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Thanks Coefficient Alpha, We’ll Take It From Here

Daniel McNeish
Utrecht University and University of North Carolina, Chapel Hill

Abstract
Empirical studies in psychology commonly report Cronbach’s alpha as a measure of internal consistency
reliability despite the fact that many methodological studies have shown that Cronbach’s alpha is riddled with
problems stemming from unrealistic assumptions. In many circumstances, violating these assumptions yields
estimates of reliability that are too small, making measures look less reliable than they actually are. Although
methodological critiques of Cronbach’s alpha are being cited with increasing frequency in empirical studies,
in this tutorial we discuss how the trend is not necessarily improving methodology used in the literature. That
is, many studies continue to use Cronbach’s alpha without regard for its assumptions or merely cite
methodological articles advising against its use to rationalize unfavorable Cronbach’s alpha estimates. This
tutorial first provides evidence that recommendations against Cronbach’s alpha have not appreciably changed
how empirical studies report reliability. Then, we summarize the drawbacks of Cronbach’s alpha conceptually
without relying on mathematical or simulation-based arguments so that these arguments are accessible to a
broad audience. We continue by discussing several alternative measures that make less rigid assumptions
which provide justifiably higher estimates of reliability compared to Cronbach’s alpha. We conclude with
empirical examples to illustrate advantages of alternative measures of reliability including omega total,
Revelle’s omega total, the greatest lower bound, and Coefficient H. A detailed software appendix is also
provided to help researchers implement alternative methods.

Translational Abstract
Scales are commonly used in psychological research to measure directly unobservable constructs like
motivation or depression. These scales are comprised of multiple items, each aiming to provide information
about various aspects of the construct of interest. Whenever a scale is used in a psychological study, it is
important to report on its reliability. Since the 1950s, the primary method for capturing reliability has been
Cronbach’s alpha, a method whose status is perhaps best exemplified by its place as one of the most cited
scientific articles of all-time, in any field. Despite its overwhelming popularity, the underlying assumptions of
Cronbach’s alpha have been questioned recently in the statistical literature because these assumptions were
commonplace 65 years ago but have largely disappeared from more modern statistical methods for construct-
ing scales. Though the ideas in these statistical articles have the potential to significantly alter how psycho-
logical research is conducted and reported, recommendations from the statistical literature have yet to
permeate the psychological literature. In this article, the goal is to demonstrate why Cronbach’s alpha is no
longer the optimal method for reporting on reliability. To differentiate this article from articles appearing in
the statistical literature, we approach issues with Cronbach’s alpha with very little focus on mathematical or
computational detail so that the deficiencies of Cronbach’s alpha are illustrated in words and examples rather
than proofs and simulations so that these ideas can impact a larger group of researchers—namely, the
researchers who most often report Cronbach’s alpha.

Keywords: Cronbach’s alpha, internal consistency, reliability, psychometrics

In many areas of psychology and in the behavioral sciences more
broadly, variables that are of interest (e.g., motivation, depression,
cognitive abilities) are not directly observable and are therefore mea-
sured with scales or instruments comprised of a set of items. These
items indirectly measure the variable of interest by inferring that some
underlying construct manifests itself through these items. For exam-

ple, an MRI study cannot directly measure the amount of extraversion
present in a person’s brain. Rather, items are created and administered
to an individual. If the individual has high extraversion, this trait
manifests itself through certain responses to the items.

Because most measurement in psychology is done through the
use of indirect measurement tools, researchers often report a mea-
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sure of reliability to demonstrate that the items composing the
measure are reliable, meaning that the scores based on the items
are reasonably consistent, the responses to the scale are reproduc-
ible, and that responses are not simply comprised of random noise.
Put another way, a reliability analysis provides evidence that the
scale is consistently measuring the same thing (although, this is
distinct from concluding that the scale is measuring the intended
construct—that is a question of scale validity).

In psychology studies, the most commonly used reliability in-
dex, by a wide margin, is Cronbach’s alpha. In a review of
reliability reporting practices conducted by Hogan, Benjamin, and
Brezinski (2000), about two thirds (66%) of studies reporting a
reliability measure selected Cronbach’s alpha. Of those reporting a
type of reliability that requires only a single administration (e.g.,
not test–retest or interrater reliability), 87% (548 out 633) reported
Cronbach’s alpha (or the KR-20, which is a special case of alpha
where all items are binary; Crocker & Algina, 2008). Indeed,
Cronbach’s alpha can be universally found in the pages of psy-
chology journals in any subfield. As of October 2014, the seminal
Cronbach (1951) article that first introduced Cronbach’s alpha was
the 64th most cited English language research article on Google
Scholar in any field and, within psychology, is only surpassed by
the article of Baron and Kenny (1986) on mediation and moder-
ation and the seminal article of Bandura (1977) on self-efficacy
(van Noorden, Maher, & Nuzzo, 2014). In the last 20 years,
however, many methodological articles have appeared which ques-
tion how Cronbach’s alpha is applied (Bentler, 2007; Cortina,
1993; Crutzen, 2007; Crutzen & Peters, 2015; Dunn, Baguley, &
Brunsden, 2014; Geldhof, Preacher, & Zyphur, 2014; Graham,
2006; Green & Hershberger, 2000; Green & Yang, 2009a, 2009b;
Peters, 2014; Raykov, 1997a, 1997b, 1998, 2004; Raykov &
Shrout, 2002; Revelle & Zinbarg, 2009; Schmitt, 1996; Sijtsma,
2009; Teo & Fan, 2013; Yang & Green, 2011; Zinbarg, Revelle,
Yovel, & Li, 2005; Zinbarg, Yovel, Revelle, & McDonald, 2006).
These articles argue that the assumptions made by Cronbach’s
alpha are commonly violated in types of data and models with
which psychological researchers work. These arguments have led
to the development of alternative reliability measures whose as-
sumptions are more in-line with psychological data (Hancock &
Mueller, 2001; Jackson & Agunwamba, 1977; McDonald, 1970,
1999; Revelle, 1979). Software routines for calculating these mea-
sures are also available in R packages such as MBESS (Kelley,
2007), psych (Revelle, 2008), or the scaleStructure function in the
userfriendlyscience package (Peters, 2014).

The articles to which we referred in the previous paragraphs are
actually fairly well-known, even among nonmethodological re-
searchers. For instance, based on Google Scholar citation counts,
Sijtsma (2009) has over 800 citations, Zinbarg et al. (2005) over
450, Hancock and Mueller (2001) almost 400, Yang and Green
(2011) over 125, and Dunn et al. (2014) over 100 as of October
2016. Although such seemingly high awareness of issues with
Cronbach’s alpha appears reassuring, it does not appear that there
have been substantial changes in the use of Cronbach’s alpha.

To provide evidence for this claim and to show the enduring
status of Cronbach’s alpha, we reviewed articles in three flagship
APA journals from educational psychology (Journal of Educa-
tional Psychology, JEP), social psychology (Journal of Personal-
ity and Social Psychology, JPSP), and clinical psychology (Jour-
nal of Abnormal Psychology, JAP) from January 2014 until

October 2016. We located studies through Google Scholar by
searching for the string “reliability” within these journals. This
resulted in 369 total studies (131 from JEP, 118 from JPSP, and
120 from JAP). We filtered out studies that reported types of
reliability that are not of interest to this article (e.g., interrater
reliability), studies where “reliability” only appeared in the refer-
ences, or where reliability was not used in in a psychometric sense.
This netted 118 total studies (52 from JEP, 31 from JPSP, and 35
from JAP). Of these 118 studies, 109 (92%) solely used Cron-
bach’s alpha to assess reliability of the scales used in their study
while nine (8%) reported an alternative reliability measure either
by itself or in addition to Cronbach’s alpha. Despite the large
number of citations of articles calling for alternative reliability
measures, reliability reporting in these flagship APA journals
(which have stringent methodological requirements) appears un-
changed from the results reported in the Hogan et al. (2000)
review. In fact, the aforementioned studies advising against Cron-
bach’s alpha were nearly invisible in these APA journals. For
example, none of the five aforementioned, highly cited articles
which advocate for alternative measures were cited more than once
each in the 118 reviewed articles.

This evidence suggests that researchers continue to almost ex-
clusively rely on Cronbach’s alpha as a measure of scale reliabil-
ity. The pattern that methodological studies are well-cited but do
not appear in flagship journals may suggest that researchers are
aware of the issues with Cronbach’s alpha but are reluctant to
adopt new methods because these methods are not as widely
known or accepted, that reviewers may not be familiar with the
alternative methods, that the editorial process does not require
more rigorous methods so researchers do not invest time to learn
them, or that researchers are unsure how to obtain estimates of
alternative measures for their data because many are not offered as
popular general software packages like SPSS, SAS, or Stata. This
also suggests that the more rigorous methodological work advising
against Cronbach’s alpha has not impacted psychologists as much
as it has psychometricians or statisticians working in psychological
domains. Sijtsma (2009) aptly summarizes this by stating

while much of Cronbach’s article was and still is accessible to many
psychologists, the work by Lord, Novick, and Lewis and many others
since may have gone unnoticed by most psychologists. This is truly an
example of the gap that has grown between psychometrics and psy-
chology and that prevents new and interesting psychometric results.
(p. 115)

Though it appears promising that methodological articles are
highly cited, there is limited evidence that the findings, conclu-
sions, and recommendations are being incorporated in empirical
studies. This may be taken to suggest that these studies are either
being misinterpreted or not being read in their entirety, possibly
because many appear in journals that are aimed at methodologists
and statisticians and therefore may be written at too technical a
level for empirical researchers with less quantitative training to
fully benefit from the arguments being presented. Consistent with
recent recommendations from Sharpe (2013) concerning bridging
innovations in the use of statistical methods in psychology to
empirical researchers, the aim of this tutorial article is to state as
plainly and succinctly as possible why Cronbach’s alpha is often
inappropriate in empirical contexts and why researchers would
benefit from abandoning Cronbach’s alpha in favor of alternative
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measures. Though there are many resources for readers capable of
following mathematically based arguments, far fewer resources
exist for the large number of psychological researchers operating
below such a level of mathematical sophistication. As such, the
scope of this article is intended to be very broad to elucidate the
general idea that widespread adoption and continued use of Cron-
bach’s alpha is detrimental. We heavily cite previous work in this
area that can provide additional technical or nuanced detail on the
issues discussed herein.

To outline this article, we first discuss the basics behind
Cronbach’s alpha including the restrictive assumptions that
often obviate its use. We then overview some of the more
conceptually clear, leading alternatives that can be employed to
yield better estimates of reliability than Cronbach’s alpha. This
is followed by a brief comparison of scenarios in which these
alternatives have specific advantages and disadvantages. Rather
than lay out mathematical or logical arguments for why Cron-
bach’s alpha should not be used as has been the primary method
of previous articles on the topic, we demonstrate some of the
issues with Cronbach’s alpha using example analyses from
publicly available data sets. We end with a discussion of why
prolonged use of Cronbach’s alpha is detrimental and how
alternative measures are better suited to accomplish the same
goal, often to researchers’ benefit. We provide a heavily anno-
tated software appendix to help readers employ these methods
in their own research so that they can abandon Cronbach’s
alpha in favor of better alternatives.

Basics of Reliability

From a theoretical standpoint, some observed score X for a
trait or construct is considered to have two latent components:
the true component T and an error component E such that X �
T � E. From a classical test theory perspective (Novick &
Lewis, 1967), reliability is considered to be greater when the
variance of the true score component accounts for a higher
proportion of variance in the observed scores relative to the
variance attributable to the error component. More formally,
reliability is defined by the ratio of the true score variance to the
observed score variance, �XX' � �Var�T� ⁄ Var�X��. Under this
more formal definition, reliability can also be interpreted as the
correlation between scores on two consecutive administrations,
assuming the respondent does not recall their answers from the
first administration (hence, the choice of �XX’ as the symbol for
reliability).

Although the definition of reliability is relatively straightfor-
ward, obtaining an estimate of reliability is not always so easy.
Historically, many methods for assessing reliability (parallel
forms, test–retest, test–retest with parallel forms; Crocker &
Algina, 2008) required multiple test administrations which were
then correlated to form an estimate of reliability. Due to logis-
tical issues of multiple administrations, the ability to calculate
reliability from a single test administration was highly desir-
able. Cronbach (1951) addressed this in his seminal article on
internal consistency reliability, the type of reliability on which
this article focuses. Rather than inspecting the correlation be-
tween separate administrations, internal consistency reliability
inspects the relation of each item to all other items from a single
administration. If respondents provide similar answers to a set

of items, then their responses would reasonably generalize to
other items from a similar domain, and the set of items would
be considered to have high internal consistency reliability.
(Crocker & Algina, 2008).

Cronbach’s Alpha

Cronbach’s alpha (Cronbach, 1951) is by far the most common
measure of internal consistency reliability.1 Cronbach’s alpha is
calculated by

� � k
k � 1�1 �

� si
2

sX
2 � (1)

where k is the number of items, si
2 is the variance of individual item

i where i � 1, . . . , k, and sX
2 is the variance for all items on the

scale. This formula is often reported in reduced form as � �
�k2s�ij� ⁄sX

2 where s�ij is the mean covariance between all pairs of
items on the scale (Geldhof et al., 2014). One can interpret the
value of Cronbach’s alpha in one of many different ways:

1. Cronbach’s alpha is the correlation of the scale of interest
with another scale of the same length that intends to
measure the same construct, with different items, taken
from the same hypothetical pool of items (Kline, 1986).

2. The square root of Cronbach’s alpha is an estimate of the
correlation between observed scores and true scores
(Nunnally & Bernstein, 1994).

3. Cronbach’s alpha is the proportion of the variance of the
scale that can be attributed to a common source (DeVel-
lis, 1991).

4. Cronbach’s alpha is the average of all possible split-half
reliabilities from the set of items (Pedhazur & Schmelkin,
1991).

Under certain assumptions, Cronbach’s alpha is a consistent
estimate of the population internal consistency; however, these
assumptions are quite rigid and are precisely why methodologists
have argued against the use of Cronbach’s alpha (Gignac, Bates, &
Jang, 2007; Graham, 2006; Novick & Lewis, 1967; Revelle &
Zinbarg, 2009; Yang & Green, 2011). The assumptions of Cron-
bach’s alpha are:

1. The scale adheres to tau equivalence.

2. Scale items are on a continuous scale and normally
distributed.

3. The errors of the items do not covary.

1 Readers should note that there are several criticisms of Cronbach’s
alpha about the degree to which it truly measures internal consistency (e.g.,
Revelle & Zinbarg, 2009; Sijtsma, 2009). These arguments can become
rather abstract and theoretical so, given the intent of this article, we will not
delve into the specifics and we will use “internal consistency” as a
simplification of what Cronbach’s alpha intends to measure. Do note,
however, that Cronbach’s alpha being a true measure of internal consis-
tency has been called into question on multiple occasions.
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4. The scale is unidimensional.

These assumptions have been stated in other locations (e.g.,
Green & Yang, 2009a; Yang & Green, 2011) and demonstrated
mathematically (e.g., Bentler, 2009; Sijtsma, 2009) but their im-
portance (and rigidity) may not necessarily be understood or
appreciated in empirical work. The following subsections will
expound these assumptions.

Assumption 1: Tau equivalence. Tau equivalence is the sta-
tistically precise way to state that that each item on a scale
contributes equally to the total scale score. To put this assumption
into perspective, imagine that an exploratory factor analysis is run
on the scale and a single factor is extracted (as a researcher would
desire). For the tau equivalence assumption to be upheld, the
standardized factor loadings for each item would need to be nearly
identical to all other items on the scale. Figure 1 below shows what
hypothetical SPSS output would look like for a five-item scale that
does meet tau equivalence (left panel) and a scale that does not
meet tau equivalence (right panel).

Tau equivalence tends to be unlikely for most scales that are
used in empirical research—some items strongly relate to the
construct while some are more weakly related. Furthermore, if a
scale captures only a single construct, it is unlikely that all the
items devised by researchers capture the construct to an equal
degree (Cortina, 1993; Yang & Green, 2011). Put more techni-
cally, most scales are congeneric (Geldhof et al., 2014; Graham,
2006; Peterson & Kim, 2013) which means that the items measure
the same construct, but they do so with different degrees of
precision (Raykov, 1997a). Such disparities between the quality of
the individual items does not mean that the weaker items neces-
sarily need to be removed, but it does violate the assumptions
made by Cronbach’s alpha with the result being that Cronbach’s
alpha will be too low (Miller, 1995).

In the likely event that the assumption of tau equivalence is
violated, Cronbach’s alpha becomes a lower-bound estimate of
internal consistency rather than a true estimate, provided that
errors are reasonably uncorrelated (Graham, 2006; Sijtsma, 2009;
Yang & Green, 2011). This results in Cronbach’s alpha estimates
that can vastly underestimate the actual value of reliability—even
if just a single item on the scale is responsible for the violation of
tau equivalence (Raykov, 1997b). A simulation by Green and
Yang (2009a) found that Cronbach’s alpha may underestimate the
true reliability by as much as 20% when tau equivalence is violated
(e.g., if the true reliability is 0.70, Cronbach’s alpha would esti-
mate reliability in the mid 0.50s). Furthermore, the degree of
underestimation is greatest when scales have a fairly small number

of items (e.g., less than 10), which is often the case in empirical
psychological research (Graham, 2006).

Assumption 2: Continuous items with normal distributions.
As noted in discussions of Equation 1, Cronbach’s alpha is largely
based on the observed covariances (or correlations) between items.
In most software implementations of Cronbach’s alpha (such as in
SAS and SPSS), these item covariances are calculated using a
Pearson covariance matrix (Gadermann, Guhn, & Zumbo, 2012).
A well-known assumption of Pearson covariance matrices is that
all variables are continuous in nature. Otherwise, the elements of
the matrix can be substantially biased downward (i.e., the magni-
tudes will be closer to 0 than they should be; Flora & Curran,
2004). However, it is particularly common for psychological
scales to contain items that are discrete (e.g., Likert or binary
response scales), which violates this assumption. If discrete items
are treated as continuous, the covariance estimates will be atten-
uated, which ultimately results in underestimation of Cronbach’s
alpha because the relations between items will appear smaller than
they actually are.2

To accommodate items that are not on a continuous scale, the
covariances between items can instead be estimated with a poly-
choric covariance (or correlation) matrix rather than with a Pear-
son covariance matrix. Polychoric covariance matrices assume that
there is an underlying normal distribution to discrete responses.
For instance, imagine a three-category Likert item whose response
choices consist of agree, neutral, and disagree. A polychoric co-
variance matrix first assumes that these response choices map onto
a normal distribution whereby there is no longer three distinct
categories but a continuous range of “agreement.” Then thresholds
are estimated which can conceptually be thought of as cut-points
on the continuous agreement scale that separate the response
categories. So, respondents at the 40th percentile or below on the
hypothetical agreement continuum may be considered in the “dis-
agree” category, respondents between the 40th and 80th percentile
on the hypothetical agreement continuum would correspond to the
“neutral” category, and respondents above the 80th percentile
would correspond to the “agree” category (the percentile cut-
points are estimated and would change for each item). Provided
that it is reasonable to assume that a normal distribution underlies
the discrete options, the polychoric covariance estimates correct
the attenuation that occurs when discrete items are treated as
continuous (Carroll, 1961). Gadermann, Guhn, and Zumbo (2012)
demonstrate how using a polychoric covariance matrix with Cron-
bach’s alpha can addresses underestimation of reliability attribut-
able to discrete items.

Another related and less commonly considered assumption is
that both the true scores and the errors are normally distributed
(e.g., van Zyl, Neudecker, & Nel, 2000; Zimmerman, Zumbo, &
LaLonde, 1993). Studies investigating the effect of non-normal
distributions on Cronbach’s alpha have been mixed. Zimmerman
et al. (1993) generally conclude that Cronbach’s alpha is fairly

2 Likert scales with many response options can often be treated as
continuous without any adverse effects. The definition of how many
response options constitutes “many” has been debated in the methodolog-
ical literature. In latent variable models broadly, Rhemtulla, Broussard-
Liard, and Savalei (2012) recommend five. In the specific context of
Cronbach’s alpha, Gadermanm et al. (2012) recommended seven response
options.

 Item Std. 
Loading 

  Item Std. 
Loading  

Q1 0.711  Q1 0.806 
Q2 0.714  Q2 0.790 
Q3 0.716  Q3 0.725 
Q4 0.709  Q4 0.578 
Q5 0.721  Q5 0.523 

Figure 1. Hypothetical SPSS exploratory factor analysis output for stan-
dardized factor loadings of a five-item scale that meets tau equivalence
(left) and that does not meet tau equivalence (right).
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robust to deviation from normality. On the other hand, Sheng and
Sheng (2012) reported that leptokurtic distributions lead to
negative bias (i.e., reliability estimates are too low) while
platykurtic distributions lead to positive bias (i.e., reliability
estimates are too high). In the simulation in Sheng and Sheng
(2012), these biases dissipated as sample size and the magni-
tude of the true reliability increased.

Assumption 3: Uncorrelated errors. Although frequently
overlooked (Zumbo & Rupp, 2004), the assumption that errors are
uncorrelated is also required when utilizing Cronbach’s alpha.
Correlated errors occur when sources other than the construct
being measured cause item responses to be related to one another.
Correlated errors between items may arise for a variety of reasons
including the order of the items on the scale (Cronbach & Shav-
elson, 2004; Green & Hershberger, 2000), speeded tests (Roze-
boom, 1966), transient responses where feelings or opinions may
change over the course of the scale (Becker, 2000; Green, 2003),
or unmodeled multidimensionality of a scale (Steinberg & Thissen,
1996). Unlike the tau equivalence assumption, the impact of cor-
related errors does not necessarily bias Cronbach’s alpha estimates
in a predictable direction, meaning that violations can lead to either
overestimates or underestimates of reliability. When errors are
correlated, the correlations are often positive which will result in
Cronbach’s alpha overestimating the reliability (Bentler, 2009;
Green & Hershberger, 2000; Green & Yang, 2009b). When cor-
related errors are not accounted for in the calculation of reliability,
Cronbach’s alpha can be overestimated by as much as 20% (Ges-
saroli & Folske, 2002).

Some reasons for error covariances are innocuous while others
are much more problematic. For instance, if error covariances are
necessary because of item order effects, error covariances can be
incorporated to yield appropriate estimates. On the other hand, if
the error covariances are needed due to unmodeled dimensions
in the scale, this eliminates nearly all support for using the scale
(i.e., the assumption of unidimensionality is violated—this as-
sumption is discussed next). Unfortunately, considerations for
which of these mechanisms is responsible for the covariances is
difficult to determine empirically. It is difficult to test whether
error covariances are non-null because there are often not suffi-
cient degrees of freedom to include many error covariances into
the model. Possible solutions to such a violation are discussed in
subsequent sections.

Assumption 4: Unidimensionality. Though Cronbach’s al-
pha is sometimes thought to be a measure of unidimensionality
because its colloquial definition is that it measures “how well
items stick together,” unidimensionality is an assumption that
needs to be verified prior to calculating Cronbach’s alpha rather
than being the focus of what Cronbach’s alpha measures (Cortina,
1993; Crutzen & Peters, 2015; Green, Lissitz, & Mulaik, 1977;
Schmitt, 1996). Although the terminology is not universally ac-
cepted (cf., Sijtsma, 2009), Schmitt (1996) makes the distinction
between unidimensionality and internal consistency. He defines
internal consistency as the interrelatedness of a set of items while
unidimensionality is the degree to which the items all measure the
same underlying construct.

Green et al. (1977) note that internal consistency is necessary for
unidimensionality but that internal consistency is not sufficient for
demonstrating unidimensionality. That is, items that measure dif-
ferent things can still have a high degree of interrelatedness, so a

large Cronbach’s alpha value does not necessarily guarantee that
the scale measures a single construct. As a result, violations of
unidimensionality do not necessarily bias estimates of Cronbach’s
alpha. In the presence of a multidimensional scale, Cronbach’s
alpha may still estimate the interrelatedness of the items accurately
and the interrelatedness of multidimensional items can in fact be
quite high (Cortina, 1993; Schmitt, 1996; Sijtsma, 2009).

Many articles (e.g., Crutzen & Peters, 2015; Schmitt, 1996;
Green & Yang, 2009a) recommend beginning any reliability anal-
ysis with an inspection of the factor structure of the scale, specif-
ically examining whether a one-factor model fits well via inferen-
tial tests like the minimum fit function chi square statistic or via fit
index values. Though vitally important to the interpretation of
scales, a review by Crutzen and Peters (2015) found that only 2.4%
of health psychology studies reported any information about the
dimensionality of the scale beyond assessments of reliability.
Many leading alternatives to Cronbach’s alpha (discussed in detail
in the next section), make explicit use of the factor analytic
approach to reliability, facilitating the presentation of dimension-
ality and reliability side-by-side.

Alternatives to Cronbach’s Alpha

There are many methods available to assess the reliability of
scales. Hattie (1985) reviews about 30 such methods and there are
undoubtedly many additional methods that have been developed in
the 30� years since this review was published. Our intention is not
to update Hattie (1985) by providing a broad overview of all the
possible alternatives to Cronbach’s alpha that are available. In-
stead, we focus on three particular methods: omega coefficients,
Coefficient H, and the greatest lower bound. These three alterna-
tives are selected because (a) they have been shown to perform
well in previous studies; (b) they do not make as strict assumptions
as Cronbach’s alpha; and (c) they are conceptually similar to
Cronbach’s alpha, so the idea of each should be relatively familiar
if one understands Cronbach’s alpha.

Omega and Composite Reliability

Composite reliability is conceptually related to Cronbach’s al-
pha in that it assesses reliability via a ratio of the variability
explained by items compared with the total variance of the entire
scale (Bentler, 2007; Geldhof et al., 2014; Raykov, 1997a, 1997b,
1998). Omega (McDonald, 1970, 1999) is a commonly recom-
mended measure of composite reliability that is available in mul-
tiple software programs. Omega is designed for congeneric scales,
where the items vary in how strongly they are related to the
construct being measured (i.e., in a factor analysis setting, the
loadings would not be assumed to be equal). In other words, where
tau equivalence is not assumed. Composite reliability is appropri-
ate when the items from a scale are unit-weighted to form the total
scale score but the scale itself in congeneric (Bentler, 2007; Geld-
hof et al., 2014). A unit-weighted scale means that the total score
of the scale is calculated by adding up the raw scores (or reverse
coded raw scores, if appropriate) of the individual items: Each item
is weighted equally.

There are multiple variations of omega including omega hier-
archical, omega total, and what we will refer to as “Revelle’s
omega total.” Omega hierarchical is useful for scales that may not
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be truly unidimensional and may contain additional minor dimen-
sions (Zinbarg et al., 2006). Omega hierarchical attempts to parse
out the variability attributable to subfactors and calculates reliabil-
ity for a general factor that applies to all items. Although highly
advantageous, omega hierarchical differs from Cronbach’s alpha
conceptually, so we will only provide a broad overview here
(although we do recommend its use if researchers believe that the
items in the scale are organized in hierarchical factors).

Omega total, on the other hand, assumes that the scale is
unidimensional and estimates the reliability for the composite of
items on the scale (which is conceptually similar to Cronbach’s
alpha). In the R software environment, two packages (MBESS and
psych) calculate versions of omega total. However, they yield
different results because MBESS uses a different specification
which generally tends to be more conservative and yields estimates
closer to Cronbach’s alpha (Peters, 2014; Revelle, 2016; Revelle &
Zinbarg, 2009). We overview the properties and formulas for each
version of omega total in the next subsections. Though both
versions are typically referred to as “omega total,” we assign
different names to each version help keep them distinct. We refer
to the omega total value based on the psych R package specifica-
tion as “Revelle’s omega total.” We use “omega total” to refer to
the version calculated by the MBESS R package (and as presented
in many other sources).

Omega total. Under the assumption that the construct vari-
ance is constrained to 1 and that there are no error covariances,
omega total is calculated from factor analysis estimates such that

�Total �
��

i�1

k

�i�2

��
i�1

k

�i�2

� �
i�1

k

	ii (2)

where �i is the factor loading (not necessarily standardized) for the
ith item on the scale, �ii is the error variance for the ith item, and
k is the number of items on the scale. Omega total can only be
calculated if the scale is first factor analyzed to obtain the factor
loadings and error variances. This is necessary because tau equiv-
alence is no longer assumed and the potentially differential con-
tribution of each item to the scale must be assessed.

Although perhaps not immediately intuitive, Equation 2 is iden-
tical to the Cronbach’s alpha formula in Equation 1 under the
condition of tau equivalence (Geldhof et al., 2014). The condensed
equation for Cronbach’s alpha that appears under Equation 1 can
alternatively be written as � � �k�i �j 
ij� ⁄
X

2 because 	�ij �
�
i
�
j

ij

k . From factor analysis path tracing rules, the model-implied
covariance for a pair of items (with no error covariances) that load
on the same factor is equal to the square of the loadings (times the
factor variance which is assumed to be equal to 1). Under tau
equivalence, all the loadings are equal, so the total true score
variance is equal to the item covariance for a single pair of items,
repeated k times. In both Equation 1 and Equation 2, this variance
is divided by the total variance of the scale. The denominator in
Equation 2 is the factor analysis representation of sX

2 from Equation
1. As such, omega total is a more general version of Cronbach’s
alpha and actually subsumes Cronbach’s alpha as a special case.
More simply, if tau equivalence is met, omega total will yield the
same result as Cronbach’s alpha but omega total has the flexibility
to accommodate congeneric scales, unlike Cronbach’s alpha.

Similar to Cronbach’s alpha, omega total overestimates reliabil-
ity if errors have a positive covariance. The omega total formula in
Equation 2 assumes that errors are uncorrelated, though it can be
generalized to cases where this assumption is violated by altering
the denominator term to account for error covariance such that,3

�TCov �
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�i�2

��
i�1

k
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k

	ii � 2�
i�2

k

�
j�1

i

	ij (3)

If the residual covariances may be attributable to additional
minor dimensions, then omega hierarchical will yield a more
accurate estimate of the reliability of the scale (Zinbarg et al.,
2006). Extensions of omega total are also available for cases where
the factor variance is not assumed to be 1 (Raykov, 2004) and
when the data contain multiple groups (Zinbarg, Revelle, & Yovel,
2007). These extensions, however, are outside the scope of this
introduction and will not be discussed further.

Revelle’s omega total. Though similar in name and idea,
Revelle’s omega total can yield quite different (and typically
larger) estimates of reliability than omega total. This is due to a
different, more sophisticated variance decomposition that is used.
In Revelle’s omega total, a factor model is estimated as with
omega total. However, the solution is then transformed with a
Schimd-Leiman rotation (Schmid & Leiman, 1957). Though we
will not go into full detail regarding this rotation because it is
rather technical and full detail is outside the scope of this article
(for full details, see Mansolf & Reise, 2016 or Wolff & Preising,
2005), the general idea is to rotate the factor solution to a bifactor
model where there is one general factor and several minor factors.
More specifically, each item will load on the single general factor
(g), one or more group factors (f), and an item-specific factor (s).
The communality is then calculated by squaring the loadings of the
general factor and the group factor(s) but not the item-specific
factors (Revelle, 2016).

The formula for Revelle’s omega total is essentially the same as
Equation 2; however, it is more complex to account for the
differential variance decomposition and additional minor factors.
Namely, Revelle’s omega is equal to

�RT �
��

i�1

k

�gi�2

� ��
f�1

F

�
i�1

kf

�fi�2

VX (4)

where �gi is the loading of the ith item on the general factor, �fi is
the standardized loading of the ith item on the fth group factor, k
is the total number of items, F is the total number of group factors,

3 Note that, although the inclusion of the error covariances in the
denominator appropriately takes the extra source of variation into account,
it does not solve the broader issue of why there is error covariance. That is,
whether the error covariance is attributable to a model misspecification
where an important factor has been omitted from the model (Green &
Hershberger, 2000) or whether design-driven aspects of the scale led to the
correlated errors (e.g., speeded tests; Cole, Ciesla, & Steiger, 2007).
Bentler (2009) nicely summarizes this issue by stating “It would seem that
the question of whether to consider correlated errors as factors and hence
part of the common factor space, or as residual covariances and hence as
part of the unique space, should be left up to the goals of the investigator”
(p. 139).
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and kf is the number of items that load on the fth group factor. VX

is the total variance after rotation which is equal to the sum of each
element of the sample Pearson (or polychoric) correlation matrix
(in matrix notation, this can be succinctly written as 1T R1 where
R is the sample correlation matrix).

Omega hierarchical is based on the exact same Schmid-Leiman
transformation except that it only considers contributions of the
general factor and disregards the loadings of both the group factors
in addition to the item-specific factors,

�H �
��

i�1

k

�gi�2

VX (5)

For interested readers, Kelley and Pornprasertmanit (2016) pro-
vide a highly readable description of omega hierarchical and when
it should be used. Readers looking for complete details on omega
hierarchical are referred to Zinbarg et al. (2005).

Though the formulas may look intimidating, the idea is quite
straightforward because software will handle the rotation and
complexities of the formula. Explanations of how these values are
extracted from the data are provided in the software appendix.

Coefficient H and Maximal Reliability

Should researchers want to use the information present from the
factor loadings to create a scale that is optimally weighted where each
item contributes different amounts of information to the overall scale
score (instead of each item being given the same weight with unit-
weighting), then maximal reliability is a more appropriate measure
of the scale’s reliability (Bentler, 2007; Hancock & Mueller, 2001;
Raykov, 2004).4 Hancock and Mueller (2001) derived Coefficient
H as a measure of maximal reliability for an optimally weighted
scale. Similar to the form of omega total presented in Equation 2,
Coefficient H requires the (standardized) factor loadings from a
unidimensional factor analysis of the scale (or from unidimen-
sional subscales). Coefficient H is calculated by.

H � �1 � ��
i�1

k �i
2

1 � �i
2��1��1

(6)

where k is again the number of items on the scale and �i is the
standardized factor loadings for the ith item. Unlike Equation 2,
notice that the squaring of the factor loadings occurs prior to
summing over the each of the items. Both Cronbach’s alpha and
omega (all versions) are adversely affected by items with negative
loadings, whereas Coefficient H squares the loadings first so that
magnitude (and not sign) is the only important feature. This means
that negatively worded items do not need to be reverse coded with
Coefficient H.

There are several other features of Coefficient H that differen-
tiate it from omega total. First, error variances are not included in
the denominator of the equation. This means that items with weak
factor loadings do not negatively affect Coefficient H as they do in
the computation of omega total. In Equation 2, an item with a weak
loading will necessarily have a large error variance (i.e., the
underlying construct accounts for a small percentage of the vari-
ance, so the remaining variance must be attributable to error). In
Coefficient H, the scale is not penalized for featuring weaker items
because its intended use is for optimally weighted scales. For

example, whereas adding an item completely unrelated to the
construct of interest to a scale reduces reliability for Cronbach’s
alpha and omega (which are appropriate for unit-weighted scales),
with optimal-weighted scales, an unrelated item’s factor loading
will essentially be 0 and the information from this item would not
affect the scale scores. Put another way, in unit-weighted scales,
every item receives equal treatment so an unrelated item hurts the
scale; in optimally weighted scales, items are differentially
weighted so an unrelated item does not hurt reliability because the
item simply receives very little or zero consideration when scoring
the scale. Another property exclusive to Coefficient H is that the
reliability of the scale cannot be less than the squared loading (the
definition of reliability in factor analytic models) of the single best
item (Geldhof et al., 2014).

Greatest Lower Bound

The greatest lower bound (GLB) is a class of methods for
assessing reliability which are all based on the same conceptual
idea. First introduced by Jackson and Agunwamba (1977), the
GLB is based on the classical test theory approach to reliability.
First, the GLB extends the classical test theory formula from X �
T � E to Cov(X) � Cov(T) � Cov(E)—the covariance matrix of
all observed scores X is equal to the covariance matrix of all true
scores T plus the covariance matrix of all the errors E (Shapiro &
ten Berge, 2000; ten Berge & Sočan, 2004). Conceptually, Jackson
and Agunwamba (1977) argued that the greatest lower bound for
reliability could be calculated from the estimate of the covariance
matrix of E with the largest trace that is consistent with the data
(provided that Cov(T) and Cov(E) are non-negative definite).5

Once the estimated covariance matrix for E with the largest trace
is found, GLB reliability is calculated by

GLB � 1 � trace[Cov(E)]
sX

2 (7)

where sx
2 is the variance of the observed items. More simply, the

goal is to determine the maximal values for the error component of
the observed scores that is consistent with the data because reli-
ability calculated with these maximum errors will yield the lowest
possible value for reliability (Sočan, 2000). Jackson and Agun-
wamba (1977) showed that Cronbach’s alpha and other single
administration measures like split-half reliability can be shown to
be based on the same principle as the GLB with the exception that
they inefficiently estimate Cov(E) and therefore do not exceed the
theoretical GLB value.

Though appealing theoretically, a major challenge for GLB
reliability is its computation. The difficulty stems from finding the
estimate of Cov(E) that maximizes the trace. In fact, a simple
analytical solution is generally impossible, so several iterative
methods have been proposed to determine this matrix with leading

4 When using optimal weighting, the contribution of each item to the
scale score is based on the magnitude of its standardized factor loading. For
example, an item with a standardized loading of 0.90 would have a much
larger impact on the scale score than an item with a standardized loading
of 0.50.

5 The trace of a matrix is computed by adding up all of the diagonal
elements and non-negative definite means that the diagonal elements of the
matrix are 0 or larger.
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candidates being the minimum rank factor analysis (MRFA) ap-
proach of ten Berge and Kiers (1991) and the GLB algebraic
solution from Moltner and Revelle (2015; both of which can be
implemented in R). An additional limitation of GLB reliability is
that it tends to overestimate reliability with smaller sample sizes
(e.g., bias is rather large with a sample size of 100 but is reasonable
with a sample size of 500; Shapiro & ten Berge, 2000; Trizano-
Hermosilla & Alvarado, 2016).

Practical Comparison of Methods

Table 1 compares the six aforementioned methods (Cronbach’s

alpha, omega total, Revelle’s omega total, omega hierarchical,
Coefficient H, and the GLB) based on practical considerations.
That is, because adopting new statistical approaches often entails
a steep learning curve, Table 1 does not compare strict statistical
properties or asymptotic behavior but rather overviews which
software can compute each method, whether the method is
calculable by hand, notable conceptual advantages, and notable
conceptual disadvantages. Alternatives to Cronbach’s alpha
tend to have very little support in general software, so the
easiest measures to report are omega total or Coefficient H
because they can be calculated using a simple spreadsheet.
More computationally intensive measures are only currently

Table 1
Comparison of Practical Considerations for Six Different Methods

Measure
Ease of implementation in general

statistical software Notable advantages Notable disadvantages

Cronbach’s alpha Ubiquitous in general software
(e.g., SPSS, SAS, Stata, R).

Familiar to readers and reviewers. Underestimates reliability,
requires tau equivalence.

Omega total Available in the MBESS R package
via the ci.reliability
function or via the
scaleStructure function in
the userfriendlyscience
package.

Most conceptually related to Cronbach’s
alpha (Cronbach’s alpha is a special
case). Formula can be extended to
take design-driven error covariances
into account.

Tends to be yield conservative
estimates compared with
other alternative methods.

Also calculable with a spreadsheet
(provided in the Appendix). No
built-in option for computing a
polychoric covariance matrix,
though factor analysis
procedures do, which does not
affect manual ease of
calculation.

Revelle’s omega total Available in the psych R package
via omega function or via the
scaleStructure function in
the userfriendlyscience
package. Not calculable
manually.

Tends to justifiably exceed Omega total
and often exceeds the GLB.

Proportionality assumption of
Schmid-Leiman must be
met.

Omega hierarchical Available in the psych R package
via omega function or via the
scaleStructure function in
the userfriendlyscience
package.

Accounts for and excludes effects of
minor dimensions.

Most conceptually distant from
traditional Cronbach’s alpha.
Also dependent on Schmid-
Leiman assumptions.

Not calculable manually. Includes
a built-in option for internally
computing and using a
polychoric covariance matrix.

GLB Available in the psych R package
via glb.fa or
glb.algebraic function.
Available via the
scaleStructure function in
the userfriendlyscience
package. Not calculable
manually. No built-in option for
computing polychoric covariance
matrix.

Exceeds Cronbach’s alpha, even if all
assumptions are met.

No analytic solution, current
software does not offer
polychoric option.

Coefficient H Very simple to calculate in a
spreadsheet (provided in in the
Appendix), calculated by default
in the scaleStructure
function in the
userfriendlyscience
package for continuous items.

Designed for optimal-weighted scales,
not affected by addition of poor
items.

Misleading if the scale is
scored with unit-weighting.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

8 MCNEISH



supported in R. We realize that R is not the first-choice software
for many psychologists, so extensive annotated R code is pro-
vided in an appendix to assist in calculating measures that
require more computational resources (e.g., Schmid-Leiman
transformation, MRFA).

Empirical Examples

In this section, we provide example analyses to demonstrate the
shortcomings of Cronbach’s alpha. The first example dataset is
based on a subsample of the Early Childhood Longitudinal
Study—Kindergarten (ECLS-K) from the United States’ National
Center for Educational Statistics. The data include 21,054 students
and thousands of variables such as direct cognitive assessments of
students, teacher reports of students, parental reports of students,
and detailed information about demographic information and stu-
dents’ home life at seven time-points. The data are publicly avail-
able from the United States’ National Center for Educational
Statistics (https://nces.ed.gov/ecls) and are intended to allow re-
searchers to answer research questions pertaining to child devel-
opment, school readiness, and experiences in schools. We used a
subsample consisting of 1977 students who had complete math and
reading scores at all seven waves of the study. Socioeconomic
status is not captured by a single variable in ECLS-K, therefore
researchers have argued and demonstrated that it is more fruitful to
form a scale for socioeconomic status using variables that capture
different aspects of socioeconomic status (Curran & Kellogg,
2016; Lubienski & Crane, 2010). In this example, we use nine
variables: mother’s education, father’s education, household in-
come (in dollars), parents’ expectation of child’s eventual educa-
tion level, the number of books the child has, whether the child
qualifies for free or reduced lunch, whether the parent volunteers
at school, whether there is a computer in the house (these data were
collected in the late 1990s when home computers were not ubiq-
uitous), and whether the child is enrolled in music lessons. These
variables were collected during the fall semester of the child’s
kindergarten year. The first example primarily demonstrates how
the assumption of tau equivalence adversely affects Cronbach’s
alpha in ways that do not affect other measures. Differences
between reliability for optimally weighted and unit-weighted
scales are also shown.

The second example contains responses to 25 Likert items
from the Big Five Inventory for personality traits. The data
contain responses from 2,800 people and were collected as part
of the Synthetic Aperture Personality Assessment (SAPA) proj-
ect (Revelle, Wilt, & Rosenthal, 2010). The data are freely
available in the psych R package as the “bfi” data. This example
shows how the various measures are similar when tau equiva-
lence is approximately met and how the measures diverge when
scales are congeneric. The data in this example are based on
Likert items, so the example also shows how reliability is
attenuated if discrete responses are treated as continuous and
how discrete items similarly affect alternatives measures as
well.

Although we previously listed other assumptions earlier in
the text, these examples primarily focus on violations of the tau
equivalence and continuous item assumptions. This is inten-
tional because theses assumptions of Cronbach’s alpha are
frequently violated and are the simplest assumptions to relax.

ECLS-K Example

To demonstrate the large violation of tau-equivalence in these
data, we first perform a likelihood ratio test comparing a model
with constrained standardized loadings across all items to a model
with standardized loadings freely estimated for all items. We
reverse coded the free or reduced lunch variable because its
loading was negative, which would adversely affect fit. With all
loadings constrained, �2(35) � 625.33, SRMR � .12, McDonald
Centrality � .836 and the standardized loading for all items was
estimated to be 0.48. When loadings were allowed to be uncon-
strained, �2(27) � 160.52, SRMR � .05, McDonald Centrality �
.96. A likelihood ratio test of these two models results in a value
of ��2(8) � 464.81 which is clearly significant (the 0.05 cut-off is
15.51) and indicates that the model with constrained loadings fits
significantly worse. The standardized loadings for the uncon-
strained model are presented in Table 2, which clearly show a wide
range of standardized factor loadings (Range: 0.21 to 0.76). The fit
indices also provide evidence that the scale is unidimensional
because a one factor solution fits the data reasonably well. Table
2 provides the reliability estimates using Cronbach’s alpha, omega
total, Revelle’s omega total, the GLB, and Coefficient H. If Cron-
bach’s alpha is used, the value is in the mid .70s which would
result in the scale being seen as “acceptable” using common
guidelines from Kline (1986) and DeVellis (1991). However,
recall that the loadings in this example are highly discrepant and
that this negatively biases Cronbach’s alpha estimates. Using an
alternative measure of reliability results in noticeable increases in
reliability estimates, as high as 10% with Coefficient H.

Although many researchers would consider removing the music
lessons variable due to its low loading, we have retained it to
demonstrate the difference in reliability estimates for unit-
weighted and optimally weighted scales. For Cronbach’s alpha,
both omega totals, and the GLB, a weakly related item decreases
reliability because each item receives equal consideration when
computing scale scores. However, optimally weighted scales (for
which Coefficient H is appropriate) differentially weight each item
based on its factor loading. As a result, Coefficient H in this case
is higher (5% higher than Revelle’s omega total) because the
music lessons variable is heavily down-weighted and the other,
more reliable items would be weighted much more heavily when
scale scores are computed. As a reminder, even though it may be
appealing to report Coefficient H in such a case because it is
higher, it is only appropriate if the scale score is calculated using
optimal weights.

6 Hu and Bentler (1999) recommend McDonald’s Centrality 	 .90 and
SRMR 
 .09 as a combinational rule that minimizes the sum of Type-I and
Type-II errors (p. 26) while McDonald’s Centrality 	 .93 and SRMR 

.06 also worked fairly well but tended to overreject true models. We use
this criteria to establish goodness-of-fit throughout these examples because
factor models for scales with few items tend to have few degrees of
freedom, for which RMSEA vastly overrejects well-fitting models (Kenny,
Kaniskan, & McCoach, 2015) and because the sample size in both models
is rather large, which may render the chi-square test overpowered (e.g., Hu
& Bentler, 1998). Note that there has been a steady wave of criticism
against generalizing the Hu and Bentler cut-offs (e.g., Hancock & Mueller,
2011; Marsh, Hau, & Wen, 2004) although our examples fall fairly closely
to their original simulation design (factor model with five items per factor
and standardized loadings near 0.70).
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Big Five Inventory Example

Unlike the previous example where tau equivalence was badly
violated, this example features five subscales with various gradations
of (possible) violations to tau equivalence. Table 3 shows the stan-
dardized factor loadings based on the Pearson and polychoric corre-
lation matrices. Both sets of results were obtained in R using the
psych package and the scaleStructure wrapper from the userfriendly-
science package (details are provided in the appendix). Each subscale
in this dataset contains five items that are intended to be unidimen-
sional (i.e., each item only measures a single construct). To assess the
unidimensionality of these subscales, SRMR and McDonald’s Cen-
trality are provided for each subscale; the values for each subscale
meet the suggested guidelines and we continue under the assumption
that unidimensionality for each subscale is preserved.

Upon initial inspection of Table 3, the various subscales adhere to
tau equivalence to varying degrees. The loadings for the conscien-
tiousness subscale are rather close to one another (magnitude range:
0.55 to 0.67 using a Pearson covariance matrix, 0.58 to 0.72 using a
polychoric covariance matrix). On the other hand, the loadings for the
agreeableness subscale are quite variable (Range: 0.37 to 0.76 using
a Pearson covariance matrix, 0.43 to 0.80 using a polychoric covari-
ance matrix). To more rigorously demonstrate the similarity of the
loadings on the conscientiousness subscale, we constrained the stan-
dardized loadings to be equal and compared the fit to a model where
all loadings are freely estimated. The likelihood ratio test was signif-
icant �2(4) � 28.17, p 
.01 but the changes in the SRMR
(�SRMR � .0125) and McDonald’s Centrality (�McDonald �
�.0048) were rather small.7 We proceed by allowing the loadings to
be freely estimated, but we treat the conscientiousness subscale as an
exemplar of the behavior of the various reliability measures when tau
equivalence is roughly appropriate.

Table 4 shows the estimated reliability using Cronbach’s alpha,
omega total, Revelle’s omega total, the GLB (using the MRFA
approach), and Coefficient H using both a Pearson covariance
matrix and a polychoric covariance matrix. First, notice that when
the subscale is very closely tau equivalent (as in the conscientious-
ness subscale), there are small differences between the various
reliability measures.8 However, the difference between the esti-
mates grows larger the as the subscales deviate from tau equiva-
lence with relative percentage increases over Cronbach’s alpha
ranging from 5% to 12% across subscales.

This example also shows the effect of treating truly discrete
items as continuous when calculating reliability, which is an as-
sumption of all methods because each use the interitem covariance
matrix in some form in their calculation. Even though item re-
sponses are on a 6-point Likert scale, the reliability estimates using
the polychoric covariance matrix are noticeably larger because
treating the items as continuous attenuates the covariances. Across
each subscale, the estimates based on the polychoric covariance
matrix are between .02 to .11 points higher for the same measure
than if the Pearson covariance matrix is used. Regardless of which
method is used to calculate reliability, when assessing reliability, it
is important to consider the scale of the responses.

Among the various alternatives to Cronbach’s alpha, the ex-
pected trends can be seen in this example. First, Cronbach’s alpha
consistently yields the lowest estimate of reliability. This is ex-
pected because Cronbach’s alpha is the only method making the
tau equivalence assumption which is rarely tenable and inappro-
priate for at least four of the five subscales in this example.
Second, when subscales have an item that has a noticeably poor
item relative to the other items (e.g., Item 1 on agreeableness, Item
4 on openness), Coefficient H tends to provide larger reliability
estimates than omega total, the GLB, and sometimes than Rev-
elle’s omega total because the scale would be better scored using
optimal weighting (to down-weight the impact of the poor item).
When subscales have factor loadings in the same general vicinity
(but not necessarily close enough to be considered approximately
tau equivalent), the GLB and Revelle’s omega total yield higher
estimates than Coefficient H. In the case of approximate tau

7 When sample size is large, some studies have recommended using
change in fit indices instead of likelihood ratio test (e.g., Cheung &
Rensvold, 2002; Chen, 2007). Although the field has not uniformly ac-
cepted this approach (e.g., Barrett, 2007), these changes in fit indices
between models are below the recommend cut-offs (less than .025 for
SRMR when testing loadings, greater than �.005 for McDonald’s (1999)
Centrality; Chen, 2007).

8 When a scale is perfectly tau equivalent, omega total and Coefficient
H will be identical to Cronbach’s alpha, provided that all other assumptions
are met. With tau equivalence, there is no difference between unit weight-
ing and optimal weighting because, with optimal weighting and tau equiv-
alence, each item receives the same weight. The GLB will not necessarily
be equal to Cronbach’s alpha, even if a scale is tau equivalent (Sočan,
2000).

Table 2
ECLS-K Example Standardized Factor Loadings, Estimated Reliability Using Different Methods,
and Model Fit Indices

Variable Std. loading Measure Estimate % Increase

FR lunch �.52 Cronbach’s alpha .74 —
Mom education .73 Omega total .75 1.4%
Dad education .76 Revelle’s omega total .77 4.1%
Household income .60 Greatest lower bound .80 8.1%
Expect education .35 Coefficient H .81 9.5%
Number of books .40
Music lessons .21 Fit
Computer at home .44 SRMR .05
Parent volunteers .39 McDonald’s Centrality .96

Note. SRMR � standardized root mean squared residual; % Increase � the percent relative increase of
reliability compared with Cronbach’s alpha. The free or reduced lunch variable was reverse coded when
calculating Cronbach’s alpha and both Omega totals so that all covariances would be positive.
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equivalence, Coefficient H converges to Cronbach’s alpha whereas
the GLB is known to exceed Cronbach’s alpha in such instances
(e.g., Sočan, 2000). When there is moderate separation between
the loadings of the various items (as on the neuroticism subscale),
Coefficient H and the GLB are approximately equal.

Take-Home Message

The take-home message of these examples is that there is a vast
discrepancy in the reliability estimates when applying the conven-
tional Cronbach’s alpha compared to employing alternative meth-
ods. In the Big Five Inventory example, Cronbach’s alpha for the
openness subscale using a Pearson covariance matrix is .61 which
would be classified as borderline poor (DeVellis, 1991 and Kline,
1986 designate the “poor” classification at 
.60) and would likely
need to be defended if an article were submitted for publication.
However, by appropriately accounting for the discreteness of the
responses and using a method that does not mandate tau equiva-
lence, Revelle’s omega total, the GLB, and Coefficient H estimate

the reliability to be well above .70. The GLB yields the highest
estimate at .76, 25% higher than the Cronbach’s alpha estimate
based on the Pearson covariance matrix.

Discussion

Although Cronbach’s alpha is familiar, commonly reported, and
easy to obtain in software, it is rarely an appropriate measure of
reliability—its assumptions are overly rigid and almost always
violated. Worse yet, under the near ubiquitous violation of tau
equivalence, Cronbach’s alpha estimates make scales appear much
less reliable than they are in actuality. Moreover, even if all
assumptions are met, Cronbach’s alpha is a special case of the
alternative measures overviewed in this article meaning that, even
if Cronbach’s alpha is appropriate, other methods will yield the
exact same values and others (Revelle’s omega total and the GLB)
have been shown to routinely exceed Cronbach’s alpha. Quite
plainly, there is no situation where Cronbach’s alpha is the optimal
method for assessing reliability.

Table 3
Standardized Factor Loadings for Big Five Example, Treating the Items as Continuous With a
Pearson Covariance Matrix and Discrete With a Polychoric Covariance Matrix

Subscale Item 1 Item 2 Item 3 Item 4 Item 5 SRMR MC

Pearson covariance matrix

Agreeableness �.37 .66 .76 .48 .63 .04 .98
Conscientiousness .55 .61 .55 �.67 �.59 .05 .97
Extraversion �.61 �.73 .58 .69 .52 .04 .99
Neuroticism .82 .80 .72 .55 .50 .07 .93
Openness .55 �.44 .65 .30 �.51 .04 .99

Polychoric covariance matrix

Agreeableness �.43 .71 .80 .52 .67 .04 .99
Conscientiousness .59 .64 .58 �.72 �.62 .06 .97
Extraversion �.64 �.77 .60 .74 .54 .04 .99
Neuroticism .86 .84 .74 .57 .52 .08 .93
Openness .60 �.48 .69 .37 �.58 .05 .99

Note. SRMR � standardized root mean squared residual; MC � McDonald Centrality.

Table 4
Comparison of Subscale Reliabilities for Model in Big Five Inventory Example Using
Cronbach’s Alpha, Both Versions of Omega Total, the GLB, and Coefficient H

Subscale Cronbach’s alpha Omega total Omega Revelle Greatest lower bound Coefficient H

Pearson covariance matrix

Agreeableness .71 .71 .77 .75 .77
Conscientiousness .73 .73 .77 .77 .74
Extraversion .76 .77 .80 .82 .78
Neuroticism .81 .82 .88 .85 .85
Openness .61 .62 .68 .65 .65

Polychoric covariance matrix

Agreeableness .76 .77 .83 .79 .81
Conscientiousness .77 .77 .81 .81 .78
Extraversion .79 .80 .83 .84 .81
Neuroticism .84 .84 .90 .87 .88
Openness .67 .68 .73 .76 .71

Note. Omega Revelle � Revelle’s omega total from psych R package. Items with negative loadings were
recoded when calculating Cronbach’s alpha and both omega totals so that all covariances would be positive.
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Despite a steady stream of criticism against Cronbach’s alpha,
researchers continue to report it in flagship APA journals, as reviewed
in the introduction. A common tactic when reporting unfavorable
values of Cronbach’s alpha is to appeal to the weakness of the
method. This approach, while well-intended, is highly problematic for
the scientific process because it impedes the ability to identify scales
with less desirable properties. That is, if a scale has a Cronbach’s
alpha value of 0.40, the value could be low because (a) the scale is not
reliable or (b) the scale is sufficiently reliable but assumption viola-
tions led to downwardly biased estimates of Cronbach’s alpha. This
uncertainty leads toward a dichotomy where either (a) the use of the
scale is supported because reliability is sufficiently high (e.g., 0.70 or
greater) or (b) Cronbach’s alpha should be higher but was underesti-
mated because assumptions were violated and the scale is still usable.
Such a dichotomy hides a third option which is simply that the scale
is not reliable. In the long run, it does the field little good to use faulty
methods whose results may subsequently be disregarded; the process
of scale validation at such a point becomes highly subjective and not
readily falsifiable, eroding the credibility of psychometric analysis.

Given that many psychologists employ latent variable methods
(item response theory, confirmatory factor analysis, or exploratory
factor analysis) to explore their scales rather than classical test
theory, it is difficult to excuse the continued use of Cronbach’s
alpha. Specifically, the vital assumption of tau equivalence is quite
easy to inspect by examining the similarity of the factor loadings.
Even the classic eyeball test can be an effective approximation in
many cases. For instance, in the ECLS-K example, formal tests are
not likely necessary to determine that standardized loadings of
0.21 and 0.76 are not approximately equal. If the factor loadings
are not equivalent for all items on the scale, then Cronbach’s alpha
is not appropriate and its use will adversely affect results by
making reliability appear lower than it actually is. Other measures
are susceptible to other assumption violations, but we remind
readers that there are ways in which these could be addressed such
as omega hierarchical for the presence of minor dimensions, in-
cluding error covariances between items for design-driven reasons,
or basing estimates on a polychoric rather than Pearson covariance
matrix if item responses are discrete rather than continuous. We
would like to note that Likert items, even with many categories,
attenuate the item covariances that are used in all methods we
discuss in this article, which results is downwardly biased esti-
mates of reliability. Therefore, it tends to be in researchers’ best
interest to acknowledge potential discreteness of items.

Although there have been previous calls to abandon Cronbach’s
alpha, Revelle and Zinbarg (2009) noted that software for other
methods was somewhat limited and that empirical researchers may
be hesitant because of the undoubted attraction to methods that
have simple software applications. Although the GLB and Rev-
elle’s omega total are best estimated in R because of some com-
putational complexities, omega total and Coefficient H are fairly
straightforward to compute manually or with spreadsheets and
do not require sophisticated or iterative processes. In the Ap-
pendix, we provide annotated R code that can be used to
estimate these alternative measures. Some of the functionality
included in these packages may require additional analyses in
R, which we realize may not be helpful to users who are
unfamiliar with or who dislike using R (though the scaleStruc-
ture function can eliminate the need for these additional anal-
yses for most of the alternative measures). In an attempt to

make these measures more accessible, we provide an Excel
spreadsheet on the first author’s personal web site and on the
Open Science Framework that allows researchers to compute
Coefficient H and omega total using only the standardized
factor loadings. Guidance for using this spreadsheet is also
provided in the Appendix.

This article is not intended to fully cover all the nuances and issues
associated with Cronbach’s alpha or calculating and reporting scale
reliability as this literature is rather extensive. Other researchers have
provided more technical information on this topic for those seeking a
deeper understanding of the issues surrounding reliability. Geldhof et
al. (2014) provide further guidance on calculating reliability with
Cronbach’s alpha, omega total, and Coefficient H when data come
from a multilevel structure. Kelley and colleagues have several recent
articles discussing the importance of confidence intervals around
reliability estimates and discuss how to compute such intervals for
many measures which have been included in their MBESS R package
(e.g., Kelley & Cheng, 2012; Kelley & Pornprasertmanit, 2016; Terry
& Kelley, 2012). Zhang and Yuan (2016) discuss robust methods to
compute Cronbach’s alpha and omega total with non-normal or miss-
ing data and also provide the R package coefficientalpha. We pre-
sented only a few of the possible alternatives to Cronbach’s alpha.
Bentler’s rho (Bentler, 1968) has also been recommended and is easy
to compute in the EQS software while Sijtsma (2009) has vouched for
the explained common variance (ECV) method. We focused on
unidimensional scales, although there is a growing trend in the liter-
ature to assess the reliability of multidimensional scales. Bifactor and
hierarchical models (where there is a single general factor and several
subscale factors) are more appropriate for these types of scales and
there are alternative measures (Reise, 2012; Reise, Bonifay & Havi-
land, 2013; Reise, Morizot, & Hays, 2007).

In conclusion, we hope that we have sufficiently demon-
strated why Cronbach’s alpha is obsolete and that it is time for
the field to move on to better, more general alternatives. As
seen in the empirical examples, the practical differences among
the competing alternatives tends to be rather small—the exam-
ple showed that the GLB, Revelle’s omega total, and Coeffi-
cient H tend to provide the highest estimates of reliability. We
realize that readers may be hoping for guidance on which of the
aforementioned methods should be the “successor” to Cron-
bach’s alpha.9 Although some of these comparisons have been
noted in the literature and some general relations are known
(such as those presented in Table 1), these results should not be
taken as rigorous and comprehensive since they are anecdotal
and not based on analytic derivations or simulation results
(though such comparisons would undoubtedly be a fruitful
avenue of future research).The common theme we hope to
espouse is that Cronbach’s alpha is outperformed by all of these
methods. We believe that the most important message empirical
researchers receive from this article is that using any of the
alternatives is preferable to continued use of Cronbach’s alpha.
Cronbach’s alpha had a good run and was able to hold down the
fort for the field for over 50 years, but methodological rein-
forcements have indeed arrived.

9 This phrase was used by a reviewer, which we adopted because we
thought it very aptly described the current state of affairs.
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Appendix

Software Code and Associated Screenshots

Using R

Basics and Installing Packages

Because R is open source, new statistical packages are being added almost daily. In R, a “package” is a set
of procedures that can be used to perform certain statistical analyses. This is equivalent to the “Proc”
commands in SAS, procedures in SPSS, or commands in Stata. For example, to fit a linear multilevel model,
SAS uses the Proc Mixed procedure, SPSS uses the MIXED procedure, Stata uses the xtmixed command, and
R would use the lme4 package.

In R, not all packages are available by default upon opening the program (in fact, only very basic packages are
available). The packages needed to calculate scale reliability (psych, MBESS, and userfriendlyscience)
are not included and must be installed. This is done with the following code:
install.packages("psych")
install.packages("MBESS")
install.packages("userfriendlyscience")

Note that code in R is case-sensitive so capitalization is important. After running this code, you will likely
be prompted to select a “mirror site” which is the location from where these packages are downloaded. A list
of geographic locations may appear; it makes little difference which is selected and they all contain the same
information. These packages may take a few minutes to install. Installing packages only needs to be done once
per machine. Once the packages are installed, they do not need to be installed again.

Loading the Data

Undoubtedly, one of the most difficult tasks when working with a new software is to successfully load the
desired dataset. In this appendix, we use the data from the Big Five Inventory example because it is included
as an internal example without the psych package. After installing the psych package, the Big Five
Inventory dataset can be loaded with the following code,
data(bfi, package = "psych")

(Appendix continues)
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In general, there are multiple ways to load data into R. Although the pathway to the file can be explicitly
stated, it is often easier to find the desired file from a dialog menu. The following code shows how to input
datafiles into R that are saved in either the .csv, .sav (SPSS), .dta (Stata), or permanent SAS data set formats.
install.packages("foreign")
require(foreign) # after installing a package, the require command tells
R to use the package
dat<-read.csv(file.choose()) # CSV
dat<-read.spss(file.choose())#SPSS
dat<-read.dta(file.choose()) #Stata
dat<-read.ssd(file.choose()) # SAS

If the userfriendlyscience package is already installed, then one can use the getDat() function to
import data. This function determines the appropriate format and will automatically import the data and assign
it the name “dat.”

To simplify the analysis, we will separately break the full data into five separate data sets such that each
of the five subscales are contained within their own data set.
agre<-bfi[,1:5]
cons<-bfi[,6:10]
extr<-bfi[,11:15]
neur<-bfi[,16:20]
open<-bfi[,21:25]

The name of the left side of the arrow is the new data name. On the right side of the arrow is the old dataset
(called bfi here because that is the default name for this data when loaded in from R) and a set of brackets.
Within these brackets, users specify which parts of the data matrix to use. The first value is blank because we
want all the rows (people). The second numbers correspond to the columns in the data. So, for the
agreeableness dataset (agre), we want the first five columns of the bfi data. The conscientious dataset (cons)
is composed of the sixth through tenth columns of the bfi and so on.

Reverse Scoring

As is common in psychometric scales, some items may need to be reverse scored (this is required for
appropriate calculation of some reliability coefficients like Cronbach’s alpha). This can be done with the
invertItems function that is part of the userfriendlyscience package.
agreRev <- invertItems(agre, 1)
consRev <- invertItems(cons, c(4,5));
extrRev <- invertItems(extr, c(1, 2));
openRev <- invertItems(open, c(2, 5));

This code creates a new R object (agreRev, consRev, extrRev, openRev) from the original R data. After the
invertItems function, the first value within the parentheses is the data set to reverse score. After the
comma, the numbers listed are the columns in the data that should be reverse scored. The “c” indicates that
a list will follow and is needed if multiple items are reverse scored. So, the agreeableness scale will reverse
score Item 1, the conscientiousness scale will reverse score Items 4 and 5, and so on. The neuroticism scale
does not contain any items that need to be reverse scored.

Cronbach’s Alpha

Cronbach’s alpha can be calculated as part of many different functions. The simplest is to use the alpha
function from the psych R package. If relevant items are reverse scored as discussed previously, then the
only argument of the alpha function is the dataset.
alpha(agreRev)
alpha(consRev)
alpha(extrRev)
alpha(neur)
alpha(openRev)

(Appendix continues)
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The output for the agreeableness scale is as follows. The estimate of Cronbach’s alpha can be found in the
first row of the output under std.alpha.

Omega Total

To calculate the measure that we call omega total (not Revelle’s omega total), one must go outside of the
psych package to the MBESS package.

In the MBESS package, the ci.reliability function will estimate omega total as well as its confidence
interval.
require(MBESS)#only necessary the first time the package is used
ci.reliability(agreRev)

This yields the following output:

The estimate of omega total is the first value which appears beneath $est. On the agreeableness subscale,
omega total is estimated to be 0.71 with a 95% confidence interval of [.69, .73]

(Appendix continues)
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Revelle’s Omega Total

Revelle’s omega total is calculated from the omega function in the psych package. The omega function
also outputs Cronbach’s alpha as well, so it can be used in lieu of the alpha function. Again, the only
argument needed in the function to obtain Revelle’s omega total using a Pearson covariance matrix is the data
set.
omega(agreRev)
omega(consRev)
omega(extrRev)
omega(neur)
omega(openRev)

The output from this function for the Agreeableness subscale is as follows:

The Alpha row shows Cronbach’s alpha, which matches the output from the alpha function. Revelle’s
omega total is the last value in the first set of values which is listed as 0.77. Notice that this value is not the
same as omega total because it uses a variance decomposition based on a Schmid-Leiman transformation (the
details of which are provided below the output).

A convenient option in the omega function is that a polychoric covariance matrix can be estimated and used
internally and is possible by specifying only two additional words in the code.
omega(agreRev, poly=TRUE)
omega(consRev, poly=TRUE)
omega(extrRev, poly=TRUE)
omega(neur, poly=TRUE)
omega(openRev, poly=TRUE)
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The output from the omega function with the polychoric option for the agreeableness subscale is as follows:

Notice that the Alpha and (Revelle’s) omega total values are much higher than in the previous output. The
alpha function does not feature this poly option, so Cronbach’s alpha with a polychoric covariance matrix
is best run through the omega function.

The computation of Revelle’s omega total is a little involved and there are not many sources that describe
this version of the omega coefficient (outside of documentation for the psych R package). We outline where
Revelle’s omega total from where comes for the remainder of this section to elucidate what Revelle’s omega
total is calculating. In Equation 4 of the main text, we defined Revelle’s omega total as

�RT �
��

i�1

k

�gi�2

� ��
f�1

F

�
i�1

kf

�fi�2

VX

Revelle (2016) notes the numerator of this formula is equal to the communality of each item, hi
2 so the

formula can be rewritten as

�RT � 1 �
�
i�1

K

(1 � hi
2)

VX (A1)

This can be simplified to

1 �
�
i�1

K

(ui
2)

VX (A2)

where ui
2 is the uniqueness of the ith item (a.k.a. the error variance).

Using the polychoric covariance analysis of the agreement subscale above, the communalities appear in the
“h2” column and the uniquenesses appear in the “u2” column. The sum of the uniquenesses is equal to
.81�.01�.13�.68�.57 � 2.20 which is the numerator of Equation A2. Unfortunately, the denominator VX

does not appear in the output. Fortunately, this value is quite simple to calculate in R. Recall, that VX is equal
to the sum of all elements of the sample correlation matrix. The polychoric correlation matrix in R can be
saved as an object with the following code:
mat<-polychoric(agreRev)
agrepoly<-mat$rho

(Appendix continues)
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The sum function can then be used to add all the individual elements
sum(agrepoly)

which yields

Therefore, �RT � 1 � 2.20
12.73 � 0.8272 	 0.83, matching the output above.

Omega hierarchical is similar except that the numerator is only equal to the variance explained by only the
common factor. This can be found by adding up all the values in the “g” column and squaring (be sure to add
first and then square the sum, do not square first and then add the squares). In the polychoric agreement
example, (.34 � .70 � .79 � .52 � .62)2 � 8.82. VX is still equal to the same value (12.73) so hierarchical
omega is equal to 8.82/12.73 � 0.692.

Greatest Lower Bound

The glb.fa function in the psych package estimates the greatest lower bound. Similar to other methods
in the psych package, the only necessary argument of the function is the data name.
glb.fa(agreRev)
glb.fa(consRev)
glb.fa(extrRev)
glb.fa(neur)
glb.fa(openRev)

The output for the agreeableness subscale is as follows,

The greatest lower bound estimate appears as the first item in the output after $glb
Unfortunately, the glb.fa function does not offer the option to use a polychoric covariance matrix

internally and therefore uses a Pearson covariance matrix. However, this can be circumvented by separately
estimating a polychoric covariance or correlation matrix, and using that as the input file instead of the raw
data. However, it can be a bit tricky to save a polychoric correlation matrix as a data frame in R.

First, the polychoric matrix is estimated with the polychoric function from the psych package. Rather than
immediately outputting the results, the output is saved to an object (called “mat” in the code below). The
output contains both the polychoric correlation matrix and thresholds; the thresholds are not needed, so we
want to exclude them and only save the matrix. In doing so, we also must convert the object to a data frame.
The R code for doing so for the agreeableness subscale is as follows:
mat<-polychoric(agreRev)
agre.poly<-as.data.frame(mat$rho)

The glb.fa function can accept a correlation matrix as input, so we can use the saved polychoric
correlation matrix as the input of the function.
glb.fa(agre.poly)

(Appendix continues)
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This will provide the desired output,

scaleStructure Function

Although the above analyses are not difficult to perform because the commands are quite straightforward,
for inexperienced or reluctant R users, the scaleStructure package can estimate these quantities in a
single pass and summarizes the output.
scaleStructure(dat=agreRev, ci=FALSE)
scaleStructure(dat=consRev, ci=FALSE)
scaleStructure(dat=extrRev, ci=FALSE)
scaleStructure(dat=neur, ci=FALSE)
scaleStructure(dat=openRev, ci=FALSE)
ci=FALSE indicates that we do not want the confidence interval for the estimate (although best practice

suggests that this is helpful to report).
The output for the agreeableness subscale from this function is as shown on the further in the Appendix.

The function goes through the previously outlined methods, estimates reliability, saves the output, and
summarizes them in one window. The first set of output shows the results assuming a Pearson covariance
matrix followed by results that use a polychoric covariance matrix. It also differentiates between omega total
and Revelle’s omega total and is the only R package of which the author is aware that provides estimates of
Coefficient H.

(Appendix continues)
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Using Excel

Although R is the best available software option for estimating alternatives to Cronbach’s alpha (and it is
open source), we realize that some users may be hesitant to adopt a new software program, especially to use
methods with which they are unfamiliar. In attempt to make these methods as broadly accessible as possible,
we have included two Excel spreadsheets for calculating omega total and Coefficient H using only the
standardized loadings from a factor analysis. These loadings can be obtained from any software program of
the user’s choosing and does not require learning any new software.

The provided Excel spreadsheet has two tabs, one for Coefficient H and one for omega total. The
spreadsheet allows for up to 36 items. A factor analysis must be conducted to obtain the factor loadings. This
can be done in any program of the user’s choosing. Then, these loadings are placed into column B of the
spreadsheet. For omega total, the spreadsheet is setup to automatically calculate the uniqueness terms based
on the standardized loadings. Column G for Coefficient H and column F for omega total will reveal the
estimate of these measures.

Using the agreeableness subscale example that was used in the previous section, we will first obtain the
standardized factor loadings using maximum likelihood in R using the fa function from the psych package.
These loadings need not be obtained from R and can be estimated from any program of the user’s choice (e.g.,
Mplus, SPSS, SAS, Stata)
fa(agre, nfactors=1, fm="ml")

The output of this analysis yields the following:

The “ML1” column contains the standardized factor loadings for this scale (these correspond to those
provided in Table 3 of the main text). Taking these loadings and entering them into the Excel spreadsheet for
Coefficient H and omega total gives:
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