PRO 5971

Statistical Process Monitoring: Attribute+Variable control charts

Linda Lee Ho April 19, 2023

Department of Production Engineering University of São Paulo

Outline

- The aim: Improve the performance of the attribute chart in monitoring of the process mean and/or variability
- Features:
 - The monitoring always starts using an attribute chart as it is cheaper, faster, easier, etc
 - · If this chart does not signal, the process is declared in-control
 - Otherwise, depending on the proposal, the process may be declared out-of-control or measurements of quality characteristics are taken on the same inspected sample units or on another independent sample units and the decision on the process depends on the value of some quantitative statistic (like sample mean/variance of these measures) built with these measurements

CC by attributes

- Mean:
 - np
 - *np_x*
 - \overline{X}_{rec} , \overline{X}_{att} , $\overline{X_{tn}}$
- Variance: *np*_{S²}; *G*_{S²}; *S*²_{tn}

CC by attribute+variable

- Mean:
 - np- \overline{X}
 - $np_x \overline{X}$
 - ATTRIVAR1 and ATTRIVAR2
- Variance: MIXS², AVAI

• Attribute Chart:

- The items are classified as non-conforming if they do not meet the specification limits: Y=# of non-conforming items in a sample of n
- 2 sets of control limits: UCL_i and LCL_i , i=1, 2.
- If $Y \in [LCL_2; UCL_2]$ the process is in-control
- If $Y \notin [LCL_1; UCL_1]$ the process is out-of-control
- Otherwise, use the VARIABLE chart
- Variable chart:
 - Measure all n items and obtain \overline{X}
 - If $\overline{X} \in [LCL_3; UCL_3]$ the process is in control, otherwise out-of-control

	n = 20	n = 30	n = 40	<i>n</i> = 50
	$k_1 = 3.23$	$k_1 = 3.49$	$k_1 = 3.68$	$k_1 = 3.50$
	$k_2 = 0.87$	$k_2 = 0.04$	$k_2 = 0.70$	$k_2 = 0.29$
	$k_3 = 2.56$	$k_3 = 2.88$	$k_3 = 2.64$	$k_3 = 2.81$
с	ARL_1	ARL ₁	ARL_1	ARL ₁
0	200.00	200.00	200.00	200.00
0.1	87.11	70.65	61.72	51.60
0.2	31.94	21.15	15.53	11.53
0.3	12.64	7.58	5.09	3.76
0.4	5.74	3.39	2.31	1.80
0.5	3.06	1.91	1.43	1.22
0.6	1.93	1.34	1.12	1.04
0.7	1.42	1.11	1.03	1.00
0.8	1.183	1.02	1.00	1.00
0.9	1.074	1.00	1.00	1.00
1	1.02	1.00	1.00	1.00

Table 1. ARLs of the proposed control charts when $r_0 = 200$ and p = 0.10.

Figure 1: Plans for n=20, 30 and 40, 50 with $ARL_0 = 200$ and USL=1.28

		<i>n</i> = 40		<i>n</i> = 50					
	Proposed control chart	Attribute chart $k = 3.19$	Variable chart $k = 2.93$	Proposed control chart	Attribute chart $k = 3.01$	Variable chart $k = 2.93$			
С	ARL ₁	ARL ₁	ARL ₁	ARL ₁	ARL ₁	ARL ₁			
0	300.00	680.40	300.00	300.00	310.56	300.00			
0.1	91.52	176.54	92.36	72.35	80.26	76.49			
0.2	20.53	54.00	21.07	14.99	25.18	15.59			
0.3	6.17	19.51	6.68	4.44	9.61	4.81			
0.4	2.61	8.33	2.91	1.97	4.45	2.18			
0.5	1.52	4.20	1.69	1.27	2.49	1.37			
0.6	1.16	2.48	1.24	1.06	1.65	1.10			
0.7	1.04	1.69	1.07	1.01	1.27	1.02			
0.8	1.00	1.31	1.01	1.00	1.10	1.00			
0.9	1.00	1.13	1.00	1.00	1.03	1.00			
1	1.00	1.04	1.00	1.00	1.00	1.00			

Table 7. Comparisons ARL₁ of the proposed control charts when $r_0 = 300$ and p = 0.10.

Figure 2: Comparing with *np* and \overline{X} charts

np-Xbar chart proposed by Aslam et al. (2015)

• For each sample n=30

Figure 3: Example of chart proposed by Aslam et al. (2015)

Although the good performance of this proposal, one point is not clear: the measurements are made on same units or on new independent sample units?

To get the results shown in Aslam et al. (2015), the authors have necessarily assumed a new sample (thus the quality characteristic follows a normal distribution), otherwise the quality characteristic follows a truncated normal distribution if the measurement is made on the same units.

In terms of average sampling cost, Aslam et al. (2015)'s proposal certainly leads to an increase in the average sampling cost (this aspect is discussed in their paper).

A new paper considering measurement on the same units is the contribution of Leoni & Costa (2019)

- Use a two stages sampling scheme
- The sample of size *n* is split into two sub-samples: $n_{np_{\chi}} \in n_{\overline{\chi}} = n n_{np_{\chi}}$
- Phase 1: *np_x* chart is built plotting the results of the classification (using a gauge go-no go) of items of the first sub-sample
- Phase 2: If np_x chart signals, then values of the quality characteristic are taken from the units of second sub-sample and \overline{X} is calculated
- If \overline{X} also signals, then the process is declared out-of-control. An adjustment on the process is required, otherwise, the process goes on

The combined $np_x - \overline{X}$ control chart

Figure 4: Combined $np_x - \overline{X}$ chart

• Parameters of the combined $np_x - \overline{X}$ chart:

- np_x chart: warning limits of the device (LWL;UWL), control limit (UCL_{np_x})
- \overline{X} chart: Control limits: $LCL_{\overline{X}}$ and $UCL_{\overline{X}}$
- Objective Function:

$$LWL^{\circ}$$
; UWL° ; $UCL_{np_{X}}^{\circ}$; $UCL_{\overline{X}}^{\circ} = argmin\left(ARL_{1} = \frac{1}{1-\beta}\right)$
subject to $ARL_{0} = \frac{1}{\alpha} = \tau$

ATTENTION: Expression considering only increases in the process mean from μ_o to μ_1 as np_x has good performance for one-sided shift; LWL set at $-\infty$, UWL is searched. Fixed α

$$\alpha = P(Y > UCL_{np_{X}} | n_{np_{X}}, p_{0} \cap \overline{X} > UCL_{\overline{X}} | \mu_{0}, n_{\overline{X}})$$

As these events are independent, then

$$\alpha = \alpha_{np_{X}} \times \alpha_{\overline{X}}$$

 $p_0 = P(X > \mu_0 + k_w \sigma | \mu_0)$, the probability of an item be disapproved.

The power can be obtained as

 $\beta = 1 - P(Y > UCL_{np_X} | n_{np_X}, p_1) \times P(\overline{X} > UCL_{\overline{X}} | \mu_1 = \mu_0 + \delta\sigma, n_{\overline{X}})$

where $p_1 = P(X > \mu_0 + k_w \sigma | \mu_1 = \mu_0 + \delta \sigma)$,

• Some plans - with $ARL_0=370$ and shift $\delta=0.25$

Table 1: Some plans of the combined $\textit{np}_{\rm x}-\overline{X}$ chart : ARL_0=370 and δ = 0.25

	X		np _x	(Combi	ned np _x	$-\overline{X}$
n	ATS	n	ATS	n ₁	n ₂	ASS	ATS
3	106	5	93.95	2	2	2.12	102
				3	2	3.06	93.4
4	88.4	6	84.86	2	3	2.32	87.5
				4	2	4.05	83.9
				3	3	3.27	80.8
				4	3	4.16	73.9
5	75.8	8	70.27	4	3	4.16	73.9
				3	4	3.54	70.9
				5	3	5.1	68.7
				4	4	4.3	65.7
				5	4	5.21	61.7
6	66.1	9	64.91	4	4	4.3	65.7
				3	5	3.9	62.9
				6	3	6.09	63.8
				5	4	5.21	61.7
				4	5	4.54	58.9
				6	4	6.19	57.5
				5	5	5.45	55.7
				6	5	6.33	52.2

• Some plans - comparing AIC, unit cost equal 5.00 for attribute and variable inspection

	X		np×		Comb	ined np	_x -X
n	AIC	n	AIC	n ₁	n ₂	ASS	AIC
3	15	5	25	2	2	2.12	10.60
				3	2	3.06	18.40
4	20	6	30	2	3	2.32	11.62
				4	2	4.05	20.27
				3	3	3.27	16.35
				4	3	4.16	20.81
5	25	8	40	4	3	4.16	20.81
				3	4	3.54	17.70
				5	3	5.10	25.54
				4	4	4.30	21.54
				5	4	5.21	26.08
6	30	9	45	4	4	4.30	21.54
				3	5	3.90	16.92
				6	3	6.09	30.45
				5	4	5.21	26.08
				4	5	4.54	27.70
				6	4	6.19	30.98
				5	5	5.45	27.25
				6	5	6.33	31.70

Table 2: Some plans of the combined $np_x - \overline{X}$ chart

- Features of ATTRIVAR chart:
 - Development of a chart with a similar performance of \overline{X} chart
 - To have a good performance for bilateral shift of mean
 - Low operational cost
 - 2 stages of inspection: by attributes and variables
 - The most of times the decision is taken considering only the results of the attribute inspection
 - A restriction for the proportion of times of variable inspection is included

ATTRIVAR charts by Ho & Aparisi (2016) - 2 possibilities

Figure 5: Inspection Procedure

ATTRIVAR charts proposed by Ho & Aparisi (2016)

ATTRIVAR charts by Ho & Aparisi (2016)

- Parameters of the chart:
 - Device: Discriminant limits LDL, UDL
 - Attribute chart: Control limit CLy; Warning limit w
 - Variable chart: Control limits $UCL_{\overline{X}}$ and $LCL_{\overline{X}}$
- Restrictions:
 - $ARL_0 = \tau$
 - % of time that measurements of X is taken when the process is in-control $\%\overline{X}_{Max} \leq \pi$
- Objective Function: $(LDL^{o}, UDL^{o}, CL_{y}^{o}, w^{o}, UCL_{\overline{X}}^{o}, LCL_{\overline{X}}^{o}) = arg min (ARL_{1})$
- Parameters searched by the genetic algorithm due to the complexity and high dimension

ATTRIVAR charts by Ho & Aparisi (2016)

Chart A optimized for $\delta * = 0.5$, and Chart B for $\delta * = 2$, the in-control ARL = 370, n = 5, and $\bar{X}_{max} = 15\%$.

Table 3: Some plans - ATTRIVAR2

Shift ($\delta *$)	0	0.2	0.5	0.7	1	1.5	2	2.5	3
Chart A, $\delta * = 0.5$	370	206.7	43.5	17.6	6.4	2.7	2.1	1.9	1.6
Chart B, $\delta*=2$	370	278.3	84.7	32.9	9.5	2.6	1.5	1.1	1

ATTRIVAR chart optimized for a small shift, its performance for a large shift is not good compared to the chart optimized for a large shift.

The same behavior occurs in the opposite case.

Therefore, the final user should decide which size shift is more critical for the process, for example, taking into account the process capability.

ATTRIVAR charts by Ho & Aparisi (2016)

Table 4: ATTRIVAR versus \overline{X} , n=3, 10 and $\%\overline{X}_{Max} = 25$; 15; 5

		Sam	ple size $n = 3$		Sample size $n = 10$				
$\%\overline{X}_{Max}$	δ	\overline{X}	ATTRIVAR 1	ATTRIVAR 2	$\%\overline{X}_{Max}$	δ	\overline{X}	ATTRIVAR 1	ATTRIVAR 2
25	0.25	184.06	189.84 (3.1%)	209.53 (13.8%)	25	0.25	73.21	79.55 (8.7%)	92.39 (26.2%)
25	0.5	60.64	61.29 (1.1%)	72.39 (19.4%)	25	0.5	12.82	14.18 (10.6%)	18.11 (41.3%)
25	1	9.76	10.19 (4.4%)	11.49 (17.7%)	25	1	1.77	1.99 (12.4%)	3.04 (71.8%)
25	1.25	4.95	5.16 (4.2%)	6.06 (22.4%)	25	1.25	1.21	1.36 (12.4%)	1.99 (64.5%)
25	1.5	2.91	3 (3.1%)	3.78 (29.9%)	25	1.5	1.04	1.06 (1.9%)	1.63 (56.7%)
25	2	1.47	1.51 (2.7%)	1.98 (34.7%)	25	2	1	1.02 (2%)	1.09 (9%)
15	0.25	184.06	189.84 (3.1%)	209.53 (13.8%)	15	0.25	73.21	77.82 (6.3%)	99.76 (36.3%)
15	0.5	60.64	61.29 (1.1%)	72.39 (19.4%)	15	0.5	12.82	14.31 (11.6%)	20.28 (58.2%)
15	1	9.76	10.19 (4.4%)	11.49 (17.7%)	15	1	1.77	2.01 (13.6%)	3.11 (75.7%)
15	1.25	4.95	5.2 (5.1%)	6.06 (22.4%)	15	1.25	1.21	1.36 (12.4%)	2.07 (71.1%)
15	1.5	2.91	3.03 (4.1%)	3.78 (29.9%)	15	1.5	1.04	1.08 (3.8%)	1.63 (56.7%)
15	2	1.47	1.61 (9.5%)	1.98 (34.7%)	15	2	1	1 (0%)	1.09 (9%)
5	0.25	184.06	192.85 (4.8%)	219.49 (19.2%)	5	0.25	73.21	89.55 (22.3%)	119.62 (63.4%)
5	0.5	60.64	64.78 (6.8%)	78.1 (28.8%)	5	0.5	12.82	19.27 (50.3%)	24.77 (93.2%)
5	1	9.76	11.65 (19.4%)	12.38 (26.8%)	5	1	1.77	2.66 (50.3%)	3.65 (106.2%)
5	1.25	4.95	5.83 (17.8%)	6.49 (31.1%)	5	1.25	1.21	1.76 (45.5%)	2.36 (95%)
5	1.5	2.91	3.36 (15.5%)	3.87 (33%)	5	1.5	1.04	1.3 (25%)	1.66 (59.6%)
5	2	1.47	1.73 (17.7%)	2.07 (40.8%)	5	2	1	1.04 (4%)	1.16 (16%)

Comparison: Inspection Cost for variables = $10 \times$ cost for attributes

Table 5: Ratio of the average inspection costs - ATTRIVAR versus $np_x - \overline{X}$

		n	$p_X - \overline{X}$		ATRIVA	R 1 -Ratio	ATTRIVAR 2 - Ratio		
Cases	n_1	<i>n</i> ₂	ASS	$\%\overline{X}$	$\sqrt[6]{X}_{max} = 5$	$\%\overline{X}_{max} = 15$	$\sqrt[6]{X}_{max} = 5$	$\%\overline{X}_{max} = 15$	
$\delta^* = 0.25; n=3$					$\%\overline{X} = 3.64$	$\%\overline{X} = 7.74$	$\%\overline{X} = 2.38$	$\%\overline{X} = 2.38$	
	2	3	2.32	10.7	61.71	91	86.44	84.16	
	3	2	3.06	0.3	123.43	182	172.88	168.33	
$\delta^* = 1.0; n=5$					$\%\overline{X} = 3.93$	$\%\overline{X} = 7.18$	$\%\overline{X} = 4.47$	$\%\overline{X} = 13.98$	
	4	5	4.54	10.8	60.34	82.03	62.48	223.52	
	5	4	5.21	5.3	97.07	131.96	100.51	198.71	

ATTRIVAR charts by Ho & Aparisi (2016) - Comparing costs

Comparison: Inspection Cost for variables = $10 \times$ cost for attributes and n = 20

% of times for variable inspection in Aslam et al. (2015)'s proposal is always higher than ATTRIVAR 1 and ATTRIVAR 2

Average cost of Aslam et al. (2015)'s proposal is always more expensive than $\ensuremath{\mathsf{ATTRIVAR}}$

Table 6: Ratio of average inspection costs - ATTRIVAR versus Aslam et al. (2015)'s proposal

			0.2	0.4	0.6	1.0
Aslam et al. (2015)		$\%\overline{X}$	71.44	71.44	71.44	71.44
		ARL1	53.31	8.05	2.34	1.03
ATTRIVAR 1	$\%\overline{X}_{Max} = 25\%$	$\%\overline{X}$	10.57	19.43	10.44	11.08
		ARL1	56.97	10.28	3.78	1.28
		Ratio	20.37	31.96	20.20	21.04
	$\%\overline{X}_{Max} = 15\%$	$\%\overline{X}$	10.57	10.61	10.66	10.78
		ARL ₁	56.97	11.89	4.42	1.35
		Ratio	20.37	20.42	20.49	20.64
	$\%\overline{X}_{Max} = 5\%$	$\%\overline{X}$	0.85	1.58	3.34	3.29
		ARL1	145.91	30.06	6.34	1.90
		Ratio	7.65	8.61	10.91	10.85
ATTRIVAR 2	$\%\overline{X}_{Max} = 25\%$	$\sqrt[\infty]{X}$	19.43	19.43	19.43	24.43
		ARL1	79.23	17.43	4.84	1.90
		Ratio	30.69	30.69	30.69	36.90
	$\%\overline{X}_{Max} = 15\%$	$\%\overline{X}$	10.66	10.65	10.66	12.04
		ARL ₁	89.16	17.45	5.46	2.00
		Ratio	19.79	19.78	19.79	21.50
	$\%\overline{X}_{Max} = 5\%$	$\%\overline{X}$	3.67	3.66	4.28	3.61
		ARL1	119.63	24.40	7.68	2.53
		Ratio	11.10	11.09	11.86	11.03

- The aim: to develop a chart to monitor the variability with a better performance than np_{S^2} chart
- MIX S^2 chart: Inspection in two stages
- Stage 1: Attribute np_{S2} chart is used
- Stage 2: If np_{S^2} chart signals, the variable S^2 chart is built
- Decision Criterion: If both charts signal, the process is said out-of-control

Figure 8: Inspection Procedure

Figure 9: An example of MIX S^2 chart

MIX S^2 chart by Ho & Quinino (2016)

To declare out of control: b items firstly classified as disapproved and Sample Variance larger than control limit, fixed α

$$\alpha = P\left(\sum_{y=b}^{a+b-1} \begin{pmatrix} y-1\\b-1 \end{pmatrix} p_0^b (1-p_0)^{y-b} \cap S^2 > CL \middle| \sigma = \sigma_0\right)$$

 p_0 , probability to be classified as disapproved according to the UWL and LWL. As these events are independent

$$\alpha = P\left(\sum_{y=b}^{a+b-1} \begin{pmatrix} y-1\\b-1 \end{pmatrix} p_0^b (1-p_0)^{y-b}\right) P\left(S^2 > CL \middle| \sigma = \sigma_0\right) = \alpha_1 \alpha_2$$

The type II error β : np_{S^2} signals but S^2 chart not or np_{S^2} does not signal

$$\beta = P\left(\sum_{y=b}^{a+b-1} \begin{pmatrix} y-1\\b-1 \end{pmatrix} p_1^b (1-p_1)^{y-b} \right) P\left(S^2 > CL \middle| \sigma = \sigma_1\right) + P\left(\sum_{y=a}^{a+b-1} \begin{pmatrix} y-1\\a-1 \end{pmatrix} p_1^{y-a} (1-p_1)^a \right)$$

MIX S^2 chart proposed by Ho & Quinino (2016)

- Parameters of the chart: # of approved items a; # of disapproved items b; Discriminating limits UDL and LDL
- Objective Function:

$$(a^{\circ}, b^{\circ}, UDL^{\circ}, LDL^{\circ}) = argminARL_1(a, b, UDL, LDL)$$

subject to:

$$ARL_{0} = \frac{1}{\alpha} = 370$$
$$ARL_{1}^{MixS^{2}} < ARL_{1}^{S^{2}}$$
$$\alpha_{2} = \frac{\alpha}{\alpha_{1}}$$
$$ASC^{MixS^{2}} < ASC^{S^{2}}$$

ASC=average sampling cost; α_1 and α_2 , errors of type I of charts at stages 1 and 2; values of α , α_1 and α_2 in the interval [0; 1]

Table 7: Examples of plans of MIX S^2 chart

Plans	а	b	LDL	UDL	α_1	α_2	ARL_1	ANI ₀	ANI_1	n	Cost
А	20	10	8.49	11.51	0.0028	0.9763	2.391	23,011	26.547	2	\$29.12
В	14	4	8.00	12.00	0.0063	0.4266	6.217	14.654	16.229	4	\$20.75
С	5	2	7.72	12.28	0.0072	0.3741	8.889	5.1126	5.5745	2	\$ 6.17
D	6	2	7.48	12.52	0.0028	0.9708	7.773	6.0692	6.4574	2	\$7.25
E	13	9	8.59	11.41	0.0300	0.9025	3.891	15.449	19.133	3	\$21.70

n = sample size for S^2 chart;

shift $\delta = 1.5$;

attribute and variable inspection costs: \$1.00 and \$4.00

Table 8: Best plans of MIX S^2 chart

δ	а	b	LDC	UDC	α_1	α_2	LC	ARL1	ANI ₀	ANI_1	n	ARL ₁ of S ²	Max ASC Mix S ²
1.1	6	3	7.93	12.07	0.00280	0.9810	0.0006	106.616	6.2388	6.3772	2	106.9340	\$6.434
1.3	6	3	7.93	12.07	0.00280	0.9810	0.0006	20.293	6.2388	6.7128	2	21.0908	\$7.014
1.5	6	2	7.48	12.52	0.00278	0.9708	0.0013	7.773	6.0692	6.4574	2	8.02752	\$7.253
1.7	6	2	7.48	12.52	0.00278	0.9708	0.0013	4.108	7.9959	7.5864	2	4.36487	\$8.091
2.0	7	1	6.46	13.54	0.00280	0.9651	0.0019	2.420	6.9972	6.4359	2	2.5153	\$9.000

n=5 for S^2 chart

MIX S^2 chart proposed by Ho & Quinino (2016)

able 9:	Comparing	the plans	MIX S-	chart with	its main	competitor -	economical	scenario

Ca	c _m	а	b	MIX S ²	S ²
1	4	7	1	9	20
1	3.5	7	1	8.58	17.5
1	3	7	1	8.15	15
1	2.5	7	1	7.72	12.5
1	2	7	1	7.29	10
1	1.5	7	1	7	7.5
1	1.45	7	1	7	7.25
1	1.4	7	1	6.999	7
1	1.35	6	2	6.963	6.75
1	1.25	6	2	6.87	6.25

 c_a =inspection cost by attribute; c_m =measurement cost

Alternating variable attribute inspections (AVAI) was proposed by Silva et al. (2022) It is a mixed procedure which employs attribute and variable control charts:

- Step 1: Classify *n_a* items according to the warning limit *z_a* and obtain *Y*, (# of items which quality characteristic value is higher than *z_a*).
- Step 2: If Y > UCL_{n_a} then the process is declared out-of-control, adjusted and to go step 1, otherwise to go to step 3;
- Step 3: Take a sample of size $n_b < n_a$ and calculate $\chi_b^2 = \frac{(n_b 1)S_{n_b}^2}{\sigma_0^2}$, $S_{n_b}^2$, its sample variance. If $\chi_b^2 > UCL_{n_b}$, the process is declared out-of-control, adjusted and go to step 1;
- Step 4: Go to step 1.

AVAI - Comparing

Table 10: ARL values of control charts: S^2 versus $np_{x(l)}^{\sigma^2}$ versus $np_x - S^2$ mixed control chart - $n_{S^2} = 3, 4$.

	ARL ₁					
δ	S^2	$np_{x(I)}^{\sigma^2}$	P1: $np_x - S^2$	S ²	$np_{x(I)}^{\sigma^2}$	P2: $np_x - S^2$
1.0	370.398	370.367	370.299	370.398	370.544	370.392
1.1	132.699	131.388	131.415	117.832	112.876	116.938
1.2	60.785	59.186	59.195	49.85	46.145	48.692
1.3	33.107	31.620	31.626	25.748	23.261	24.719
1.4	20.443	19.149	19.155	15.354	13.65	14.509
1.5	13.856	12.744	12.752	10.178	8.964	9.492
1.6	10.078	9.120	9.13	7.307	6.409	6.744
1.7	7.741	6.907	6.921	5.574	4.891	5.108
1.8	6.206	5.472	5.489	4.459	3.928	4.067
1.9	5.147	4.495	4.517	3.703	3.284	3.37
2.0	4.387	3.803	3.829	3.167	2.835	2.883
Sample	$n_{S^2} = 3$	ASS = 3.002	ASS = 3.503	$n_{S^2} = 4$	ASS = 5.010	ASS = 5.004
Size		$n_a = 4 n_b = 2$	$n_a = 5 n_b = 2$		$n_a = 9 \ n_b = 1$	$n_a = 7 \ n_b = 3$
Estimated	$c_{S^2} = 12$	AIC = 3.00	AIC = 6.51	$c_{S^2} = 16$	AIC = 5.01	AIC = 9.51
Inspection Cost						
UCL	$UCL_{S^2} = 5.915$	$UCL_{n_a} = 0$	$UCL_{n_a} = 0$	$UCL_{S^2} = 4.719$	$UCL_{n_a} = 2$	$UCL_{n_a} = 1$
		$UCL_{n_b} = 0$	$UCL_{n_b} = 11.022$		$UCL_{n_b} = 0$	$UCL_{n_b} = 6.729$
Discriminant	-	$z_a = 3.325$	$z_a = 3.32$	-	$z_a = 2.04$	$z_a = 2.445$
limit		$z_b = 3.31$			$z_b = 3.5$	

- Some contributors of attribute CC to monitor process mean and variability
 - Steiner, S., Geyer, P., and Wesolowsky, G. (1994). Control charts based on grouped data.International Journal of Production Research, 32(1):75–91.
 - Steiner, S., Geyer, P., and Wesolowsky, G. (1996). Shewhart control charts to detect mean and standard deviation shifts based on grouped data. Quality and reliability engineering international, 12:345–353.
 - Stevens, W. L. (1948). Control by gauging. Journal of the Royal Statistical Society, 10(1):54–108.
 - Wu, Z. and Jiao, J. (2008). A control chart for monitoring process mean based on attribute inspection. International Journal of Production Research, 46:4331–4337.
 - Wu, Z., Khoo, M., Shu, L., and Jiang, W. (2009). An np control chart for monitoring the mean of a variable based on an attribute inspection. International Journal of Production Economics, 121:141–147
- List the common points, differences, weakness and strength of these papers

- Find other contributions in the literature related to mix control charts to improve the standard control charts as \overline{X} or S^2 or R
- How to plan attribute or mixed chart to have equal performance (in term of ARL, Sampling Cost) of a "pure" variable chart?

References

- Aslam, M., Azam, M., N, K. & Jun, C. (2015), 'A mixed control chart to monitor the process', *International Journal of Production Research* 53(15), 4684–4693.
- Ho, L. L. & Aparisi, F. (2016), 'Attrivar: Optimized control charts to monitor process mean with lower operational cost', *International Journal of Production Economics* 182, 472–483.
- Ho, L. L. & Quinino, R. C. (2016), 'Combining attribute and variable data to monitor process variability: MIX s² control chart', Int J Adv Manuf Technol 87. DOI 10.1007/s00170-016-8702-5.
- Leoni, R. C. & Costa, A. F. B. (2019), 'The performance of the truncated mixed control chart', *Communications in Statistics-Theory and Methods* 48(17), 4294–4301.
- Sampaio, E., Ho, L. & Medeiros, P. (2013), 'A combined np_xX̄-control chart to monitor the process mean in two-stage sampling', *Quality and Reliability Engineering International* **30**, 1003–1013.
- Silva, L. A., Ho, L. L. & Quinino, R. C. (2022), A mixed control chart to monitor the process variance: A new case using alternating inspections, *in* 'LIV Simpósio Brasileiro de Pesquisa Operacional', SBPO.