_

1. A componente zonal da equação de Navier-Stokes pode ser escrita assim: $\frac{Du}{Dt} = \frac{1}{\rho} \frac{\partial p}{\partial x} + fv - 2\Omega \cos(\theta)w + A_x \frac{\partial^2 u}{\partial x^2} + A_y \frac{\partial^2 u}{\partial y^2} + A_z \frac{\partial^2 u}{\partial z^2}$, onde os A_i representam a viscosidade turbulenta. O argumento de Reynolds para estimar o valor dos A_i foi de que a escala dos termos **viscosos** deve ser similar à escala dos termos **não-lineares**. Use este argumento (i.e.: análise de escala) para mostrar que $A_z << A_x$.

10

Resposta:

Termos não lineares são da forma $u\frac{\partial u}{\partial x}$, cuja escala é $\frac{U^2}{L}$.

Termos viscosos horizontais são da forma $A_x\frac{\partial^2 u}{\partial x^2}$, cuja escala é $A_x\frac{U}{L^2}\simeq\frac{U^2}{L}$ \therefore $A_x\sim UL$.

Termos viscosos verticais são da forma $A_z\frac{\partial^2 u}{\partial z^2}$, cuja escala é $A_z\frac{U}{H^2}\simeq\frac{U^2}{L}$ \therefore $A_z\sim U\frac{H^2}{L}\Rightarrow A_z\simeq\frac{H^2}{L^2}A_x$. Se H=5 km e L=5000 km, $A_z\simeq 10^{-6}A_x$.

2. Mostre que num modelo geostrófico com fluido homogêneo as isolinhas de $\psi,~\eta$ e p' não se cruzam.

15

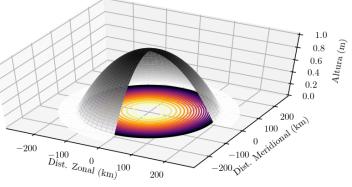
Resposta:

... ctrl-c, ctrl-v ...

Partindo da geostrofia em coords. retangulares: $u=-\frac{1}{f\rho}\frac{\partial p'}{\partial y}, v=\frac{1}{f\rho}\frac{\partial p'}{\partial x}$ e integrando a hidrostática: $\rho g=-\frac{\partial p}{\partial z}$ em z, obtenho $p'=\rho g\eta$ que substituo nas eqs. do momentum: $u=-\frac{g}{f}\frac{\partial \eta}{\partial y}, v=\frac{g}{f}\frac{\partial \eta}{\partial x}$. Por fim, basta a definição de linhas de corrente $u=-\frac{\partial \psi}{\partial y}$ e $v=\frac{\partial \psi}{\partial x}$ para notarmos que os três casos se reduzem à forma $u=-C_{[\psi,\,\eta,p']}\frac{\partial [\psi,\,\eta,p']}{\partial y}$ e $v=C_{[\psi,\,\eta,p']}\frac{\partial [\psi,\,\eta,p']}{\partial x}$ onde C_i é uma constante positiva. Dessa forma, contornos desses 3 escalares não se cruzam, são "paralelos".

3. A ideia central deste problema é entender porque algumas estruturas se propagam sozinhas no oceano. Considere um vórtice cuja anomalia da altura η tem perfil parabólico, como o da Figura. η é razoavelmente bem representado, num dado instante,

pela superfície em tons de cinza descrita por: $\eta(r < R) = 1 - \left(\frac{r}{R}\right)^2; \ \text{e} \ \eta(r >= R) = 0. \ \text{Os contornos internos são linhas de corrente circulares. Para simplificar o problema, assuma o seguinte:}$



10

5

5

15

- R constante, i.e.: simetria radial;
- profundidade *H* constante, i.e.: fundo plano;
- densidade ρ_0 constante, i.e.: fluido homogêneo;
- vortic. planetária $f = 2\Omega \sin \theta$;
- centro do vórtice em $\theta = 30^{\circ}$ S.
- (a) Assumindo equilíbrio geostrófico, obtenha $u_r(\eta)$ e $v_{\phi}(\eta)$. **Roteiro:** Substitua η e derive para obter $v_{\phi}(r)$.

Resposta:

Como ψ forma círculos, $u_r=0$. Integrando a eq. hidrostática e substituindo $p'=\rho'g\eta$, obtemos $v_\phi=-\frac{g}{f}\frac{\partial\eta}{\partial r}$. Substituindo η e derivando em $r,v_\phi=\frac{g}{fR^2}\frac{\partial r^2}{\partial r}=\frac{2g}{fR^2}r$

(b) Esse vórtice é (aproximadamente) irrotacional ou de corpo sólido?

Resposta:

É aproximadamente de corpo sólido pois v_{ϕ} é diretamente proporcional a r. Aproximadamente por causa do f variável.

(c) Calcule w_z .

Resposta:

 $u_r = 0$ e v_ϕ independe de θ , portanto o divergente horizontal é nulo, o que implica que w_z é constante. Como w_z é zero no fundo, é zero em todo o domínio.

(d) Para que direção o vórtice se propaga? **Roteiro:** Calcule o fluxo zonal de massa nas metades norte F_{xN} e sul F_{xS} do vórtice. Fluxo de massa é a integral do momentum na área da seção, por exemplo, $F_{xN} = \int_0^R \int_H^0 \rho_0 v_\phi \, dz dr$. Para facilitar as contas vamos assumir que o centro de massa na região Norte (Sul) fica sobre 29°S (31°S) sendo $\sin(-29^\circ) = -0.485$ e $\sin(-31^\circ) = -0.515$.

Resposta:

$$\begin{split} F_{xN} &= \rho_0 \int_0^R \int_H^0 v_\phi dz dr \text{ mas } v_\phi \text{ independe de } z, \text{portanto} \\ F_{xN} &= H \rho_0 \int_0^R v_\phi dr = \left. H \rho_0 \frac{g r^2}{f R^2} \right|_0^R = \left. \frac{H \rho_0 g}{f} \right. \\ F_{xS} &= H \rho_0 \int_R^0 v_\phi dr = \left. - H \rho_0 \frac{g r^2}{f R^2} \right|_0^R = \left. - \frac{H \rho_0 g}{f} \right. \end{split}$$

¹Dica: Não substitua os valores, estes números estão aqui para te ajudar a argumentar.

Os fluxos são **quase** iguais e opostos. Digo quase pois 1/f é ligeiramente diferente no norte e no sul, ou seja $|\sin(-29^\circ)^{-1}| \gtrsim |\sin(-31^\circ)^{-1}|$, o lado norte domina e leva o cento de massa para oeste.

(e) A sua resposta anterior mudaria se assumíssemos plano f? E plano β ?

10

Resposta:

No plano f o vórtice não se propaga pois o fluxo é igual dos dois lados. No plano β ele se propagará para oeste pois f no lado norte continua sendo maior em módulo do que no lado sul por causa do fator $\beta_0 y$.

Regra da cadeia: $(f \circ g)' = (f' \circ g)g'$, regra do quociente $\left(\frac{g}{h}\right)' = \frac{g'h - gh'}{h^2}$.

•
$$\vec{\nabla} \cdot \vec{V} = \frac{1}{r} \frac{\partial (r \ u_r)}{\partial r} + \frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial w_z}{\partial z}$$
.

•
$$\rho g = -\frac{\partial p}{\partial z}$$

•
$$fv = \frac{1}{\rho_0} \frac{\partial p'}{\partial x}$$
, e $-fu = \frac{1}{\rho_0} \frac{\partial p'}{\partial y}$

•
$$u = -\frac{\partial \psi}{\partial y}$$
 e $v = \frac{\partial \psi}{\partial x}$