MAE 5870 — Aula 05

ARIMA Models

Processos Lineares Estacionarios
Teorema(Wold): Todo processo estacionario

de segunda ordem, puramente nao-deterministico,
pode ser escrito como

Xt =p+ Z Yiai_;, Yo =
j_

I
=

(1)

com {z¢;} uma sequéncia de v.a. nao cor-
relacionadas, de média zero e variancia o2
constante (ruido branco)
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Notacao: X; com média zero.



Podemos escrever a série Xy em uma forma alternativa, como soma de
valores passados Xt.1, Xt-2, mais um ruido wx:

Xt= (1 Xt-l + 70 Xt_2+ o Wy
ou

H(B)Xt = Wt

Proposicao:

um processo linear sera estacionario se W(B) convergir para |[B| <1e
serd invertivel se M(B) convergir para |B| < 1.



Autoregressive Moving Average Models

1. Autoregressive Models

Autoregressive models are based on the i1dea that the current value of the

ﬁcrics,|xf~ can be explained as a function of p past values, =, _;,7;_a..... Ty_p,

where p determines the number of steps into the past needed to forecast
the current value. As a typical case, recall Example 1.10 in which data were
generated using the model

Iy = Tgp_1 — .gD:I't_‘g + W,

where wy is white Gaussian noise with o2 = 1. We have now assumed the
current value is a particular linear function of past values. The regularity that
persists in Figure 1.9 gives an indication thatm for such a model
might be a distinet possibility, say, through some version such as

i —
rn . = Tn — Hzy_q,

where the quantity on the left-hand side denotes the forecast at the next
period n + 1 based on the observed data, x;,xs,...,zn. We will make this

notion more precise in our discussion of forecasting (§3.5).
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Fig. 1.9. Autoregressive series generated from model (1.2).

Definition 3.1 An autoregressive model of order p, abbreviaied AR(p).
is of the form

Ty = T + @22 + - + DpTi_p + Wy, (3.1)



where r; is stationary, and ¢, da, . ... ¢, are constants (¢, # 0). Although it

is not necessary yet, we assume that w; is a Gaussian white notse series {ith

mean zero and variance o-,, unless otherwise stated. The mean of x; in (3.1)

is zero. If the mean, p, of ry is not zero, replace xy by xy — p in (3.1),

Te— po=P1(Te1 — p) + Pa(Tez — p) + - + Op(Tep — p) +

or write
Ty =0+ 0T +¢2IL_2+‘“+¢FI5_P+H’“ (32}
where|la = p(l — ¢y — -+ — Pp).
I:l—{ﬁ]B—{}zBE—--~—~:$*-FBP}:I‘¢='-!U£~ (3-3}

or even more concisely as

&(B)x, = w,. (3.4)

The properties of ¢(B) are important in solving (3.4) for x;. This leads to the
following definition.
Definition 3.2 The autoregressive operator is defined to be

$(B)=1—¢1B—¢,B* —--- — ¢, B (3.5)

Example 3.1 The AR(1) Model
We initiate the investigation of AR models by considering the first-order model,
AR(1), given by x; = ¢x;_1 + w;. Iterating backwards k times, we get

&=@H+M=MWH+MM+M
=@ X2 + Wi + Wy

' k-1
" .
=¢ Xk + wat—j-
Jj=0

This method suggests that, by continuing to iterate backward, and provided that
|¢| < 1 and sup, var(x;) < oo, we can represent an AR(1) model as a linear process
given by?!

Xt = Z ¢jwt_j. (36)
j=0
Representation (3.6) is called the stationary solution of the model. In fact, by simple

substitution,
Z W.Wt—j =¢ (Z ¢kWt—1—k) + Wy
j=0 k=0

 SS— —
X; Xt—1



The AR(1) process defined by (3.6) is stationary with mean

E(x:) = z &' E(w;—5) =0,

(Somn) (:é;w-*)l

:E[(w¢+h+“'+¢'hw; ¢h+lwt 1-|-“':|"[1Ut+¢*wt—l+“‘]] (3.7)

=0

and autocovariance function,

A(h) = cov(zrsn,z) = E

Recall that vy(h) = v(—h), so we will only exhibit the autocovariance function
for h = 0. From (3.7), the ACF of an AR(1) is

a(h)
p(h) = () =¢", h>0, (3.8)
and p(h) satisfies the recursion
p(h)=dp(h—1), h=12, ... (39)

We will discuss the ACF of a general AR(p) model in §3.4.
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Figura 2.5: F.a.c. de um processo AR(1) (a) =08 (b)gp=-0,8

Example 3.2 Explosive AR Models and Causality

In Example 1.18, it was discovered that the random walk = = =1 + uy
15 not stationary. We might wonder whether there is a stationary AR(1)
process with |¢| > 1. Such processes are called explosive because the values
of the time series quickly become large in magnitude. Clearly, because |o|
increases without bound as j — oo, E;T:Dl ¢ wy_; will not converge (in mean
square) as k — oo, so the intuition used to get (3.6) will not work directly.
We can, however, modify that argument to obtain a stationary model as
follows. Write x;, 1 = @xs + wiyq, in which case,

1

_ a1 S TP R L1 1
Ty =@ T — @ Wi =0 (07 Tego — @7 Wiyz) — 67w

k-1
= *ry gy — Z oI wyy (3.10)

j=1

by iterating forward k steps. Because |¢|~' < 1, this result suggests the
stationary future dependent AR(1) model

re= =Y 67wy, . (3.11)
J=1



know the future to be able to predict the future. When & process does not
depend on the future, such as the AR(1) when |¢| < 1, we will say the process
1s causal. In the explosive case of this example, the process is stationary, but
it is also future dependent, and not causal.

Example 3.4 Every Explosion Has a Cause
Excluding explosive models from consideration is not a problem because the models
have causal counterparts. For example, if

X = ¢x,,1 + wy with |¢| > 1

and w, ~ iid N(0, o2, then using (3.11), {x;} is a non-causal stationary Gaussian
process with E(x;) = 0 and

(o] o0
— —k
Yx(h) = COV(Xs4p, X;) = COV | — Z [ th+h+j, - Z ¢ Wik
i=1 k=1

=0 ¢ (1-¢7).
Thus, using (3.7), the causal process defined by

Y = ¢’_1}’r—1 + v

where v, ~ iid N(0, 02 ¢2) is stochastically equal to the x; process (i.e., all finite
distributions of the processes are the same). For example, if x; = 2x,_; + w; with
o2 =1,then y, = % yi—1 + v, with 02 = 1/4 is an equivalent causal process (see
Problem 3.3). This concept generalizes to higher orders, but it is easier to show
using Chapter 4 techniques; see Example 4.8.

Consider the AR(1) model in operator form

o By = uy, (3.12)

where ¢(B) = 1 — ¢B, and |¢| < 1. |Also, write the model in equation (3.6)
using operator form as

T = z hijwy_; = By, (3.13)

J'={l



where ¥(B) = E;’iu ¢;B7 and v; = ¢. Suppose we did not know that
¥ = ¢f. We could substitute ¢»( B)w; from (3.13) for = in (3.12) to obtain

$(B)Y(B)w; = w,. (3.14)

The coefficients of B on the left-hand side of (3.14) must be equal to those on
right-hand side of (3.14), which means

(1—0B)(1+1B+vaB? + -+ y;B +---)=1.  (315)
Reorganizing the coefficients in (3.15),
L+ (61— )B + (s — 118) B> -+ (0 — 6, 1 $) B+ =1,

we see that for each j = 1,2, ..., the coefficient of B7 on the left must be zero
because it is zero on the right. The coefficient of B on the left is (14 — @), and
equating this to zero, ¥y — ¢ = 0, leads to iy = ¢. Contimuing, the coefficient
of B? is (13 — 1 d), so ¥, = ¢, In general,

;= ;19

with 1o = 1, which leads to the solution 1; = ¢7.

Another way to think about the operations we just performed is to consider
the AR(1) model in operator form, ¢(B)z; = w,;. Now multiply both sides by
¢~ !(B) (assuming the inverse operator exists) to get

¢~ (B)o(B)r: = ¢~ (B)w,

or
Iy = qb_l{E}wg.
We know already that

6 '(B)=14¢B+¢"B* + -+ "B’ 4 .-,

that is, o' (B) is ¥( B) in (3.13). Thus, we notice that working with operators
is like working with polynomials. That is, consider the polynomial @(z) =
1 — ¢z, where = is a complex number and |¢| < 1. Then,

=14gz+0’ 2"+ 2T 4., |z| <1,

1
D

and the coefficients of B in ¢ '(B) are the same as the coefficients of 27 in
@ !(z). In other words, we may treat the backshift operator, B, as a com-
plex number, z. These results will be generalized in our discussion of ARMA
models. We will find the polynomials corresponding to the operators useful in
exploring the general properties of ARMA models.

2. Moving Average Models



Definition 3.3 The moving average model of order g, or MA(g) model,
is defined to be

Tr=we+hwe_ +@wp_o 4.+ qut—qn. {315}

where there are q lags in the moving average and 6,,6,,....60, (#, # 0) are

parameters.? Although it is not necessary yet, we assume that w; is a Gaussian

white noise series with mean zero and variance o2, unless otherwise stated,

The system is the same as the infinite moving average defined as the linear
process (3.13), where ¢y =1, ¢ =8, for j =1,..., q, and 1; = 0 for other

values. We may also write the MA(qg) process in the equivalent form
Ty = 0(B)wy, (3.17)

using the following definition.

Definition 3.4 The moving average operator is
#(B)=1+6,B+ 6,B* ... + 6,B°. (3.18)

Unlike the autoregressive process, the moving average process is stationary
for any values of the parameters #y,..., 5: details of this result are provided

in §3.4. -

Example 3.4 The MA(1) Process
Consider the MA(1) model z; = wy + fwi_y. Then, E(x;) =0,

(1+6%02 h=0,

y(h) = { a3, h=1,
0 h =1,
and the ACF is
. h=1,
plh) = { 040
0 h = 1.
Note |p(1)| < 1/2 for all values of # (Problem 3.1). Also, x4 is correlated with
Ty, but not with x;_», 7 s,... . Contrast this with the case of the AR(1)

? Some texts and software packages write the MA model with negative coefficients;
that is, 2y = wy — Bywy_ g —Bowy_a — -+ - — Bouwy_,.
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Fig. 3.2, Simulated MA(1) models: # = .5 (top); # = —.5 (bottom).

Example 3.5 Non-unigqueness of MA Models and Invertibility
Using Example 3.4, we note that for an MA(1) model, p(h) is the same for
! and ﬁ: try 5 and ij for example. In addition, the pair 62 =1 and # =5
yield the same autocovariance function as the pair o2 = 25 and # = 1/5,
namely,



vh)={5 h=1,

Thus, the MA(1) processes
Ty =wy + tweoy,  we ~iid N(0,25)

and
y[- = 1’!_ + 51’{__1,. 1’¢ L ii’d N{U, 1}

are the same because of normality (1.e., all finite distributions are the same).
We can only observe the time series, x; or ;. and not the noise, w; or v,
s0 we cannot distinguish between the models. Hence, we will have to choose
only one of them. For convenience, by mimicking the criterion of causality
for AR models, we will choose the model with an infinite AR representation.

Such a process is called pn invertible process. |

To discover which model is the invertible model, we can reverse the roles
of r; and w; (because we are mimicking the AR case) and write the MA(1)
model as wy = —fwy_; + 1. Following the steps that led to (3.6), if |#] < 1,
then w, = Z;“;ﬂ[—ﬂ}j ry_;, which is the desired infinite AR representation
of the model. Hence, given a choice, we will choose the model with o2 = 25
and # = 1/5 because it is invertible.

3. Autoregressive Moving Average Models

Definition 3.5 A time series {z,; ¢t =0,£1,4£2, ...} is ARMA(p,q) if it is

stationary and

Ty =T+ + ?!’p-rt_p +wy +hwy_ -+ qut—q'. {319}

with ¢, # 0, 8, # 0, and % > 0. The parameters p and q are called the
autoreqressive and the moving average orders, respectively. If x; has a nonzero

mean g, we set o« = p(l — ¢y — -« — @p) and write the model as

Iy =+ dTi_q -+ :;‘5;.:17:_;. +ury +Gwe_q + -+ qu:_q. {3.20‘}

&(B)z, = 6(B)w,. (3.21)

Before we discuss the conditions under which (3.19) is causal and invertible,
we point out a potential problem with the ARMA model.



Example 3.7 Parameter Redundanc
Consider a white noise process I;, = w,] If we multiply both sides of the equation
by n(B) = 1 — .5B, then the model becomesl (1-.5B)x; =(1—- .5B)w,| or

X = .Sx;‘—] - .5W1_| + wy, (322)

which looks like aodel. Of course, x; is still white noise; nothing
has changed in this regard [i.e., x; = w; is the solution to (3.22)], but we have
hidden the fact that x, is white noise because of the|parameter redundancy| or
| over—garameterization]
The consideration of parameter redundancy will be crucial when we discuss
estimation for general ARMA models. As this example points out, we might fit
an ARMAC(1, 1) model to white noise data and find that the parameter estimates
are significant. If we were unaware of parameter redundancy, we might claim the
data are correlated when in fact they are not (Problem 3.20). Although we have not
et discussed estimation, we present the following demonstration of the problem.
mﬁmd then fit an ARMA(I, 1) to the data. Note that
45 =-96and § = .95, and both are significant. Below is the R code (note that the
estimate called ‘intercept’ is really the estimate of the mean).

set.seed(8675309) # Jenny, I got your number
x = rnorm(150, mean=5) # generate iid N(5,1)s
arima(x, order=c(1,0,1)) # estimation
Coefficients:
arl mal intercept<= misnomer
-9.9595 0.9527 5.0462

s.e. 0.1688 0.1750 0.0727
Thus, forgetting the mean estimate, the fitted model looks like

(1+.96B)x, = (1 + .95B)w,,

which we should recognize as an over-parametrized model.

Problems:

(i) parameter redundant models,
(ii) stationary AR models that depend on the future, and
(iii) MA models that are not unique.

To overcome these problems, we will require some additional restrictions on the
model parameters. First, we make the following definitions.

Definition 3.6 The AR and MA polynomials are defined as
Dz)=1—rz—- —p2P, op#0, (3.23)

and

0(2) = 14601z +---+ 0,29, By #0, (3.24)

respectively, where 2 is a compler number.



To address the ﬁrc-i‘:lem of tuture-dependent models, we formally introduce
the|cunce'pt of causality. |

Definition 3.7 An ARMA(p, q) model is said to be causal. if the time series
{zy; t =0,£1,£2,...} can be written as a one-sided linear process:

=5

e =Y bwe; = P(Buy, (3.25)

=0
where Y(B) = 372y w; BY, and 377 |ib] < oo we set g = 1.

In Example 3.2, the AR(1) process, r; = ¢x¢_1 + wy, is causal only when
|¢| < 1. Equivalently, the process is causal only when the root of ¢(2) = 1—¢=
is bigger than one in absolute value. That is, the root, say, z;, of ¢(z) is
zp = 1/¢ (because ¢@(zp) = 0) and |zg| > 1 because |¢| < 1. In general, we
have the following property.

Property 3.1 Causality of an ARMA(p.q) Process
An ARMA(p,q) model is causal if and only if ¢(z) # 0 for |z| < 1. The

coefficients of the linear process given in (3.25) can be determined by solving

o(z) = §¢jzf - olLES

Another way to phrase Property 3.1 is that an ARMA process is causal
|only when the roots of ¢(z) lie outside the unit circle:|that is, a(z) =0
only when |z| = 1. Finally, to address the problem of uniqueness discussed
in Example 3.5, we choose the model that allows an infinite autoregressive
representation.

Definition 3.8 An ARMA(p, q) model is said to be invertible, if the time
series {xy: t = 0,+£1,£2,...} can be written as

m(B)z; = Zﬂjx,,_j- = wy, (3.26)

where m(B) =272 m;B7, and 337 |m;| < ec; we set mp = 1.
Analogous to Property 3.1, we have the following property.

Property 3.2 Invertibility of an ARMA (p,q) Process
An ARMA(p. q) model is invertible if and only if #(z) # 0 for |z| < 1. The
coefficients w; of m(B) given in (5.26) can be determined by solving

w(z) = ZTTJEJ

ﬂ‘_‘-"@

, 2| < 1.



Another way to phrase Property 3.2 is that an ARMA process is invertible
only |when the roots of §(z) lie outside the unit circle;|that 1s, #(z) = 0 only
when |z| > 1. The proot of Property 3.1 1s given in Appendix B (the proof of
Property 3.2 is similar and, hence, is not provided). The following examples
illustrate these concepts.

Example 3.8 Parameter Redundancy, Causality, Invertibility
Consider the process

Xr = Ax_1 + .45x20 + wr + w1 + 25w, 5,
or, in operator form,
(1 - .4B - 45B%)x; = (1 + B + .25B%)w,.

At first, x; appears to be a ARMA(2, 2)|process. But notice that

#(B) =1 - 4B - 45B (1 + .5B)(1 — .9B)

and

0(B) = (1 + B+ .25B%) 5 (1 + .5B)”

have a common factor that can be canceled. After cancellation, the operators are
¢(B) = (1 — .9B) and §(B) = (1 + .5B), so the model is an ARMA(1, 1) model,
(1-.9B)x;, =(1+.5B)w;, or

Xy = .9x,_1 + .SWt_l + wy (3.27)

The model ibecause #(z) = (1 —.9z) = 0 when z = 10/9, which is
*

outside the unit circle. The model is also| invertible| because the root of 6(z) =
(1 +.5z)is z = =2, which is outside the unit circle.



To write the model as a linear process, we can obtain the y-weights using
Property 3.1, ¢(z)¢(z) = 6(z), or

(1-.92)(1 +wlz+wzzz+---+tﬁjzj +---)=1+.5z
Rearranging, we get
1+ W1 —.9z+ W2 — )2+ + W — 1) +--- =1+ .5z

Matching the coefficients of z on the left and right sides we get ; —.9 = .5 and
W;— .91 =0forj> 1. Thus,y; = 1.4(.9Y ! for j > 1 and (3.27) can be written
as

00
Xt = wp + 142 .91_1Wt_j.
J=1

The values of /; may be calculated in R as follows:

ARMAtoMA(ar = .9, ma = .5, 10) # first 10 psi-weights
[1] 1.40 1.26 1.13 1.02 0.92 0.83 0.74 0.67 0.60 0.54

The invertible representation using Property 3.1 is obtained by matching coef-
ficients in 0(z)7(z) = ¢(2),

(1+.50)(1+mz+mz>+mz° +---)=1- 9z

In this case, the 7-weights are given by 7; = (=1Y 1.4(.5Y~! for j > 1, and hence,
because w; = Z;’;o mjx;—j, we can also write (3.27) as

x =14 Z(—.S)j_lx,_j + wy.
j=1

The values of 7; may be calculated in R as follows by reversing the roles of w; and
X;; i.e., write the model as w; = —.5w,_1 + x; — .9x,_1:

ARMAtoMA(ar = -.5, ma = -.9, 10) # first 10 pi-weights
[1] -1.400 .700 -.350 .175 -.087 .044 -.022 .011 -.006 .003



Example 3.9 Causal Conditions for an AR(2) Process

For an AR(1) model, (1 — ¢B)x; = w,, to be causal, the root of ¢(z) = 1 — ¢z must
lie outside of the unit circle. In this case, ¢(z) = 0 when z = 1/¢, so it is easy
to go from the causal requirement on the root, |1/¢| > 1, to a requirement on the
parameter, |¢| < 1. It is not so easy to establish this relationship for higher order
models.

For example, the AR(2) model, (1 — ¢ B — ¢2B%)x, = wy, is causal when the
two roots of|{¢(z) = 1 — ¢z — #»z°|lie outside of the unit circle. Using the quadratic
formula, this requirement can be written as

d1 % 02 + 4

> 1.
=2¢»

The roots of ¢(z) may be real and distinct, real and equal, or a complex conjugate
pair. If we denote those roots by z; and z», we can write ¢(z) = (1— zl'l 21— zz'l 7);
note that ¢(z1) = ¢(z2) = 0. The model can be written in operator form as (1 —
z'B)(1 = 25 B)x; = w;. From this representation, it follows that ¢; = (z;' + z;')
and ¢ = —(z,22)"". This relationship and the fact that |z;| > 1 and |z2| > 1 can be
used to establish the following equivalent condition for causality:

¢1 + ¢2 < 1, d)z —¢1 <1, and |¢2| < 1. (328)

This causality condition specifies a triangular region in the parameter space; see
Figure 3.3 We leave the details of the equivalence to the reader (Problem 3.5).
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Fig. 3.3. Causal region for an AR(2) in terms of the parameters.



Example 3.11 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

X = l.5x'_] = .75x,_2 + wy,

with 02, = 1, and with complex roots chosen so the process exhibits pseudo-
cyclic behavior at the rate of one cycle every 12 time points. The autoregressive
polynomial for this model is[¢(z) = 1 — 1.5z +.75z2.| The roots of ¢(z) ard 1 +i/V3)
and 6 = tan~'(1/V3) = 2x/12 radians per unit time. To convert the angle to cycles
per unit time, divide by 2 to get 1/12 cycles per unit time. The ACF for this model
is shown in left-hand-side of Figure 3.5.
To calculate the roots of the polynomial and solve for arg in R:

Z = Gl Ly=1:5%75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root = 1 + i/sqrt(3)

[1] 1+0.57735i
arg = Arg(a)/(2*pi) # arg in cycles/pt
1/arg # the pseudo period

[1] 12
To reproduce Figure 3.4:

set.seed(8675309)

ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(ar2, axes=FALSE, xlab="Time")

axis(2); axis(l, at=seq(0,144,by=12)); box()

abline(v=seq(®, 144,by=12), lty=2)

To calculate and display the ACF for this model:

ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline(h=0)

f f \ \
0 12 24 36 48 60 72 84 96 108 120 132 144
Time

Fig. 3.4. Simulated AR(2) model, n = 144 with ¢; = 1.5 and ¢, = —.75.



Example 3.12 The /-weights for an ARMA Model
For a causal ARMA(p, ¢g) model|¢(B)x; = 6(B)w,| where the zeros of o(z) are
outside the unit circle, recall that we may write

(o)
X = Z Yiwe—js
J=0

where the y/-weights are determined using Property 3.1.

For the pure MA(g) model, ¢y = 1, ¢; = 0;,for j = 1,...,q9, and ¢; = 0,
otherwise. For the general case of ARMA(p, ¢g) models, the task of solving for the
Y-weights is much more complicated, as was demonstrated in Example 3.8. The
use of the theory of homogeneous difference equations can help here. To solve for
the ¥ -weights in general, we must match the coefficients in ¢(z)y¥/(z) = 6(z):

(I=¢1z— 2> — Yo+ Y1z + P22 +++-) = (1 + 012+ 6z +--+).

The first few values are

Yo =1
Y1 — o1 = 0,
Vo — d1gn — davo = 62
Y3 — 12 — day — P3yo = 03

where we would take ¢; = 0 for j > p, and 6; = 0 for j > g. The y-weights satisfy
the homogeneous difference equation given by

P
Wi— ) $djk =0, jzmax(p,q+1), (3.40)
k=1

with initial conditions

;
Yi— Y éxwjk =0; 0<j<max(pg+1). (3.41)

k=1

The general solution depends on the roots of the AR polynomial ¢(z) = 1 — ¢z —
-+ — ¢pzP, as seen from (3.40). The specific solution will, of course, depend on
the initial conditions.

Consider the ARMA process givenin (3.27), x; = .9x;_1 +.5w;_1 +w,. Because
max(p, g + 1) = 2, using (3.41), we have yp = 1 and ¢y = .9 +.5 = 1.4. By (3.40),
for j = 2,3,..., the ¢-weights satisfy ; — .9¢%;_ = 0. The general solution
isy; =c .97 To find the specific solution, use the initial condition ¢ = 1.4,
so 1.4 = 9c or ¢ = 1.4/.9. Finally, ; = 1.4(.9Y~!, for j > 1, as we saw in
Example 3.8.

To view, for example, the first 50 yr-weights in R, use:

ARMAtoMA(ar=.9, ma=.5, 50) # for a list
plot (ARMAtoMA(ar=.9, ma=.5, 50)) # for a graph



