report
	Adding philosophers (n=8)
	Exercise: Philosophers (3)
	Model
	State space analysis
	Tradeoff
	More on functions: Recursion
	Recursion (1)
	Recursion (2)
	Recursion (3)
	Recursion (4)
	Recursion (5)
	More on functions: Pattern matching
	Pattern matching (1)
	Pattern matching (2)
	Pattern matching (3)
	Pattern matching (3)
	Pattern matching (4)
	Slide Number 159
	Example: Sudoku
	Input
	Useful functions
	Basic functions
	Possible moves
	Solve
	Sort results
	Generate string (just for presentation)
	Slide Number 168
	Slide Number 169
	More information

