CAPÍTULO 8. REGRESSÃO MÚLTIPLA – TESTES DE HIPÓTESES E

INTERVALOS DE CONFIANÇA

PARTE II: TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA PARA DIVERSOS β_i 's OU DIVERSAS COMBINAÇÕES $a_i'\beta$

8.5 TESTES SOBRE β_i E PARA UMA COMBINAÇÃO $a'\beta$

Muitas vezes queremos realizar **diversos** testes separados, do tipo H_0 : $\beta_j = 0$, ao invés de um **único** teste H_0 : $\beta_1 = 0$. Ou então, realizar diversos testes separados, do tipo H_0 : $\alpha_i'\beta = 0$, ao invés de um único teste H_0 : $\mathbf{C}\beta = \mathbf{0}$.

Problema: Quando realizamos diversos testes separados do tipo H_0 : $\beta_j = 0$ ou do tipo H_0 : $\alpha_i' \beta = 0$, usando um nível de significância $\alpha = 0.05$ para cada teste, pode ocorrer um aumento no <u>nível de significância global</u>, o que pode alterar os resultados das inferências.

8.5.1 Testando um β_i ou uma combinação $a'\beta$

Usando a abordagem **modelo completo** *versus* **modelo reduzido.**, para testar H_0 : $\beta_i = 0$ utilizamos a estatística:

$$F = \frac{\left(\widehat{\beta}'\mathbf{X}'\mathbf{y} - \widehat{\beta}_{1}^{*}'\mathbf{X}_{1}'\mathbf{y}\right)}{\left(\mathbf{y}'\mathbf{y} - \widehat{\beta}'\mathbf{X}'\mathbf{y}\right)/(n-k-1)}$$
(8.37)

que tem distribuição F(1, n-k-1) se H_0 é verdadeira.

Nesta abordagem, β_j é o último $\boldsymbol{\beta}$ e é feito um arranjo nas colunas \mathbf{X} de tal forma que $\mathbf{X} = [\mathbf{X}_1 : \mathbf{x}_j]$, onde \mathbf{x}_j é a última coluna de \mathbf{X} .

Para testar se **uma combinação dos** $\boldsymbol{\beta}$'s é nula, ou seja, H_0 : $\boldsymbol{a}'\boldsymbol{\beta} = 0$ versus H_a : $\boldsymbol{a}'\boldsymbol{\beta} \neq 0$, usamos o **teste da hipótese linear geral**, com o vetor \boldsymbol{a}' no lugar da matriz \boldsymbol{C} em H_0 : $\boldsymbol{C}\boldsymbol{\beta} = \boldsymbol{0}$, para q = 1.

A estatística utilizada é:

$$F = \frac{\left(a'\widehat{\beta}\right)' \left[a'(\mathbf{X}'\mathbf{X})^{-1}a\right]^{-1} \left(a'\widehat{\beta}\right)}{SQResiduo/(n-k-1)} = \frac{\left(a'\widehat{\beta}\right)^{2}}{s^{2}a'(\mathbf{X}'\mathbf{X})^{-1}a}$$
(8.38)

onde $s^2 = QMResiduo$. Sob H_0 a estatística F em (8.38) tem distribuição F(1, n-k-1).

Nota: Em modelos de regressão múltipla é <u>pouco comum</u> testar hipóteses sobre <u>combinações lineares</u> dos β 's Para testar H_0 : $\beta_j = 0$ nesta abordagem usamos $\mathbf{a'} = [0,..., 0, 1, 0, ..., 0]$, onde o número 1 está na posição (j+1) e a estatística:

$$F = \frac{(\hat{\beta}_j)^2}{s^2 g_{j+1,j+1}} \tag{8.39}$$

onde $g_{j+1,j+1}$ é o (j+1)-ésimo elemento da diagonal de $(\mathbf{X}'\mathbf{X})^{-1}$.

Regra: Rejeitamos H_0 se $F > F(\alpha, 1, n-k-1)$ ou se p-valor $\leq \alpha$.

Importante: Como em (8.39) $F \sim F(1; n-k-1)$ graus de liberdade, para testar H_0 : $\beta_j = 0$, podemos usar de **forma equivalente**, a estatística $t = \sqrt{F}$ definida como:

$$t_j = \frac{\beta_j}{s\sqrt{g_{j+1,j+1}}}$$
 (8.40)

Neste caso, rejeitamos H_0 : $\beta_j = 0$ se $|t_j| > t(\alpha/2, n-k-1)$ ou, equivalentemente, se p-valor $\leq \alpha$.

Vale notar que para um teste bilateral H_0 : $\beta_j = 0$ versus H_a : $\beta_j \neq 0$,

$$p$$
-valor = $2P(t > |t_j|)$

onde t_j é o valor da estatística de teste calculado em (8.40).

8.5.2 Testar diversos β_i 's ou diversas combinações $a_i'\beta$

Quando testamos diversas hipóteses H_0 : $\beta_j = 0$ ou H_0 : $\alpha'_i \beta = 0$, existem dois níveis de significância (α) diferentes envolvidos nas comparações:

- nível de significância geral ou familywise α level (α_f)
- nível de significância para cada comparação (α_c) ou *comparison-wise* α *level*.

Alguns testes controlam o nível de significância geral (α_f) e outros, o nível de significância para cada comparação (α_c)

- 1) O teste de regressão global (ou geral) H_0 : $\boldsymbol{\beta}_1 = \mathbf{0}$ em que $\boldsymbol{\beta}_1 = [\beta_1, \beta_2, ..., \beta_k]$ ' é feito utilizando um nível α de <u>significância geral</u> ou *familywise* α *level* (α_f) .
- 2) Vamos testar H_0 : $\beta_i = 0$, para j = 1, 2, ..., k.

Seja α_c = "nível de significância por comparação ou para cada teste" ou *comparison-wise* α *level*.

Problema: Se o teste H_0 : $\beta_j = 0$ for executado k vezes ao nível α_c de significância em cada teste ocorrerá um **aumento** do nível α -geral (α_f) . Probabilisticamente tem-se:

$$\alpha_f = 1 - (1 - \alpha_c)^k$$

Exemplo: Realizar diversos testes H_0 : $\beta_j = 0$, fixando um nível de significância $\alpha_c = 0.05$ para cada teste:

# testes	1	2	4	6	8
α_f	0,05	0,0975	0,1855	0,2649	0,3366

Note que o nível de significância geral (α_f) aumenta bastante com o aumento do número de testes

 O método de Bonferroni e o de Scheffé, foram desenvolvidos para proteger contra essa inflação do nível α-global quando diversos testes são realizados.

Vamos assumir que os testes para H_0 : $\beta_j = 0$ serão executados **sem considerar** se a hipótese global H_0 : $\beta_1 = 0$ foi rejeitada.

MÉTODO DE BONFERRONI

Suponhamos que sejam executados k testes de hipóteses do tipo H_0 : $\beta_i = 0$, para j = 1, 2, ..., k.

• Para assegurar que o nível α_f seja menor ou igual a um valor desejado, $\alpha_f \leq \alpha^*$, basta assumir em cada um dos k testes, um nível de significância

$$\alpha_c = \frac{\alpha^*}{k}$$

- É comum fixar $\alpha^* = 0.05$.
- A tabela de Bonferroni de valores críticos $t(\alpha^*/2k)$ pode ser encontrada em Rencher (1995, pág. 499-500), dentre outros.

Para testar H_0 : $\beta_j=0$ versus H_a : $\beta_j\neq 0$, para j=1,2,...,k a um nível de significância $\alpha_i=\alpha^*/k$ usamos a estatística:

$$t_j = \frac{\widehat{\beta}_1}{s\sqrt{g_{j+1,j+1}}} \tag{8.42}$$

Rejeitamos H_0 se $|t_i| > t(\alpha^*/2k, n-k-1)$ ou se p-valor $\leq \alpha^*/2k$.

Para testar H_{0i} : $\mathbf{a}_i' \mathbf{\beta} = 0$, para i = 1, 2, ..., d, usamos a estatística:

$$F_{i} = \frac{\left(a_{i}'\widehat{\boldsymbol{\beta}}\right)'\left[a_{i}'(\mathbf{X}'\mathbf{X})^{-1}a_{i}\right]^{-1}\left(a_{i}'\widehat{\boldsymbol{\beta}}\right)}{s^{2}} = \frac{\left(a_{i}'\widehat{\boldsymbol{\beta}}\right)^{2}}{s^{2}a_{i}'(\mathbf{X}'\mathbf{X})^{-1}a_{i}}$$
(8.43)

e rejeitamos H_{0i} se $F_i > F(\alpha^*/d, 1, n-k-1)$ ou se p-valor $\leq \alpha^*/d$.

Observações importantes:

- O α -global do procedimento para testar d combinações dos β 's, H_{0i} : $a_i'\beta = 0$, i = 1, 2, ..., d, é válido somente se os coeficientes dos vetores $a_1, ..., a_d$ forem **especificados** a **priori**, ou seja, se forem escolhidos <u>antes de olhar as estimativas dos β 's</u>.
- Se desejarmos fixar os coeficientes a_i das combinações dos β's, a posteriori, depois de olhar os dados ou as estimativas dos β's, devemos usar o método de Scheffé, que será apresentado a seguir.

MÉTODO DE SCHEFFÉ

O procedimento de Scheffé para controlar α_f produz testes simultâneos de H_0 : $\mathbf{a}'\mathbf{\beta} = 0$ (ou H_0 : $\mathbf{a}'\mathbf{\beta} = t$) para **todo vetor** \mathbf{a} definido a *priori* ou a *posteriori*.

Para encontrar um valor crítico grande o suficiente que possa ser usado para comparar <u>todos</u> os possíveis vetores a, a distribuição do $max_a(F)$ é utilizada.

Para testar s hipótese H_0 : $\mathbf{a}'\mathbf{\beta} = 0$ é usada a estatística

$$F = \frac{\left(a'\widehat{\beta}\right)^2}{s^2 a' (X'X)^{-1} a} \tag{8.44}$$

e rejeitamos H_0 se $F > (k + 1) F(\alpha^*, k+1, n-k-1)$.

Para testar H_{0j} : $\beta_j = 0$ individuais usando Scheffé, tomamos a' = [0,...,0,1,0,...,0], com o número 1 na (j+1)-ésima posição.

A raiz quadrada da estatística F é $t_j = \hat{\beta}_j / \sqrt{s^2 g_{j+1,j+1}} \sim t_{(n-k-1)}$ como em (8.42).

$$\Rightarrow$$
 Rejeitamos H_0 : $\boldsymbol{a}'\boldsymbol{\beta} = \beta_j = 0$ se

$$|t_i| \ge \sqrt{(k+1) F(\alpha^*, k+1, n-k-1)}$$

Observações:

- Os testes de Bonferroni para β_j 's individuais em (8.42) são **conservadores** e **mais poderosos** que os testes de Scheffé.
- <u>Teste conservativo ou conservador</u>: controla bem a ocorrência do erro tipo I, que consiste em rejeitar erroneamente H_0 .
- <u>Teste mais poderoso</u>: maior probabilidade de rejeitar corretamente H_0 .
- Para um grande número de combinações lineares a' β o teste de Scheffé é melhor, porque para qualquer número de escolhas de a' β pode ser testado contra um único valor crítico:

$$(k+1) F(\alpha^*, k+1, n-k-1)$$

enquanto o valor crítico para o teste de Bonferroni em (8.43) $F(\alpha^*/d, 1; n-k-1)$ aumenta com o número de testes, d.

Podemos usar o teste de Scheffé para combinações lineares a'β escolhidas depois de olhar os dados (post hoc), o que não é possível com o método de Bonferroni.

Observação:

Se os k testes H_0 : $\beta_j = 0, j = 1, 2, ..., k$ forem realizados usando, por exemplo, a estatística

$$t_j = \hat{\beta}_1 / s \sqrt{g_{j+1,j+1}}$$
, em (8.42)

somente se H_0 : $\beta_1 = 0$ foi rejeitada usando F em (8.5), o que é bastante comum, a taxa de erro global é reduzida e os valores críticos

$$t(\alpha^*/2k, n-k-1)$$
 e $\sqrt{(k+1) F(\alpha^*, k+1, n-k-1)}$

serão ainda mais conservativos.

Conclusão: Se a hipótese H_0 : $\boldsymbol{\beta}_1 = \mathbf{0}$ foi rejeitada, podemos usar α^* em cada teste H_0 : $\boldsymbol{\beta}_i = 0$ ou H_0 : $\boldsymbol{\alpha}' \boldsymbol{\beta} = 0$ que o $\alpha_f \cong \alpha^*$

Exemplo 8.5.2. Testar H_{01} : $\beta_1 = 0$ e H_{02} : $\beta_2 = 0$ para os dados da Tabela 7.1. Já sabemos que:

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \\ \widehat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 5.3754 \\ 3.0118 \\ -1.2855 \end{bmatrix} \qquad s^2 = 2.8288$$

$$\widehat{cov}(\widehat{\boldsymbol{\beta}}) = s^2 \begin{bmatrix} 0.97476 & 0.24290 & -0.22871 \\ 0.24290 & 0.16207 & -0.11120 \\ -0.22871 & -0.11120 & 0.08360 \end{bmatrix}$$

Usando a estatística t_i em (8.42) temos:

$$t_1 = \frac{\hat{\beta}_1}{s\sqrt{g_{2,2}}} = \frac{3.0118}{\sqrt{2.8288}\sqrt{0.16207}} = 4.4482$$

$$t_2 = \frac{\hat{\beta}_2}{s\sqrt{g_{3,3}}} = \frac{-1.2855}{\sqrt{2.8288}\sqrt{0.08360}} = -2.6435$$

a) Usando um nível de significância $\alpha = 5\%$ para cada teste, **rejeitaremos** H_{01} e H_{02} porque t(0.025, 9) = 2.262.

Os p-valores (**bilaterais**) para t_1 e t_2 são:

$$p ext{-}valor_1 = 2P(t > |t_1|) = 2P(t > |4.4482|) = 0.0016$$

 $p ext{-}valor_2 = 2P(t > |t_2|) = 2P(t > |-2.6435|) = 0.0268$

b) Usando o método de Bonferroni: 2 testes $\Rightarrow \alpha_c = 0.05/2 = 0.025$ para cada teste \Rightarrow **não rejeitaríamos** H_{02} : $\beta_2 = 0$ porque

$$p$$
- $valor_2 = 0.0268 > 0.025$

Note que:

Usual: t(0,025; 9 gl) = 2,2622

Bonferroni: t(0,0125; 9 gl) = 2,6850

Scheffé: t(0,025; 9 gl) = 3,4041

8.6 INTERVALOS DE CONFIANÇA E INTERVALOS DE PREDIÇÃO

Vamos considerar intervalos de confiança para β_j , $\boldsymbol{a'\beta}$, E(y) e σ^2 , além de intervalos de predição para futuras observações.

8.6.1 Região de confiança para β

(Detalhes no livro do Rencher)

Uma região de $100(1-\alpha)\%$ confiança para $\beta_0, \beta_1, ..., \beta_k$ consiste de todos os valores de β que satisfazem:

$$(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{X}' \mathbf{X} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le (k+1) F(\alpha, k+1, n-k-1)$$
 (8.46)

Se k=1 variável regressora: a região de confiança é uma elipse em duas dimensões. Para mais de uma variável regressora a região é um elipsoide, difícil de visualizar e interpretar.

8.6.2. Intervalos de confiança para β_i

Se $\beta_i \neq 0$ em (8.40) nós podemos escrever que:

$$P\left[-t_{\alpha/2,n-k-1} \le \frac{\widehat{\beta}_j - \beta_j}{s\sqrt{g_{j+1,j+1}}} \le t_{\alpha/2,n-k-1}\right] = 1 - \alpha$$

Resolvendo para β_i , temos:

$$P\big[\hat{\beta}_j - t_{\alpha/2}(s)\sqrt{g_{j+1,j+1}} \leq \beta_j \leq \hat{\beta}_j + t_{\alpha/2}(s)\sqrt{g_{j+1,j+1}}\big] = 1 - \alpha$$

Podemos escrever que:

$$\hat{\beta}_j \pm t_{\alpha/2, n-k-1}(s) \sqrt{g_{j+1, j+1}} \tag{8.47}$$

são os limites do intervalo de confiança $100(1 - \alpha)\%$ para β_j .

Dizemos que "o intervalo obtido em (8.47) contém o verdadeiro valor de β_i com $100(1-\alpha)\%$ de confiança".

Vale observar que o coeficiente de confiança $(1-\alpha)$ vale para um **único intervalo de confiança** para um dos β_i 's.

Para calcular intervalos de confiança para todos os β_j 's, com coeficiente de confiança global de $(1-\alpha)$, veja a Seção 8.6.7.

Exemplo 8.6.2. Vamos calcular o IC(95%) para cada β_j usando y_2 no conjunto de dados apresentados na Tabela 7.4.

São dados: s = 4,0781, $t_{0,025;15} = 2,1314$.

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} 65.3755 & -0.3388 & -0.3125 & -0.0204 \\ -0.3388 & 0.0018 & 0.0013 & -0.0004 \\ -0.3125 & 0.0013 & 0.0041 & -0.0018 \\ -0.0204 & -0.0004 & -0.0018 & 0.0216 \end{bmatrix}$$

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} -26.0353 \\ 0.4046 \\ 0.2930 \\ 1.0338 \end{bmatrix}$$

Para β_1 , obtemos por (8.47):

$$\hat{\beta}_1 \pm t_{0.025;15}(s) \sqrt{g_{2,2}} = 0.4046 \pm (2.1314)(4.0781) \sqrt{0.0018}$$
$$= 0.4046 \pm 0.3723$$
$$\Rightarrow IC(\beta_1, 95\%) = (0.0322; 0.7769)$$

Para os outros β_i 's temos:

$$\beta_0$$
: $-26.0353 \pm 70.2812 \Rightarrow IC(\beta_0, 95\%) = (-96.3165; 44.2459)$
 β_2 : $0.2930 \pm 0.5551 \Rightarrow IC(\beta_2, 95\%) = (-0.2621; 0.8481)$

$$\beta_3$$
: 1.0338 ± 1.2777 $\Rightarrow IC(\beta_3, 95\%) = (-0.2439; 2.3115)$

Vale observar que:

- O coeficiente de confiança de 95% vale somente para um dos quatro intervalos de confiança.
- Para mais de um I.C. ver Exemplo 8.6.7.

8.6.3 Intervalo de confiança para $a'\beta$

Se $a'\beta \neq 0$ em (8.44) e pelo Problema 5.12, podemos escrever que os limites do **intervalo de confiança** (1- α) para **um único** $a'\beta$ como:

$$\mathbf{a}'\widehat{\boldsymbol{\beta}} \pm t_{\alpha/2, n-k-1}(s) \sqrt{\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{a}}$$
 (8.49)

8.6.4 Intervalo de confiança para E(y)

- Seja $x_0 = [1, x_{01}, x_{02}, \dots, x_{0k}]'$ uma escolha particular de $x = [1, x_1, x_2, \dots, x_k]'$, que não precisa ser uma linha da matriz **X**.
- Se x_0 estiver muito fora da região coberta pela amostra, a previsão baseada em x_0 será pobre.

Um intervalo de confiança $100(1-\alpha)\%$ para $E(y_0) = x_0'\beta$ de (8.49), que é a <u>média</u> da distribuição dos valores y correspondente a x_0 é dado por:

$$x_0' \hat{\beta} \pm t_{\alpha/2, n-k-1}(s) \sqrt{x_0' (\mathbf{X}' \mathbf{X})^{-1} x_0}$$
 (8.52)

Garante a confiança de 1- α para uma **única** escolha do vetor x_0 .

Para I.C.'s cobrindo todas as escolhas de x_0 's, veja a Seção 8.6.7.

Para o caso especial de uma **regressão linear simples**, temos que o intervalo de confiança para $E(y_0)$ é dado por:

$$\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{\alpha/2, n-2}(s) \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$
(8.58)

Vale notar que o tamanho do intervalo em (8.58) depende de quão longe x_0 está de \bar{x} .

8.6.5. Intervalo de predição para uma observação futura

Um intervalo de confiança para uma observação futura y_0 correspondente a um x_0 é chamado intervalo de predição, porque y_0 é uma observação individual, uma variável aleatória ao invés de um parâmetro.

O intervalo de predição para uma observação futura (x_0, y_0) é dado por:

$$x_0' \hat{\beta} \pm t_{\alpha/2, n-k-1}(s) \sqrt{1 + x_0' (\mathbf{X}' \mathbf{X})^{-1} x_0}$$
 (8.61)

Nota: O intervalo de predição de y_0 deverá ser <u>mais largo</u> que o intervalo de confiança para o parâmetro $E(y_0)$.

Para o caso da regressão linear simples, a expressão (8.61) se reduz a:

$$\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{\alpha/2, n-2}(s) \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$
(8.63)

Exemplo 8.6.5. Usando os dados da Tabela 6.2 vamos calcular um intervalo de predição 95% para $x_0 = 80$, usando (8.63):

$$\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{0.025;16}(s) \sqrt{1 + \frac{1}{18} + \frac{(80 - 58.056)^2}{19530.944}}$$

$$80.5386 \pm 2.11998(13.8547)(1.0393)$$

$$80.5386 \pm 30.5258$$

Então, o intervalo [50.0128; 111.0644] contém o verdadeiro valor de y correspondente a $x_0 = 80$, com 95% de confiança.

8.6.6 Intervalo de confiança para σ^2

(ver detalhes no livro do Rencher)

O intervalo de confiança $100(1-\alpha)\%$ para a variância é dado por:

$$\frac{(n-k-1)s^2}{\chi^2_{\alpha/2:n-k-1}} \le \sigma^2 \le \frac{(n-k-1)s^2}{\chi^2_{(1-\alpha/2):n-k-1}}$$
(8.65)

em que $\chi^2_{1-\alpha/2;n-k-1}$ é o percentil (superior) de ordem $1-\alpha/2$ e $\chi^2_{\alpha/2;n-k-1}$ é o percentil (inferior) de ordem $\alpha/2$.

O intervalo de confiança $(1-\alpha)$ para o **desvio padrão** é dado por

$$\sqrt{\frac{(n-k-1)s^2}{\chi^2_{\alpha/2;n-k-1}}} \le \sigma \le \sqrt{\frac{(n-k-1)s^2}{\chi^2_{1-\alpha/2;n-k-1}}}$$
(8.66)

8.6.7 Intervalos simultâneos

O coeficiente de confiança $(1-\alpha)$ para os intervalos obtidos nas Seções 8.6.1-8.6.6 **é válido para um único intervalo** em cada caso.

Para intervalos múltiplos adaptamos os métodos da Seção 8.5.2.

Utilizando o método de Bonferroni, intervalos de confiança para β_1 , β_2 ,..., β_k são dados por:

$$\hat{\beta}_j \pm t_{\alpha^*/(2k), n-k-1}(s) \sqrt{g_{j+1,j+1}}$$
 (8.67)

Para d funções lineares $\mathbf{a}_1'\boldsymbol{\beta}$, $\mathbf{a}_2'\boldsymbol{\beta}$,..., $\mathbf{a}_d'\boldsymbol{\beta}$ escolhidas a priori os <u>intervalos de confiança de Bonferroni</u> são dados por:

$$\boldsymbol{a}_{i}^{\prime}\widehat{\boldsymbol{\beta}} \pm t_{\alpha^{*}/(2d),n-k-1}(s)\sqrt{\boldsymbol{a}_{i}^{\prime}(\mathbf{X}^{\prime}\mathbf{X})^{-1}\boldsymbol{a}_{i}}$$
(8.68)

para i = 1, 2..., d.

Esses IC's asseguram uma **confiança simultânea** de, no mínimo, $(1 - \alpha^*)$; isto é, garantem uma confiança de $100(1-\alpha^*)\%$ que cada um dos d intervalos contenha o verdadeiro valor do parâmetro.

Intervalos de Bonferroni para construir IC's para $E(y_0) = x_0' \beta$ para poucos valores de x_0 , digamos $x_{01}, x_{02}, ..., x_{0d}$:

$$\mathbf{x}'_{0i}\widehat{\boldsymbol{\beta}} \pm t_{\alpha^*/2d,n-k-1}(s)\sqrt{\mathbf{x}'_{0i}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0i}}$$
 (8.69)

para i = 1, 2..., d.

Intervalos de predição de Bonferroni para d novas observações y_{01} , y_{02} ,..., y_{0d} em d valores de x_0 , digamos x_{01} , x_{02} ,..., x_{0d} :

$$\mathbf{x}'_{0i}\widehat{\boldsymbol{\beta}} \pm t_{\alpha^*/2d,n-k-1}(s)\sqrt{1+\mathbf{x}'_{0i}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0i}}$$
 (8.70)

para i = 1, 2..., d.

Os intervalos obtidos por (8.70) terão um coeficiente de confiança global de, no mínimo, $(1-\alpha)$.

Os limites dos intervalos de confiança (conservativos) de Scheffé para **todas** as possíveis funções lineares $a'\beta$ (escolhidas *a priori* ou não) são dados por:

$$a'\hat{\beta} \pm (s)\sqrt{(k+1)} F_{\alpha^*;k+1,n-k-1} a'(X'X)^{-1}a$$
 (8.71)

- Intervalos construídos desta forma têm um coeficiente de confiança global de, no mínimo, $100(1-\alpha^*)\%$.
- Para poucas funções lineares, os intervalos em (8.68) serão mais estreitos, mas para um número grande de funções lineares, os intervalos em (8.69) serão mais estreitos.

Limites de confiança para $E(y_0) = x_0' \beta$, para todos os possíveis x_0 , nós usamos (8.71):

$$x_0' \hat{\beta} \pm (s) \sqrt{(k+1) F_{\alpha^*; k+1, n-k-1} x_0' (\mathbf{X}' \mathbf{X})^{-1} x_0}$$
 (8.72)

Os limites dos intervalos de predição de Scheffé para y_{01} , y_{02} ,..., y_{0d} , são calculados por:

$$\mathbf{x}'_{0i}\widehat{\boldsymbol{\beta}} \pm (s)\sqrt{d F_{\alpha^*;k+1,n-k-1}[1 + \mathbf{x}'_{0i}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0i}]}$$
(8.73)

para i = 1, 2..., d.

Esses d intervalos de predição asseguram um coeficiente de confiança global de $(1 - \alpha^*)$, no mínimo.

8.7 TESTES DA RAZÃO DE VEROSSIMILHANÇAS

(Para maiores detalhes: Rencher, pág. 204)

Os testes desenvolvidos nas Seções 8.1 e 8.2 foram derivados utilizando métodos **informais** baseados em características de SQ's que têm distribuição de quiquadrado e são independentes.

Esses mesmos testes podem ser obtidos de maneira **mais formal**, através de uma abordagem de razão de verossimilhanças.

Vamos apresentar os principais resultados do **teste da razão de verossimilhanças** (TRV) no contexto simples de testar

$$H_0$$
: $\boldsymbol{\beta} = \mathbf{0}$ versus H_1 : $\boldsymbol{\beta} \neq \mathbf{0}$.

A função de verossimilhança – $L(\beta, \sigma^2)$ – foi definida na Seção 7.6.2 como a densidade conjunta dos y's. Assumindo $y \sim N_n(\mathbf{X}\beta, \mathbf{I}\sigma^2)$

$$L(\boldsymbol{\beta}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta})'(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta})/2\sigma^2}$$

O teste da razão de verossimilhanças consiste em comparar o máximo valor de $L(\boldsymbol{\beta}, \sigma^2)$ restrito por H_0 : $\boldsymbol{\beta} = \mathbf{0}$, com o máximo valor de $L(\boldsymbol{\beta}, \sigma^2)$ sob a hipótese H_1 : $\boldsymbol{\beta} \neq \mathbf{0}$, que não é restrita, através da razão de verossimilhanças:

$$LR = \frac{\max_{H_0} L(\boldsymbol{\beta}, \sigma^2)}{\max_{H_1} L(\boldsymbol{\beta}, \sigma^2)} = \frac{\max_{H_0} L(\mathbf{0}, \sigma^2)}{\max_{H_0} L(\boldsymbol{\beta}, \sigma^2)}$$
(8.75)

É claro que $0 \le LR \le 1$, porque o máximo de LR restrito a $\beta = 0$ não pode exceder o máximo irrestrito.

Como pequenos valores de LR favorecem a hipótese alternativa, H_1 , e grandes valores de LR favorecem H_0 , nós rejeitamos H_0 se $LR \le c$, em que c é escolhido de tal forma que $P(LR \le c) = \alpha$, se H_0 é verdadeira.

Wald (1943) mostrou que, sob H_0 e para n grande,

$$-2ln(LR) \sim \chi^2(v),$$

onde v é o número de parâmetros estimados sob H_1 menos o número de estimativas sob H_0 .

No caso de H_0 : $\boldsymbol{\beta} = \mathbf{0}$ versus H_1 : $\boldsymbol{\beta} \neq \mathbf{0}$ nós temos v = (k+2)-1 = k+1, porque os coeficientes de regressão ($\boldsymbol{\beta}$) e a variância (σ^2) são estimados sob H_1 , enquanto somente a variância (σ^2) é estimada sob H_0 .

Teorema 8.7A Se $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}\sigma^2)$ o teste da razão de verossimilhanças para H_0 : $\boldsymbol{\beta} = \mathbf{0}$ versus H_1 : $\boldsymbol{\beta} \neq \mathbf{0}$ pode ser baseado em

$$F = \frac{\widehat{\beta}' \mathbf{X}' \mathbf{y} / (k+1)}{(\mathbf{y}' \mathbf{y} - \widehat{\beta}' \mathbf{X}' \mathbf{y}) / (n-k-1)}$$

Rejeitamos H_0 se $F > F_{(\alpha; k+1, n-k-1)}$.

Teorema 8.7B Se $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}\sigma^2)$ então o teste-F para H_0 : $\mathbf{C}\boldsymbol{\beta} = \mathbf{0}$ no Teorema 8.4A é **equivalente** ao Teste da Razão de Verossimilhanças.