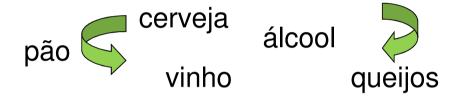
SECRETARIA DE AGRICULTURA E ABASTECIMENTO



FUNGOS E MICOTOXINAS DE IMPORTÂNCIA EM ALIMENTOS

Importância dos fungos

✓ Processos industriais = fermentação, maturação

- ✓ Utilizados como alimentos
- ✓ Produção antibióticos, enzimas, ácidos
- ✓ Causam doenças em animais, homens e vegetais
- ✓ São potenciais deterioradores de alimentos
- ✓ Algumas espécies produzem micotoxinas

Fatores de crescimento e versatilidade dos fungos

- > Atividade de água do substrato
 - Crescimento em atividade de água reduzida (0,61 0,99)
- Maioria aeróbios (algumas exceções)
- pH
 - Crescimento ampla faixa de pH (2,0-9,0)
- Temperatura
 - Crescimento <0°C a 40°C
 - Maioria não são termorresistentes (algumas exceções)
- Utilizam várias fontes de carbono e nitrogênio
- > Não são resistentes aos conservantes (algumas exceções)

Importância dos fungos nos alimentos

Em alimentos de umidade intermediária (a_w 0,60-0,89), são os principais deterioradores.

Definem a vida de prateleira do produto.

Espécies Fúngicas nos Alimentos

- Brasil tem uma grande biodiversidade de fungos.
- Espécies fúngicas mais comuns nos alimentos:

Aspergillus

Penicillium

Fusarium

Alternaria

Gêneros importantes de fungos filamentosos em alimentos

Aspergillus, Penicillium, Fusarium, e Alternaria são os gêneros mais importantes relacionados às micotoxinas.

Aspergillus é mais importante nos trópicos e sub-trópicos.

Penicillium é mais importante em regiões temperadas e nas regiões polares, mas certas espécies são também comuns nos trópicos.

Fusarium e Alternaria são comuns em toda parte.

Principais fungos deterioradores de alimentos

Aspergillus flavus, A. parasiticus

Penicillium expansum

Principais fungos deterioradores de alimentos

Penicillium digitatum

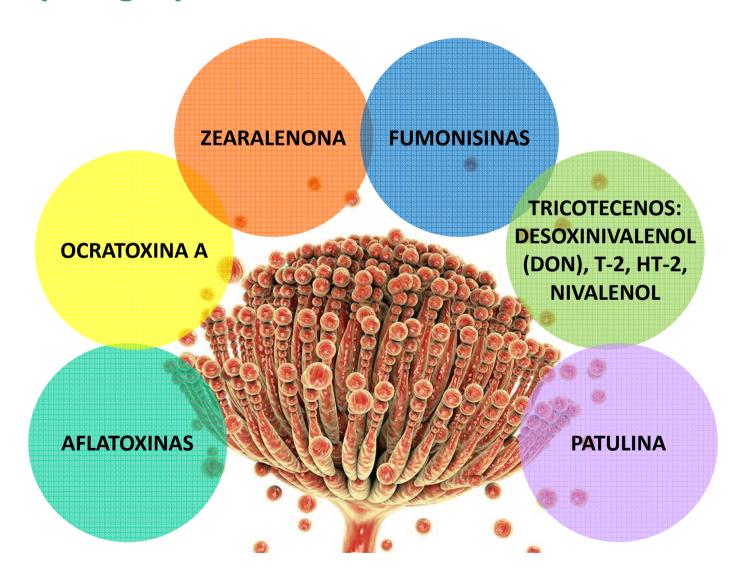
Rhizopus stolonifer

Aspergillus carbonarius, A. niger

Principais fungos deterioradores de alimentos

ALIMENTOS
Amendoim, milho
Alimentos enlatados ácidos
Uvas, frutas moles
Marmelada, geléia
Grãos, farinhas
Milho
Cereais (Climas temperados)
Frutas cítricas
Frutas cítricas
Maçãs, peras
Queijo cheddar
Morangos
Bolo de frutas, tâmaras secas
Peixes salgados
Tomates

Micotoxinas



Metabólitos tóxicos produzidos por algumas espécies fúngicas

Toxigênicas em animais e humanos

Podem estar presentes em qualquer tipo de alimentos, mas alguns alimentos são mais susceptíveis que outros.

Principais grupos

Classificação das micotoxinas

- * Cancerígenas: aflatoxinas, esterigmatocistina, ácido ciclopiazônico
- Mutagênica: aflatoxinas
- **Hepatotóxicas**: aflatoxinas
- * Nefrotóxicas: ocratoxina A, citrinina
- **Estrogênica**: zearalenona
- Neurotóxica: patulina, penitrem A, fumonisina

Toxidez de algumas micotoxinas

Substâncias tóxicas	DL 50 (mg/kg)	Animal (via oral)
Aflatoxina B1	0,56	Rato
Patulina	700	Camundongo
Ocratoxina A	3,0	Marreco
Cianeto de potássio	36	Rato
Arseniato de chumbo	500	Rato

Doenças causadas pela exposição às micotoxinas, podem ser manifestas como agudas à crônicas, desde morte rápida à formação de tumores.

Doenças ocultas podem ocorrer se a micotoxina interferir com o processo imunológico, levando o paciente à susceptibilidade de doenças infecciosas.

Ergotismo (desde 1750)

Fungo: Claviceps purpurea (esclerócios)

Toxina: alcaloide ergot

Fonte de alimento: grãos principalmente centeio

Sintomas: constrição nos vasos sanguíneos chegando às mãos e pés, causando infecções bacterianas (gangrenas); afeta a mente causando alucinações devido ao ácido lisérgico, em alguns casos mortes.

Exemplos: fogo de Santo Antonio ou São Vitus

Toxinas são alcalóides com uso farmacêutico.

Relatos de casos de ergotismos: Europa (1954);

Etiópia (1979); surto de ergotismo com gangrena (King, B. 1979).

The Beggars by Pieter Bruegel, 1567 (Louvre, Paris)

Aleucia Tóxica Alimentar (ATA)

Fungo: Fusarium poae, F. sporotrichioides (Toxinas: T-2, HT-2)

Fonte de alimento: grãos

Sintomas: atrofia da medula óssea, lesões necróticas, hemorragia no nariz, garganta e gengivas, supressão dos sistema imune e mortes.

Relatos de casos de ATA: Rússia (Orenburg, 1942-1948) devido ao consumo de grãos invernados no campo. Outros casos na Europa, Rússia, Japão e EUA (Ueno, 1980); câncer esofágico na República de TransKei (África do Sul).

Chuva amarela "yellow rain": guerra do Vietnã (Laos, ThaiKampuchean)

Beriberi cardíaca aguda (shoshin kakke)

Fungo: Penicillium citreonigrum, Penicillium ochrosalmoneum

Toxina: citreoviridina

Fonte de alimento: arroz

Sintomas: dificuldade na respiração, náusea e vômito, dores severas, paralisia progressiva levando à falhas na respiração e morte.

Relatos de casos: doença conhecida como "Yellow rice" no Japão (Uraguchi, 1971).

Milho infectado com *Penicillium ochrosalmoneum* contendo altas quantidades de citreoviridina (Wicklow et al. 1988).

2006 – 2008: Surto de beribéri no estado do Maranhão 1028 casos e 32 mortes (Rosa et al., 2010), devido ao consume de arroz infectado com *P. citreonigrum*. Amostras contaminadas com CTV em níveis de 12 a 96,7 μg/Kg, e duas amostras de farelo de arroz com 128 e 254 μg/Kg.

Aflatoxicoses

Fungo: Aspergillus flavus, A. parasiticus, A. nomius

Toxina: aflatoxinas

Fonte de alimento: amendoim, milho, castanhas.

Sintomas nos animais: danos no fígado agudo, cirrose hepática, indução de tumores e efeitos teratogênicos e genéticos.

Relatos de casos de aflatoxicoses:

- \clubsuit Em 1967 em Taiwan 26 pessoas adoeceram e 3 morreram. Arroz contaminado com aflatoxina B₁ (Shank, 1978).
- ❖ Em 1974 na Índia um surto de hepatite afetou 400 pessoas, 100 morreram. Milho altamente infectado com *Aspergillus* e aflatoxinas em concentração de 15 mg/kg. O consumo de alguns adultos afetados foi em estimado torno de 2 a 6 mg em 1 dia.
- Crianças com síndrome de Reye: doença que afeta o cérebro e o fígado, é causa comum de morte de crianças no Sudeste asiático. Shank et al (1971) encontraram níveis em torno de 1 a 4 g/kg no fígado de 23 crianças tailandesas que morreram da síndrome de Reye.

- ❖ Aflatoxinas e câncer hepático primário: alta incidência na África e Sudeste asiático.
- ❖ Estudos realizados no Quênia, Suazilândia, Uganda, Moçambique e Tailândia, indicaram uma correlação positiva entre ingestão de aflatoxinas e a ocorrência de câncer no fígado (van Rensburg, 1977).
- ❖ As aflatoxinas agem sinergisticamente com o vírus de hepatite B: potencializa a formação do câncer (30 vezes).

Ocratoxicoses

Fungo: Penicillium verrucosum, Aspergillus ochraceus, A. westerdjikiae, A. carbonarius, A. niger

Toxina: ocratoxina A

Fonte de alimento: cereais, vinho, frutas secas, café, cacau e outros

Sintomas nos animais: danos nas funções renais, fibrose intestinal, carcinomas em ratos

Doenças em humanos: Não existem evidências concretas.

Ocratoxina A em tecidos e fluidos de humanos

Tecido ou fluido	País	Nº positive/Nº amostras	Nível ou media (ng/mL)
Soro	loguslávia	42/639	1 - 57
Soro	Polônia	77/1065	0,27
Soro	Alemanha	173/306	0,6
Soro	Bulgária	110/576	18
Soro	França	≤ 22%	0,1 - 6
Plasma	Dinamarca	46/96	0,1 – 9,2
Plasma	Bulgária	45/312	14
Leite	Alemanha	4/36	0,017 - 0,3
Leite	Itália	9/50	1,7 – 6,6
Sangue	Canadá	63/159	0,27 – 35,3

Toxicoses de fumonisinas

Fungo: Fusarium verticillioides

Toxina: fumonisinas

Fonte de alimento: milho, sorgo

Doenças nos animais: leucoencefalomalácia em equinos,

Em humanos: associação entre o consumo de milho embolorado com altos índices de câncer esofágico, displasia esofágica encontrados na África do Sul, Itália (polenta), China.

Outras relações de fumonisinas:

- Ação sinergística com aflatoxinas causando o câncer primário
- Populações na região de Transkei e na China que consomem milho embolorado, apresentaram alta incidência de defeitos no tubo neural, provavelmente porque a fumonisina inibe a tomada de ácido fólico via os receptores de folatos.
- Experimentos com animais em laboratórios tem comprovado este efeito.

Toxicoses de Zearalenona

Fungo: Fusarium graminearum, F. culmorum

Toxina: zearalenona (estrógeno)

Fonte de alimento: cereais (milho)

Doenças nos animais: afeta o sistema reprodutivo, infertilidade, hiperestrogenismo em suinos, inchação nas vulvas, aumento nas mamas.

Em humanos: puberdade prematura, aumento prematuro de seios, pseudo-puberdade em proporções epidêmicas em Porto Rico (Saenz de Rodriquea et al. 1985). Suspeitas de afetar o sistema endocrinológico.

Toxicoses de Desoxinivalenol (DON)

Fungo: Fusarium graminearum e F. culmorum

Toxina: desoxinivalenol (vomitoxina)

Fonte de alimento: cereais (trigo), fusariose da espiga de trigo

Doenças nos animais: vômito, recusa de alimentos em suinos, perda de peso, diarréia. Intoxicação aguda causa necroses em vários tecidos, na medula óssea e no trato gastrointestinal.

Em humanos: sintomas gastrointestinais, como náusea, vômito, diarréia, dores abdominais, dor de cabeça, tontura e febre.

Ásia: 35 surtos de doenças de origem alimentar foram atribuídos à exposição de DON presente no trigo

Índia: 50.000 pessoas apresentaram sintomas de vômito e tontura, após o consumo de pão feito com trigo danificado. A análise detectou presença de DON.

Micotoxinas em alimentos

Considerações importantes

- Mais de 300 conhecidas;
- Não são todos os fungos que produzem as micotoxinas;
- A ausência de fungos não implica na ausência de micotoxinas;
- Podem estar presentes em qualquer tipo de alimento, porém existem alimentos que são mais susceptíveis do que outros.

Alimentos com um alto risco de contaminação por micotoxinas

Alimento	Fungo provável	Micotoxinas prováveis
Amendoim Castanha do brasil	A. flavus, A. parasiticus, A. nomius	Aflatoxinas
	A. flavus, A. parasiticus	Aflatoxinas
Milho e cereais a base de milho	Fusarium spp.	Tricotecenos, Zearalenona
	F. verticillioides	Fumonisinas
Trigo e cereais a base de trigo	Fusarium graminearum	Tricotecenos (DON)
	Alternaria spp.	Alternariol, Ácido tenuazônico
	A. flavus	Aflatoxinas

Micotoxinas encontradas em frutas

Micotoxinas	Frutas	Fungos produtores
Patulina	Maçã	Penicillium expansum
Aflatoxinas	Figo	A. flavus, A. parasiticus
Ocratoxina A	Uvas Figos Tâmaras Groselha	A. ochraceus, A. carbonarius, A. niger

Regulamento Brasileiro para as Micotoxinas

2011: ANVISA - RDC Nº 7/11

Limites máximos para 6 micotoxinas para mais de 20 categorias de alimentos

Aflatoxinas

Ocratoxina A - OTA

Fumonisinas

Desoxinivalenol - DON

Zearalenona

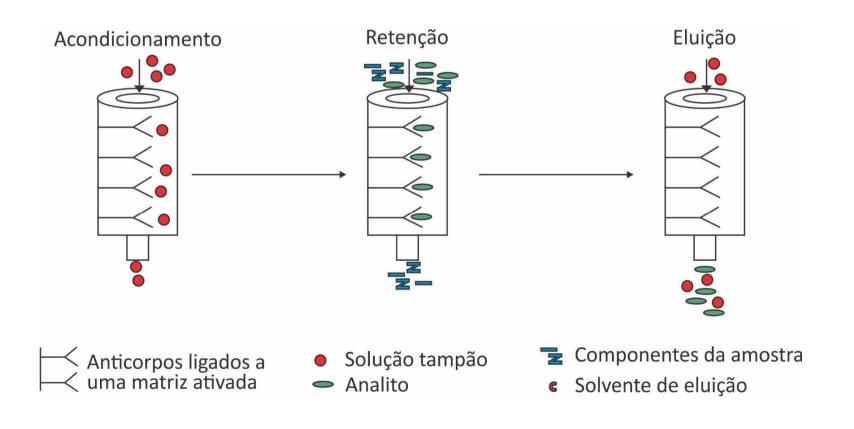
Patulina

2013: ANVISA - RDC Nº 59/13 aplicação em 01/01/2017

2017: ANVISA - RDC 138/17 aplicação em 01/01/2019

2021: ANVISA - RDC 487/2021 - IN 88/2021

Métodos de detecção de micotoxinas em alimentos



Métodos de detecção de micotoxinas em alimentos

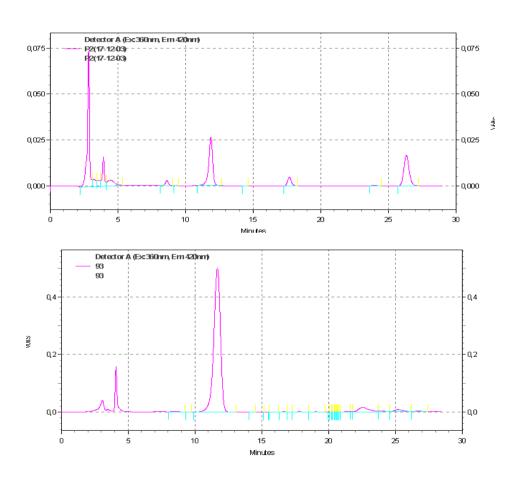
- 1º) Extração com solventes apropriados
- 2º) Limpeza da amostra (imunoafinidade)

3º) Secagem do extrato, separação e detecção

Técnicas de detecção

- Cromatografia em camada delgada (CCD)
- Cromatografia Líquida de Alta Eficiência (CLAE)

Cromatografia em camada delgada



Cromatografia Líquida de Alta Eficiência

Padrões de aflatoxinas B₁B₂G₁G₂

Amostra figo seco contaminada com afla B₁

Formação de micotoxinas

Pré colheita: existe uma associação do fungo com a planta enquanto a planta está crescendo

Ex.: aflatoxinas, fumonisinas, tricotecenos e zearalenona

- * Fatores incontroláveis como cultura, clima, ambiente vão determinar se os fungos vão crescer e se as micotoxinas serão formadas
- O crescimento do fungo associado à planta somente ocorre se houver a planta definida (associação fúngica)
- * Associação: comensal, simbiótica ou fitopatogênica.

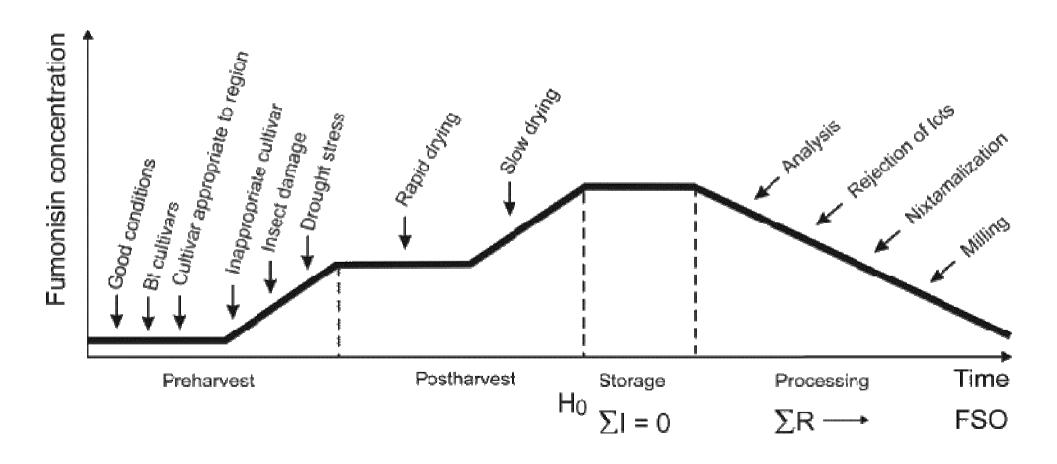
Formação de micotoxinas

Pós colheita: não existe uma associação com a planta.

A formação da micotoxina pode ocorrer no produto quando:

- Os frutos apodrecem no pé
- Permanência no solo por muito tempo
- Secagem
- Transporte
- Estocagem

Ex.: ocratoxina A, patulina

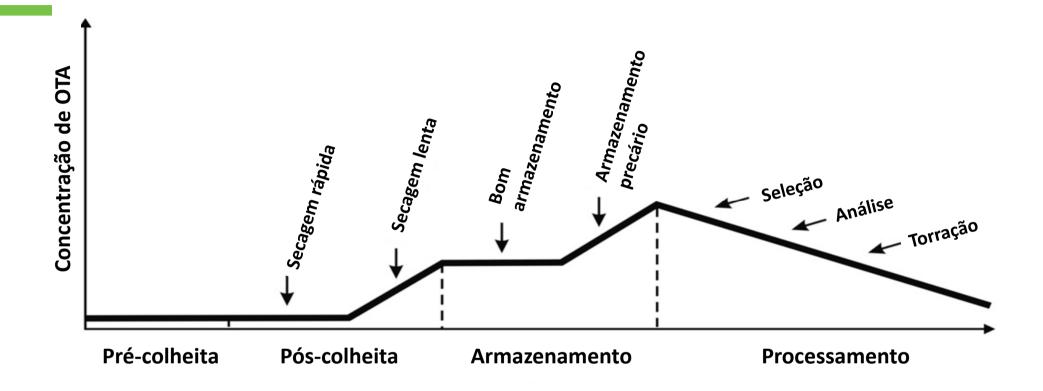

Toxinas de Fusarium

- Todas as espécies de *Fusarium* crescem em alta atividade de água (> 0,90).
- As toxinas (fumonisinas, desoxinivalenol e zearalenona) são formadas antes da colheita ou durante o início da secagem.
- Ocorrem na estocagem somente sob condições catastróficas ex: enchentes.
- A produção das micotoxinas ocorre como resultado do crescimento do fungo na planta ou na semente enquanto estiver viva.

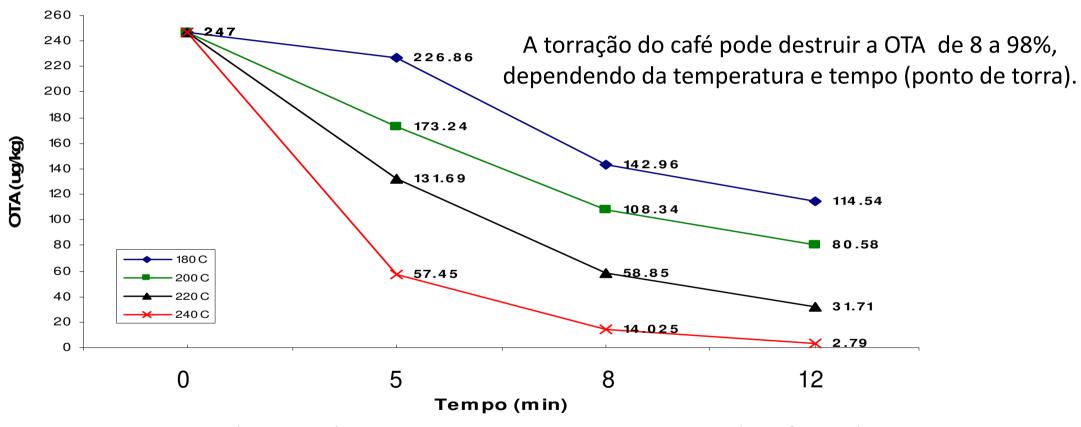
Fumonisinas

- Produzidas por Fusarium verticillioides e espécies relacionadas
- F. verticillioides é um fungo comensal, geralmente presente no milho (endêmica) durante seu crescimento
- As fumonisinas são produzidas sob estresse hídrico, portanto é provável que seja produzidas em climas mais quentes e secos

Fumonisinas



Controle das Fumonisinas


- Pré colheita
 - Cultivar de milho resistentes
 - Controle de insetos pelo uso do milho Bt
- Pós colheita
- Análise de fumonisinas e seleção dos lotes (laser, cor)
- Nixtamalização tortillas, um processo alcalino
- Moagem

Ocratoxina A (OTA) em Café

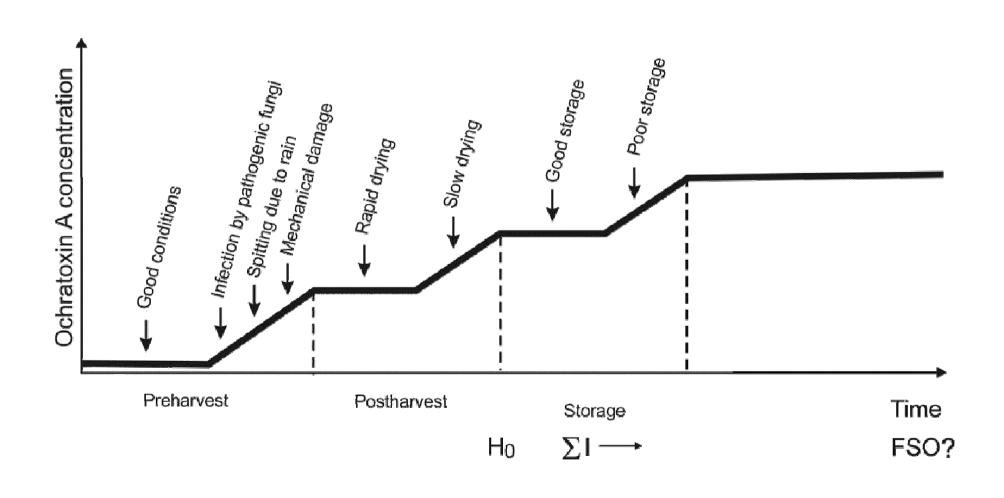
- Os pés de cafés são árvores baixas
- A. westerdijkiae produtor de OTA não tem associação com a planta
- OTA ocorre quando há uma falha durante a secagem ou armazenamento

Ocratoxina A na cadeia produtiva do café

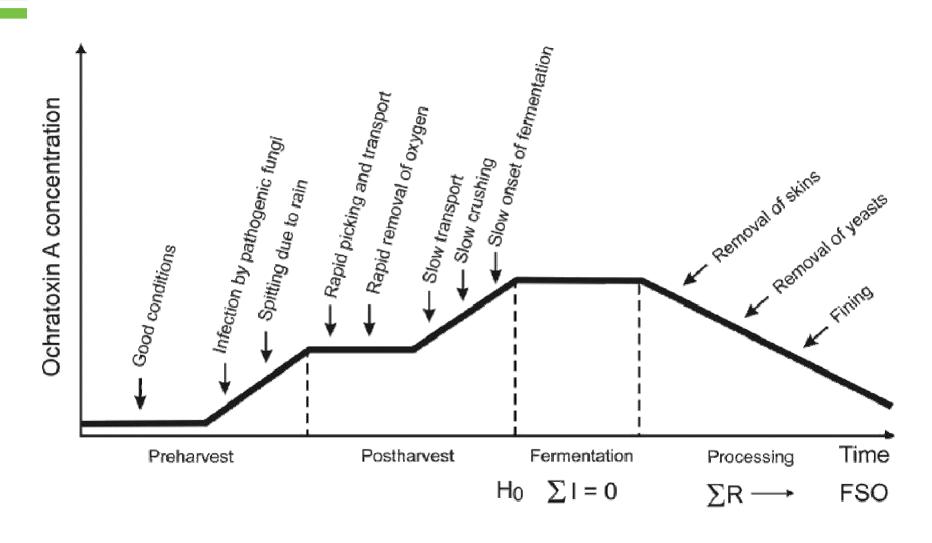
Ferraz, M. B.M.; Farah, A.; Iamanaka, B.T.; Perrone, D.; Copetti, M.V.; Marques, V.X.; Vitali, A A & Taniwaki, M.H. 2010. Kinetics of ochratoxin A destruction during coffee roasting. **Food Control, 21:** 872-877.

Ocratoxina A em produtos de uvas e frutas secas

- Aspergillus carbonarius, A. niger
- Cresce a alta temperatura e sob luz solar
- Produz OTA em uva passa, frutas secas e vinhos

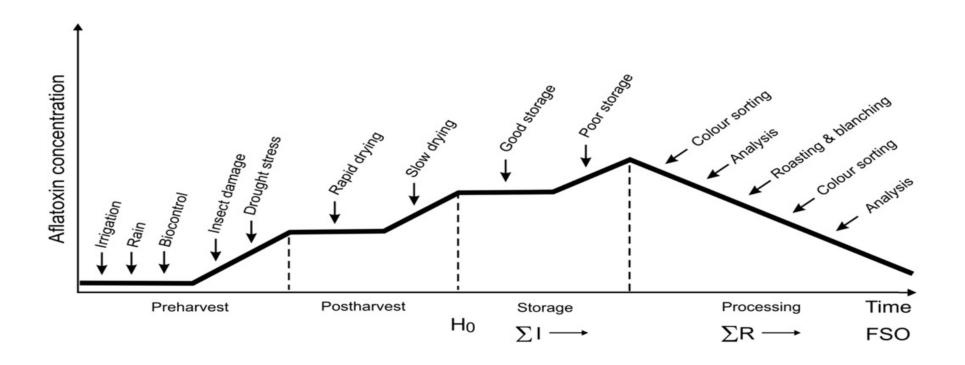

Ocratoxina A em frutas secas

OTA (ng/g)	Uva passa escura (Irã, Argentina)	Uva passa clara (Irã, Argentina)	Figo (Turquia)	Tâmara (Espanha, Tunísia)	Ameixa (Chile, Argentina)
<0,13	1	10	1	18	19
0,13 - 5,0	11	10	13	2	1
5,1 - 10,0	4	-	2	-	-
10,1 - 20,0	3		2	-	-
20,1	-		-	-	-
>30,0 - 30,0	1	-	1	-	-
Média (ng/g)	5,7	0,5	5,4	<0,13	<0,13


Ocratoxina A em frutas secas

Frutas secas	País de origem	Nº de amostras analisadas	Nº de amostras positivas	Máximo de OTA (μg/kg)
Damasco	Turquia	20	0	-
Groselha	Grécia	20	19 (95%)	54
Tâmaras	-	20	1 (5%)	0,2
Uva passa	Vários	20	17 (85%)	20
Uva passa	Austrália	26	19 (73%)	5,0
Pasta de figo	Turquia	5	1 (20%)	5,2

Ocratoxina A na cadeia da Uva Passa


Ocratoxina A na cadeia do Vinho

Aflatoxinas

Aflatoxinas são produzidas principalmente por: *Aspergillus flavus, A. parasiticus.* Estas espécies são comensais em amendoim.

Aflatoxinas na cadeia do amendoim

Martins, L.M.; Sant'Ana, A.S.; Fungaro, M.H.P.; Silva, J.J.; Nascimento, M.S.; Frisvad, J.C. & Taniwaki, M.H. 2017. The biodiversity of Aspergillus section Flavi and aflatoxins in the Brazilian peanut production chain. **Food Research International, 94:** 101-107.

Como eliminar a micotoxina do alimento?

SECRETARIA DE AGRICULTURA E ABASTECIMENTO

Técnicas de descontaminação de micotoxinas

- 1 Calor seco: somente T > 300 °C pois são termorresistentes
- 2 Calor úmido: autoclavagem a 121ºC/4h ocorre redução significativa
- 3 Irradiação: são resistentes à radiação gama e elétrons de baixa energia
- 4 Extração com solventes: uso de clorofórmios, acetona, somente para fins analíticos
- 5 Tratamento com solução alcalina: neutralização com álcali
- 6 Oxidação: tratamento com hipoclorito de sódio 5%

1. Adoção de práticas agrícolas corretas, como:

- Colher o produto imediatamente após atingir a maturidade
- Utilizar equipamentos de colheita ajustados para operar adequadamente, produzindo o menor dano mecânico
- Sementes oleaginosas e grãos deverão ser limpos para remoção de toda matéria orgânica e sementes danificadas,
- As áreas de armazenamento deverão ser limpas e livres de insetos e roedores, protegidas das influências climáticas

2. Cuidados na secagem

- Não demorar para iniciar a secagem do produto, principalmente no início, quando a umidade é elevada
- A secagem deve ser a mais rápida possível
- Evitar o reumedecimento do produto durante a secagem
- A secagem deve ser efetuada até atingir teores seguros de umidade
 - 13% cereais
 - 10% amendoim em casca, caroço de algodão, soja
 - 8% amendoim descascado
 - 11% café

3. Cuidados no armazenamento

- Reduzir ao mínimo a respiração das sementes e dos microrganismos
- Manter o produto em local adequado e restringir e entrada de insetos e outros animais
- Manter o produto em boas condições, prevenir quanto à reabsorção de umidade, seja do ar atmosférico, seja através de goteiras

Possíveis Controles de Medidas

- Controlar as concentrações ou populações iniciais
- Prevenir o aumento da contaminação (GAP, GHP, rotação da cultura, secagem rápida, etc.)
- Prevenir o aumento durante o armazenamento
- Reduzir as concentrações ou populações pelo processamento

As micotoxinas nos alimentos podem ser altamente reduzidas, mas <u>não</u> eliminadas totalmente. As micotoxinas modificadas podem ser formadas durante o processamento. O significado destes metabólitos na saúde humana devem ser mais estudadas.

SECRETARIA DE AGRICULTURA E ABASTECIMENTO

www.ital.agricultura.sp.gov.br www.alimentosprocessados.com.br http://bjft.ital.sp.gov.br/ Marta H. Taniwaki
Pesquisadora
CCQA/Ital
(19) 3743-1819
marta@ital.sp.gov.br