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Resampling Methods.

The resampling method is tied to the Monte-Carlo
simulation, in which researchers “make up” data and
draw conclusions based on many possible scenario.
The fundamental difference between Monte Carlo sim-
ulation and resampling is that in the former data could
be totally hypothetical, while in the latter the simu-
lation must be based upon some real data.

1. Bootstrap.

2. Jackknife.

3. Cross-validation.

4. Randomization exact test. Also known as the
permutation test.
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1. Bootstrap. 2. Jackknife. 3. Cross-validation.
4. Permutation test.

Bootstrap means that one available sample given rise
to many others by resampling. While the original
objective of cross-validation is to verify replicability
of resultas and that of Jackknife is to detect outliers.

The principles of cross-validation, Jackknife, and boot-
strap are very similar, but bootstrap overshadows the
others for it is a more thorough procedure in the
sense that it draws many more sub-samples then the
others. Through simulations Fan and Wang (1996)
found that the bootstrap technique provides less bi-
ased and more consistent results than the Jackknife
method does. Nevertheless, Jackknife is still useful in
EDA for assessing how each sub-sample affects the
model.
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Resampling Methods.

In probability:

cdf F (x) =⇒ parameter of interest θ = s(F )

In statistics: given a sample y1, . . . , yn

cdf F̂ (x) =⇒ parameter of interest θ̂ = s(F̂ ), s.e.(θ̂)

How to estimate standard error s.e.(θ̂) when we have
no the exact analytic formula?

We can use the bootstrap method. The bootstrap
method “consider” an observed sample x1, . . . , xn, as
an total “population”, i.e. the population cdf for
bootstrap is empirical cdf F̂ .
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Bootstrap: parametric non-parametric.

A bootstrap resampling can be executed in two forms:
parametric and non-parametric.

• Non-parametric bootstrap: The sampling is
based on the empirical cdf F̂ . Sampling from
a data (with reposition).

• Parametric bootstrap: The sampling is based
on cdf F (θ̂).
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Bootstrap simulation.

Observed data:

2.4, 1.5, 3.7, 1.9, 2.5 =⇒ θ̂ = s(y) = ȳ = 2.40

Bootstrap samples:

1.5, 1.9, 1.5, 2.4, 3.7 =⇒ θ̂∗(1) = 2.20

1.9, 3.7, 2.4, 2.4, 1.5 =⇒ θ̂∗(2) = 2.38

2.4, 1.9, 2.5, 2.4, 3.7 =⇒ θ̂∗(3) = 2.58

...

3.7, 1.9, 3.7, 2.5, 1.5 =⇒ θ̂∗(1) = 2.66
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Bootstrap standard error.

From bootstrap sampling we can estimate any aspect
of the distribution of θ̂ = s(y) (which is any quantity
computed from the data y = (y1, . . . , yn), for example
its standard error is

s.e.b.(θ̂) =
( 1

B − 1

B∑
b=1

(
θ̂∗(b)− θ̂∗(·)

)2
)1/2

where θ̂∗(b) is the bootstrap replication of s(y) and

θ̂∗(·) =
1

B

B∑
b=1

θ̂∗(b).
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Jackknife.

In some sense the bootstrap method is a generaliza-
tion of the method jackknife, in the sense that the
resampling is made randomly and not deterministi-
cally as in jackknife “leave-one-out”.
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Jackknife.

1. We have a sample y = (y1, . . . , yn) and estimator
θ̂ = s(y).

2. Target: estimate the bias and standard error of
the estimator.

3. The leave-one-out observation samples

y(i) = (y1, . . . , yi−1, yi+1, . . . , yn),

for i = 1, . . . , n are called jackknife samples.

4. Jackknife estimators are θ̂(i) = s(y(i)).
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Jackknife bias-reduction. Quenouille bias.

The bias of θ̂ = s(y) is defined as

biasJ(θ̂) = (n− 1)
(
θ̂(·) − θ̂

)
,

where θ̂(·) is the average of Jackknife estimators θ̂(i)

θ̂(·) =
1

n

n∑
i=1

θ̂(i).

This leads to a bias-reduced jackknife estimator of
parameter θ

θ̂J = θ̂ − biasJ(θ̂) = nθ̂ − (n− 1)θ̂(·)
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Jackknife bias-reduction. Quenouille bias.

Why it works? In general the estimators are the
maximum-likelihood estimators, and the expectation
En := EF θ̂(X1, . . . , Xn) can be represented as

En = EF θ̂(F ) = θ(F ) +
a1(F )

n
+
a2(F )

n2
+ o

( 1

n2

)
where a1, a2 do not depend on n, but usually are un-
known in practice. Note that for any i

En−1 = θ(F )+
a1(F )

n− 1
+

a2(F )

(n− 1)2
+o
( 1

(n− 1)2

)
= EF θ̂(·).

Remember

θ̂(·) =
1

n

n∑
i=1

θ̂(i).
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Jackknife bias-reduction. Quenouille bias.

Thus

EF(θ̂J) = EF(nθ̂ − (n− 1)θ̂(·)) = nEn − (n− 1)En−1

= θ(F )−
a2(F )

n(n− 1)
+ a3(F )

( 1

n2
−

1

(n− 1)2

)
+ . . .

The bias of θ̂J is of the order O(1/n2) comparing with
original which is of the order O(1/n).
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Jackknife bias-reduction. Example.

Consider estimator of mean θ̂ = ȳ and θ̂(·) = ȳ, thus

biasJ(θ̂) = (n− 1)
(
θ̂(·) − θ̂

)
= 0.
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Jackknife bias-reduction. Example.

Let θ(F ) be variance θ(F ) =
∫

(x − EF(X))2dF and
θ̂ =

∑n
i=1(yi − ȳ)2/n. The simple calculations provide

biasJ(θ̂) = (n− 1)
(
θ̂(·) − θ̂

)
= −

1

n(n− 1)

n∑
i=1

(yi − ȳ)2

providing

θ̂J = θ̂− biasJ(θ̂) = nθ̂− (n− 1)θ̂(·) =
1

n− 1

n∑
i=1

(yi− ȳ)2

In this case En = θ − θ/n, and a1(F ) = −θ, ai(F ) = 0
for all i > 1.
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Jackknife standard error.

[Ef] Tukey (1958) suggested how the recomputed
statistics θ̂(i) could also provide a nonparametric esti-
mate of variance. Let

VarF(θ̂) = EF

(
θ̂(X1, . . . , Xn)− EF θ̂

)2
.

The Tukey’s jackknife standard deviation estimation
is

s.d.j.(θ̂) =
(n− 1

n

n∑
i=1

(
θ̂(i) − θ̂(·)

)2
)1/2
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Bootstrap bias-reduction.

Let θ̂ be a consistent estimator, but biased. Target:
to reduce the bias of the estimator.

The bias of θ̂ is the systematic error bias = EF θ̂ − θ.
Em general the bias depends on the unknown param-
eter θ, because why we cannot to have θ̂ − bias.

Consider the following bootstrap bias correction

θ̂B = θ̂ − ˆbias.

where
ˆbias = ˆEF θ̂ − θ̂ = θ̂∗(·) − θ̂,

where θ̂∗(·) is the average of bootstrap estimators, i.e.

θ̂∗(·) =
1

B

B∑
b=1

θ̂∗b .
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Bootstrap bias-reduction.

Thus

θ̂B = θ̂ − ˆbias = 2θ̂ − θ̂∗(·)

In terms of asymptotic behaviors, the jackknife and
traditional (linearization) estimators are usually first
order asymptotically equivalent. Some limited empir-
ical results show that the jackknife variance estimator
is less biased but more variable than the linearization
estimator.
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Bootstrap hypotheses testing.

• Set the two hypotheses.

• Choose a test statistic T that can discriminate between
the two hypotheses. We do not care that our statistic has
a known distribution under the null hypothesis.

• Calculate the observed value tobs of the statistic for the
sample.

• Generate B samples from the distribution implied by the
null hypothesis.

• For each sample calculate the value t(i) of the statistic,
i = 1, . . . , B.

• Find the proportion of times the sampled values are more
extreme than the observed.

• Accept or reject according to the significance level.
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Bootstrap hypotheses testing.

Suppose two samples x = (x1, . . . , xn) and y = (y1, . . . , ym). We
wish to test the hypothesis that the mean of two populations
are equal, i.e.

H : µx = µy vs A : µx 6= µy

Use as a test statistic T = x̄− ȳ.

Under the null hypothesis a good estimate of the population
distribution is the combined sample z = (x1, . . . , xn, y1, . . . , ym)

For each of the bootstrap sample calculate T ∗
(i)

, i = 1, . . . , B.

Estimate the p-value of the test as

p̂ =
1

B

B∑
i=1

1(T ∗(i) ≥ tobs)

Other test statistics are applicable, as for example t-statistics.
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Failure of bootstrap.

• Small data sets (because empirical distribution is not good
approximation of F ).

• Infinite moments.

• Dependences structure (time series, spatial problems). Boot-
strap is based on the assumption of independence.

• Dirty data: if outliers exist in our sample, clearly we we
do not sample from a good estimate of F and we add
variability in our estimates.

• Unsmooth quantities: there are plenty of theoretical results
that relate the success of bootstrap with the smoothness
of the functional under consideration.

• Multivariate data: when the dimensions of the problem are
large, then empirical distribution become less good as an
estimate of F . This may cause problems.
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Choice of B.

The choice of B depends on

• Computer availability (efficiency).

• Type of the problem: while B = 1000 suffices
for estimating standard errors, perhaps t is not
enough for confidence interval.

• Complexity of the problem.
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Randomization test.

• Also called permutation test, randomization ex-
act test, exact test.

• Introduced by Fisher and Pitman in the 1930s.

• Usually require only a few weak assumptions.

– underlying distributions are symmetric;

– the alternatives are shifts in value.
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Steps of randomization test.

• Choose a test statistics which will distinguish the
hypothesis from the alternative.

• Compute the test statistic for the original set
(labeling) of the observations.

• Compute the test statistic for all possible rear-
rangements (permutations) of the observations.

• Obtain the permutation distribution of test statis-
tic.

• Make a decision: reject the hull hypothesis if the
value of the test statistic for the original labeling
(original data) is an extreme value in the permu-
tation distribution of the statistic. Otherwise,
accept the null hypothesis.
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The number of permutations.

A B C D E F
121 118 110 34 12 22

How many permutations exists?

(6

3

)
= 20(52

18

)
= 4.27× 1013
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Bootstrap. Theoretical questions [CL, p.5].

Let T (·) be a functional of interest, for example estimator of a
parameter. We are interested in estimation of T (F ), where F
is population distribution. Let Fn be an empirical distribution
based on sample x = (x1, . . . , xn). Bootstrap:

1. generate a sample x∗ = (x∗1, . . . , x
∗
n) with replacement from

the empirical distribution Fn for the data (boostrap sam-
ple);

2. compute T (F ∗n) the bootstrap estimate of T (F ). This is
a replacement of the original sample x with a bootstrap
sample x∗ and the bootstrap estimate of T (F ) in place of
the sample estimate of T (F );

3. M times repeat steps 1 and 2 where M is large, say 100000.
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Bootstrap. Theoretical questions [CL, p.5].

Now a very important thing to remember is that with the Monte
Carlo approximation to the bootstrap, there are two sources of
error:

1. the Monte Carlo approximation to the bootstrap distribu-
tion, which can be made as small as you like by making M
large;

2. the approximation of the bootstrap distribution F ∗n to the
population distribution F .

If T (F ∗n) converges to T (F ) as n→∞, then bootstrapping works.
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Bootstrap. Theoretical questions [CL, p.5].

“If T (F ∗n) converges to T (F ) as n → ∞, then bootstrapping
works. It is nice that this works out often, but it is not guar-
anteed. We know by a theorem called the Glivenko-Cantelli
theorem that Fn converges to F uniformly. Often, we know that
the sample estimate is consistent (as is the case for the sample
mean). So, (1) T (Fn) converges to T (F ) as n → ∞. But this
is dependent on smoothness conditions on the functional T . So
we also need (2) T (F ∗n) − T (Fn) to tend to 0 as n → ∞. In
proving that bootstrapping works (i.e., the bootstrap estimate
is consistent for the population parameter), probability theorists
needed to verify (1) and (2). One approach that is commonly
used is by verifying that smoothness conditions are satisfied for
expansions like the Edgeworth and Cornish-Fisher expansions.
Then, these expansions are used to prove the limit theorems.”
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by Efron (1979) and Bickel and Freedman (1981). 
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The following problem is from the Bootstrap the- 
ory of Efron (1979) (see also Bickel and Freedman 
(1981) for central limit theorem, etc.). 

Let X I, X2,...  be i . i .d . r .v ,  with EI XII < o0, 
E X~ = #. Given a realization of X = (Xi, X 2 . . . .  ) 
and integers n and m, construct Y~,i, i = 1, 2, . . . .  rn 
as i.i.d, r.v. with (conditional) distribution 
P * ( Y , , . i = X j ) =  1/n  for l < j ~ n .  (P*  denotes 
conditional distribution given X.) The problem is 
to find conditions to ensure 

1 ~ y ~ i _ ~ #  asn ,  r n ~ o o  (1) 
m i=! 

where the convergence mode has to be specified. 
More specifically, we seek conditions on the 

growth rate of m with n and the moments of X~ to 
ensure that 

1 ~ yni..4 ~ a s n ~ o o  (2) 
m i s l  

* Work done while visiting Department of Mathematics and 
Statistics, Carleton University, Ottawa, Ontario, Canada, 
during Summer 1981. 

in probability as well as with probability 1. 
In what follows we write m = k,,; for ~ > 0, 

n ~ Z +, let 

(J I ) i = 1  
(3) 

where the right-hand side is a conditional proba- 
bility given the initial segment X~'---(X i, X 2, . . . .  
An) of the infinite sequence (X/), and 

- l ~ x i .  
n 1 

Thus p,,(e) is an r.v. We seek conditions for 

Y' .p~(e)< oo with probability 1. (4) 
n 

This implies (2) by the (conditional) Borel-Cantelli  
and the fact that Xn -* # a.s. We  get a handle on 
p,,(e) using some results of Kurtz (1972) which we 
quote below. 

0167-7152/83/0000-0000/$03.00 © 1983 North-Holland 147 
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Theorem 1. I f  l im r a p - "  > 0 for  some p > 1 as m,  
n --* oo, then 

1 m 
- -  ~ Y , . , ~ g  a.s. a s m , n - - * o o .  
m . 

Theorem 2. I f  l im m n -  p > 0 for  some fl > 0 as m,  
n ~ oo and  F I X  1 -  gl e < oo for  some 0 > i l  such 
that Off > 1, then 

l ~ Y ' , . i ~ g  a.s. 
m 1 

as m , n ~ oo. 

It is wor th  no t ing  that  if we are only  interested 
in convergence  in probabi l i ty  in (1), then  no  growth  
condi t ions  on  (k ' , )  will be required except  that  
k', --, oo. T o  see this it is enough  to show that  

1 " --*0 a s n ~ o o .  nk: E ( ix j -  R',l ̂  P 
1 

Since . ~ , - g - - - ,  0 a.s. as n ~ oo, we have for all 
large n ~ IX,, - #1 < 1, 

n 

k n )  ¢'+1 E (Ix,- L I  ^ 
1 

a + l  ]~ IXj- /~ t  ~+' +nk. G ' , ( k ' , -  1), 
IX~-ttl< k,,+ 1 

where 

and  
p 

k , G ' , ( k ' , -  1)--*0.  

This  will be done  by showing that  their expecta-  
t ions go to zero. Clearly, 

(l t E nk~ Y" IXJ -/t['~+~ = 
I X , - ~ l < k . +  1 

_ 1 ( * , , + ' x ~ + ,  d F ( x )  
k .  ~ "0 

where F ( x )  = P(IXj - ~1 ~< x )  

- k---~ "0 k', + 1 x d F ( x )  ~ 0 

LDC T ,  since f x  d F ( x )  < by oo.  

Also,  

E k ' , G ' , ( k ' , -  1) = k ' ,P(IX, - gl > k ' , )  ---, 0 
a s  n ---~ ~ .  

In  bo th  estimates above we only use the fact 
that  k', ---, oo. The  rate of g rowth  is irrelevant. 

As po in ted  out  in Bickel and  F reedman  (1981), 
this convergence in probabi l i ty  can be establ ished 
us ing the Vasserstein's d~ metr ic  and a Mal lows 
type  inequality.  

nG',(x) = # ( j :  1 ~ j  ¢ n, IXj -  t'l > x) .  References 

So it suffices to show that  
n 

1 E I x j - ~ 1  ~+l p - * 0  
nk~ j = ! 

I~- - t t l<  k,,+ 1 

Efron, B. (1979), Bootstrap methods: Another look at the 
jackknife, Ann. Statist. 7, 1-26. 

Bickel, P.J. and D. Freedman (1981), Same asymptotic theory 
for the Bootstrap, Ann. Statist. 9, 1196-1217. 

Kurtz, T.G. (1972), Inequalities for laws of large numbers, Ann. 
Math. Statist. 43, 1874-1883. 
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