GENEOUS LINEAR

jg. 1 AB = BA, then e4e” = ¢4 and o4 = pea

13, Let an operator A: R* — R~ leave invariant a subspace E C R* (that is,
Az € E forall z € E). Show that e4 also leaves E invariant.

14, Show that if || T — I'|| is sufficiently small, then there is an operator S such

that ¢¥ = T. (Hint: Expand log(1 + z) in a Taylor series.) To what extent
is S unique?

15. Show that there 1s no real 2 X 2 matrix S such that 5 = [~} _%].

4. Homogeneous Linear Systems

Let A be an operator on R*. In this section we shall express solutions to the
equation:
(1) ¥ = Az

in terms of exponentials of operators.
Consider the map R — L(R") which to ¢ € R assigns the operator et4. Since
L(R") is identified with R, it makes sense to speak of the derivative of this map.

Proposition

d
?d—te“ = Aet4 = e¢'4A.
In other words, the derivative of the operator-valued function e'4 is another
operator-valued function Ae!4. This means the composition of e*4 with A ; the order
of composition does not matter. One can think of A and e'4 as matrices, in which

case Ae'4 is their product.

Proof of the proposition.
p(tHRA _ otd

d
—et4 = lim
h=0 h

elAehA —_ etA

= lim
h0 h
el |
= ¢'4 lim ( )
h—0 h
= ¢'44;

that the last, limit equals A follows from the series definition of e*4. Note that A
Commutes with each term of the series for e'4, hence with et4. This proves

€ proposition.
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We can now solve equation (1). We recall from Chapter 1 that the gener,) Sol

tion of the scalar equation
z = ar (a € R)

= z(0).

The same is true where z, a, and k are allowed. to be c?mplex numbers. (Chapter 3)
These results are special cases of the following, Whlc.h can be cons1dere.d a3 the
fundamental theorem of linear differential equations with constant coefficients

is
z(t) = ke';

Theorem Let A be an operator on R*. Then the solution of the tnitial value prople,

(1) 2z = Az, z(0) = K € R7,
18
(2) etAK’

and there are no other solutions.

Proof. The preceding lemma shows that

d d
2 (ot4 = (2 o4
dt(e K) (dte )K

= Ae*4K;

since 4K = K, it follows that (2) is a solution of (1’). To see that there are no
other solutions, let z(¢) be any solution of (1’) and put

The y(t) = e~t4z(t).

, d
v - (5 ) 2(0) + a1

= —deaz(t) + etz (1)
= (=4 + A)z()
= 0.

Therefore y(t) is a constant. Se

tti =
proof of the theorem, ting ¢ = 0 shows ¥(t) = K. This completes the

As an example we compute the general solutio
(3)

n of the two-dimensional syste™
:z:{ = axl,

’
Ty = bxl + axz,
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§4-
here & b are constants. In matrix notation this is
g =Az; A= ¢ 07
b of %= (71, 22).
The solution with initial value K = (K, K,) € R? is

etdK

etd = ets [1 0]'
th 1

K = (e“Ki, e (tbKy + K»)).
Thus the solution to (3) satisfying
n(0) =K;, (00) =K,

In gection 3 we saw that

Thus

xl(t) = GtaKl,
z2(t) = et(bK1 + K»).

A0
FIG. A. Saddle: B = [0 ], A<0<ap
n

91




5 LINEAR SYSTEMS AND EXPONENTIALS qp on

. -
AT

Y

ential of any 2 X 2 matrix (g

92
ect,l()n 3

ute the expon

i - know how to compuv .
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licit solutions we can also ain important qua]itativ?")‘

the eigenvalues of A. We consider e,
e
I

Without finding €xP
Ogt

formation about the solutions from
important special cases.

Case I. A has real eigenvaiues
times the differential equation) 18

suitable change of coordinates T =

alues of opposite signs. In this case the origiy
called a saddle. As we saw in Chapter gor %
Py, the equation becomes ) aftey,

y' = By)
AN 0
0 »
ye) plane the phase portrait looks like Fig. A on p. 91.

B=PAP“=[ ] A <0<

In the (yl)
Case II. All eigenvalues have negals o
: gative real parts. This Im .
a sink. It has the characteristic property that portant case is cally

limz(t) = 0

t—»o0

: . ) -

FIG,
B. FOCl_[s: B — A0
0 *:I’ A <O
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A

X2

A0
FIG. C. Ncde: B = [0 ],)\ <up<O.
m

If A is diagonalizable, the solutions
z(t) = Py(t)

are of the form with y(¢) as above and P € L(R?); clearly, z(f) -0 as t = «.
The phase portrait for these subcases looks like Fig. B if the eigenvalues are
equal (a focus) and like Fig. C if they are unequal (a node).
If the eigenvalues are negative but A is not diagonalizable, there is a change

of coordinates z = Py (see Chapter 6) giving the equivalent equation
y’ = By,

where

A0
B=P‘1AP=[ :l, A<O.
1 A

We have already solved such an equation; the solutions are
n(t) = Kie,
ya(t) = Kue® + Kite®,

Which tend to 0 as ¢ tends to . The phase portrait looks like Fig. D (an émproper
Node),

If the eigenvalues are a =+ ib, a < 0 we can change coordinates as in Chapter 4
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AO
FIG. D. Improper node: B = [l )\:I, A <O

to obtain the equivalent system

—-b
y’ — By, B = [a ].
b a

From Section 3 we find

5 [cos tb —sin tb]
e =gto| .
sin tb cos tb

FIG. E. Spiral sing. g _ [a _b] b>0>a
b alf .

.
""“—\-——-_I ————
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Therefore the general solution is expressed in y-coordinates as
y(t) = e“(Kicostb — K, sin th, K, cos tb + K, sin tb).
Gince | costb| < 1 and [sinth| < 1, and ¢ < i), it follows that

lim y(¢) = 0.

t-»00

Ifb > 0, the pl}ase portrait consists of counterclockwise spirals tending to 0 (Fig.
E), and clockwise spirals tending to 0 if b < 0.

Case II1. All eigenvalues have positive real part. In this case, called a source, we
have
lim|z(t) | = « and lim |z(¢) | = 0.
t-> t->—c0
A proof similar to that of Case II can be given; the details are left to the reader.
The phase portraits are like Figs. B-E with the arrows reversed.

Case IV. The eigenvalues are pure imaginary. This is called a center. It is charac-

terized by the property that all solutions are periodic with the same period. To see
this, change coordinates to obtain the equivalent equation

F o B_[o —b]
y = Y, - b 0

= [cos tb —sin tb]
" Lsintd  costb]

2w\ _
y<t + —b—> = y(1).

We know that

0 —b
FIG. F, Center: B = b0 ,b>0.
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Sink spirals |0 Detsg
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Tr< O, Det >0 A<gplr;r<0 A<O,Tr >0 A=0
?

Centers

Saddles
Det <O

FIG. G

The phase portrait in the y-coordinates consists of concentric circles. In the origin
z-coordinates the orbits may be ellipses as in Fig. F. (If b < 0, the arrows poiy

clockwise.)
Figure G summarizes the geometric information about the phase portrait of

z’ = Az that can be deduced from the characteristic polynomial of 4. We write
this polynomial as
A — (TrA)\ + Det A.

The discriminant A is defined to be

A= (TrA)? — 4Det A.
The eigenvalues are

3 (Tr 4 + 1/4).

Thus real eigenvalues correspond to the case A > 0; the eigenvalues have negativ®
real part when Tr A < 0; and so on. The

The geometric interpretation of 2’ = Az is as follows (compare Chapter - 0
map R*» — R" which sends z into Az is'a vector field on R". Given a point oD
R*, there is a unique curve  — ¢*4K which starts at K at time zero, andisé SOI'u t2he
of (1). (We interpret ¢ as time.) The tangent vector to this curve at & time #
vector Az(k) of the vector field at the point of the curve z(f). —

We may think of points of R» flowing simultaneously along these solution €
The position of a point z € R gt time ¢ is denoted by

¢:(z) = etdy,
Thus for each ¢ € R we have g map

#:R*>R (1€ R)
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n by

give
¢:(z) = et4z.

The collection of. maps {é} . is called the flow corresponding to the differential

equation (1). This flow has the basic property

¢'+l = ¢‘ ° ¢ "
which 18 just another way of writing

(e+0)A — Lsd, tA.
€ e*“et4;

this is proved in the proposition in Section 2. The flow is called linear because each

map ¢::R* — R is a linear map. In Chapter 8 we shall define more general nonlinear

flows.
The phase po.rtralts' discussed above give a good visualization of the correspond-
ing flows. Imagine points of the plane all moving at once along the curves in the

direction of the arrows. (The origin stays put.)

PROBLEM S

1. Find the general solution to each of the following systems:

! —

() {x=2x—y (b) {:v—2x—y

y =2y y=z+2y
T =y = —2z
() {, d T
y = ) (¥ =2—2
2=y — 2
¥ =y—+z
() (¥ =z
Z2=0

find the solutions satisfying each of the

[

In (a), (b), and (c) of Problem 1,
following initial conditions:
(8) z(0) =1,y(0) = =2  (b) z(0) =0,4(0) = =2;

(e) z(0) =0,y(0) =0.

3. Let A: R» — R» be an operator that leaves a subspace E C R* invariant.
Let z: R — R» be a solution of o' = Az. If 2(k) € E for some t, € R, show

that z(t) € E for all ¢t € R.
1 Suppose 4 € L(R") has a real eigenvalue X <0. Then the equation 2’ = Az
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10.

11.
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has at least one nontrivial solution z(t) such that

limz(t) = 0.

-0

Let A € L(R?) and suppose = Az has a nontrivial periodic solution,.u(t):
this means u(t + p) = u(f) for some p > 0. Prove that every solution is
periodic, with the same period p.

If 4: R — R= is a nontrivial solution of 2’ = Az, then

2wl = o G 4w

|u]

Supply the details of Case II in the text.

Classify and sketch the phase portraits of planar differential equations =’ =
Az, A € L(R?), where A has zero as an eigenvalue.

For each of the following matrices A consider the corresponding differential

equation ' = Az. Decide whether the origin is a sink, source, saddle, or none
q

of these. Identify in each case those vectors  such that lim,, ., z(t) = 0, where
z(t) is the solution with z(0) = u:

@[5 L] @l of]

@ [55] @[5 7]

Which values (if any) of the parameter k in the following matrices makes the
origin a sink for the corresponding differential equation z’ = Ax?

o [p 2] @ [p ]

Ck? 1
(c) :I 0 -1 0
10 &k (d)

Let ¢.: R* = R? be the flow corresponding to the equation z/ = Az, (That
is, t — ¢:(z) is the solution passing through z at ¢ = 0.) Fix r > 0, and show
that ¢, is a linear map of R? — R?. Then show that ¢, preserves area if and only
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12.

13.

14.

15.
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if TrA = 0, and that in this case the origin is not a sink or a source. (Hint:
An operator 1s area-preserving if and only if the determinant is +1.)

Describe in words the phase portraits of 2/ = Az for

(2 07 2 07

(®) L0 2. (b) 0 1]
3 1 07 B 07

(0 4=]4 o @ A=_1 q

Suppose A is an n X n matrix with » distinct eigenvalues and the real part of
every eigenvalue is less than some negative number «. Show that for every
solution to 2’ = Az, there exists {, > 0 such that

|x(t)|<e‘°‘ if &> t.
Let T be an invertible operator on R*, n odd. Then 2/ = Tz has a nonperiodic
solution.

Let A = [ I] have nonreal eigenvalues. Then b 0. The nontrivial solutions
curves to 2’ = Ax are spirals or ellipses that are oriented clockwise if b > 0
and counterclockwise if b < 0. (Hint: Consider the sign of

d
= T tan (z.(t) /z1(t)).)

A Nonhomogeneous Equation

We consider a nonhomogeneous nonautonomous linear differential equation

(1)

Here A is an operator on R*

¢ = Az + B(t).

and B: R = R~ is a continuous map. This equation is

called nonkomogeneous because of the term B(?) which prevents (1) from being

strictly linear; the fact that the right side of (1) depends explicitly on ¢ makes it

nonautonomous. It is difficult to interpret solutions geometrically.
We look for a solution having the form

(2)

z(t) = e'4f(t),

}Vhere f: R =R~ is some differentiable curve. (This method of solution is called
Variation of constants,” perhaps because if B(t) =0, f() .is a constant.) Every
301ut..10n can in fact be written in this form since et4 is invertible.

iferentiation of (2) using the Leibniz rule yields

o' () = Aeaf(t) + ¢f (1)



