Brake jet calculation

Guaranteed value = 12 min

Understand the assumptions of the following equation used to determine the diameter of the brake jet (d) in [m].

$$d = \frac{10^{-2}}{\sqrt{z_d}} \sqrt{\frac{0.011 \times GD^2 \times n \times 0.85}{(0.189H + 0.00109\sqrt{H}D_1n)D_1t_f}}$$

Where:

 z_d is the number of brake jets [-], GD^2 is 4 × the rotating parts moment of inertia (*J*) [kg.m²],

n is the rotational speed which the brake jet is activated [rpm],

H is the head available for the brake jet [mWC],

 D_1 the runner bucket center diameter [m],

 t_f is the time required to stop the rotating parts after the brake jet is activated [s].

Development

Deceleration of rotating parts

For more details see: Angular momentum - Wikipedia

Development

Torque due to the brake jet

For more details see: Pelton wheel - Wikipedia