Aula 8: Aplicações de Urysohn/Tietze

Universidade de São Paulo

São Carlos - SP, Brasil

 1^o Semestre de 2023 - Curso de Topologia

lembrando ...

Definição 1

Dizemos que um espaço topológico (X,τ) é T_1 se, e somente se, para quaisquer $x,y\in X$ distintos, existir A aberto tal que $x\in A$ e $y\notin A$.

Proposição 2

 (X, τ) é T_1 se, e somente se, para todo $x \in X, \{x\}$ é fechado.

Definição 3

Dizemos que (X,τ) é T_4 se, para quaisquer $F,G\subset X$ fechados disjuntos, existirem A,B abertos disjuntos tais que $F\subset A,G\subset B$. Se, além disso, (X,τ) é T_1 , dizemos que (X,τ) é espaço normal.

Lembrar: Aula 4, Exercício 3. Se (X, τ) é T_4 e F é um fechado contido num aberto V, então existe um aberto W tal que $F \subset W \subset \overline{W} \subset V$ (note que isto é, na verdade, equivalente a ser T_4).

Extensões

Vimos na aula passada . . .

Teorema 4 (Lema de Urysohn)

Seja (X, τ) espaço topológico. Então (X, τ) é T_4 se, e somente se, para todo $F, G \subset X$ fechados disjuntos, existe $f: X \to [0,1]$ continua tal que $f(F) = \{0\}$ e $f(G) = \{1\}$.

Teorema 5 (de Tietze)

Sejam (X,τ) espaço T_4 , $F\subset X$ fechado e $f:F\to\mathbb{R}$ uma função contínua. Então existe $\tilde{f}:X\to\mathbb{R}$ extensão contínua de f.

Com Urysohn e Tietze, vamos discutir quando certos espaços são normais (+ simples).

Definição 6

Sejam (X,d) espaço métrico e $A,B\subset X$ conjuntos não vazios. Definimos $d(A,B)=\inf\{d(a,b):a\in A,b\in B\}$. No caso $A=\{a\}$, denotamos d(A,B)=d(a,B) (analogamente para $B=\{b\}$).

Exemplo 7

Sejam (X,d) espaço métrico e $A \subset X$ um conjunto não vazio. Então, a função $f: X \to \mathbb{R}$, dada por f(x) = d(x,A) é contínua.

Demonstração. Seja $a \in A$ e sejam $x, y \in X$. Temos que $d(x, a) \le d(x, y) + d(y, a)$. Logo $d(x, A) \le d(x, y) + d(y, A)$. Assim

$$d(x,A)-d(y,A)\leq d(x,y)$$

Analogamente, temos

$$d(y,A)-d(x,A)\leq d(y,x)$$

Portanto,
$$|f(x) - f(y)| = |d(x, A) - d(y, A)| \le d(x, y) \quad \forall x, y \in X$$

Com isso, temos que, dado $\varepsilon > 0$, para $x, y \in X$, temos que $d(x, y) < \varepsilon$ implica que $|f(x) - f(y)| < \varepsilon$. O que mostra que tal função é uniformemente contínua e, portanto, contínua.

Corolário 8

Seja (X, d) um espaço métrico. Então, (X, d) é normal.

Demonstração. Note que T_1 é imediato (já feito). Sejam $F, G \subset X$ fechados disjuntos.

Considere a função $f: X \rightarrow [0,1]$ dada por

$$f(x) = \frac{d(x,F)}{d(x,F) + d(x,G)}.$$

Note que f é como no Lema de Urysohn e portanto temos o resultado.

Plano de Niemytski - Exercício 13 da Aula 4

Considere $X = \{(x, y) : x, y \in \mathbb{R}, y \ge 0\}$ com a topologia de forma que:

- (i) Se (x, y) é tal que y > 0, então uma vizinhança básica de (x, y) é da forma de uma bola aberta centrada em (x, y) que não intercepta o eixo x, isto é $B_{\varepsilon}((x, y))$ com $0 < \varepsilon < y$;
- (ii) Para os pontos da forma (x,0), uma vizinhança de tal ponto é da forma de uma bola aberta contida em $\{(a,b):b>0\}$ e que tangencie o eixo x no ponto (x,0) (inclua o ponto em tal vizinhança). Ou seja, $B_y((x,y)) \cup \{(x,0)\}$ onde $B_r((x,y))$ é a bola com a métrica usual do \mathbb{R}^2 .

Exemplo 9

Considere (X, τ) como o plano de Niemytski. Vamos mostrar que tal espaço não é normal.

Faremos isso de duas maneiras (ambas usam um argumento de cardinalidade).

Por ser T_1 , afirmar que X não é normal equivale a afirmar que X não é T_4 .

Suponha, por absurdo, que X seja T_4 .

Note primeiramente que $R = \mathbb{R} \times \{0\} = \{(x,0) : x \in \mathbb{R}\}$ é fechado em X e, como R é discreto, qualquer subconjunto $F \subset R$ é fechado em R e, portanto, também é fechado em X.

Note que F e $R \setminus F$ são disjuntos e fechados em X.

Vamos agora terminar de duas maneiras diferentes:

Solução 1: Aplicando diretamente o definição de T_4 , para cada $F \subset R$, existem abertos (em X) A(F) e B(F) disjuntos tais que $F \subset A(F)$ e $R \setminus F \subset B(F)$.

Vamos mostrar que dados $F \neq G$ subconjuntos de R,então $A(F) \neq A(G)$.

Sejam $F, G \subset R$ com $F \neq G$.

Sem perda de generalidade, suponha $F \setminus G \neq \emptyset$.

Como $F \setminus G = F \cap (R \setminus G)$, segue que $((R \setminus G) \cap F) \subset (B(G) \cap A(F)) \neq \emptyset$, mas como $A(G) \cap B(G) = \emptyset$, temos necessariamente $A(F) \neq A(G)$.

Seja D denso enumerável em X. Defina $A'(F) = A(F) \cap D$ e $B'(F) = B(F) \cap D$. Por argumentação análoga à anterior, vemos que se $F \neq G$, então $A'(F) \neq A'(G)$.

Assim, obtemos $\varphi: \mathcal{P}(R) \to \mathcal{P}(D)$ dada por $\varphi(F) = A'(F)$, uma função injetora, o que é absurdo, uma vez que $|\mathcal{P}(R)| = |\mathcal{P}(\mathbb{R})| > |\mathcal{P}(D)| = |\mathcal{P}(N)| = |\mathbb{R}|$.

Solução 2: Aplicando o Teorema de Tietze , temos que, para cada $F \subset R$, existe $f_F : X \to \mathbb{R}$ contínua tal que $f_F(F) = \{0\}$ e $f_F(R \setminus F) = \{1\}$.

Note que, se $F \neq G$, então $f_F \neq f_G$.

Logo, temos uma quantidade maior ou igual que $|\mathcal{P}(\mathbb{R})|$ de funções contínuas saindo de X e chegando em \mathbb{R} .

Por outro lado, seja $D \subset X$ denso enumerável (vimos no exercício).

Então existem $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$ funções (contínuas ou não) saindo de D e chegando em \mathbb{R} .

Logo, pela Proposição 2 - Aula 6, existem, no máximo $|\mathbb{R}|$ funções contínuas saindo de X e chegando em \mathbb{R} .

Como $|\mathcal{P}(\mathbb{R})| > |\mathbb{R}|$, temos uma contradição.

Exercícios

- 1. Seja (X, d) espaço métrico. Sejam $F \subset X$ fechado. Mostre que, dado $x \in X$, d(x, F) = 0 se, e somente se, $x \in F$.
- 2. Prove o seguinte caso particular do Lema de Jones: Seja (X, τ) espaço topológico separável. Se existe $D \subset X$ discreto fechado tal que $|D| = \mathfrak{c}$ (cardinalidade do contínuo), então (X, τ) não é T_4 .
- 3. Este é um roteiro para mostrar que todo espaço regular enumerável X é zero-dimensional.
 - (a) Primeiramente, relembre que todo enumerável regular é normal.
 - (b) Dados $x \in X$ e V aberto tal que $x \in V$, note que existe $f: X \to [0,1]$ contínua tal que f(x) = 0 e $f(X \setminus V) = \{1\}$.
 - (c) Como f(X) é enumerável, existe $a \in [0,1]$ tal que $a \notin f(X)$. Note que $f^{-1}([0,a]) = f^{-1}([0,a])$
 - (d) Conclua que existe um aberto fechado W tal que $x \in W \subset V$. Note que isso é suficiente para o que queremos.

