PRO 5971 - Statistical Process Monitoring

Control chart to monitor a proportion p

Linda Lee Ho April 11, 2023

Department of Production Engineering University of São Paulo

Outline

Introduction

- Consider that the outcomes of event may be summarized by two possible results: success or failure (or conform and non-conforming) (approved or disapproved), etc.
- Such event is known as Bernoulli trial which can be described by a probabilistic model: Bernoulli
- Let X, a Bernoulli random variable of parameter p, being $p \rightarrow$ the probability to occur some event of interest.
- X assumes 2 possible values: X = 1 if the event of interest occurs with probability p and X = 0 if the event does not occur with probability 1 - p with E(X)=p and Var(x)=p(1-p).
- A sample of size *n* is collected and observations annotated as *x*₁, *x*₂, ..., *x_n*.
- Based on these results, one has to decided if the process is stable at p₀ (in-control) or not (out-of-control).
- Problem: how to create decision rules based on statistic criterion?

- Definition of Statistic any function based on the observed values.
- Statistics are random variables.
- Two statistics used to monitor the proportion $p: \hat{p} = \frac{\sum_{i=1}^{n} X_i}{n}$ (sample proportion and $\sum_{i=1} X_i$ (the # of success in n)
- Reasons for such choices: $\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n}$ is an unbiased estimator of p.

- Ingredients to build any control chart: 1-The probability distribution or the approximated distribution of the monitored statistics should be known; 2 Choose the type I error α .
- In our case: what is the distribution of $\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n}$ or $Y = \sum_{i=1} X_i$?
- According to the statistic theory, the exact distribution of Y is a binomial distribution with parameter np.

• So
$$P(Y = y) = \begin{pmatrix} n \\ y \end{pmatrix} p^y (1-p)^{n-y}$$
 with $E(Y) = np$ and $Var(Y) = np(1-p)$.

• According to the central limit theorem, an approximated distribution of Y is $Y \sim N[np, np(1-p)]$

Control limits of the np and p control charts - using the exact distribution of Y

- Let α be the type I error then $\alpha/2 = P(Y < LCL_{np}|p = p_0) = P(Y > UCL_{np}|p = p_0)$
- Probability Control limits of *np* chart are the quantiles of a binomial distribution
 Y: UCL_{np}, the 1-α/2th quantile and LCL_{np}, the α/2th quantile control chart *np*.
- $\bullet\,$ As Y is a discrete random variable, the desired level α may not be reached.
- The control limits for p control chart are $UCL_p = \frac{UCL_{np}}{n}$ and $LCL_p = \frac{LCL_{np}}{n}$,
- These are the control limits for H₁ : p ≠ p₀. for other alternative hypothesis, some adjustments are needed.
- If $H_1 : p < p_0$ then $\alpha = P(Y < LCL_{np}|p = p_0)$ and if $H_1 : p > p_0$ then $\alpha = P(Y > UCL_{np}|p = p_0)$

- As Y ~ N(np, np(1-p) then the asymptotic control limits of np chart are $np_0 \pm z_{1-\alpha/2} \sqrt{np_0(1-p_0)}$
- Similarly $p_0 \pm z_{1-lpha/2} \sqrt{p_0(1-p_0)/n}$ are the asymptotic control limits for p chart
- If $H_1: p < p_0$ then $LCL_{np} = np_0 z_{1-\alpha}\sqrt{np_0(1-p_0)}$ or $LCL_p = p_0 z_{1-\alpha}\sqrt{p_0(1-p_0)/n}$
- if $H_1: p > p_0$ then $UCL_{np} = np_0 + z_{1-\alpha}\sqrt{np_0(1-p_0)}$ or $UCL_p = p_0 + z_{1-\alpha}\sqrt{p_0(1-p_0)/n}$

- Power = 1- β , probability to detect a shift of p_0 to p_1
- β the type II error is the probability of no signal of the control chart when the process is out-of-control
- For $H_1 : p \neq p_0$, by the exact distribution: $1 - \beta = P(Y > UCL_{np}|p = p_1) + P(Y < LCL_{np}|p = p_1)$
- If $H_1: p < p_0$ then Power= $1 \beta = P(Y < LCL_{np}|p = p_1)$ and if $H_1: p > p_0$ then Power= $1 - \beta = P(Y > UCL_{np}|p = p_1)$
- Using the normal approximation $1 \beta = P(Y > np_0 + z_{\alpha/2}\sqrt{np_0(1-p_0)}|p = p_1) + P(Y < np_0 z_{\alpha/2}\sqrt{np_0(1-p_0)}|p = p_1)$
- If $H_1: p < p_0$ then $1 \beta = P(Y < np_0 z_{1-\alpha}\sqrt{np_0(1-p_0)}|p = p_1)$
- if $H_1: p > p_0$ then $1 \beta = P(Y > np_0 + z_{1-\alpha}\sqrt{np_0(1-p_0)}|p = p_1)$

Comparing the performance - Discussion

- Example: Monitoring the quality of a service
- p=probability of customer be unsatisfied in a normal condition, $p_0=0.01$
- Consider 3 plans, all with LCL=0:

n=100			n=200
р	UCL=3	UCL=4	UCL=6
0.01	$52.63(\alpha = 0.019)$	$250.00(\alpha = 0.004)$	$200.00(\alpha = 0.005)$
0.02	6.99	18.87	9.01
0.03	2.83	5.41	2.54
0.05	1.36	1.79	1.15
0.10	1.01	1.03	1.00

Table 1: Comparing the performance

Which plan do you prefer?

- To solve the exercises, use the functions of software R as dbinom; pbinom; qbinom; rbinom if necessary
- 2. For n = 10 and $p_0 = 0.1$, obtain the control limits for $\alpha = 0.1$; 0.5; 0.0027 using the exact distribution of Y and the normal approximation considering $H_1: p \neq p_0$
- 3. Repeat item 1 for n=50
- 4. Repeat items 1 and 2 considering $H_1: p > p_0$
- 5. Discuss about the control limits and the type I error level between items 1 and 2.
- 6. Obtain the power of item 1, 2 and 3 if the p shifts to $p_1 = 0.2, 0.3$ and discuss the results

Exercise

- When the process is in-control, one item is non-conforming at every 80 produced ones. A *p* chart is used to monitor the non-conforming fraction. What is the probability of control chart signals an increase of 100% at the first sample of size equal to 200 items?
- Consider an *np* control chart. Which is the best option to detect an increase of non-conforming fraction: p₀ = 0.015 to p₁ = 0.04: a) take a sample of n=200 at every half hour? b) or a sample of n=400 at every hour? Compare these two options under an equal condition (similar occurrence of false alarms)
- Design an *np* control chart with LCL=0 to detect a shift from $p_0 = 0.015$ to $p_1 = 0.04$, with $\alpha < 0.003$ and $\beta < 0.50$
- A quality characteristic X has as mean 20 and standard deviation 2.5 when the process is in-control. One item is considered as non-conforming if it does not satisfy the specification limits 20 ±7. Usually when the process is out-of-control, its mean shifts to 23.75 keeping standard deviation unaltered. Fixed α = 0.01 Which option is the better and why: a) an *np* control with *n* = 120 or X chart with *n* = 4?

- Use the control limits as trial control limits
 - Central line: \overline{p} ; Control limits: $\overline{p} \pm z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$
 - $\overline{p} = \sum_{i=1}^{m} \frac{\hat{p}_i}{m}, \ \hat{p}_i = \frac{Y_i}{n}, \ Y_i, \ \# \text{ of non-conforming in n units taken from in-control process}$

• In case of variable sample size, use $\overline{p} = \sum_{i=1}^{m} \frac{Y_i}{\sum_{i=1}^{m} n_i}$; $\overline{n} = \sum_{i=1}^{m} \frac{\sum_{i=1}^{m} n_i}{m}$ and control

limits
$$\overline{p} \pm z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{n}}}$$

- Use as the control limits
 - Central line: $n\overline{p}$; Control limits: $n\overline{p} \pm z_{\alpha/2} \sqrt{n\overline{p}(1-\overline{p})}$
 - $\overline{p} = \sum_{i=1}^{m} \frac{\hat{p}_i}{m}, \ \hat{p}_i = \frac{Y_i}{n}, \ Y_i, \ \# \text{ of non-conforming in n units taken from in-control process}$

Samples of 100 units are taken and the # of non-conforming in each is computed

Table	2:	Data
-------	----	------

sample	# of non-conforming	sample	# of non-conforming
1	7	11	6
2	4	12	15
3	1	13	2
4	3	14	9
5	6	15	5
6	8	16	1
7	10	17	4
8	5	18	5
9	2	19	7
10	7	20	12

Use data from Table 2 to provide estimates for the non-conforming fraction. Which should be the control limits for a p chart?

References