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Google’s monolithic repository provides  
a common source of truth for tens of 
thousands of developers around the world. 

BY RACHEL POTVIN AND JOSH LEVENBERG 

E AR LY GOOGLE EMPLOYEES decided to work with a 
shared codebase managed through a centralized 
source control system. This approach has served 
Google well for more than 16 years, and today the vast 
majority of Google’s software assets continues to be 
stored in a single, shared repository. Meanwhile, the 
number of Google software developers has steadily 
increased, and the size of the Google codebase 
has grown exponentially (see Figure 1). As a result, 
the technology used to host the codebase has also 
evolved significantly. 

This article outlines the scale of that 
codebase and details Google’s custom-
built monolithic source repository and 
the reasons the model was chosen. 
Google uses a homegrown version-con-
trol system to host one large codebase 
visible to, and used by, most of the soft-
ware developers in the company. This 
centralized system is the foundation of 
many of Google’s developer workflows. 
Here, we provide background on the 
systems and workflows that make fea-
sible managing and working produc-
tively with such a large repository. We 
explain Google’s “trunk-based devel-
opment” strategy and the support sys-
tems that structure workflow and keep 
Google’s codebase healthy, including 
software for static analysis, code clean-
up, and streamlined code review. 

Google-Scale 
Google’s monolithic software reposi-
tory, which is used by 95% of its soft-
ware developers worldwide, meets 
the definition of an ultra-large-scale4 
system, providing evidence the sin-
gle-source repository model can be 
scaled successfully. 

The Google codebase includes ap-
proximately one billion files and has 
a history of approximately 35 million 
commits spanning Google’s entire 18-
year existence. The repository contains 
86TBa of data, including approximately 

a Total size of uncompressed content, excluding 
release branches.

Why Google 
Stores Billions 
of Lines  
of Code  
in a Single 
Repository 

 key insights
 ˽ Google has shown the monolithic model 

of source code management can scale 
to a repository of one billion files, 35 
million commits, and tens of thousands of 
developers. 

 ˽ Benefits include unified versioning, 
extensive code sharing, simplified 
dependency management, atomic 
changes, large-scale refactoring, 
collaboration across teams, flexible code 
ownership, and code visibility. 

 ˽ Drawbacks include having to create 
and scale tools for development and 
execution and maintain code health, as 
well as potential for codebase complexity 
(such as unnecessary dependencies).
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two billion lines of code in nine million 
unique source files. The total number 
of files also includes source files cop-
ied into release branches, files that are 
deleted at the latest revision, configu-
ration files, documentation, and sup-
porting data files; see the table here for 
a summary of Google’s repository sta-
tistics from January 2015. 

In 2014, approximately 15 million 
lines of code were changedb in approxi-
mately 250,000 files in the Google re-
pository on a weekly basis. The Linux 
kernel is a prominent example of a 
large open source software repository 
containing approximately 15 million 
lines of code in 40,000 files.14 

Google’s codebase is shared by more 

b Includes only reviewed and committed code 
and excludes commits performed by auto-
mated systems, as well as commits to release 
branches, data files, generated files, open 
source files imported into the repository, and 
other non-source-code files.

than 25,000 Google software develop-
ers from dozens of offices in countries 
around the world. On a typical work-
day, they commit 16,000 changes to the 
codebase, and another 24,000 changes 
are committed by automated systems. 
Each day the repository serves billions 
of file read requests, with approximate-
ly 800,000 queries per second during 
peak traffic and an average of approxi-
mately 500,000 queries per second 
each workday. Most of this traffic origi-
nates from Google’s distributed build-
and-test systems.c

Figure 2 reports the number of 
unique human committers per week 
to the main repository, January 2010–
July 2015. Figure 3 reports commits 
per week to Google’s main repository 
over the same time period. The line 
for total commits includes data for 

c Google open sourced a subset of its internal 
build system; see http://www.bazel.io 

both the interactive use case, or hu-
man users, and automated use cases. 
Larger dips in both graphs occur dur-
ing holidays affecting a significant 
number of employees (such as Christ-
mas Day and New Year’s Day, Ameri-
can Thanksgiving Day, and American 
Independence Day). 

In October 2012, Google’s central 
repository added support for Windows 
and Mac users (until then it was Linux-
only), and the existing Windows and 
Mac repository was merged with the 
main repository. Google’s tooling for 
repository merges attributes all histori-
cal changes being merged to their orig-
inal authors, hence the corresponding 
bump in the graph in Figure 2. The ef-
fect of this merge is also apparent in 
Figure 1. 

The commits-per-week graph shows 
the commit rate was dominated by 
human users until 2012, at which 
point Google switched to a custom-
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source-control implementation for 
hosting the central repository, as 
discussed later. Following this tran-
sition, automated commits to the re-
pository began to increase. Growth in 
the commit rate continues primarily 
due to automation. 

Managing this scale of repository 
and activity on it has been an ongoing 
challenge for Google. Despite several 
years of experimentation, Google 
was not able to find a commercial-
ly available or open source version-
control system to support such scale 
in a single repository. The Google 
proprietary system that was built to 
store, version, and vend this codebase 
is code-named Piper. 

Background 
Before reviewing the advantages 
and disadvantages of working with 
a monolithic repository, some back-
ground on Google’s tooling and work-
flows is needed. 

Piper and CitC. Piper stores a single 
large repository and is implement-
ed on top of standard Google infra-
structure, originally Bigtable,2 now 
Spanner.3 Piper is distributed over 
10 Google data centers around the 
world, relying on the Paxos6 algorithm 
to guarantee consistency across rep-
licas. This architecture provides a 
high level of redundancy and helps 
optimize latency for Google soft-
ware developers, no matter where 
they work. In addition, caching and 
asynchronous operations hide much 
of the network latency from develop-
ers. This is important because gain-
ing the full benefit of Google’s cloud-
based toolchain requires developers 
to be online. 

Google relied on one primary Perforce 
instance, hosted on a single machine, 
coupled with custom caching infrastruc-
ture1 for more than 10 years prior to the 
launch of Piper. Continued scaling of 

Figure 1. Millions of changes committed to Google’s central repository over time. 
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Figure 2. Human committers per week. 
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Figure 3. Commits per week. 
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Google repository statistics, January 2015. 

Total number of files 1 billion 

Number of source files 9 million 

Lines of source code 2 billion 

Depth of history 35 million commits

Size of content 86TB

Commits per workday 40,000 
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the Google repository was the main 
motivation for developing Piper. 

Since Google’s source code is one of 
the company’s most important assets, 
security features are a key consider-
ation in Piper’s design. Piper supports 
file-level access control lists. Most of 
the repository is visible to all Piper 
users;d however, important configura-
tion files or files including business-
critical algorithms can be more tightly 
controlled. In addition, read and write 
access to files in Piper is logged. If sen-
sitive data is accidentally committed 
to Piper, the file in question can be 
purged. The read logs allow admin-
istrators to determine if anyone ac-
cessed the problematic file before it 
was removed. 

In the Piper workflow (see Figure 4), 
developers create a local copy of files in 
the repository before changing them. 
These files are stored in a workspace 
owned by the developer. A Piper work-
space is comparable to a working copy 
in Apache Subversion, a local clone 
in Git, or a client in Perforce. Updates 
from the Piper repository can be pulled 
into a workspace and merged with on-
going work, as desired (see Figure 5). 
A snapshot of the workspace can be 
shared with other developers for re-
view. Files in a workspace are commit-
ted to the central repository only after 
going through the Google code-review 
process, as described later. 

Most developers access Piper 
through a system called Clients in 
the Cloud, or CitC, which consists of 
a cloud-based storage backend and a 
Linux-only FUSE13 file system. Devel-
opers see their workspaces as directo-
ries in the file system, including their 
changes overlaid on top of the full 
Piper repository. CitC supports code 
browsing and normal Unix tools with 
no need to clone or sync state locally. 
Developers can browse and edit files 
anywhere across the Piper reposito-
ry, and only modified files are stored 
in their workspace. This structure 
means CitC workspaces typically con-
sume only a small amount of storage 
(an average workspace has fewer than 
10 files) while presenting a seamless 
view of the entire Piper codebase to 
the developer. 

d Over 99% of files stored in Piper are visible to 
all full-time Google engineers. 

Several workflows take advantage of 
the availability of uncommitted code 
in CitC to make software developers 
working with the large codebase more 
productive. For instance, when send-
ing a change out for code review, devel-
opers can enable an auto-commit op-
tion, which is particularly useful when 
code authors and reviewers are in dif-
ferent time zones. When the review is 
marked as complete, the tests will run; 
if they pass, the code will be commit-
ted to the repository without further 
human intervention. The Google code-
browsing tool CodeSearch supports 
simple edits using CitC workspaces. 
While browsing the repository, devel-
opers can click on a button to enter 
edit mode and make a simple change 
(such as fixing a typo or improving 

All writes to files are stored as snap-
shots in CitC, making it possible to re-
cover previous stages of work as need-
ed. Snapshots may be explicitly named, 
restored, or tagged for review. 

CitC workspaces are available on 
any machine that can connect to the 
cloud-based storage system, making 
it easy to switch machines and pick 
up work without interruption. It also 
makes it possible for developers to 
view each other’s work in CitC work-
spaces. Storing all in-progress work in 
the cloud is an important element of 
the Google workflow process. Work-
ing state is thus available to other 
tools, including the cloud-based build 
system, the automated test infrastruc-
ture, and the code browsing, editing, 
and review tools. 

Figure 4. Piper workflow. 
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Figure 5. Piper team logo “Piper is Piper expanded recursively;” design source: Kirrily 
Anderson.
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When new features are developed, 
both new and old code paths com-
monly exist simultaneously, controlled 
through the use of conditional flags. 
This technique avoids the need for 
a development branch and makes 
it easy to turn on and off features 
through configuration updates rather 
than full binary releases. While some 
additional complexity is incurred for 
developers, the merge problems of 
a development branch are avoided. 
Flag flips make it much easier and 
faster to switch users off new imple-
mentations that have problems. This 
method is typically used in project-
specific code, not common library 
code, and eventually flags are retired 
so old code can be deleted. Google 
uses a similar approach for rout-
ing live traffic through different code 
paths to perform experiments that can 
be tuned in real time through configu-
ration changes. Such A/B experiments 
can measure everything from the per-
formance characteristics of the code 
to user engagement related to subtle 
product changes. 

Google workflow. Several best prac-
tices and supporting systems are re-
quired to avoid constant breakage in 
the trunk-based development model, 
where thousands of engineers commit 
thousands of changes to the repository 
on a daily basis. For instance, Google 
has an automated testing infrastruc-
ture that initiates a rebuild of all af-
fected dependencies on almost every 
change committed to the repository. 
If a change creates widespread build 
breakage, a system is in place to auto-
matically undo the change. To reduce 
the incidence of bad code being com-
mitted in the first place, the highly 
customizable Google “presubmit” in-
frastructure provides automated test-
ing and analysis of changes before 
they are added to the codebase. A set of 
global presubmit analyses are run for 
all changes, and code owners can cre-
ate custom analyses that run only on 
directories within the codebase they 
specify. A small set of very low-level 
core libraries uses a mechanism simi-
lar to a development branch to enforce 
additional testing before new versions 
are exposed to client code. 

An important aspect of Google cul-
ture that encourages code quality is the 
expectation that all code is reviewed 

a comment). Then, without leaving 
the code browser, they can send their 
changes out to the appropriate review-
ers with auto-commit enabled. 

Piper can also be used without CitC. 
Developers can instead store Piper 
workspaces on their local machines. 
Piper also has limited interoperability 
with Git. Over 80% of Piper users today 
use CitC, with adoption continuing to 
grow due to the many benefits provid-
ed by CitC. 

Piper and CitC make working pro-
ductively with a single, monolithic 
source repository possible at the scale 
of the Google codebase. The design 
and architecture of these systems were 
both heavily influenced by the trunk-
based development paradigm em-
ployed at Google, as described here. 

Trunk-based development. Google 
practices trunk-based development on 
top of the Piper source repository. The 
vast majority of Piper users work at the 
“head,” or most recent, version of a 
single copy of the code called “trunk” 
or “mainline.” Changes are made to 
the repository in a single, serial order-
ing. The combination of trunk-based 
development with a central repository 
defines the monolithic codebase mod-
el. Immediately after any commit, the 
new code is visible to, and usable by, 
all other developers. The fact that Piper 
users work on a single consistent view 
of the Google codebase is key for pro-
viding the advantages described later 
in this article. 

Trunk-based development is benefi-
cial in part because it avoids the pain-
ful merges that often occur when it is 
time to reconcile long-lived branches. 
Development on branches is unusual 
and not well supported at Google, 
though branches are typically used 
for releases. Release branches are cut 
from a specific revision of the reposi-
tory. Bug fixes and enhancements that 
must be added to a release are typically 
developed on mainline, then cherry-
picked into the release branch (see 
Figure 6). Due to the need to maintain 
stability and limit churn on the release 
branch, a release is typically a snap-
shot of head, with an optional small 
number of cherry-picks pulled in from 
head as needed. Use of long-lived 
branches with parallel development 
on the branch and mainline is exceed-
ingly rare. 

Piper and CitC 
make working 
productively  
with a single, 
monolithic source 
repository possible 
at the scale of the 
Google codebase. 
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before being committed to the reposi-
tory. Most developers can view and 
propose changes to files anywhere 
across the entire codebase—with the 
exception of a small set of highly con-
fidential code that is more carefully 
controlled. The risk associated with 
developers changing code they are 
not deeply familiar with is mitigated 
through the code-review process and 
the concept of code ownership. The 
Google codebase is laid out in a tree 
structure. Each and every directory 
has a set of owners who control wheth-
er a change to files in their directory 
will be accepted. Owners are typically 
the developers who work on the proj-
ects in the directories in question. A 
change often receives a detailed code 
review from one developer, evaluating 
the quality of the change, and a com-
mit approval from an owner, evaluating 
the appropriateness of the change to 
their area of the codebase. 

Code reviewers comment on as-
pects of code quality, including de-
sign, functionality, complexity, testing, 
naming, comment quality, and code 
style, as documented by the various 
language-specific Google style guides.e 
Google has written a code-review tool 
called Critique that allows the reviewer 
to view the evolution of the code and 
comment on any line of the change. 
It encourages further revisions and a 
conversation leading to a final “Looks 
Good To Me” from the reviewer, indi-
cating the review is complete. 

Google’s static analysis system (Tri-
corder10) and presubmit infrastructure 
also provide data on code quality, test 
coverage, and test results automatical-
ly in the Google code-review tool. These 
computationally intensive checks are 
triggered periodically, as well as when 
a code change is sent for review. Tri-
corder also provides suggested fixes 
with one-click code editing for many 
errors. These systems provide impor-
tant data to increase the effectiveness 
of code reviews and keep the Google 
codebase healthy. 

A team of Google developers will 
occasionally undertake a set of wide-
reaching code-cleanup changes to fur-
ther maintain the health of the code-
base. The developers who perform 
these changes commonly separate 

e https://github.com/google/styleguide

performing large-scale code changes 
at Google. Using Rosie is balanced 
against the cost incurred by teams 
needing to review the ongoing stream 
of simple changes Rosie generates. 
As Rosie’s popularity and usage grew, 
it became clear some control had to 
be established to limit Rosie’s use 
to high-value changes that would be 
distributed to many reviewers, rather 
than to single atomic changes or re-
jected. In 2013, Google adopted a for-
mal large-scale change-review proc-
ess that led to a decrease in the number 
of commits through Rosie from 2013 
to 2014. In evaluating a Rosie change, 
the review committee balances the 
benefit of the change against the costs 
of reviewer time and repository churn. 
We later examine this and similar 
trade-offs more closely. 

In sum, Google has developed a 
number of practices and tools to sup-
port its enormous monolithic code-
base, including trunk-based devel-
opment, the distributed source-code 
repository Piper, the workspace cli-
ent CitC, and workflow-support-tools 
Critique, CodeSearch, Tricorder, and 
Rosie. We discuss the pros and cons 
of this model here. 

them into two phases. With this ap-
proach, a large backward-compatible 
change is made first. Once it is com-
plete, a second smaller change can 
be made to remove the original pat-
tern that is no longer referenced. A 
Google tool called Rosief supports the 
first phase of such large-scale clean-
ups and code changes. With Rosie, 
developers create a large patch, ei-
ther through a find-and-replace op-
eration across the entire repository 
or through more complex refactor-
ing tools. Rosie then takes care of 
splitting the large patch into smaller 
patches, testing them independently, 
sending them out for code review, 
and committing them automati-
cally once they pass tests and a code 
review. Rosie splits patches along 
project directory lines, relying on the 
code-ownership hierarchy described 
earlier to send patches to the appro-
priate reviewers. 

Figure 7 reports the number of 
changes committed through Rosie 
on a monthly basis, demonstrating 
the importance of Rosie as a tool for 

f The project name was inspired by Rosie the ro-
bot maid from the TV series “The Jetsons.”

Figure 6. Release branching model. 
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binary problem is avoided through use 
of static linking. 

The ability to make atomic changes 
is also a very powerful feature of the 
monolithic model. A developer can 
make a major change touching hun-
dreds or thousands of files across the 
repository in a single consistent op-
eration. For instance, a developer can 
rename a class or function in a single 
commit and yet not break any builds 
or tests. 

The availability of all source code 
in a single repository, or at least on a 
centralized server, makes it easier for 
the maintainers of core libraries to per-
form testing and performance bench-
marking for high-impact changes be-
fore they are committed. This approach 
is useful for exploring and measuring 
the value of highly disruptive changes. 
One concrete example is an experiment 
to evaluate the feasibility of converting 
Google data centers to support non-x86 
machine architectures. 

With the monolithic structure of 
the Google repository, a developer 
never has to decide where the reposi-
tory boundaries lie. Engineers never 
need to “fork” the development of 
a shared library or merge across re-
positories to update copied versions 
of code. Team boundaries are fluid. 
When project ownership changes or 
plans are made to consolidate sys-
tems, all code is already in the same 
repository. This environment makes 
it easy to do gradual refactoring and 
reorganization of the codebase. The 
change to move a project and up-
date all dependencies can be applied 
atomically to the repository, and the 
development history of the affected 
code remains intact and available. 

Another attribute of a monolithic 
repository is the layout of the code-
base is easily understood, as it is orga-
nized in a single tree. Each team has 
a directory structure within the main 
tree that effectively serves as a proj-
ect’s own namespace. Each source file 
can be uniquely identified by a single 
string—a file path that optionally in-
cludes a revision number. Browsing 
the codebase, it is easy to understand 
how any source file fits into the big pic-
ture of the repository. 

The Google codebase is constantly 
evolving. More complex codebase 
modernization efforts (such as updat-

Analysis 
This section outlines and expands 
upon both the advantages of a mono-
lithic codebase and the costs related to 
maintaining such a model at scale. 

Advantages. Supporting the ultra-
large-scale of Google’s codebase while 
maintaining good performance for 
tens of thousands of users is a chal-
lenge, but Google has embraced the 
monolithic model due to its compel-
ling advantages. 

Most important, it supports: 
 ˲ Unified versioning, one source of 

truth; 
 ˲ Extensive code sharing and reuse; 
 ˲ Simplified dependency manage-

ment; 
 ˲ Atomic changes; 
 ˲ Large-scale refactoring; 
 ˲ Collaboration across teams; 
 ˲ Flexible team boundaries and code 

ownership; and 
 ˲ Code visibility and clear tree 

structure providing implicit team 
namespacing. 

A single repository provides unified 
versioning and a single source of truth. 
There is no confusion about which re-
pository hosts the authoritative version 
of a file. If one team wants to depend 
on another team’s code, it can depend 
on it directly. The Google codebase in-
cludes a wealth of useful libraries, and 
the monolithic repository leads to ex-
tensive code sharing and reuse.

The Google build system5 makes it 
easy to include code across directo-
ries, simplifying dependency manage-
ment. Changes to the dependencies 
of a project trigger a rebuild of the 
dependent code. Since all code is ver-

sioned in the same repository, there 
is only ever one version of the truth, 
and no concern about independent 
versioning of dependencies. 

Most notably, the model allows 
Google to avoid the “diamond depen-
dency” problem (see Figure 8) that oc-
curs when A depends on B and C, both 
B and C depend on D, but B requires 
version D.1 and C requires version D.2. 
In most cases it is now impossible to 
build A. For the base library D, it can 
become very difficult to release a new 
version without causing breakage, 
since all its callers must be updated 
at the same time. Updating is difficult 
when the library callers are hosted in 
different repositories. 

In the open source world, depen-
dencies are commonly broken by li-
brary updates, and finding library ver-
sions that all work together can be a 
challenge. Updating the versions of 
dependencies can be painful for devel-
opers, and delays in updating create 
technical debt that can become very 
expensive. In contrast, with a mono-
lithic source tree it makes sense, and 
is easier, for the person updating a li-
brary to update all affected dependen-
cies at the same time. The technical 
debt incurred by dependent systems is 
paid down immediately as changes are 
made. Changes to base libraries are in-
stantly propagated through the depen-
dency chain into the final products that 
rely on the libraries, without requiring 
a separate sync or migration step. 

Note the diamond-dependency 
problem can exist at the source/API 
level, as described here, as well as 
between binaries.12 At Google, the 

Figure 8. Diamond dependency problem. 
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ing it to C++11 or rolling out perfor-
mance optimizations9) are often man-
aged centrally by dedicated codebase 
maintainers. Such efforts can touch 
half a million variable declarations or 
function-call sites spread across hun-
dreds of thousands of files of source 
code. Because all projects are central-
ly stored, teams of specialists can do 
this work for the entire company, rath-
er than require many individuals to 
develop their own tools, techniques, 
or expertise. 

As an example of how these ben-
efits play out, consider Google’s Com-
piler team, which ensures developers 
at Google employ the most up-to-date 
toolchains and benefit from the lat-
est improvements in generated code 
and “debuggability.” The monolithic 
repository provides the team with 
full visibility of how various languag-
es are used at Google and allows them 
to do codebase-wide cleanups to pre-
vent changes from breaking builds or 
creating issues for developers. This 
greatly simplifies compiler validation, 
thus reducing compiler release cycles 
and making it possible for Google to 
safely do regular compiler releases 
(typically more than 20 per year for the 
C++ compilers). 

Using the data generated by perfor-
mance and regression tests run on 
nightly builds of the entire Google 
codebase, the Compiler team tunes de-
fault compiler settings to be optimal. 
For example, due to this centralized 
effort, Google’s Java developers all saw 
their garbage collection (GC) CPU con-
sumption decrease by more than 50% 
and their GC pause time decrease by 
10%–40% from 2014 to 2015. In addi-
tion, when software errors are discov-
ered, it is often possible for the team 
to add new warnings to prevent reoc-
currence. In conjunction with this 
change, they scan the entire reposi-
tory to find and fix other instances of 
the software issue being addressed, 
before turning to new compiler er-
rors. Having the compiler-reject pat-
terns that proved problematic in the 
past is a significant boost to Google’s 
overall code health. 

Storing all source code in a common 
version-control repository allows code-
base maintainers to efficiently ana-
lyze and change Google’s source code. 
Tools like Refaster11 and ClangMR15 

(often used in conjunction with Rosie) 
make use of the monolithic view of 
Google’s source to perform high-level 
transformations of source code. The 
monolithic codebase captures all de-
pendency information. Old APIs can 
be removed with confidence, because 
it can be proven that all callers have 
been migrated to new APIs. A single 
common repository vastly simplifies 
these tools by ensuring atomicity of 
changes and a single global view of 
the entire repository at any given time. 

Costs and trade-offs. While impor-
tant to note a monolithic codebase in 
no way implies monolithic software de-
sign, working with this model involves 
some downsides, as well as trade-offs, 
that must be considered. 

These costs and trade-offs fall into 
three categories: 

 ˲ Tooling investments for both de-
velopment and execution; 

 ˲ Codebase complexity, including 
unnecessary dependencies and diffi-
culties with code discovery; and 

 ˲ Effort invested in code health. 
In many ways the monolithic repos-

itory yields simpler tooling since there 
is only one system of reference for 
tools working with source. However, it 
is also necessary that tooling scale to 
the size of the repository. For instance, 
Google has written a custom plug-in for 
the Eclipse integrated development 
environment (IDE) to make work-
ing with a massive codebase possible 
from the IDE. Google’s code-indexing 
system supports static analysis, cross-
referencing in the code-browsing tool, 
and rich IDE functionality for Emacs, 
Vim, and other development environ-
ments. These tools require ongoing in-
vestment to manage the ever-increas-
ing scale of the Google codebase. 

Beyond the investment in build-
ing and maintaining scalable tooling, 
Google must also cover the cost of run-
ning these systems, some of which are 
very computationally intensive. Much 
of Google’s internal suite of devel-
oper tools, including the automated 
test infrastructure and highly scalable 
build infrastructure, are critical for 
supporting the size of the monolithic 
codebase. It is thus necessary to make 
trade-offs concerning how frequently 
to run this tooling to balance the cost 
of execution vs. the benefit of the data 
provided to developers. 

An important aspect 
of Google culture 
that encourages 
code quality is  
the expectation  
that all code is 
reviewed before 
being committed  
to the repository. 
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Dependency-refactoring and clean-
up tools are helpful, but, ideally, code 
owners should be able to prevent un-
wanted dependencies from being cre-
ated in the first place. In 2011, Google 
started relying on the concept of 
API visibility, setting the default 
visibility of new APIs to “private.” 
This forces developers to explicitly 
mark APIs as appropriate for use by 
other teams. A lesson learned from 
Google’s experience with a large 
monolithic repository is such mech-
anisms should be put in place as soon 
as possible to encourage more hygienic 
dependency structures. 

The fact that most Google code is 
available to all Google developers has 
led to a culture where some teams ex-
pect other developers to read their 
code rather than providing them with 
separate user documentation. There 
are pros and cons to this approach. No 
effort goes toward writing or keeping 
documentation up to date, but devel-
opers sometimes read more than the 
API code and end up relying on under-
lying implementation details. This be-
havior can create a maintenance bur-
den for teams that then have trouble 
deprecating features they never meant 
to expose to users. 

This model also requires teams to 
collaborate with one another when us-
ing open source code. An area of the 
repository is reserved for storing open 
source code (developed at Google or 
externally). To prevent dependency 
conflicts, as outlined earlier, it is im-
portant that only one version of an 
open source project be available at 
any given time. Teams that use open 
source software are expected to occa-
sionally spend time upgrading their 
codebase to work with newer versions 
of open source libraries when library 
upgrades are performed. 

Google invests significant effort in 
maintaining code health to address 
some issues related to codebase com-
plexity and dependency manage-
ment. For instance, special tooling 
automatically detects and removes 
dead code, splits large refactorings 
and automatically assigns code re-
views (as through Rosie), and marks 
APIs as deprecated. Human effort is 
required to run these tools and man-
age the corresponding large-scale 
code changes. A cost is also incurred 

The monolithic model makes it 
easier to understand the structure of 
the codebase, as there is no crossing of 
repository boundaries between depen-
dencies. However, as the scale increas-
es, code discovery can become more 
difficult, as standard tools like grep 
bog down. Developers must be able 
to explore the codebase, find relevant 
libraries, and see how to use them 
and who wrote them. Library authors 
often need to see how their APIs are 
being used. This requires a signifi-
cant investment in code search and 
browsing tools. However, Google has 
found this investment highly reward-
ing, improving the productivity of all 
developers, as described in more detail 
by Sadowski et al.9 

Access to the whole codebase en-
courages extensive code sharing and 
reuse. Some would argue this model, 
which relies on the extreme scalabil-
ity of the Google build system, makes 
it too easy to add dependencies and 
reduces the incentive for software de-
velopers to produce stable and well-
thought-out APIs. 

Due to the ease of creating dependen-
cies, it is common for teams to not think 
about their dependency graph, making 
code cleanup more error-prone. Un-
necessary dependencies can increase 
project exposure to downstream build 
breakages, lead to binary size bloating, 
and create additional work in building 
and testing. In addition, lost productiv-
ity ensues when abandoned projects 
that remain in the repository continue 
to be updated and maintained. 

Several efforts at Google have 
sought to rein in unnecessary depen-
dencies. Tooling exists to help identify 
and remove unused dependencies, or 
dependencies linked into the prod-
uct binary for historical or accidental 
reasons, that are not needed. Tooling 
also exists to identify underutilized 
dependencies, or dependencies on 
large libraries that are mostly unneed-
ed, as candidates for refactoring.7 One 
such tool, Clipper, relies on a custom 
Java compiler to generate an accurate 
cross-reference index. It then uses the 
index to construct a reachability graph 
and determine what classes are never 
used. Clipper is useful in guiding de-
pendency-refactoring efforts by finding 
targets that are relatively easy to remove 
or break up. 

A developer can 
make a major 
change touching 
hundreds or 
thousands of 
files across the 
repository in a 
single consistent 
operation.
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by teams that need to review an ongo-
ing stream of simple refactorings re-
sulting from codebase-wide clean-ups 
and centralized modernization efforts. 

Alternatives 
As the popularity and use of distrib-
uted version control systems (DVCSs) 
like Git have grown, Google has con-
sidered whether to move from Piper 
to Git as its primary version-control 
system. A team at Google is focused 
on supporting Git, which is used by 
Google’s Android and Chrome teams 
outside the main Google repository. 
The use of Git is important for these 
teams due to external partner and open 
source collaborations. 

The Git community strongly sug-
gests and prefers developers have 
more and smaller repositories. A Git-
clone operation requires copying all 
content to one’s local machine, a pro-
cedure incompatible with a large re-
pository. To move to Git-based source 
hosting, it would be necessary to split 
Google’s repository into thousands of 
separate repositories to achieve reason-
able performance. Such reorganization 
would necessitate cultural and work-
flow changes for Google’s developers. 
As a comparison, Google’s Git-hosted 
Android codebase is divided into more 
than 800 separate repositories. 

Given the value gained from the ex-
isting tools Google has built and the 
many advantages of the monolithic 
codebase structure, it is clear that mov-
ing to more and smaller repositories 
would not make sense for Google’s 
main repository. The alternative of 
moving to Git or any other DVCS that 
would require repository splitting is 
not compelling for Google.

Current investment by the Google 
source team focuses primarily on the 
ongoing reliability, scalability, and 
security of the in-house source sys-
tems. The team is also pursuing an 
experimental effort with Mercurial,g 
an open source DVCS similar to Git. 
The goal is to add scalability fea-
tures to the Mercurial client so it can 
efficiently support a codebase the 
size of Google’s. This would provide 
Google’s developers with an alterna-
tive of using popular DVCS-style work-
flows in conjunction with the central 

g http://mercurial.selenic.com/

Tech Leads of CitC; Hyrum Wright, 
Google’s large-scale refactoring guru; 
and Chris Colohan, Caitlin Sadowski, 
Morgan Ames, Rob Siemborski, and 
the Piper and CitC development and 
support teams for their insightful re-
view comments.  
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repository. This effort is in collabora-
tion with the open source Mercurial 
community, including contributors 
from other companies that value the 
monolithic source model. 

Conclusion 
Google chose the monolithic-source-
management strategy in 1999 when 
the existing Google codebase was 
migrated from CVS to Perforce. Early 
Google engineers maintained that a 
single repository was strictly better 
than splitting up the codebase, though 
at the time they did not anticipate the 
future scale of the codebase and all 
the supporting tooling that would be 
built to make the scaling feasible. 

Over the years, as the investment re-
quired to continue scaling the central-
ized repository grew, Google leader-
ship occasionally considered whether 
it would make sense to move from the 
monolithic model. Despite the effort 
required, Google repeatedly chose to 
stick with the central repository due to 
its advantages. 

The monolithic model of source 
code management is not for everyone. 
It is best suited to organizations like 
Google, with an open and collabora-
tive culture. It would not work well 
for organizations where large parts 
of the codebase are private or hidden 
between groups. 

At Google, we have found, with some 
investment, the monolithic model of 
source management can scale success-
fully to a codebase with more than one 
billion files, 35 million commits, and 
thousands of users around the globe. As 
the scale and complexity of projects both 
inside and outside Google continue to 
grow, we hope the analysis and workflow 
described in this article can benefit oth-
ers weighing decisions on the long-term 
structure for their codebases. 
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