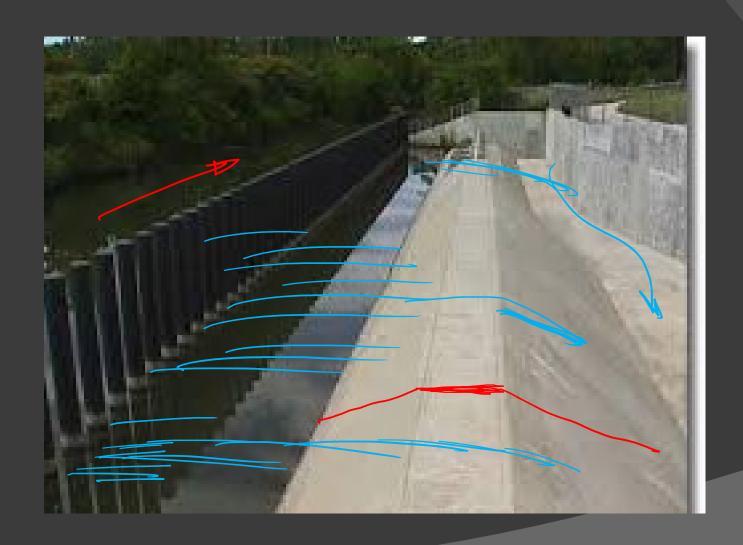
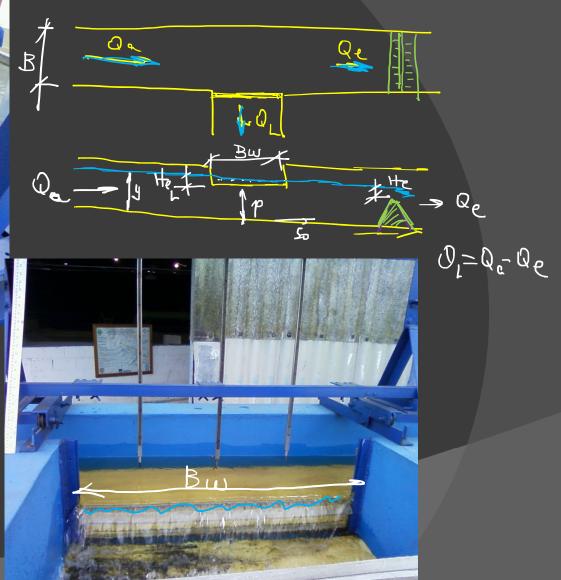
Estruturas Hidráulicas I

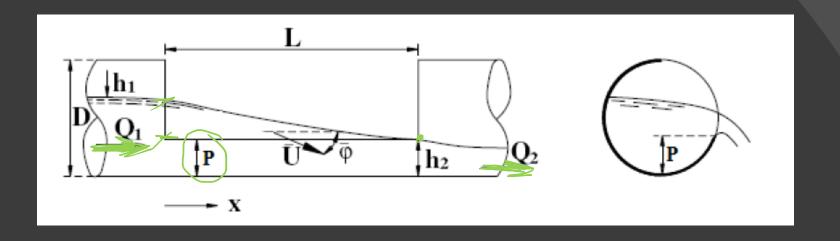

Aula 4

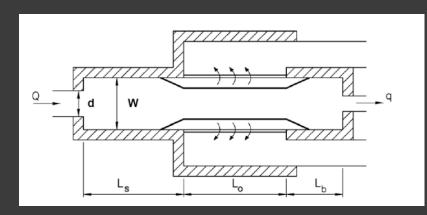
Extravasores 3

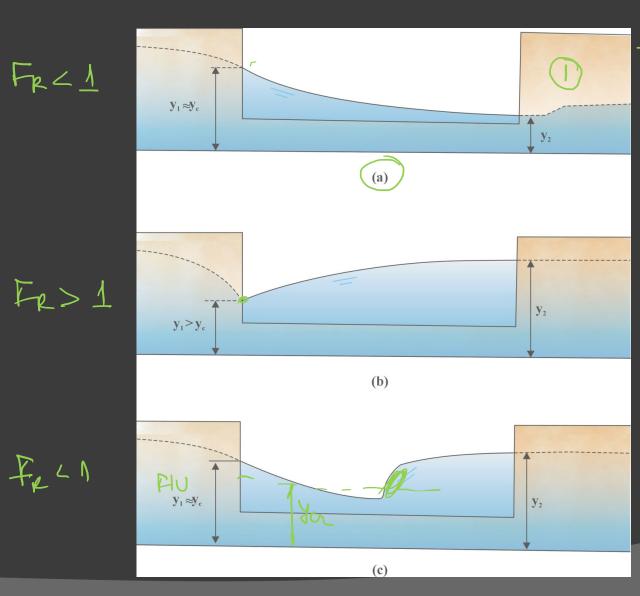
Vertedouros e Soleiras Laterais

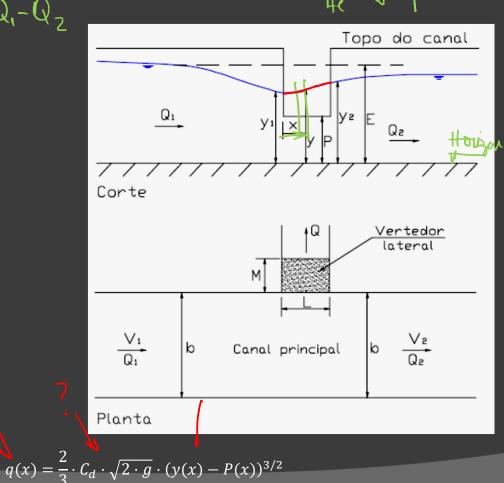
Rodolfo Scarati (scarati@usp.br)


Soleiras Laterais






NO,5 - Cruoger NO,42 - Tulipa NO,250 - Sol hat


Tor
$$f_R = \frac{1}{\sqrt{3}} \le 1$$

Flu $f_R = -1$

$$Q_w = f(y(x))$$

Equações Básicas

Hipsteres

- O escoamento é unidirecional;
- O efeito da não-uniformidade da distribuição de velocidades no canal principal é corrigido pelo coeficiente de Coriolis (α);
 - A distribuição de pressões no escoamento é hidrostática;
- O efeito do arrastamento de ar não é considerado;
- A superfície de água é horizontal em qualquer seção transversal do canal, mas considera-se a variação com a distância ao longo do canal;
- Não há perda de energia do escoamento ao longo da soleira.

$$\frac{dy}{dx} = \frac{S_0 - S_F - \alpha \cdot \frac{q \cdot QC_F}{g \cdot A^2}}{1 - \frac{\alpha \cdot b \cdot Q_{C_F}^2}{g \cdot A^2}}$$

$$\frac{H_{y=}}{dx} = \frac{3}{2} \cdot \frac{A}{5} \cdot C(\Phi) \left[\sqrt{\frac{(\Phi_{0}) - y \cdot (y - P)^{3}}{(2 \cdot E_{0} - 3 \cdot y)}} \right]$$

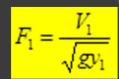
Vazão e Cd (de Marchi, 1929)

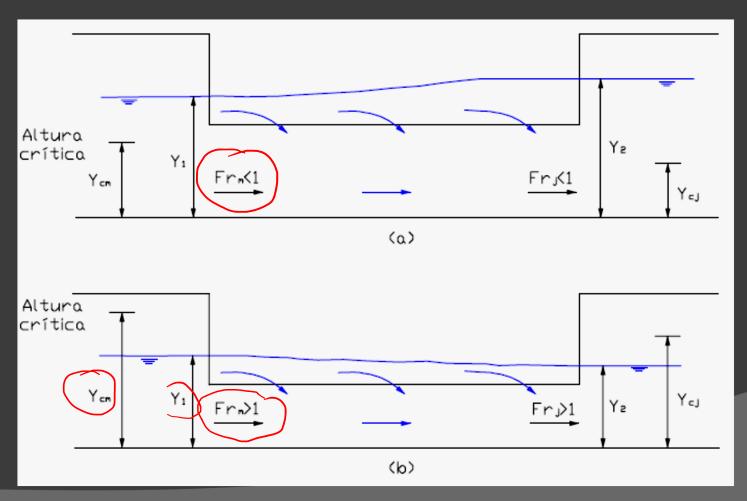
$$\frac{dy}{dx} = \frac{S_0 - S_F - \alpha \cdot \frac{q \cdot Q}{g \cdot A^2}}{1 - \frac{\alpha \cdot b \cdot Q^2}{g \cdot A^3}}$$

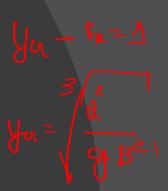
Regime permanente e uniforme So=Sf=0 E_o = energia específica a montante

 $q(x) = \frac{2}{3} \cdot C_d \cdot \sqrt{2 \cdot g} \cdot (y(x) - P(x))^{3/2}$

$$\frac{dy}{dx} = -\frac{4}{3} \cdot \frac{C_d}{b} \cdot \left[\sqrt{\frac{(E_0 - y) \cdot (y - P)^3}{(2 \cdot E_0 - 3 \cdot y)}} \right]$$

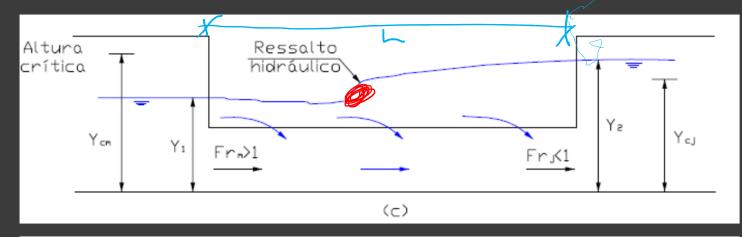

Varians

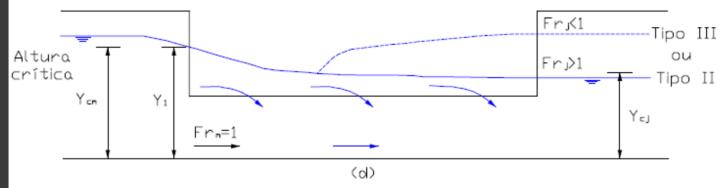

$$L = \frac{3}{2} \cdot \underbrace{b}_{C_a} \cdot (\Phi_2 - \Phi_1) \quad (1)$$

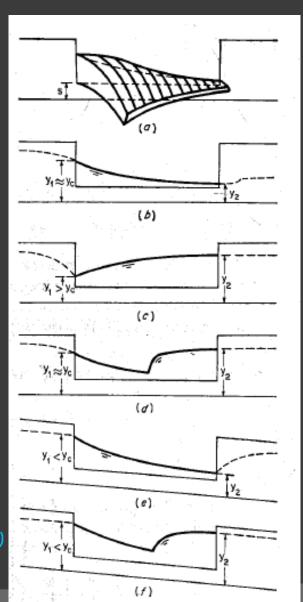

$$\Phi = \frac{2 \cdot E_0 - 3 \cdot P}{E_0 - P} \cdot \sqrt{\frac{E_0 - y}{y - P}} - 3 \cdot arcsen \sqrt{\frac{E_0 - y}{y - P}}$$

$$E_0 = \frac{Q}{Z_2(2y)^2} + y$$

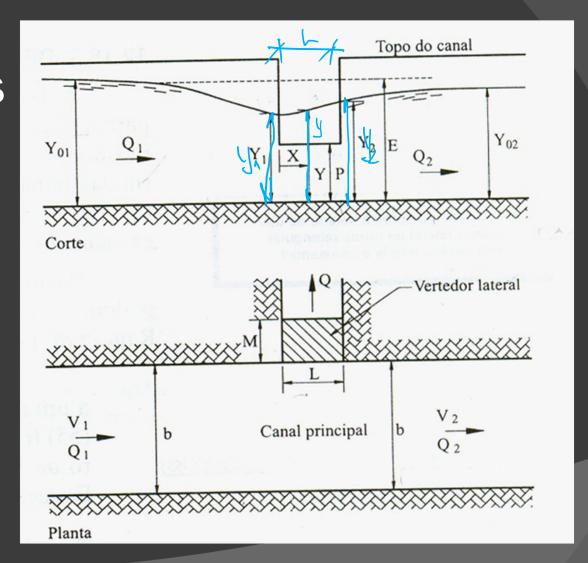
Efeito do No de Froude (1)







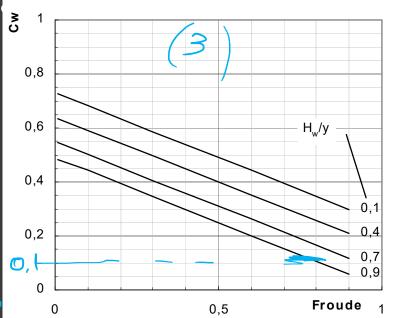
Efeito do No de Froude (2)



J.T. Chow

Dimensões e Variáveis

Coeficientes de Descarga Experimentais (1)


Subramanya e Awasthy (1972)

$$C_d = 0.622 - 0.222 \cdot Fr_m$$

para $0 \le P \le 0.60m$

BORGHEI at al (1999)

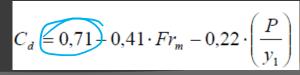
$$C_{w} = (0.687 - 0.46F_{1} - 0.3\frac{H_{w}}{y_{1}} + 0.06\frac{L_{w}}{B} + 1.25_{0})$$

$$C_w = (0.7 - 0.48F_1 - 0.3\frac{H_w}{y_1} + 0.06\frac{L_w}{B})$$

$$C_d = \left(0.81 - 0.60 \cdot Fr_m\right) \cdot K$$

K=1 para $(y_1-P) \ge 2 \cdot M$

$$K = 0.80 + 0.10 \cdot \left(y_1 - P\right)\!/M \ \, \mathrm{para} \, \left(y_1 - P\right)\! < 2 \cdot M$$


Coeficientes de Descarga Experimentais (2)

Singh, Manivannan e
Satuamarayana (1994)

$$C_d = 0.33 - 0.18 \cdot Fr_m + 0.49 \cdot P/y_1$$

Para $0.06 \le P \le 0.12m$ e $0.10 \le L \le 0.20m$.

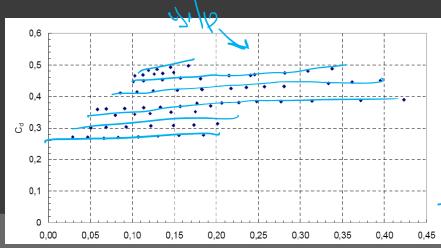
Jalili e Borghei (1996) 🗸

 $0.01 \le P \le 0.19 \text{m e } 0.20 \le L \le 0.75 \text{m}$

Singh et al. (1994) "

$$Cd = 0.33 - 0.18 \cdot Fr_m + 0.49 \cdot \frac{P}{y_1}$$

 $0.06 \le P \le 0.12 \text{m e } 0.10 \le L \le 0.20 \text{m}$


Coeficientes de Descarga Experimentais (3)

May et al. (2003)

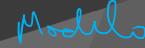
$$C_d = 0,65 - 0,149 \cdot \left(\frac{y_2 - P}{P}\right)^{0,0868} \cdot \left(\frac{L}{y_2 - P}\right)^{-0,303} \cdot \left(\frac{y_2}{P}\right)^{0,149}$$

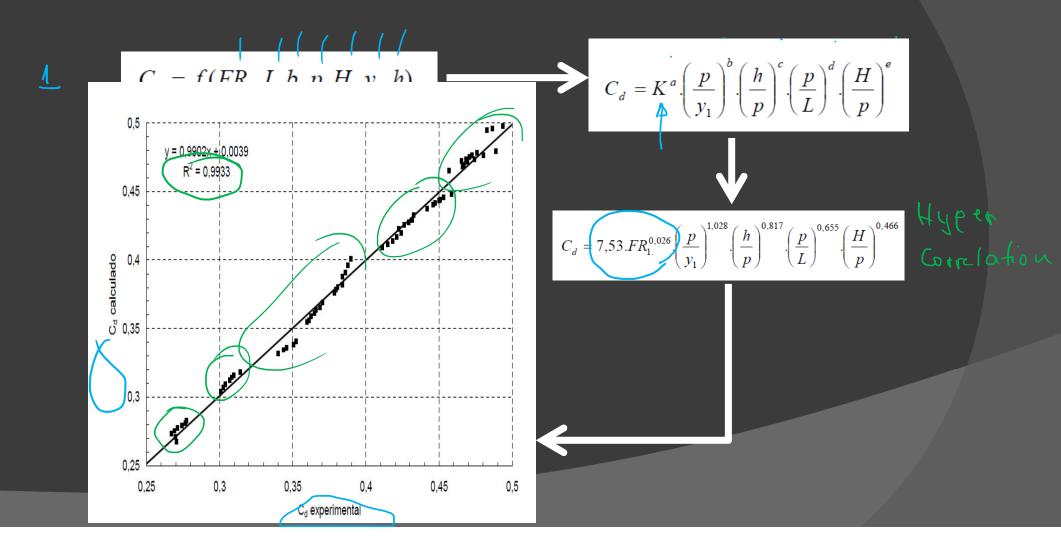
prof Tangacla

Anchieta (2006):

$$C_d = 0.66 - 0.173 \cdot Fr_m - 0.05 \cdot \left(\frac{y_1}{P}\right)$$

0,15\leq P\leq 0,30m e L=3,00m

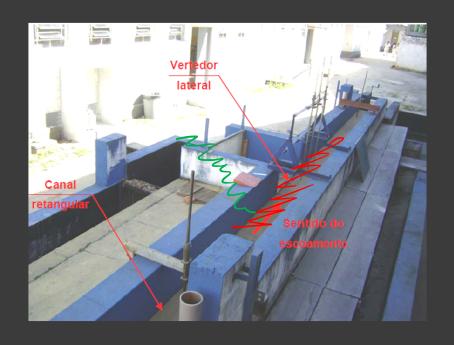


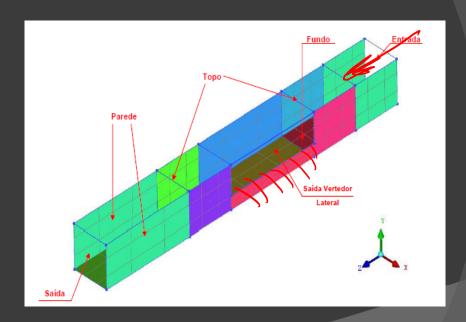

Tabela 3.1. Coeficientes de descarga experimentais e calculados para soleira de 4,55 m

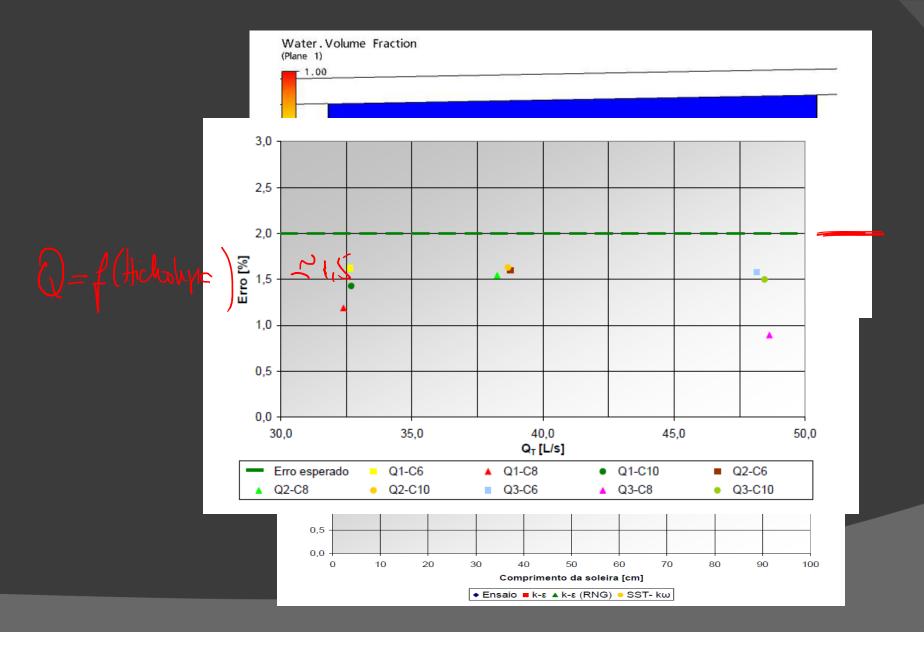
Ensaio	p (m)	Q montante canal (m³/s)	Qvertedor Lateral (m³/s)	V média no canal (m/s)		N.A. Canal Principal		h /m)	v (m)	H=Y+V ² /2	n/v	FR ₁	c	h/n	p/I	C_d
						Mont (m)		n (m)	y ₁ (m)	g (m)	p/y ₁	FK ₁	Cd	п/р	p/L	Calculado
4		20.65	• •		4.56	16.46		0.50	E 44	E 4.4	0.00	0.02	0.27	0.42	0.40	0.27
1			16,09	0,21	,		16,21	0,58	5,14	5,14				0,13		
2		33,25	16,04	0,33	17,21	16,46	16,21	0,58	5,14	5,14				0,13		0,27
3		47,02	15,87	0,47	31,15	16,46	16,21	0,58	5,14	5,15				0,13		0,27
4		59,19	16,00	0,59	43,19	16,46	16,21	0,58	5,14	5,15	0,89	0,08	0,27	0,13	0,10	0,28
5		76,23	16,13	0,76	60,10	16,46	16,21	0,58	5,14	5,16	0,89	0,11	0,27	0,13	0,10	0,28
6		92,87	16,31	0,93	76,56	16,46	16,21	0,58	5,14	5,18	0,89	0,13	0,27	0,13	0,10	0,28
7		110,52	16,44	1,10	94,08	16,46	16,21	0,58	5,14	5,20	0,89	0,16	0,28	0,13	0,10	0,28
8		131,17	16,48	1,31	114,69	16,46	16,22	0,58	5,14	5,22	0,89	0,18	0,28	0,13	0,10	0,28
9		36,72	22,45	0,36	14,27	16,55	16,27	0,68	5,23	5,24	0,87	0,05	0,30	0,15	0,10	0,30
10		50,13	22,59	0,49	27,53	16,55	16,27	0,68	5,23	5,24	0,87	0,07	0,30	0,15	0,10	0,31
11	4.55	67,63	22,69	0,66	44,94	16,55	16,27	0,68	5,23	5,25	0,87	0,09	0,30	0,15	0,10	0,31
12	4,55	89,02	22,92	0,87	66,10	16,55	16,27	0,68	5,23	5,27	0,87	0,12	0,31	0,15	0,10	0,31
13		108,63	23,02	1,07	85,62	16,55	16,27	0,68	5,23	5,29	0,87	0,15	0,31	0,15	0,10	0,31
14		126,42	23,11	1,24	103,31	16,55	16,22	0,68	5,23	5,31	0,87	0,17	0,31	0,15	0,10	0,32
15		147,16	23,45	1,44	123,72	16,55	16,22	0,68	5,23	5,34	0,87	0,20	0,31	0,15	0,10	0,32
16		59,64	29,53	0,58	30,11	16,62	16,38	0,75	5,30	5,32	0,86	0,08	0,34	0,17	0,10	0,33
17		76,72	29,83	0,74	46,89	16,62	16,38	0,75	5,30	5,33	0,86	0,10	0,34	0,17	0,10	0,33
18		90,15	30,03	0,87	60,12	16,62	16,38	0,75	5,30	5,34	0,86	0,12	0,35	0,17	0,10	0,34
19		108,73	30,44	1,05	78,29	16,62	16,31	0,75	5,30	5,36	0,86	0,15	0,35	0,17	0,10	0,34
20		130,36	30,59	1,26	99,77	16,62	16,24	0,75	5,30	5,38	0,86	0,17	0,35	0,17	0,10	0,34
21		44,79	36,40	0,43	8,39	16,70	16,46	0,83	5,38	5,39	0,85	0,06	0,36	0,18	0,10	0,35
22		52,59	36,56	0,50	16,03	16,70	16,46	0,83	5,38	5,40	0,85	0,07	0,36	0,18	0,10	0,36

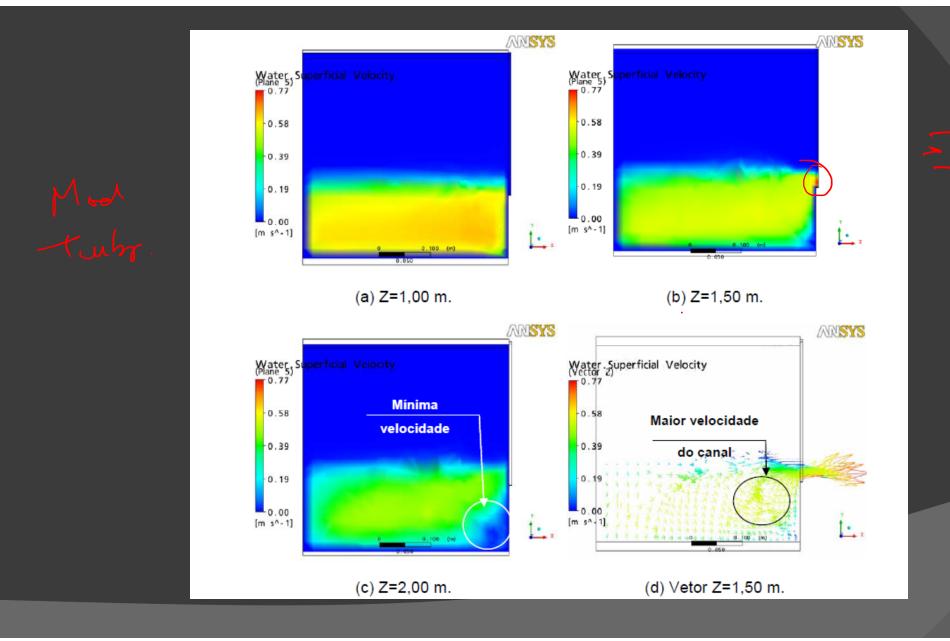
CAFYP B/P Y/P B/L

Tabela 3.3. Coeficientes de descarga experimentais e calculados para soleira de 3,38 m e 2,30 m N.A. Canal Qvertedor V média Q jusante $h (m) y_1 (m) \stackrel{H=Y+V^2/2}{\smile} p/y_1 FR_1 C_d h/p p/L$ Q montante р Principal Ensaio Lateral no canal no canal (m) canal (m3/s) Calculado g (m) (m^3/s) (m/s)(m3/s) Mont (m) Jus (m) 93,66 15,33 0,84 4,22 0.80 0.18 0.38 0.25 0.08 0,38 46 38,72 1,14 54,94 15,54 4,29 47 109,29 38,83 15,54 15,33 0,84 4,22 4,31 0,80 0,21 0,38 0,25 0,08 0,38 1,33 70,46 48 120,07 38,94 0,84 4,22 0,80 0,23 0,38 0,25 0,08 0,38 1,46 81,13 15,54 15,33 4,33 49 39,27 0,84 4,22 0,80 0,25 0,38 0,25 0,08 131,17 1,59 91,90 15,54 15,34 0,38 4,35 50 102,13 55,30 1,20 15,48 0.99 4,37 0,77 0,18 0,42 0,29 0,08 0.42 46,83 15,69 4.44 51 3,38 121,15 55,79 1,42 65,36 15,69 15,50 0,99 4,37 4,47 0,77 0,22 0,43 0,29 0,08 0,43 52 131.38 56.16 1,54 75.21 15.69 15,51 0,99 4,37 4.49 0.77 0.24 0.43 0.29 0.08 0,43 53 143,43 56,47 0,99 0,77 0,26 0,43 0,29 0,08 1,68 86,96 15,69 15,51 4,37 4,51 0,43 54 106,29 73,87 1,21 32,42 15,84 15,64 1,14 4,52 4,59 0,75 0,18 0,46 0,34 0,08 0,46 55 1,14 126,12 75,37 1,43 50,75 15,84 15,66 4,52 4,62 0,75 0,21 0,47 0,34 0,08 0,47 56 143,86 75,92 1,63 4,52 0,75 0,25 0,47 0,34 0,08 0,47 67,93 15,84 15,67 1,14 4.66 57 93,93 38,94 1,54 14,26 0,84 3,14 0,73 0,28 0,38 0,36 0,05 0,39 54,99 14,46 3,26 58 106,29 39,16 1,74 0,84 3,14 0,73 0,31 0,39 0,36 0,05 0,39 67,13 14,46 14,27 3,29 59 39,33 126,02 2,06 86,69 14,46 14,28 0,84 3,14 3,35 0,73 0,37 0,39 0,36 0,05 0,40 60 143,43 39,55 2,35 103,89 14,28 0,84 3,14 0,73 0,42 0,39 0,36 0,05 0,40 14,46 3,42 61 102,04 56,23 1,59 45,82 14,61 14,43 0,99 3,29 3,41 0,70 0,28 0,43 0,43 0,05 0,43 62 121,15 57,46 1,89 0,99 3,29 0,70 0,33 0,44 0,43 0,05 0,44 63,69 14,61 14,45 3,47 2,30 63 131,38 57,96 2,05 73,41 14,46 0,99 3,29 3,50 0,70 0,36 0,45 0,43 0,05 0,44 14,61 64 143,54 58,59 2,24 84,95 14,61 14,48 0,99 3,29 3,54 0,70 0,39 0,45 0,43 0,05 0,44 65 1,14 93,49 75,10 1,40 18,39 14,76 14,56 3,44 3,53 0,67 0,24 0,47 0,49 0,05 0,47 66 109,39 76,27 1,63 14,58 3,44 3,57 0,67 0,28 0,47 0,49 0,05 0,47 33,12 14,76 1,14 67 120,07 77,23 1,79 42,84 14,76 14,61 1,14 3,44 3,60 0,67 0,31 0,48 0,49 0,05 0,48 68 131,27 78,62 1.96 52.65 14.76 14,63 1,14 3,44 3.63 0.67 0.34 0.49 0.49 0.05 0.48

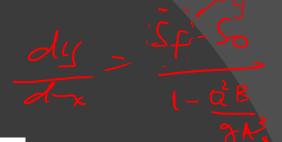

Coeficientes de Descarga Experimentais (4)

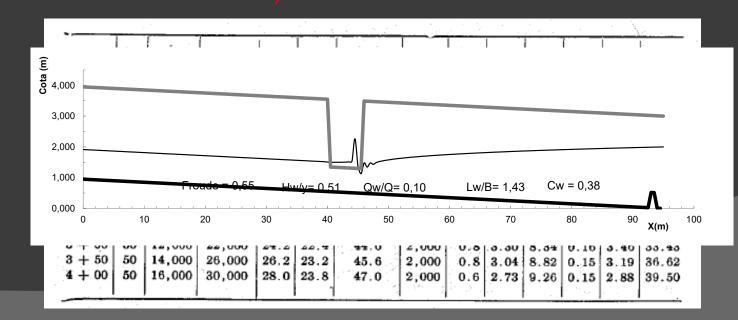



					COEFICIENTES			
PESQUISADORES	ANO	CRITÉRIO	TIPO DE VERTEDOR	* ***		LIMITAÇÕES	FAIXA	LEGENDA
Subramanya e Awasthy,			vertedor lateral sem interligação a um canal lateral.	Cd=0,822-0,222Fr ₁		escoamento subcrítico e	$0 \le P \le 0,60m$	Fr ₁ (n° de Froude a montante do vertedor), e P (altura da soleira do vertedor.)
Ranga Gaju, Prasad e	-		vertedor lateral com interligação	Cd=0.81-0.80Fr,		torrencial	$0.20 \le P \le 0.50m$	Fr ₁ (n ^o de Froude a montante do vertedor),
Grupta Singh, Manivannan e	\vdash		a um canal lateral.				$0.06 \le P \le 0.12 m$	e P (altura da soleira do vertedor.) Fr ₁₁ nº de Froude a montante do vertedor),
Singh, Manivannan e Satyanarayana		em função de Fr ₁ e da relação P/y ₁	vertedor lateral sem interligação a um canal lateral.	Cd=0,33-0,18Fr1+0,49 P/y _i			$0,10 \le L \le 0,20 \ m$	Fr ₁ (n° de Froude a montante do vertedor), e P (altura da soleira do vertedor.)
Singh, Manivannan e Satyanarayana			vertedores com soleira espessa com canal lateral	Cd=(0,81-0,60Fr ₁)K			K=1 para (y ₁ -P) > ou = 2M K=0,80+0,10 (y1-P)M p/ (y1-P) < 2.M	K (efeito do comprimento da crista do vertedor), P(altura da soleira) e y1 (prof.a montante do vertedor)
				$Cd = 0.611$ *sen θ				
Subramanya e Awasthy	1972	O escoamento acima de um comprimento elementar da do vertedor lateral, se dá como um jato defletido, e o ângulo é constante considerando que o mesmo varia com h'ao longo da soleira do vertedor		$Cd = 0.61 \left[\left[3 \left(\frac{K}{H} \right) - 2 \right]^{\frac{N}{2}} \right]$				θ é o ângulo entre o jato e o eixo do canal.
		O coeficiente de descarga é uma função que depende do nº de Froude, (Comprimento do vertedor), B (largura do canal), w: (laftura do vertedor), y (profundidade da âgua no canal principal) e S _v (declinidade do canal		$CM = 0.864 \left(\frac{1 - F_1^2}{2 + F_1^2}\right)^{0.5}$				
Kumar and Pathak	1987	pêt é insignificante na influêcia do CM em vertedores triangulares laterais. Desta forma os fatores que influenciarão serão: nº de Froude e o ángulo do vértice	vertedor triangular lateral	$q = \frac{dQ_s}{ds} = \frac{4}{5} C_M \sqrt{\epsilon_g} (b - \rho)^{\frac{1}{2}}$				Cm: Coeficiente de Vazão do vertedor triangular e dQs/ds: descarga por unidade de comprimento
Munson et al.	1999	Combinando a equação de Kumar and Pathak com o comprimento de vertedores triangulares $L=2(h-p)\tan{rac{ heta}{2}}$		$Q_W = \frac{8}{15} CM \sqrt{2g} \sin \frac{\theta}{2} (h - \rho)^{\widetilde{M}}$				θ: ângulo do vértice, e h-p): espessura da lâmina acima da crista do vertedor
			vertedor triangular lateral para qualquer espessura da lâmina e	CM=0.668-0.381F (60°)				
Kumar and Pathak	1987	vazão total da descarga	ângulo do vértice para os ângulos dos vértices 60°, 90° e 120°	CM=0.619-0.203F (90°) CM=0.642-0.042F (120°)	1			
	-	S 1			-	-		
De Marchi	1934	é uma função de $F_i, rac{S}{Y_i}, rac{L}{Y_i}$	vertedor retangulare de soleira delgada	$C_{IJ} = \frac{3B}{2L} \Phi + const$ ou Cm=3/2*(-1,569638+3,115991) L/b \rightarrow 3/2*1,546353/L/b				
Ranga Gaju et.al.	1979	O coeficiente de descarga é uma função que depende do nº de Froude, L (Comprimino do vertedor), B (largura do canal), w. (altura do vertedor), y (profundidade da água no canal principal) e S _o (declividade do canal).	vertedor retangulare de soleira delgada	CM=0,81-0,6F ₁				
Hager	1987	O coeficiente de descarga é uma função que depende do nº de Froude, L (Comprimento do vertedor), B (largura do canal), w: (altura do vertedor), y: (profundidade da água no canal principal) e S _o (declividade do canal).	vertedor retangulare de soleira delgada	$CM = 0.485 \left(\frac{2 - F_1^2}{2 + 3F_1^2} \right)^{0.5}$		para w=0		
Singh et al.	1334	O coeficiente de descarga é uma função que depende do nº de Froude, L (Comprimento do vertedor), B (largura do canal), w: (altura do vertedor), y: (profundidade da água no canal principal) e S _a (declividade do canal).	vertedor retangulare de soleira delgada	$CM = 0.33 - 0.18F_1 + 0.49 \left(\frac{w}{y_1} \right)$				
Jalili and Borghei	1996	O coeficiente de descarga é uma função que depende do nº de Froude, L (Comprimento do vertedor), B (largura do canal), w: (altura do vertedor), y: (profundidade da água no canal principal) e S _u (dedividade do canal).	vertedor retangulare de soleira delgada	$CM = 0.71 - 0.41F_1 - 0.22\left(\frac{w}{y_i}\right)$				
de todos que estão representados em negrito		Para validar os efeitos de todas as variáveis envolvidas (F1.w/y1, Lib, So), CM (coeficiente de descarga) pode ser escrita como uma equação linear:	vertedor retangulare de soleira delgada	$CM = a + bF_1 + c \frac{w}{y_1} + d \frac{L}{B} + eS_x$ $CM = 0.687 - 0.46 F_1 - 0.3 \frac{w}{A} + 0.06 \frac{L}{A} + 1.2 S_x$				
Ramamurthy e Carballada / Singh et al. / Jalili and Borghei	1980/ 1994/ 1996	Variáveis envolvidas (F1,wly1, Ltb, So) que influenciam o coeficiente de descarga	vertedor lateral de soleira delgada	$CM = 0.7 - 0.48F_1 - 0.3\frac{w}{y_1} + 0.06\frac{L}{B_a}$		escoamento subcrítico		L/B: (largura/Base do canal);w/y1 (altura da soleira/profundidade a montante do vertedor, So:declividade do canal e F1: número de Froude a montante do vertedor
		$C_r = K_0 \left[\left(\frac{K_1}{K_2 + n_w} \right)^{13} + \left(\frac{n_w}{n_w + 1} \right)^{14} \right]^{-15}$	vertedor lateral retangular de soleira delgada com presença de muro lateral	$C_{\nu} = 0.465 \left[\left(\frac{46.5}{44.1 + n_{\nu}} \right)^{10} + \left(\frac{n_{\nu}}{n_{\nu} + 1} \right)^{10} \right]^{-6.1}$				C _e coeficiente de descarga elementar
		Equação referencial	vertedor lateral retangular de soleira delgada sem presença de muro lateral:	$C_{e} = 0.447 \left[\left(\frac{44.7}{50 + n_{w}} \right)^{6.67} + \left(\frac{n_{w}}{n_{w} + 1} \right)^{-6.15} \right]^{-0.15}$				η _∞ ≤ 1 → vertedor de soleira espessa
Swamee	1988	$C_x = K_0 + K_1 \left(\frac{n_x^{1.5} + K_y n_y^{1.0}}{1 + K_{11} n_x^{1.0}} \right)^{1.13}$ Equação referencial	vertedor lateral retangular de soleira espessa com presença de muro lateral:	$C_{e} = 0.447 + 0.1 \left(\frac{n_{L}^{1.79} + 0.05 n_{L}^{1.69}}{1 + 2.9 n_{L}^{9.02}} \right)$				η _w ≥3 → vertedor de soleira delgada
		• •	vertedor lateral retangular de soleira espessa sem a presença de muro lateral:	$C_{e} = 0.425 + 0.1 \left(\frac{n_{L}^{3.3} + 0.025 n_{L}^{7}}{1 + 5.5 n_{L}^{9.02}} \right)^{-0.1}$				$oldsymbol{ heta}$: ångulo do vértice do vertedor triangular
		$C_s = K_{14} \Biggl[\left(\frac{K_{15}}{K_{16} \exp\left[-K_{17}(\theta - \pi / 2)^{418}\right] + n_w} \right)^p + \left(\frac{n_w}{\left[1 + K_9(\pi - \theta)^{529}\right] n_w + 1} \right)^p \Biggr)^{-1/p} $ Equação referencial	vertedor lateral triangular de soleira delgada:	$C_r = 0.44 \left[\left(\frac{447}{55 \mathrm{ext} [-0.386(\theta - \pi/2)^2] + n_u} \right)^p + \left(\frac{n_u}{[1 + 0.05(\pi - \theta)^{1799}](n_u + 1)} \right)^p \right]^{-1/p}$			$p=2.16 \left[\frac{\theta^{2.5} + 1.342\pi - \theta_1^{2.5}}{\theta^{0.045} + (\pi - \theta)^{0.045}} \right]^{0.045}$	$K_o - K_{20}$ e p: constantes para serem determinadas a partir dos dados experimentais
Singh, D.Manivannan, and	\vdash	Equação reserencia: Utilizando o conceito de energia específica constante (De Marchi) e o método estatístico dos mínimos quadrados	vertedores retangulares	Cd: 0,24+0,54*S/y1* e Cd: 0,99-1,28F1, que resultou em Cd:0,33-0,18F1+0,495*				
T.Satyanarayana		Osmanico o concento de energia especimia consiante (de Marchi) e, o metodo estatistico dos minimos quadrados	verieuries retangulares		ļ	coeficiente de		
Kanakatti Subramanya and Subhash Chandra Awasthy		Variação de do coeficiente de descarga com o número de Froude em um escoamento subcrítico.	vertedor retangular	$C_{H} \equiv C_{H}^{\prime} \sqrt{1 - \left(\frac{3F_{i}^{\prime}}{F_{i}^{\prime}} + 2\right)}$	0,611 é o coeficiente de contração para F1 tendendo a zero	descarga com o número de Froude em um escoamento subcritico.		
		No escoamento supercritico, o coeficiente de descarga varia muito lentamente com F1, provavelmente devido os efeitos do atrito, e a variação do coeficiente de descarga para F1>2,0 é a queação descrita ao lado	vertedor retangular	$C_M = 0.36 - 0.08F_1$				
Borghei et all		O coeficiente de descarga é uma função que depende do nº de Froude, L (Comprimento do vertedor), B (largura do canal), w. (altura do vertedor), y: (profundidade da água no canal principal) e S o (declividade do canal).	vertedores retangulares de soleira delgada	Cm= 0,7-0,48F1-03P/h1+0,06L/b				
Rehbock	1929	Devido a falta de dados específicos para outros tipos de vertedores, é recomendado o uso da equação proposta	vertedores laterais de soleira delgada não contraída	$C_{DSS} = 0.576 + 0.075 \left(\frac{h}{p}\right)$				C_{DIS} é o coeficiente de descarga para um
		carga de 0,10 m	ueigada não contraida	(p)	0,370 / 0,315 /			vertedor de soleira delgada.
		carga de 0,15			0,27			
		carga de 0,10	vertedor lateral de soleira		0,270 0,355 / 0,320 / 0,273 0,350 / 0,325 / 0,275			carga: altura d'água sob a crista do vertedor
Dominguez	1974	carga de 0,20 m	delgada/soleira espessa/com aresta viva					
I (carga de 0,50 m						
1 .		carga de 0,50 m			0,276			
		carga ud U,/U m			0,280			



Modelagem Física x CFD — modela >>>





Cálculo da Linha d´água

$$\Delta y = -\frac{Q_1(V_1 + V_2)}{g(Q_1 + Q_2)} \left(\Delta V + \frac{V_2}{Q_1} \Delta Q \right) + S_0 \Delta x - S_f \Delta x$$

$$\Delta y' = \frac{\alpha Q_1(V_1 + V_2)}{g(Q_1 + Q_2)} \left(\Delta V + \frac{V_2}{Q_1} \Delta Q \right) + S_f \Delta x$$

