Unconstrained Nonlinear Optimization Algorithms

Why study it?
Algorithms for the solution of constrained problems are based on algorithms for the solution of unconstrained problems (penalization methods, determination of search direction, etc.);

$$
\left.\begin{array}{rl}
\text { Basic Principle: } & \begin{array}{l}
\text { Problem with } \\
\text { n variables }
\end{array}
\end{array} \begin{array}{l}
\text { Problem with } \\
\text { a single variable }
\end{array}\right] .
$$

Typical Procedure

- Find \mathbf{s}_{0} at \mathbf{x}_{0} that reduces the objective function
- Find α in the direction of $\mathbf{s} \Rightarrow \mathbf{x}_{0}+\alpha \mathbf{s}_{0}$ (unidimensional search)
- Verify convergence: if satisfied $\Rightarrow \mathbf{x}=\mathbf{x}^{*}$, stop, otherwise $\Rightarrow \mathbf{x}_{i+1}=\mathbf{x}$ and $\mathrm{i}=\mathrm{i}+1$

Unconstrained Nonlinear Optimization Algorithms

Classification\{ $\left\{\begin{array}{l}\text { • Zeroth-Order uses only objective function values. } \\ \text { Used when the function is not differentiable or when the } \\ \text { function is highly nonlinear, and therefore the derivatives } \\ \text { are difficult to obtain with precision. } \\ \text { Ex.: Powell's Conjugate Direction Method } \\ - \text { First-Order employs only the function value and its } \\ \text { gradient }\end{array}\right.$

Zeroth-Order Methods

Used when the function value is obtained with poor precision Determination of derivative (or gradient) values are not reliable.

Powell's Method of Conjugate Directions

Based on the minimization of a quadratic function considering linearly independent Q-conjugate directions. Quadratic function:

$$
\mathrm{f}(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathbf{c}
$$

Q-conjugate directions: $\mathbf{s}_{\mathrm{i}}^{\mathrm{T}} \mathbf{Q} \mathbf{s}_{\mathrm{j}}=0$ for $\mathrm{i} \neq \mathrm{j}$
"If f is minimized along a direction s, then the minimum of f will occur at (or before) the n -th step regardless of the start point, provided rounding errors do not accumulate."

Powell $\boldsymbol{\square}$ convenient method for generating Q-conjugated, linearly independent directions. If the generated directions are not linearly dependents $\boldsymbol{\square}$ convergence to a minimum will not occur.

Powell's Method of Conjugate Directions

Procedure:

1. Minimize f along coordinate directions (univariate search), starting at $\mathbf{x}_{0}{ }^{\mathrm{k}}$ and generating points $\mathbf{x}_{1}{ }^{k}, \ldots, \mathbf{x}_{\mathrm{n}}{ }^{\mathrm{k}}$, where k is the cycle index;
2. After the univariate search is finished, find the index corresponding to the direction in which f presents the greatest reduction, from $\mathbf{x}_{\mathrm{m}-1}{ }^{\mathrm{k}}$ to $\mathbf{x}_{\mathrm{m}}{ }^{\mathrm{k}}$;
3. Calculate the "usual" direction $\mathbf{s}_{\mathrm{p}}^{\mathrm{k}}=\mathbf{x}_{\mathrm{n}}^{\mathrm{k}}-\mathbf{x}_{0}^{\mathrm{k}}$ and find the α-value that minimizes f such that: $\mathbf{x}=\mathbf{x}_{0}^{\mathrm{k}}+\alpha \mathbf{s}_{\mathrm{p}}^{\mathrm{k}}$
4. If

$$
|\alpha|<\left[\frac{\mathrm{f}\left(\mathbf{x}_{0}^{\mathrm{k}}\right)-\mathrm{f}\left(\mathbf{x}_{0}^{\mathrm{k}+1}\right)}{\mathrm{f}\left(\mathbf{x}_{\mathrm{m}-1}^{\mathrm{k}}\right)-\mathrm{f}\left(\mathbf{x}_{\mathrm{m}}^{\mathrm{k}}\right)}\right]^{\frac{1}{2}}
$$

then use the same directions for the next univariate search. If the equation is NOT satisfied, then replace the m-th direction by the usual direction $\mathbf{s}_{\mathrm{p}}{ }^{\mathrm{k}}$
5. Start a new univariate search with the directions obtained in step 4, and repeat steps 2, 3, e 4 until convergence, i.e., $\left\|\mathbf{x}_{k+1}-\mathbf{x}^{k}\right\| \leq \varepsilon$

Powell's Method of Conjugate Directions

Interpretation of the Powell's Method of Conjugate Directions:

Prof. Dr. Emilio C. Nelli Silva

Example

Study problem: Determination of maximal deflection and rotation of the extremity of a beam after the minimization of its total potential energy, modelled using only one cubic finite element.

Finite element formulation:

$$
\left.\begin{array}{l}
\text { Finite element formulation: } \\
\qquad v(\xi)=\left[\begin{array}{lll}
\left(1-3 \xi^{2}+2 \xi^{3}\right) & l\left(\xi-2 \xi^{2}+\xi^{3}\right) & \left(3 \xi^{2}-2 \xi^{3}\right) \\
l\left(-\xi^{2}+\xi^{3}\right)
\end{array}\right]
\end{array}\right]\left\{\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
\theta_{2}
\end{array}\right\}
$$

$$
\Pi=\frac{\mathrm{EI}}{2 l^{3}} \int_{0}^{l}\left(\frac{\mathrm{~d}^{2} \mathrm{v}}{\mathrm{~d} \xi^{2}}\right)^{2} \mathrm{~d} \xi+\mathrm{pv}_{2}
$$

Since the beam is fixed at $\xi=0 \Rightarrow \mathrm{v}_{1}=\theta_{1}=0$ can be replaced in $\mathrm{v}(\xi)$ to give:
$\Pi=\frac{\mathrm{EI}}{2 l^{3}}\left(12 \mathrm{v}_{2}{ }^{2}+2 \theta_{2}{ }^{2} l^{2}-12 \mathrm{v}_{2} \theta_{2} l\right)+\mathrm{pv}_{2}$ and defining: $\mathrm{f}=\frac{2 \Pi l^{3}}{\mathrm{EI}} ; \mathrm{x}_{1}=\mathrm{v}_{2} ; \mathrm{x}_{2}=\theta_{2} l \Rightarrow$

$$
\mathrm{f}=12 \mathrm{x}_{1}{ }^{2}+4 \mathrm{x}_{2}{ }^{2}-12 \mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{x}_{1}
$$

Example

$\begin{array}{ll}\text { Min } \mathrm{f}=12 \mathrm{x}_{1}{ }^{2}-12 \mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}{ }^{2}+2 \mathrm{x}_{1} & \begin{array}{l}\mathbf{x}_{0}^{1}=(-1,-2)^{\mathrm{T}} \text { e } \mathrm{f}\left(\mathbf{x}_{0}^{1}\right)=2 \\ \left(\mathbf{x}^{*}=(-1 / 3,-1 / 2)^{\mathrm{T}} \text { exact solution }\right)\end{array} \\ \text { Solution: } & \end{array}$
Solution:

$$
\begin{aligned}
& \mathbf{s}_{1}^{1}=(1,0)^{\mathrm{T}} \Rightarrow \mathbf{x}_{1}^{1}=\left\{\begin{array}{l}
-1 \\
-2
\end{array}\right\}+\alpha\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-1+\alpha \\
-2
\end{array}\right\} \Rightarrow \mathrm{f}(\alpha)=12(-1+\alpha)^{2}+4(-2)^{2}-12(-1+\alpha)(-2)+ \\
& +2(-1+\alpha) \Rightarrow \operatorname{Min} \Rightarrow \alpha=-1 / 12 \Rightarrow \mathbf{x}_{1}^{1}=\left\{\begin{array}{c}
-13 / 12 \\
-2
\end{array}\right\} \text { and } \mathrm{f}\left(\mathbf{x}_{1}^{1}\right)=1,9166 ; \mathbf{s}_{2}^{1}=(0,1)^{\mathrm{T}} \Rightarrow \mathbf{x}_{2}^{1}=\left\{\begin{array}{c}
-13 / 12 \\
-2
\end{array}\right\}+ \\
& +\alpha\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}=\left\{\begin{array}{c}
-13 / 12 \\
-2+\alpha
\end{array}\right\} \Rightarrow \operatorname{Min} \mathrm{f} \Rightarrow \alpha=3 / 8 \Rightarrow \mathbf{x}_{2}^{1}=\left\{\begin{array}{c}
-13 / 12 \\
-13 / 8
\end{array}\right\} \text { and } \mathrm{f}\left(\mathbf{x}_{2}^{1}\right)=1,3541 \Rightarrow \mathbf{s}_{\mathrm{p}}^{1}=\mathbf{x}_{2}^{1}-\mathbf{x}_{0}^{1}=\left\{\begin{array}{c}
-1 / 12 \\
3 / 8
\end{array}\right\} \\
& \Rightarrow \\
& \Rightarrow \mathbf{x}_{0}^{2}=\left\{\begin{array}{c}
-1 \\
-2
\end{array}\right\}+\alpha\left\{\begin{array}{c}
-1 / 12 \\
3 / 8
\end{array}\right\}=\left\{\begin{array}{c}
-1-\alpha / 12 \\
-2+3 \alpha / 8
\end{array}\right\} \Rightarrow \operatorname{Minf} \Rightarrow \alpha=40 / 49 \Rightarrow \mathbf{x}_{0}^{2}=\left\{\begin{array}{c}
-157 / 147 \\
-83 / 49
\end{array}\right\} \text { and } \mathrm{f}\left(\mathbf{x}_{0}^{2}\right)=1,31972 \\
& |\alpha|=\frac{40}{49}<\left[\frac{2-1,31972}{1,9166-1,3541}\right]^{\frac{1}{2}}
\end{aligned}
$$

Cycle	x_{1}	x_{2}	f
0	-1.0	-2.0	2.0
1	-1.083334	-2.0	1.916667
1	-1.083334	-1.625	1.354167
2	-0.895834	-1.625	0.9322967
2	-0.895834	-1.34375	0.6158854
2	-0.33334	-0.499999	-0.333333

First-Order Methods

Employ objective function values and its derivatives (gradient) relative to the design variables.

First-order methods present linear convergence rate or superlinear,
i.e., considering:

$$
\left\|\mathbf{x}_{\mathrm{k}+1}-\mathbf{x}^{*}\right\| \leq \mathrm{c}_{\mathrm{k}}\left\|\mathbf{x}_{\mathrm{k}}-\mathbf{x}^{*}\right\|^{\mathrm{p}}
$$

the sequence \mathbf{x}_{k} presents:

- linear convergence for \mathbf{x}^{*}, if $\mathrm{p}=1$ and constant c_{k}.
- superlinear convergence for \mathbf{x}^{*}, if $\mathrm{p}=1$ and c_{k} is a sequence that converges to zero.

First-Order Methods

Steepest Descent Method

Solution: $s=-\frac{\nabla f}{\|\nabla \mathrm{f}\|}$ where $\|\quad\|$ is the Eucledian norm
Thus: $\quad \mathbf{x}_{\mathrm{k}+1}=\mathbf{x}_{\mathrm{k}}+\alpha \mathbf{s} \Rightarrow$ one-dimensional (search) optimization
If the function f is quadratic: $\mathrm{f}=\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathrm{c} \Rightarrow \alpha^{*}=-\frac{\left(\mathbf{x}_{\mathrm{k}}{ }^{\mathrm{T}} \mathbf{Q}+\mathbf{b}^{\mathrm{T}}\right) \mathbf{s}}{\mathbf{s}^{\mathrm{T}} \mathbf{Q s}}$
Method's Performance \Rightarrow Conditioning Number (CN) of the matrix \mathbf{Q} :
 ("hemstitching" phenomenon)

First-Order Methods

Interpretation of the Steepest Descent Method:

First-Order Methods

Now, let us see the example: $\mathrm{f}=12 \mathrm{x}_{1}{ }^{2}-12 \mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}{ }^{2}+2 \mathrm{x}_{1}$

But, considering the transformation of variables:
$y_{1}=\left(x_{1}-\frac{1}{2} x_{2}\right) ; y_{2}=\frac{x_{2}}{\sqrt{12}} \Rightarrow$
$\Rightarrow \mathrm{f}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\mathrm{y}_{1}{ }^{2}+\mathrm{y}_{2}{ }^{2}+\frac{1}{6}\left(\mathrm{y}_{1}+\sqrt{3} \mathrm{y}_{2}\right)$ ($\mathrm{CN}=1$)

First-Order Methods

Thus, the method presents a linear rate of convergence without the change of variables. But because it is difficult to find the appropriate transformation $\boldsymbol{\square}$ Conjugate Gradient Method

Conjugate Gradients Method ("Fletcher-Reeves")
Directions $\mathbf{s}_{\mathrm{k}+1}$ and \mathbf{s}_{k} are Q-conjugate: $\Rightarrow \mathbf{s}^{\mathrm{T}}{ }_{\mathrm{k}-1} \mathbf{Q} \mathbf{s}_{\mathrm{k}}=0$
Algorithm:

1. Compute $\mathbf{x}_{\mathrm{k}+1}=\mathbf{x}_{\mathrm{k}}+\alpha_{\mathrm{k}+1} \mathbf{s}_{\mathrm{k}}$ where $\alpha_{\mathrm{k}+1}$ is determined such that $\frac{\mathrm{df}\left(\alpha_{k+1}\right)}{\mathrm{d} \alpha_{\mathrm{k}+1}}=0$
2. $\mathbf{s}_{\mathrm{k}}=\mathbf{g}_{\mathrm{k}}=-\nabla \mathrm{f}\left(\mathbf{x}_{\mathrm{k}}\right)$ if $\mathrm{k}=0$ and $\mathbf{s}_{\mathrm{k}}=\mathbf{g}_{\mathrm{k}}+\beta_{\mathrm{k}} \mathbf{s}_{\mathrm{k}-1}$ if $\mathrm{k}>0$ with

$$
\beta_{\mathrm{k}}=\frac{\mathbf{g}_{\mathrm{k}}{ }^{\mathrm{T}} \mathbf{g}_{\mathrm{k}}}{\mathbf{g}_{\mathrm{k}-1}{ }^{\mathrm{T}} \mathbf{g}_{\mathrm{k}-1}} \text { e } \mathbf{g}_{\mathrm{k}}=-\nabla \mathrm{f}\left(\mathbf{x}_{\mathrm{k}}\right)
$$

3. If $\left\|\mathbf{g}_{k+1}\right\|$ or $\mid f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)$ is sufficiently small, stop.

Otherwise:
4. If $k<n$ go to 1 , or restart.

First-Order Methods

Interpretation of the Conjugate Gradient Method:

Prof. Dr. Emilio C. Nelli Silva

Example

Min $\mathrm{f}=12 \mathrm{x}_{1}{ }^{2}-12 \mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}{ }^{2}+2 \mathrm{x}_{1}$
Solution:

$$
\mathbf{x}_{0}^{T}=(-1,-2) \Rightarrow \nabla \mathrm{f}\left(\mathbf{x}_{0}\right)=\left\{\begin{array}{c}
24 x_{1}-12 x_{2}+2 \\
8 x_{2}-12 x_{1}
\end{array}\right\}_{\mathbf{x}=\mathbf{x}_{0}} \Rightarrow \mathbf{s}_{0}=-\nabla \mathrm{f}\left(\mathbf{x}_{0}\right)=\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\} \Rightarrow \mathbf{x}_{1}
$$

$$
=\left\{\begin{array}{l}
-1 \\
-2
\end{array}\right\}+\alpha_{1}\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\} \Rightarrow
$$

$$
\Rightarrow \mathrm{f}\left(\alpha_{1}\right)=12\left(-1-2 \alpha_{1}\right)^{2}+4\left(-1+4 \alpha_{1}^{2}\right)^{2}-12\left(-1-2 \alpha_{1}\right)\left(-2+4 \alpha_{1}\right)+2\left(-1-2 \alpha_{1}\right)
$$

$$
\Rightarrow \frac{d \mathrm{f}}{d \alpha_{1}}=0 \Rightarrow
$$

$$
\Rightarrow \alpha_{1}=0,048077 \Rightarrow \mathbf{x}_{1}=\left\{\begin{array}{l}
-1,0961 \\
-1,8077
\end{array}\right\} \text { and } \nabla \mathrm{f}\left(\mathbf{x}_{1}\right)=\left\{\begin{array}{l}
-2,6154 \\
-1,3077
\end{array}\right\} \Rightarrow \mathbf{s}_{1}=-\nabla \mathrm{f}\left(\mathbf{x}_{1}\right)+\beta_{1} \mathbf{s}_{0} \Rightarrow
$$

$$
\Rightarrow \beta_{1}=\frac{(-2.6154)^{2}+(-1.3077)^{2}}{(-2)^{2}+(4)^{2}}=0,4275 \Rightarrow \mathbf{s}_{1}=\left\{\begin{array}{l}
-2,6154 \\
-1,3077
\end{array}\right\}+0,4275\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\}
$$

$$
=\left\{\begin{array}{c}
1,76036 \\
3,0178
\end{array}\right\} \text { and }
$$

$$
\text { and } \nabla f\left(\mathbf{x}_{2}\right)=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
-2 \\
4
\end{array}\right\}\left[\begin{array}{cc}
24 & -12 \\
-12 & 8
\end{array}\right]\left\{\begin{array}{c}
1,76036 \\
3,0178
\end{array}\right\} \cong 0
$$

Second Order Methods

Newton's Method

The direction \mathbf{s} is obtained through the solution of the following problem:

$$
\begin{array}{lc}
\begin{array}{lc}
\operatorname{Min} & \nabla \mathrm{f}^{\mathrm{T}} \mathbf{s}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial \mathrm{f}}{\partial \mathrm{x}_{\mathrm{i}}} \\
\mathbf{s} & \\
\text { tal que } & \mathbf{s}^{\mathrm{T}} \mathbf{Q s}=1
\end{array}
\end{array}
$$

Solution: $\mathrm{L}(\mathbf{s}, \lambda)=\nabla \mathrm{f}^{\mathrm{T}} \mathbf{s}+\lambda\left(\mathbf{s}^{\mathrm{T}} \mathbf{Q} \mathbf{s}-1\right) \Rightarrow \frac{\partial \mathrm{L}}{\partial \mathbf{s}}=\nabla \mathrm{f}+2 \lambda \mathbf{Q} \mathbf{s}=0 \Rightarrow$

$$
\Rightarrow \mathbf{s}=-\frac{\mathbf{Q}^{-1} \nabla \mathrm{f}}{2 \lambda} \Rightarrow \mathbf{s}=-\mathbf{Q}^{-1} \nabla \mathrm{f} \Rightarrow \widehat{\mathbf{Q s}=-\nabla \mathrm{f}} \quad \begin{aligned}
& \text { Must be positive } \\
& \text { definite }
\end{aligned}
$$

$$
\Rightarrow \mathbf{x}_{\mathrm{k}+1}=\mathbf{x}_{\mathrm{k}}+\alpha_{\mathrm{k}+1} \mathbf{s}_{\mathrm{k}}
$$

Qs $=-\nabla \mathrm{f}\left\{\begin{array}{l}\cdot \begin{array}{l}\mathrm{n}^{3} \text { operations in the solution } \\ \bullet \frac{\mathrm{n}(\mathrm{n}+1)}{2} \\ \text { ealements must be } \\ \text { calculed to assemble } \mathrm{Q}\end{array} \\ \end{array} \underset{\begin{array}{c}\text { Quasi-Newton } \\ \text { Method }\end{array}}{\text { Prof. Dr. Emilio C. Nelli Silva }}\right.$

Second Order Methods

Quasi-Newton Method

$\underbrace{\nabla \mathrm{f}\left(\mathbf{x}_{\mathrm{k}+1}\right)-\nabla \mathrm{f}\left(\mathbf{x}_{\mathrm{k}}\right)}_{\mathbf{y}_{\mathrm{k}}} \cong \underbrace{\mathbf{Q}\left(\mathbf{x}_{\mathrm{k}+1}-\mathbf{x}_{\mathrm{k}}\right)}_{\substack{\mathbf{A}_{k} \\ \underbrace{}_{\text {approximation }}}} \Rightarrow \mathbf{y}_{\mathrm{k}}=\mathbf{A}_{\mathrm{k}} \mathbf{p}_{\mathrm{k}}$ e $\underbrace{\mathbf{B}_{\mathrm{k}+1} \mathbf{y}_{\mathrm{k}}=\mathbf{p}_{\mathrm{k}}}_{\begin{array}{l}\text { Seccant relation } \\ \text { or Quasi-Newton }\end{array}}$
\mathbf{B}_{k+1} is the approximation of \mathbf{Q}^{-1}. Eventually: $\mathbf{B}_{k+1} \mathbf{A}_{\mathrm{k}}=\mathbf{I}$
\mathbf{A}_{k} and \mathbf{B}_{k} must stay positive definite. After obtaining \mathbf{B}_{k} :

$$
\mathbf{x}_{\mathrm{k}+1}=\mathbf{x}_{\mathrm{k}}-\alpha_{\mathrm{k}+1} \mathbf{s}_{\mathrm{k}} \text { and } \mathbf{s}_{\mathrm{k}}=-\mathbf{B}_{\mathrm{k}} \nabla \mathrm{f}\left(\mathbf{x}_{\mathrm{k}}\right)
$$

BFGS approximation for \mathbf{B}_{k} : $\mathbf{B}_{\mathrm{k}+1}=\left[\mathbf{I}-\frac{\mathbf{p}_{\mathrm{k}} \mathbf{y}_{\mathrm{k}}{ }^{\mathrm{T}}}{\mathbf{p}_{\mathrm{k}}{ }^{\mathrm{T}} \mathbf{y}_{\mathrm{k}}}\right] \mathbf{B}_{\mathrm{k}}\left[\mathbf{I}-\frac{\mathbf{y}_{\mathrm{k}}{ }^{\mathrm{T}} \mathbf{p}_{\mathrm{k}}}{\mathbf{p}_{\mathrm{k}}{ }^{\mathrm{T}} \mathbf{y}_{\mathrm{k}}}\right]+\frac{\mathbf{p}_{\mathrm{k}} \mathbf{p}_{\mathrm{k}}{ }^{\mathrm{T}}}{\mathbf{p}_{\mathrm{k}}{ }^{\mathrm{T}} \mathbf{y}_{\mathrm{k}}}$

Example

Min $\mathrm{f}=12 \mathrm{x}_{1}{ }^{2}-12 \mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}{ }^{2}+2 \mathrm{x}_{1} \quad \mathbf{x}_{0}{ }^{\mathrm{T}}=(-1,-2)$; \quad Solution:
We start with the direction of the "Steepest Descent" Method and $\mathbf{B}_{0}=\mathbf{I}$ (positive definite):
$\mathbf{x}_{1}=\left\{\begin{array}{l}-1.0961 \\ -1.8077\end{array}\right\}$ and $\nabla \mathrm{f}\left(\mathbf{x}_{1}\right)=\left\{\begin{array}{l}-2.6154 \\ -1.3077\end{array}\right\} \Rightarrow \mathbf{p}_{0}=\left\{\begin{array}{l}-1.0961 \\ -1.8077\end{array}\right\}-\left\{\begin{array}{c}-1 \\ -2\end{array}\right\}=\left\{\begin{array}{c}-0.0961 \\ 0.1923\end{array}\right\}$ and because
$s_{0}=-B_{0} \nabla f\left(x_{0}\right)=-\operatorname{I\nabla f}\left(x_{0}\right)=\left\{\begin{array}{c}2 \\ -4\end{array}\right\} \Rightarrow$
$\mathbf{y}_{0}=\left\{\begin{array}{l}-2.6154 \\ -1.3077\end{array}\right\}-\left\{\begin{array}{c}2 \\ -4\end{array}\right\}=\left\{\begin{array}{c}-4.6154 \\ 2.6923\end{array}\right\} \Rightarrow \mathbf{p}_{0} \mathbf{y}_{0}{ }^{\mathrm{T}}=0.96127$ and
$\mathbf{p}_{0}{ }^{\mathrm{T}} \mathbf{y}_{0}=\left\{\begin{array}{c}-0.0961 \\ 0.1923\end{array}\right\}\left\{\begin{array}{ll}-4.6154 & 2.6923\end{array}\right\}=\left[\begin{array}{cc}0.44354 & -0.25873 \\ -0.88754 & 0.51773\end{array}\right] \Rightarrow$
$\Rightarrow \mathbf{B}_{1}$
$=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\frac{1}{0.96127}\left[\begin{array}{cc}0.44354 & -0.25873 \\ -0.88754 & 0.51773\end{array}\right]\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\frac{1}{0.96127}\left[\begin{array}{cc}0.44354 & -0.88754 \\ -0.25873 & 0.51773\end{array}\right]\right)+$
$+\frac{1}{0.96127}\left[\begin{array}{cc}0.00923 & -0.01848 \\ -0.01848 & 0.03698\end{array}\right]=\left[\begin{array}{cc}0.37213 & 0.60225 \\ 0.60225 & 1.10385\end{array}\right] \Rightarrow$
$\mathbf{s}_{1}=-\left[\begin{array}{ll}0.37213 & 0.60225 \\ 0.60225 & 1.10385\end{array}\right]\left\{\begin{array}{l}-2.6154 \\ -1.3077\end{array}\right\}=\left\{\begin{array}{l}1.7608 \\ 3.0186\end{array}\right\} \Rightarrow$
$\mathbf{x}_{2}=\left\{\begin{array}{l}-1.0961 \\ -1.8077\end{array}\right\}+\alpha_{2}\left\{\begin{array}{l}1.7608 \\ 3.0186\end{array}\right\} \Rightarrow \mathbf{x}_{2}=\left\{\begin{array}{c}-0.3333 \\ -0.5\end{array}\right\}$ and $\nabla \mathrm{f}\left(\mathbf{x}_{2}\right) \cong\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$ (convergence)
And it can be verified that: $\mathbf{B}_{2}=\left[\begin{array}{cc}0.1667 & 0.25 \\ 0.25 & 0.5\end{array}\right]=\mathbf{Q}^{-1}$

SCILAB implementation

SCILAB routine to solve unconstrained problems: OPTIM [f,[xopt,[gradopt,[work]]]]=optim(costf,[contr],x0,['sth'],[df0,[mem]], [work],[stop],['in']) solves the problem:
Min $\operatorname{costf}(\mathbf{x})$
\mathbf{x}
Subject to $\mathbf{b}_{\mathbf{i}} \leq \mathbf{x} \leq \mathbf{b}_{\text {s }}$

- costf - function to be minimized
- $\mathrm{x}_{\mathrm{opt}}-$ vector for the optimal solution;
- x_{0} - start guess of x ;
- f - optimal value of the function;
- contr - 'b', $\mathbf{b}_{\mathrm{i}}, \mathbf{b}_{\mathrm{s}}$;
- sth - 'qn' (Quasi-Newton); 'gc' (conjugate gradients); 'nd' (nondifferentiable - zeroth order method);

SCILAB implementation

- mem - number of variables used to approximate the Hessian matrix;
- stop - 'ar' (keyword); 'nap' (maximum number of computations of f); 'iter' (maximum number of allowed iterations); 'epsg' (cutoff in the value of gradient norm); 'epsf' (cutoff in the variation of costf); 'epsx' (vector with cutoff values for \mathbf{x});
- gradopt - costf gradient is supplied;
- work - vector for restart;

Unconstrained Nonlinear Optimization Algorithms

Further considerations:

- Solution of Linear and Nonlinear Sets of Equations:

In the nonlinear structural analysis are obtained the stable and unstable equilibrium positions (if the method does not converge to a local minimum)

- Probabilistic Algorithms:
* search for the global minimum
* powerful tools for problems with discrete variables
* use the process of random search guided by probabilistic decisions.

KKT Optimality Conditions

KKT Optimality Conditions

KKT are necessary conditions, but are not sufficient for optimality
KKT are sufficient if:

- $\mathrm{n}_{\text {active constraints }}=\mathrm{n}_{\text {variables }}$:
n linearly independent directions
$\underbrace{\mathbf{s}^{\mathrm{T} \nabla \mathbf{g}_{j}}=0 \quad \text { only solution: } \mathbf{s}=0}$
n linearly independent equations
- $\mathrm{n}_{\text {active constraints }} \neq \mathrm{n}_{\text {variables }}$: sufficiency condition requires higher order derivatives \square Hessian matrix must be positive definite:

$$
\mathbf{s}^{\mathrm{T}}\left(\nabla^{2} \mathrm{~L}\right) \mathbf{s}>0 \text { for any } \mathbf{s} \text { such that } \mathbf{s}^{\mathrm{T}} \nabla \mathrm{~g}_{\mathrm{j}}=0 \text { (active constraints with } \lambda_{\mathrm{j}}>0 \text {) }
$$

- Convex Problems

Example

 analyzed:

Case $1 \frac{\lambda_{1}-\lambda_{2}}{0-\cdots-\lambda_{3}}$
Case 2 O

Hessian matrix:

 Case $5: 0 \quad 0 \quad-\quad \frac{\partial}{\partial x_{1} \partial x_{2}}=-\lambda_{1}=\frac{\partial L}{\partial x_{2} \partial x_{1}} \quad\left[\begin{array}{l:l}1 & -12 x_{2}\end{array}\right]$
Case $6: 0 \quad \neq 0$
Case $7 \neq 0 \neq 0 \quad \neq 0$ Not possible Prof. Dr. Emilio C. Nelli Silva

Example

Case 1: $\mathrm{x}_{1}=1,826 ; \mathrm{x}_{2}=0 \Rightarrow \mathrm{f}=6,17 \Rightarrow \nabla^{2} L=\left[\begin{array}{cc}-6 \mathrm{x}_{1} & \lambda_{1} \\ \lambda_{1} & -4-12 \mathrm{x}_{2}\end{array}\right] \begin{aligned} & \text { Negative } \\ & \text { definite }\end{aligned} \Rightarrow \begin{aligned} & \text { Maximal } \\ & \text { Point }\end{aligned}$
Case 2: $x_{1}=1 ; x_{2}=10 ; \lambda_{1}=-0,7 ; \lambda_{3}=639,3$ Not a minimum, nor a maximum
Case 3: $\left\{\begin{array}{ll}-3 x_{1}^{2}+10+\lambda_{1} x_{2}=0 & x_{1}=3,847 \\ -4 x_{2}-6 x_{2}^{2}+\lambda_{1} x_{1}=0 \Rightarrow & x_{2}=2,599 \\ \lambda_{1}=13,24 \\ x_{1} x_{2}=10 & f=-73,08\end{array} \Rightarrow \nabla^{2} L=\left[\begin{array}{cc}-23,08 & 13,24 \\ 13,24 & -35,19\end{array}\right]\right.$ ($\begin{array}{l}\text { Negative } \\ \text { definite }\end{array}$
Case 4: $\left\{\begin{array}{l}-3 \mathrm{x}_{1}^{2}+10-\lambda_{2}=0 \\ -4 \mathrm{x}_{2}-6 \mathrm{x}_{2}^{2}=0\end{array} \Rightarrow \begin{array}{cccc}\mathrm{x}_{1}=0 & \mathrm{x}_{2}=0 & \lambda_{2}=10 & \mathrm{f}=-6 \\ \mathrm{x}_{1}=0 & \mathrm{x}_{2}=-2 / 3 & \lambda_{2}=10 & \mathrm{f}=-6,99\end{array} \begin{array}{|c|c|}\substack{\mathrm{T} \\ \text { Not a minimum } \\ \text { N }}\end{array}\right.$
Case 5: $\left\{\begin{array}{l}-3 x_{1}^{2}+10=0 \\ -4 x_{2}-6 x_{2}^{2}-\lambda_{3}=0\end{array} \Rightarrow x_{1}=1,826 \quad x_{2}=10 \quad \lambda_{3}=640 \quad \mathrm{f}=-2194 \Rightarrow \nabla^{2} L \quad \begin{array}{l}\text { Negative } \\ \text { definite }\end{array}\right.$
KKT is satisfied and the
Case 6: $x_{1}=0 ; x_{2}=10 ; \lambda_{2}=10 ; \lambda_{3}=640 ; f=-2206$ number of active constraints = number of design variables

Calculation of Lagrange Multipliers

Important for verification of the KKT conditions of the optimal solution
Let the condition of optimality be: $\nabla \mathrm{f}-\mathbf{N} \lambda=0$
where:

$$
\begin{aligned}
& \text { re: } n_{i j}=\frac{\partial g_{j}}{\partial x_{i}} j=1, \ldots, r \text { (active constraints) } \\
& \quad i=1, \ldots, n \text { (number of design variables) } \\
& r<n \Rightarrow \text { number of unknowns }(\lambda)<\text { number of equations }
\end{aligned}
$$

Solution: Least squares

$$
\begin{aligned}
& \mathrm{u}=\mathbf{N} \lambda-\nabla \mathrm{f} \Rightarrow \operatorname{Min}\|\mathrm{u}\|^{2}=(\mathbf{N} \lambda-\nabla \mathrm{f})^{\mathrm{T}}(\mathbf{N} \lambda-\nabla \mathrm{f}) \Rightarrow \\
& \Rightarrow 2 \mathbf{N}^{\mathrm{T}} \mathbf{N} \lambda-2 \mathbf{N}^{\mathrm{T}} \nabla \mathrm{f}=0 \Rightarrow \lambda=\left(\mathbf{N}^{\mathrm{T}} \mathbf{N}\right)^{-1} \mathbf{N}^{\mathrm{T}} \nabla \mathrm{f}
\end{aligned}
$$

If the stationary condition is satisfied, the solution is exact, therefore:

$$
\begin{aligned}
\mathbf{P} \nabla \mathrm{f}= & 0, \quad \text { where } \mathbf{P}=\mathbf{I}-\mathbf{N}\left(\mathbf{N}^{\mathrm{T}} \mathbf{N}\right)^{-1} \mathbf{N}^{\mathrm{T}} \\
& \mathbf{P}-\text { Projection Matrix }
\end{aligned}
$$

Example

$\mathbf{P} \nabla \mathrm{f}=\left[\mathbf{I}-\mathbf{N}\left(\mathbf{N}^{\mathrm{T}} \mathbf{N}\right)^{-1} \mathbf{N}^{\mathrm{T}}\right] \mathrm{Jf}=0$ And all Lagrange multipliers are positive, but, since $\mathrm{r} \neq \mathrm{n} \Rightarrow$ Hessian matrix must be
Note that: obtained to verify KKT

$$
\nabla \mathrm{f}-\mathbf{N} \lambda=0 \Rightarrow\left\{\begin{array}{l}
1-4 \lambda_{1}=0 \\
1-4 \lambda_{1}=0 \\
1-\lambda_{2}=0
\end{array}\right\} \text { Linearly dependent }
$$

Convex Problems

Convex problem $\boldsymbol{\square}$ Objective function and feasible domain are complex Convex Function

$$
\mathrm{f}\left[\alpha \mathbf{x}_{2}+(1-\alpha) \mathbf{x}_{1}\right] \leq \alpha \mathrm{f}\left(\mathbf{x}_{2}\right)+(1-\alpha) \mathrm{f}\left(\mathbf{x}_{1}\right), \quad 0<\alpha<1 \quad \text { Examples: }
$$

Convex Functions

Funções nem convexas nem côncavas
Convex Function $\boldsymbol{\square}$ Hessian matrix is positive semi-definite; Concave Function \Rightarrow Hessian matrix is negative semi-definite;
A linear function is convex.

Convex Problems

Convex Domain

Let: $\mathbf{w}=\alpha \mathbf{x}_{2}+(1-\alpha) \mathbf{x}_{1}, 0<\alpha<1$ If $\mathbf{w} \subset$ convex domain

Convex domain if $\left\{\begin{array}{l}\text { All inequality constraints are concave } \\ \text { All equality constraints are linear }\end{array}\right.$

Convex Problems

Example of convex problem:

Advantage of convex problems:

- Global optimum
- KKT also become sufficient conditions

The major part of the problems are nonconvex \Rightarrow Approximated by a series of convex problems, for example, linear programming.

Example

Verify if the problem is convex:

$$
\begin{array}{ll}
\hline \operatorname{Min}_{x_{1}, x_{2}} & f=3 x_{1}+\sqrt{3} x_{2} \\
\text { Subject to } & g_{1}=3-\frac{18}{x_{1}}-\frac{6 \sqrt{3}}{x_{2}} \geq 0 \\
& g_{2}=x_{1}-5,73 \geq 0 \\
g_{3}=x_{2}-7,17 \geq 0
\end{array}
$$

$\mathrm{f}, \mathrm{g}_{2}, \mathrm{~g}_{3} \Rightarrow$ Linear functions
Function $\mathrm{g}_{1}:$ Hessian value given by $\mathbf{A}_{1}=\left[\begin{array}{cc}-36 / \mathrm{x}_{1}^{3} & 0 \\ 0 & -12 \sqrt{3} / \mathrm{x}_{2}^{3}\end{array}\right]$
Thus the Hessian matrix is negative definite $\Rightarrow \mathrm{g}_{1}$ is concave

Therefore, the objective function is linear (convex) and the constraints are linear or concave (convex domain) \Rightarrow the problem is convex.

Thus, KKT are sufficient conditions for the minimum.

Ponto Sela ("Saddle Point")

Uma função $\mathrm{F}(\mathbf{x}, \mathbf{y})$ possue ponto "sela" se:
$\mathrm{F}\left(\mathbf{x}^{*}, \mathbf{y}\right) \leq \mathrm{F}\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right) \leq \mathrm{F}\left(\mathbf{x}, \mathbf{y}^{*}\right)$
$\mathrm{F}\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)\left\{\begin{array}{l}\text { mínimo em } \mathbf{x} \\ \text { máximo em } \mathbf{y}\end{array}\right.$
No caso da função
Lagrangeana: $\mathrm{L}\left(\mathbf{x}^{*}, \lambda^{*}\right)$
$\left\{\begin{array}{l}\nabla_{\mathrm{x}} \mathrm{L}\left(\mathbf{x}^{*}, \lambda^{*}\right)=0 \\ \nabla_{\lambda} \mathrm{L}\left(\mathbf{x}^{*}, \lambda^{*}\right)=0\end{array}\right.$ e $\left\{\begin{array}{l}\nabla_{\lambda} \mathrm{L}\left(\mathbf{x}^{*}, \lambda\right) \leq 0 \\ \nabla_{\mathrm{x}} \mathrm{L}\left(\mathbf{x}, \lambda^{*}\right) \geq 0\end{array}\right.$
Solução do Ponto Sela \Rightarrow Problema Min Max:
ou: $\mathrm{L}(\lambda)=\min _{\mathbf{x}} \mathrm{L}(\mathbf{x}, \lambda) \Rightarrow \max _{\lambda} \mathrm{L}(\lambda)=\max _{\lambda} \min _{\mathbf{x}} \mathrm{L}(\mathbf{x}, \lambda)$
$\mathrm{L}(\mathbf{x})=\max _{\lambda} \mathrm{L}(\mathbf{x}, \lambda) \Rightarrow \min _{\mathbf{x}} \mathrm{L}(\mathbf{x})=\min _{\mathbf{x}} \max _{\lambda} \mathrm{L}(\mathbf{x}, \lambda)$
$\max _{\lambda} \min _{\mathbf{x}} \mathrm{L}(\mathbf{x}, \lambda) \equiv \min _{\mathbf{x}} \max _{\lambda} \mathrm{L}(\mathbf{x}, \lambda)$
Prof. Dr. Emilio C. Nelli Silva

Exemplo

Ex.: $\quad \operatorname{Min} \frac{1}{x}$
tal que $x-1 \leq 0$
O Lagrangeano do problema vale:

$$
\mathrm{L}(\mathrm{x}, \lambda)=\frac{1}{\mathrm{x}}+\lambda(\mathrm{x}-1)
$$

$x \geq 0$
Calculando o mínimo em $\mathrm{x}: \quad \nabla_{\mathrm{x}} \mathrm{L}(\mathrm{x}, \lambda)=0 \Rightarrow-\frac{1}{\mathrm{x}^{2}}+\lambda=0 \Rightarrow$
$\Rightarrow \mathrm{x}= \pm \frac{1}{\sqrt{\lambda}}(\operatorname{mas} \mathrm{x} \geq 0) \Rightarrow \mathrm{x}=\frac{1}{\sqrt{\lambda}} \Rightarrow \mathrm{~L}(\lambda)=\sqrt{\lambda}+\lambda\left(\frac{1}{\sqrt{\lambda}}-1\right)=2 \sqrt{\lambda}-\lambda$
Calculando o máximo em λ : $\quad \nabla_{\lambda} L(\lambda)=\frac{1}{\sqrt{\lambda}}-1 \Rightarrow \lambda^{*}=1 \Rightarrow \mathrm{x}^{*}=1$

$$
\text { Ponto "Sela": } \quad \therefore\left(\mathrm{x}^{*}, \lambda^{*}\right)=(1,1)
$$

Os gradientes devem ser contínuos em \mathbf{x} e λ, caso contrário, outra abordagem de solução para o problema Min Max deve ser utilizada.

Example

Plotagem da função Lagrangeana:

Prof. Dr. Emilio C. Nelli Silva

Duality

Primal problem		Dual problem
$\begin{array}{\|cc\|} \hline \operatorname{Min} & \mathrm{f}_{\mathrm{p}}=\mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \mathbf{x} & \\ \text { Subject to } & \mathbf{A x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$	三	$\begin{array}{\|cc\|} \hline \begin{array}{lc} \operatorname{Max} & \mathrm{f}_{\mathrm{D}}=-\lambda^{\mathrm{T}} \mathbf{b} \\ \lambda & \\ \text { Subject to } \mathbf{A}^{\mathrm{T}} \lambda \geq-\mathbf{c} \\ & \lambda \geq \mathbf{0} \end{array} \end{array}$
m constraints n design variables $\mathrm{m}>\mathrm{n}$	$\mathrm{f}_{\mathrm{p} \text { min }}=\mathrm{f}_{\mathrm{D} \text { max }}$	n constraints m design variables $\mathrm{m}>\mathrm{n}$
Proof: $\mathrm{L}(\mathbf{x}, \lambda)=\mathbf{c}^{\mathrm{T}} \mathbf{x}+\lambda^{\mathrm{T}}\{\mathbf{A x}-\mathbf{b}\}$ $L(\lambda)=-\lambda^{\mathrm{T}} \mathbf{b}$ must be	$\begin{aligned} & \nabla_{\mathrm{x}} \mathrm{~L}(\mathbf{x}, \lambda)=\mathbf{c} \\ & \text { ized } \Rightarrow \text { Dual } \end{aligned}$	$\begin{aligned} & \mathrm{T} \lambda \lambda_{0}^{\mathbf{x}^{*} \text { is minimal }} \Rightarrow \mathbf{c x ^ { * }}+\lambda^{\mathrm{T}} \mathbf{A x ^ { * }}= \\ & \text { oblem and: } \quad \mathrm{f}\left(\mathbf{x}^{*}\right)=\mathrm{L} \end{aligned}$

If: $\lambda_{j} \neq 0 \Rightarrow \mathrm{j}^{\text {th }}$ constraint is active in primal problem
$\lambda_{j}=0 \Rightarrow \mathrm{j}^{\text {th }}$ constraint is inactive in primal problem

Example

Quadratic Programming

A problem in Quadratic Programming is defined as:

| Min
 \mathbf{x}
 Subject to $\mathbf{B x}$ $\mathrm{F}(\mathbf{x})=\frac{1}{2}$
 $\mathbf{x} \geq \mathbf{c}$ | Hessian
 Matrix |
| :---: | :---: | | Suppose n design |
| :---: |
| variables |
| and m constraints |

The Lagrangian of the problem is equal to:

$$
\begin{aligned}
& \mathrm{L}(\mathbf{x}, \lambda)=\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\mathbf{b x}+\lambda^{\mathrm{T}}(\mathbf{B} \mathbf{x}-\mathbf{c}) \Rightarrow \nabla_{\mathrm{x}} \mathrm{~L}(\mathbf{x}, \lambda)=\mathbf{A} \mathbf{x}+\mathbf{b}+\mathbf{B}^{\mathrm{T}} \lambda=0 \Rightarrow \\
& \Rightarrow \mathbf{x}=-\mathbf{A}^{-1}\left(\mathbf{b}+\mathbf{B}^{\mathrm{T}} \lambda\right) \Rightarrow L(\lambda)=-\frac{1}{2} \lambda^{\mathrm{T}} \mathbf{D} \lambda-\mathbf{d} \cdot \lambda: \frac{1}{2} \mathbf{b}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{b} \\
& \text { where: } \mathbf{D}=\mathbf{B A}^{-1} \mathbf{B}^{\mathrm{T}} \text { e } \mathbf{d}=\mathbf{c}+\mathbf{B A}^{-1} \mathbf{b} \text { term }
\end{aligned}
$$

Thus, the new problem can be solved using the duality concept:

m design variables
with simple constraints

SCILAB Implementation

SCILAB routine to solve quadratic programming: QUAPRO
[x, lagr, f$]=$ quapro $(\mathrm{Q}, \mathrm{p}, \mathrm{C}, \mathrm{b}, \mathrm{ci}, \mathrm{cs}, \mathrm{mi}, \mathrm{xO})$ solves the problem:

Constrained Nonlinear Optimization Algorithms

Direct Methods

Gradients Projection and Reduced Gradient Methods

1) Initially we consider linear constraints:

The direction \mathbf{s} is obtained after the solution of the problem:

thus:
$\mathbf{N}^{\mathrm{T}} \mathbf{P} \mathbf{w}=\mathbf{N}^{\mathrm{T}}\left[\mathbf{I}-\mathbf{N}\left(\mathbf{N}^{\mathrm{T}} \mathbf{N}\right)^{-1} \mathbf{N}^{\mathrm{T}}\right] \mathbf{w}=0$
Prof. Dr. Emilio C. Nelli Silva

Gradients Projection and Reduced Gradient Methods

Flow diagram of the method:

Verification of the violation of the constraints:

$$
\mathrm{g}_{\mathrm{j}}=\mathbf{a}_{\mathrm{j}}{ }^{\mathrm{T}}\left(\mathbf{x}_{\mathrm{i}}+\alpha \mathbf{s}\right)-\mathrm{b}_{\mathrm{j}} \geq 0 \Rightarrow \alpha \leq-\frac{\left(\mathbf{a}_{\mathrm{j}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{i}}-b_{\mathrm{j}}\right)}{\mathbf{a}_{\mathrm{j}}{ }^{\mathrm{T}} \mathbf{s}}=-\frac{\mathrm{g}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}\right)}{\mathbf{a}_{\mathrm{j}}{ }^{\mathrm{T}} \mathbf{s}}
$$

Valid if $\mathbf{a}_{\mathrm{j}}{ }^{\mathrm{T}} \mathbf{s}<0$, otherwise there is no superior limit of α due to the j -th constraint. The limit value of α is given by:

$$
\bar{\alpha}=\min _{\substack{\alpha_{j}>0 \\ \text { active constraints }}} \alpha_{\mathrm{j}}
$$

Gradients Projection and Reduced Gradient Methods

2) Considering nonlinear constraints

Linearize the constraint around $\mathrm{x}_{\mathrm{i}} \Rightarrow$ one-dimensional search crosses
the boundary of the constraint \Rightarrow correction

α is determined specifying a reduction in the oobjective function:

$$
\begin{aligned}
& \mathrm{f}\left(\mathbf{x}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathbf{x}_{\mathrm{i}+1}\right) \cong \nabla \mathrm{f}^{\mathrm{T}}\left(\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}+1}\right) \approx \gamma \mathrm{f}\left(\mathbf{x}_{\mathrm{i}}\right) \Rightarrow \alpha^{*}=-\frac{\gamma \mathrm{f}\left(\mathbf{x}_{\mathrm{i}}\right)}{\mathbf{s}^{\mathrm{T}} \nabla \mathrm{f}} \Rightarrow \\
& \Rightarrow \mathbf{x}_{\mathrm{i}+1}=\mathbf{x}_{\mathrm{i}}+\alpha^{*} \mathbf{s}-\mathbf{N}\left(\mathbf{N}^{\mathrm{T}} \mathbf{N}\right)^{-1} \mathbf{g}_{\mathrm{a}}
\end{aligned}
$$

Example
$\begin{aligned} & \left.\begin{array}{l} \begin{array}{l} \operatorname{lin}=3 \mathrm{x}_{1}+\sqrt{3} \mathrm{x}_{2} \\ \mathrm{x}_{1}, \mathrm{X}_{2} \\ \text { Subject to } \mathrm{g}_{1}=3-\frac{18}{\mathrm{x}_{1}}-\frac{6 \sqrt{3}}{\mathrm{x}_{2}} \geq 0 \end{array} \\ \begin{array}{l} \mathrm{g}_{2}=\mathrm{x}_{1}-5.73 \geq 0 \end{array} \\ \mathrm{~g}_{3}=\mathrm{x}_{2}-7.17 \geq 0 \end{array}\right\} \Rightarrow \nabla \mathrm{f}=\left\{\begin{array}{c} 3 \\ \sqrt{3} \end{array}\right\} ; \nabla \mathrm{g}_{1}=\left\{\begin{array}{l} 0,1335 \\ 0,2021 \end{array}\right\} ; \nabla \mathrm{g}_{3}=\left\{\begin{array}{l} 0 \\ 1 \end{array}\right\} ; \mathrm{N}=\left[\begin{array}{ll} 0,1335 & 0 \\ 0,2021 & 1 \end{array}\right] \Rightarrow \\ & \mathrm{N}=\left[\begin{array}{l} 0,1335 \\ 0,2021 \end{array}\right] \Rightarrow \mathbf{P}=\left[\begin{array}{ll} 0,6962 & -0,46 \\ -0,46 & 0,3036 \end{array}\right] \Rightarrow \mathbf{s}=0 \Rightarrow \lambda=\left\{\begin{array}{c} 22,47 \\ -2,798 \end{array}\right\} \Rightarrow \text { eliminate } \mathrm{g}_{3} \text {, thus: } \\ & \end{aligned}$ For a 5% reduction in the objective function $(\gamma=0,05)$: $\alpha^{*}=\frac{0,05 \times 47,25}{\left[\begin{array}{cc}-1,29 & 0,854\end{array}\right]\left\{\begin{array}{c}3 \\ \sqrt{3}\end{array}\right\}}=0,988$ Since there if no violation in the constraint \Rightarrow there is no need for correction: $\begin{aligned} & \mathbf{x}_{1}=\mathbf{x}_{0}+\alpha^{*} \mathbf{s}=\left\{\begin{array}{c} 11,61 \\ 7,17 \end{array}\right\}+0,988\left\{\begin{array}{c} -1,29 \\ 0,854 \end{array}\right\}=\left\{\begin{array}{c} 10,34 \\ 8,01 \end{array}\right\} \Rightarrow \mathrm{f}\left(\mathbf{x}_{1}\right)=44,89 \\ & \mathrm{~g}\left(\mathbf{x}_{1}\right)=-0,0382 \Rightarrow \mathrm{~g}_{1} \text { constraint active } \Rightarrow \mathbf{N}=\nabla g_{1}=\left\{\begin{array}{c} 0,1684 \\ 0,1620 \end{array}\right\} \Rightarrow \\ & \Rightarrow \mathbf{P}=\left[\begin{array}{cc} 0,4806 & -0,4996 \\ -0,4996 & 0,5194 \end{array}\right] \Rightarrow \end{aligned}$

Example

$$
\begin{aligned}
& \Rightarrow \mathbf{s}=-\mathbf{P} \nabla \mathrm{f}=\left\{\begin{array}{c}
-0,5764 \\
0,5991
\end{array}\right\} ; \gamma=0,025 \Rightarrow \alpha=-\frac{0,025 \times 44,89}{\left[\begin{array}{ll}
-0,5764 & 0,599
\end{array}\right]\left\{\begin{array}{c}
3 \\
\sqrt{3}
\end{array}\right\}}=1,62 \\
& \text { Since } \mathrm{g}_{1} \text { is violated } \boldsymbol{\square} \text { there is correction } \\
& \mathbf{g}_{\mathrm{a}}=-0,0382 \Rightarrow-\mathbf{N}\left(\mathbf{N}^{\mathrm{T}} \mathbf{N}\right)^{-1} \mathbf{g}_{\mathrm{a}}=\left\{\begin{array}{c}
0,118 \\
0,113
\end{array}\right\} \Rightarrow \mathbf{x}_{2}=\mathbf{x}_{1}+\alpha^{*} \mathbf{s}-\mathbf{N}\left(\mathbf{N}^{\mathrm{T}} \mathbf{N}\right)^{-1} \mathbf{g}_{\mathrm{a}}=\left\{\begin{array}{c}
10,34 \\
8,01
\end{array}\right\}+ \\
& -1,62\left\{\begin{array}{c}
0,576 \\
-0,599
\end{array}\right\}+\left\{\begin{array}{c}
0,118 \\
0,113
\end{array}\right\}=\left\{\begin{array}{c}
9,52 \\
9,10
\end{array}\right\} \Rightarrow f\left(\mathbf{x}_{2}\right)=44,32 ; \mathrm{g}_{1}\left(\mathbf{x}_{2}\right)=-0,0328 \\
& \mathbf{x}^{*}=\left\{\begin{array}{c}
9,464 \\
9,464
\end{array}\right\} \Rightarrow \mathrm{f}\left(\mathbf{x}^{*}\right)=44,78 \quad \text { (Optimal solution) }
\end{aligned}
$$

Direct Methods

The Method of Feasible Directions

Aims to stride away from the boundary of the constraints. Start with the boundary of the feasible domain.

Thus, the s-direction is obtained through the solution of the optimization problem:

- Linear Programming

| tion problem: |
| :--- | :--- |
| Min β
 \mathbf{s}
 Subject to $-\mathbf{s}^{\mathrm{T}} \nabla \mathrm{g}_{\mathrm{j}}+\theta_{\mathrm{j}} \beta \leq 0$
 $\mathbf{s}^{\mathrm{T}} \nabla \mathrm{f}+\beta \leq 0 \quad \theta_{\mathrm{j}} \geq 0$
 $\left\|\mathrm{~s}_{\mathrm{i}}\right\| \leq 1$ |

If $\beta_{\text {max }}=0 \Rightarrow$ KKT conditions are satisfied.

$$
\begin{aligned}
& \mathbf{s}^{\mathrm{T}} \nabla \mathrm{f}+\beta \leq 0 \quad \theta_{\mathrm{j}} \geq 0 \\
& \left|\mathrm{~s}_{\mathrm{i}}\right| \leq 1
\end{aligned}
$$

Example

	Solution: $\mathrm{s}_{1}=-0,6172 ; \mathrm{s}_{2}=1 \Rightarrow$ One-dimensional search: $\Rightarrow \mathbf{x}_{1}=\left\{\begin{array}{c} 11,61 \\ 7,17 \end{array}\right\}+\alpha\left\{\begin{array}{c} -0,6172 \\ 1 \end{array}\right\}$ α is limited by $\mathrm{g}_{1} \Rightarrow \alpha<5,385 \Rightarrow$
$\begin{aligned} & \mathbf{x}_{0}{ }^{\mathrm{T}}=(11,61 ; 7,17) \Rightarrow \mathrm{g}_{1}=0, \mathrm{~g}_{3}=0 \Rightarrow \mathrm{f}=47,25 \Rightarrow \\ & \Rightarrow \nabla \mathrm{f}=\left\{\begin{array}{c} 3 \\ \sqrt{3} \end{array}\right\} ; \nabla \mathrm{g}_{1}=\left\{\begin{array}{l} 0,1335 \\ 0,2021 \end{array}\right\} ; \nabla \mathrm{g}_{3}=\left\{\begin{array}{l} 0 \\ 1 \end{array}\right\} \end{aligned}$	$\Rightarrow \alpha=5,385 \Rightarrow \mathbf{x}_{1}=\left\{\begin{array}{c} 8,29 \\ 12,56 \end{array}\right\} \Rightarrow \mathrm{f}\left(\mathbf{x}_{1}\right)=46,62$ Next iteration (only g g_{1} active):
Selecting $\theta_{1}=\theta_{2}=1$, it is found:	18
Min β $\mathrm{s}_{1}, \mathrm{~s}_{2}$ Subject to $-0,1335 \mathrm{~s}_{1}-0,2021 \mathrm{~s}_{2}+\beta \leq 0$ $-\mathrm{s}_{2}+\beta \leq 0$	$\nabla \mathrm{g}_{1}=\left\{\begin{array}{c} -\frac{\mathrm{x}_{1}{ }^{2}}{} \\ -\frac{6 \sqrt{3}}{\mathrm{x}_{2}{ }^{2}} \end{array}\right\}=\left\{\begin{array}{l} 0,2619 \\ 0,0659 \end{array}\right\} ;$
$3 \mathrm{~s}_{1}+\sqrt{3} \mathrm{~s}_{2}+\beta \leq 0$ $-1 \leq \mathrm{s}_{1} \leq 1$	$\nabla \mathrm{f}=\left\{\begin{array}{c} 3 \\ 3 \sqrt{3} \end{array}\right\}$
$-1 \leq \mathrm{s}_{2} \leq 1$	Prof. Dr. Emilio C. Nelli Silva

Example	
Min $\mathrm{s}_{1}, \mathrm{~s}_{2}$ Subject to $-0,2619 \mathrm{~s}_{1}+\sqrt{3} \mathrm{~s}_{2}+\beta \leq 0$ $-1 \leq \mathrm{s}_{1} \leq 1$ $-1 \leq \mathrm{s}_{2} \leq 1$ Solution: $\mathrm{s}_{1}=0,5512 ; \mathrm{s}_{2}=-1 \Rightarrow$ One dimensional search: $\Rightarrow \mathbf{x}_{2}=\left\{\begin{array}{c} 8,29 \\ 12,56 \end{array}\right\}+\alpha\left\{\begin{array}{c} 0,5512 \\ -1 \end{array}\right\}$ α is limited by $\mathrm{g}_{1} \quad \Rightarrow \alpha<4,957 \Rightarrow$ $\begin{gathered} \Rightarrow \alpha=4,957 \Rightarrow \mathbf{x}_{2}=\left\{\begin{array}{c} 11,02 \\ 7,60 \end{array}\right\} \Rightarrow \mathrm{f}\left(\mathbf{x}_{2}\right)=46,22 \\ \mathbf{x}^{*}=\left\{\begin{array}{c} 9,464 \\ 9,464 \end{array}\right\} \Rightarrow \mathrm{f}\left(\mathbf{x}^{*}\right)=44,78 \end{gathered}$ (Optimal Solution)	 Prof. Dr. Emilio C. Nelli Silva

