
78 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles
DOI:10.1145/2854146

Google’s monolithic repository provides
a common source of truth for tens of
thousands of developers around the world.

BY RACHEL POTVIN AND JOSH LEVENBERG

E AR LY GOOGLE EMPLOYEES decided to work with a
shared codebase managed through a centralized
source control system. This approach has served
Google well for more than 16 years, and today the vast
majority of Google’s software assets continues to be
stored in a single, shared repository. Meanwhile, the
number of Google software developers has steadily
increased, and the size of the Google codebase
has grown exponentially (see Figure 1). As a result,
the technology used to host the codebase has also
evolved significantly.

This article outlines the scale of that
codebase and details Google’s custom-
built monolithic source repository and
the reasons the model was chosen.
Google uses a homegrown version-con-
trol system to host one large codebase
visible to, and used by, most of the soft-
ware developers in the company. This
centralized system is the foundation of
many of Google’s developer workflows.
Here, we provide background on the
systems and workflows that make fea-
sible managing and working produc-
tively with such a large repository. We
explain Google’s “trunk-based devel-
opment” strategy and the support sys-
tems that structure workflow and keep
Google’s codebase healthy, including
software for static analysis, code clean-
up, and streamlined code review.

Google-Scale
Google’s monolithic software reposi-
tory, which is used by 95% of its soft-
ware developers worldwide, meets
the definition of an ultra-large-scale4
system, providing evidence the sin-
gle-source repository model can be
scaled successfully.

The Google codebase includes ap-
proximately one billion files and has
a history of approximately 35 million
commits spanning Google’s entire 18-
year existence. The repository contains
86TBa of data, including approximately

a Total size of uncompressed content, excluding
release branches.

Why Google
Stores Billions
of Lines
of Code
in a Single
Repository

 key insights
 ˽ Google has shown the monolithic model

of source code management can scale
to a repository of one billion files, 35
million commits, and tens of thousands of
developers.

 ˽ Benefits include unified versioning,
extensive code sharing, simplified
dependency management, atomic
changes, large-scale refactoring,
collaboration across teams, flexible code
ownership, and code visibility.

 ˽ Drawbacks include having to create
and scale tools for development and
execution and maintain code health, as
well as potential for codebase complexity
(such as unnecessary dependencies).

http://dx.doi.org/10.1145/2854146
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2854146&domain=pdf&date_stamp=2016-06-24

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 79

I
M

A
G

E
 B

Y
 I

W
O

N
A

 U
S

A
K

I
E

W
I

C
Z

/A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S

two billion lines of code in nine million
unique source files. The total number
of files also includes source files cop-
ied into release branches, files that are
deleted at the latest revision, configu-
ration files, documentation, and sup-
porting data files; see the table here for
a summary of Google’s repository sta-
tistics from January 2015.

In 2014, approximately 15 million
lines of code were changedb in approxi-
mately 250,000 files in the Google re-
pository on a weekly basis. The Linux
kernel is a prominent example of a
large open source software repository
containing approximately 15 million
lines of code in 40,000 files.14

Google’s codebase is shared by more

b Includes only reviewed and committed code
and excludes commits performed by auto-
mated systems, as well as commits to release
branches, data files, generated files, open
source files imported into the repository, and
other non-source-code files.

than 25,000 Google software develop-
ers from dozens of offices in countries
around the world. On a typical work-
day, they commit 16,000 changes to the
codebase, and another 24,000 changes
are committed by automated systems.
Each day the repository serves billions
of file read requests, with approximate-
ly 800,000 queries per second during
peak traffic and an average of approxi-
mately 500,000 queries per second
each workday. Most of this traffic origi-
nates from Google’s distributed build-
and-test systems.c

Figure 2 reports the number of
unique human committers per week
to the main repository, January 2010–
July 2015. Figure 3 reports commits
per week to Google’s main repository
over the same time period. The line
for total commits includes data for

c Google open sourced a subset of its internal
build system; see http://www.bazel.io

both the interactive use case, or hu-
man users, and automated use cases.
Larger dips in both graphs occur dur-
ing holidays affecting a significant
number of employees (such as Christ-
mas Day and New Year’s Day, Ameri-
can Thanksgiving Day, and American
Independence Day).

In October 2012, Google’s central
repository added support for Windows
and Mac users (until then it was Linux-
only), and the existing Windows and
Mac repository was merged with the
main repository. Google’s tooling for
repository merges attributes all histori-
cal changes being merged to their orig-
inal authors, hence the corresponding
bump in the graph in Figure 2. The ef-
fect of this merge is also apparent in
Figure 1.

The commits-per-week graph shows
the commit rate was dominated by
human users until 2012, at which
point Google switched to a custom-

80 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

source-control implementation for
hosting the central repository, as
discussed later. Following this tran-
sition, automated commits to the re-
pository began to increase. Growth in
the commit rate continues primarily
due to automation.

Managing this scale of repository
and activity on it has been an ongoing
challenge for Google. Despite several
years of experimentation, Google
was not able to find a commercial-
ly available or open source version-
control system to support such scale
in a single repository. The Google
proprietary system that was built to
store, version, and vend this codebase
is code-named Piper.

Background
Before reviewing the advantages
and disadvantages of working with
a monolithic repository, some back-
ground on Google’s tooling and work-
flows is needed.

Piper and CitC. Piper stores a single
large repository and is implement-
ed on top of standard Google infra-
structure, originally Bigtable,2 now
Spanner.3 Piper is distributed over
10 Google data centers around the
world, relying on the Paxos6 algorithm
to guarantee consistency across rep-
licas. This architecture provides a
high level of redundancy and helps
optimize latency for Google soft-
ware developers, no matter where
they work. In addition, caching and
asynchronous operations hide much
of the network latency from develop-
ers. This is important because gain-
ing the full benefit of Google’s cloud-
based toolchain requires developers
to be online.

Google relied on one primary Perforce
instance, hosted on a single machine,
coupled with custom caching infrastruc-
ture1 for more than 10 years prior to the
launch of Piper. Continued scaling of

Figure 1. Millions of changes committed to Google’s central repository over time.

Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015

10 M

20 M

30 M

40 M

Figure 2. Human committers per week.

Jan. 2010 Jan. 2011 Jan. 2012 Jan. 2013 Jan. 2014 Jan. 2015

5,000

10,000

15,000

Unique human users per week

Figure 3. Commits per week.

Jan. 2010 Jan. 2011 Jan. 2012 Jan. 2013 Jan. 2014 Jan. 2015

75,000

150,000

225,000

Human commits Total commits
300,000

Google repository statistics, January 2015.

Total number of files 1 billion

Number of source files 9 million

Lines of source code 2 billion

Depth of history 35 million commits

Size of content 86TB

Commits per workday 40,000

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 81

contributed articles

the Google repository was the main
motivation for developing Piper.

Since Google’s source code is one of
the company’s most important assets,
security features are a key consider-
ation in Piper’s design. Piper supports
file-level access control lists. Most of
the repository is visible to all Piper
users;d however, important configura-
tion files or files including business-
critical algorithms can be more tightly
controlled. In addition, read and write
access to files in Piper is logged. If sen-
sitive data is accidentally committed
to Piper, the file in question can be
purged. The read logs allow admin-
istrators to determine if anyone ac-
cessed the problematic file before it
was removed.

In the Piper workflow (see Figure 4),
developers create a local copy of files in
the repository before changing them.
These files are stored in a workspace
owned by the developer. A Piper work-
space is comparable to a working copy
in Apache Subversion, a local clone
in Git, or a client in Perforce. Updates
from the Piper repository can be pulled
into a workspace and merged with on-
going work, as desired (see Figure 5).
A snapshot of the workspace can be
shared with other developers for re-
view. Files in a workspace are commit-
ted to the central repository only after
going through the Google code-review
process, as described later.

Most developers access Piper
through a system called Clients in
the Cloud, or CitC, which consists of
a cloud-based storage backend and a
Linux-only FUSE13 file system. Devel-
opers see their workspaces as directo-
ries in the file system, including their
changes overlaid on top of the full
Piper repository. CitC supports code
browsing and normal Unix tools with
no need to clone or sync state locally.
Developers can browse and edit files
anywhere across the Piper reposito-
ry, and only modified files are stored
in their workspace. This structure
means CitC workspaces typically con-
sume only a small amount of storage
(an average workspace has fewer than
10 files) while presenting a seamless
view of the entire Piper codebase to
the developer.

d Over 99% of files stored in Piper are visible to
all full-time Google engineers.

Several workflows take advantage of
the availability of uncommitted code
in CitC to make software developers
working with the large codebase more
productive. For instance, when send-
ing a change out for code review, devel-
opers can enable an auto-commit op-
tion, which is particularly useful when
code authors and reviewers are in dif-
ferent time zones. When the review is
marked as complete, the tests will run;
if they pass, the code will be commit-
ted to the repository without further
human intervention. The Google code-
browsing tool CodeSearch supports
simple edits using CitC workspaces.
While browsing the repository, devel-
opers can click on a button to enter
edit mode and make a simple change
(such as fixing a typo or improving

All writes to files are stored as snap-
shots in CitC, making it possible to re-
cover previous stages of work as need-
ed. Snapshots may be explicitly named,
restored, or tagged for review.

CitC workspaces are available on
any machine that can connect to the
cloud-based storage system, making
it easy to switch machines and pick
up work without interruption. It also
makes it possible for developers to
view each other’s work in CitC work-
spaces. Storing all in-progress work in
the cloud is an important element of
the Google workflow process. Work-
ing state is thus available to other
tools, including the cloud-based build
system, the automated test infrastruc-
ture, and the code browsing, editing,
and review tools.

Figure 4. Piper workflow.

Sync user
workspace

to repo
Write code Code

review
Commit

Figure 5. Piper team logo “Piper is Piper expanded recursively;” design source: Kirrily
Anderson.

82 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

When new features are developed,
both new and old code paths com-
monly exist simultaneously, controlled
through the use of conditional flags.
This technique avoids the need for
a development branch and makes
it easy to turn on and off features
through configuration updates rather
than full binary releases. While some
additional complexity is incurred for
developers, the merge problems of
a development branch are avoided.
Flag flips make it much easier and
faster to switch users off new imple-
mentations that have problems. This
method is typically used in project-
specific code, not common library
code, and eventually flags are retired
so old code can be deleted. Google
uses a similar approach for rout-
ing live traffic through different code
paths to perform experiments that can
be tuned in real time through configu-
ration changes. Such A/B experiments
can measure everything from the per-
formance characteristics of the code
to user engagement related to subtle
product changes.

Google workflow. Several best prac-
tices and supporting systems are re-
quired to avoid constant breakage in
the trunk-based development model,
where thousands of engineers commit
thousands of changes to the repository
on a daily basis. For instance, Google
has an automated testing infrastruc-
ture that initiates a rebuild of all af-
fected dependencies on almost every
change committed to the repository.
If a change creates widespread build
breakage, a system is in place to auto-
matically undo the change. To reduce
the incidence of bad code being com-
mitted in the first place, the highly
customizable Google “presubmit” in-
frastructure provides automated test-
ing and analysis of changes before
they are added to the codebase. A set of
global presubmit analyses are run for
all changes, and code owners can cre-
ate custom analyses that run only on
directories within the codebase they
specify. A small set of very low-level
core libraries uses a mechanism simi-
lar to a development branch to enforce
additional testing before new versions
are exposed to client code.

An important aspect of Google cul-
ture that encourages code quality is the
expectation that all code is reviewed

a comment). Then, without leaving
the code browser, they can send their
changes out to the appropriate review-
ers with auto-commit enabled.

Piper can also be used without CitC.
Developers can instead store Piper
workspaces on their local machines.
Piper also has limited interoperability
with Git. Over 80% of Piper users today
use CitC, with adoption continuing to
grow due to the many benefits provid-
ed by CitC.

Piper and CitC make working pro-
ductively with a single, monolithic
source repository possible at the scale
of the Google codebase. The design
and architecture of these systems were
both heavily influenced by the trunk-
based development paradigm em-
ployed at Google, as described here.

Trunk-based development. Google
practices trunk-based development on
top of the Piper source repository. The
vast majority of Piper users work at the
“head,” or most recent, version of a
single copy of the code called “trunk”
or “mainline.” Changes are made to
the repository in a single, serial order-
ing. The combination of trunk-based
development with a central repository
defines the monolithic codebase mod-
el. Immediately after any commit, the
new code is visible to, and usable by,
all other developers. The fact that Piper
users work on a single consistent view
of the Google codebase is key for pro-
viding the advantages described later
in this article.

Trunk-based development is benefi-
cial in part because it avoids the pain-
ful merges that often occur when it is
time to reconcile long-lived branches.
Development on branches is unusual
and not well supported at Google,
though branches are typically used
for releases. Release branches are cut
from a specific revision of the reposi-
tory. Bug fixes and enhancements that
must be added to a release are typically
developed on mainline, then cherry-
picked into the release branch (see
Figure 6). Due to the need to maintain
stability and limit churn on the release
branch, a release is typically a snap-
shot of head, with an optional small
number of cherry-picks pulled in from
head as needed. Use of long-lived
branches with parallel development
on the branch and mainline is exceed-
ingly rare.

Piper and CitC
make working
productively
with a single,
monolithic source
repository possible
at the scale of the
Google codebase.

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 83

contributed articles

before being committed to the reposi-
tory. Most developers can view and
propose changes to files anywhere
across the entire codebase—with the
exception of a small set of highly con-
fidential code that is more carefully
controlled. The risk associated with
developers changing code they are
not deeply familiar with is mitigated
through the code-review process and
the concept of code ownership. The
Google codebase is laid out in a tree
structure. Each and every directory
has a set of owners who control wheth-
er a change to files in their directory
will be accepted. Owners are typically
the developers who work on the proj-
ects in the directories in question. A
change often receives a detailed code
review from one developer, evaluating
the quality of the change, and a com-
mit approval from an owner, evaluating
the appropriateness of the change to
their area of the codebase.

Code reviewers comment on as-
pects of code quality, including de-
sign, functionality, complexity, testing,
naming, comment quality, and code
style, as documented by the various
language-specific Google style guides.e
Google has written a code-review tool
called Critique that allows the reviewer
to view the evolution of the code and
comment on any line of the change.
It encourages further revisions and a
conversation leading to a final “Looks
Good To Me” from the reviewer, indi-
cating the review is complete.

Google’s static analysis system (Tri-
corder10) and presubmit infrastructure
also provide data on code quality, test
coverage, and test results automatical-
ly in the Google code-review tool. These
computationally intensive checks are
triggered periodically, as well as when
a code change is sent for review. Tri-
corder also provides suggested fixes
with one-click code editing for many
errors. These systems provide impor-
tant data to increase the effectiveness
of code reviews and keep the Google
codebase healthy.

A team of Google developers will
occasionally undertake a set of wide-
reaching code-cleanup changes to fur-
ther maintain the health of the code-
base. The developers who perform
these changes commonly separate

e https://github.com/google/styleguide

performing large-scale code changes
at Google. Using Rosie is balanced
against the cost incurred by teams
needing to review the ongoing stream
of simple changes Rosie generates.
As Rosie’s popularity and usage grew,
it became clear some control had to
be established to limit Rosie’s use
to high-value changes that would be
distributed to many reviewers, rather
than to single atomic changes or re-
jected. In 2013, Google adopted a for-
mal large-scale change-review proc-
ess that led to a decrease in the number
of commits through Rosie from 2013
to 2014. In evaluating a Rosie change,
the review committee balances the
benefit of the change against the costs
of reviewer time and repository churn.
We later examine this and similar
trade-offs more closely.

In sum, Google has developed a
number of practices and tools to sup-
port its enormous monolithic code-
base, including trunk-based devel-
opment, the distributed source-code
repository Piper, the workspace cli-
ent CitC, and workflow-support-tools
Critique, CodeSearch, Tricorder, and
Rosie. We discuss the pros and cons
of this model here.

them into two phases. With this ap-
proach, a large backward-compatible
change is made first. Once it is com-
plete, a second smaller change can
be made to remove the original pat-
tern that is no longer referenced. A
Google tool called Rosief supports the
first phase of such large-scale clean-
ups and code changes. With Rosie,
developers create a large patch, ei-
ther through a find-and-replace op-
eration across the entire repository
or through more complex refactor-
ing tools. Rosie then takes care of
splitting the large patch into smaller
patches, testing them independently,
sending them out for code review,
and committing them automati-
cally once they pass tests and a code
review. Rosie splits patches along
project directory lines, relying on the
code-ownership hierarchy described
earlier to send patches to the appro-
priate reviewers.

Figure 7 reports the number of
changes committed through Rosie
on a monthly basis, demonstrating
the importance of Rosie as a tool for

f The project name was inspired by Rosie the ro-
bot maid from the TV series “The Jetsons.”

Figure 6. Release branching model.

Trunk/Mainline

Cherry-pick

Release branch

Figure 7. Rosie commits per month.

Jan. 2011 Jan. 2012 Jan. 2013 Jan. 2014 Jan. 2015

5,000

10,000

15,000

84 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

binary problem is avoided through use
of static linking.

The ability to make atomic changes
is also a very powerful feature of the
monolithic model. A developer can
make a major change touching hun-
dreds or thousands of files across the
repository in a single consistent op-
eration. For instance, a developer can
rename a class or function in a single
commit and yet not break any builds
or tests.

The availability of all source code
in a single repository, or at least on a
centralized server, makes it easier for
the maintainers of core libraries to per-
form testing and performance bench-
marking for high-impact changes be-
fore they are committed. This approach
is useful for exploring and measuring
the value of highly disruptive changes.
One concrete example is an experiment
to evaluate the feasibility of converting
Google data centers to support non-x86
machine architectures.

With the monolithic structure of
the Google repository, a developer
never has to decide where the reposi-
tory boundaries lie. Engineers never
need to “fork” the development of
a shared library or merge across re-
positories to update copied versions
of code. Team boundaries are fluid.
When project ownership changes or
plans are made to consolidate sys-
tems, all code is already in the same
repository. This environment makes
it easy to do gradual refactoring and
reorganization of the codebase. The
change to move a project and up-
date all dependencies can be applied
atomically to the repository, and the
development history of the affected
code remains intact and available.

Another attribute of a monolithic
repository is the layout of the code-
base is easily understood, as it is orga-
nized in a single tree. Each team has
a directory structure within the main
tree that effectively serves as a proj-
ect’s own namespace. Each source file
can be uniquely identified by a single
string—a file path that optionally in-
cludes a revision number. Browsing
the codebase, it is easy to understand
how any source file fits into the big pic-
ture of the repository.

The Google codebase is constantly
evolving. More complex codebase
modernization efforts (such as updat-

Analysis
This section outlines and expands
upon both the advantages of a mono-
lithic codebase and the costs related to
maintaining such a model at scale.

Advantages. Supporting the ultra-
large-scale of Google’s codebase while
maintaining good performance for
tens of thousands of users is a chal-
lenge, but Google has embraced the
monolithic model due to its compel-
ling advantages.

Most important, it supports:
 ˲ Unified versioning, one source of

truth;
 ˲ Extensive code sharing and reuse;
 ˲ Simplified dependency manage-

ment;
 ˲ Atomic changes;
 ˲ Large-scale refactoring;
 ˲ Collaboration across teams;
 ˲ Flexible team boundaries and code

ownership; and
 ˲ Code visibility and clear tree

structure providing implicit team
namespacing.

A single repository provides unified
versioning and a single source of truth.
There is no confusion about which re-
pository hosts the authoritative version
of a file. If one team wants to depend
on another team’s code, it can depend
on it directly. The Google codebase in-
cludes a wealth of useful libraries, and
the monolithic repository leads to ex-
tensive code sharing and reuse.

The Google build system5 makes it
easy to include code across directo-
ries, simplifying dependency manage-
ment. Changes to the dependencies
of a project trigger a rebuild of the
dependent code. Since all code is ver-

sioned in the same repository, there
is only ever one version of the truth,
and no concern about independent
versioning of dependencies.

Most notably, the model allows
Google to avoid the “diamond depen-
dency” problem (see Figure 8) that oc-
curs when A depends on B and C, both
B and C depend on D, but B requires
version D.1 and C requires version D.2.
In most cases it is now impossible to
build A. For the base library D, it can
become very difficult to release a new
version without causing breakage,
since all its callers must be updated
at the same time. Updating is difficult
when the library callers are hosted in
different repositories.

In the open source world, depen-
dencies are commonly broken by li-
brary updates, and finding library ver-
sions that all work together can be a
challenge. Updating the versions of
dependencies can be painful for devel-
opers, and delays in updating create
technical debt that can become very
expensive. In contrast, with a mono-
lithic source tree it makes sense, and
is easier, for the person updating a li-
brary to update all affected dependen-
cies at the same time. The technical
debt incurred by dependent systems is
paid down immediately as changes are
made. Changes to base libraries are in-
stantly propagated through the depen-
dency chain into the final products that
rely on the libraries, without requiring
a separate sync or migration step.

Note the diamond-dependency
problem can exist at the source/API
level, as described here, as well as
between binaries.12 At Google, the

Figure 8. Diamond dependency problem.

A

D

B C

A

B

D.1

C

D.2

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 85

contributed articles

ing it to C++11 or rolling out perfor-
mance optimizations9) are often man-
aged centrally by dedicated codebase
maintainers. Such efforts can touch
half a million variable declarations or
function-call sites spread across hun-
dreds of thousands of files of source
code. Because all projects are central-
ly stored, teams of specialists can do
this work for the entire company, rath-
er than require many individuals to
develop their own tools, techniques,
or expertise.

As an example of how these ben-
efits play out, consider Google’s Com-
piler team, which ensures developers
at Google employ the most up-to-date
toolchains and benefit from the lat-
est improvements in generated code
and “debuggability.” The monolithic
repository provides the team with
full visibility of how various languag-
es are used at Google and allows them
to do codebase-wide cleanups to pre-
vent changes from breaking builds or
creating issues for developers. This
greatly simplifies compiler validation,
thus reducing compiler release cycles
and making it possible for Google to
safely do regular compiler releases
(typically more than 20 per year for the
C++ compilers).

Using the data generated by perfor-
mance and regression tests run on
nightly builds of the entire Google
codebase, the Compiler team tunes de-
fault compiler settings to be optimal.
For example, due to this centralized
effort, Google’s Java developers all saw
their garbage collection (GC) CPU con-
sumption decrease by more than 50%
and their GC pause time decrease by
10%–40% from 2014 to 2015. In addi-
tion, when software errors are discov-
ered, it is often possible for the team
to add new warnings to prevent reoc-
currence. In conjunction with this
change, they scan the entire reposi-
tory to find and fix other instances of
the software issue being addressed,
before turning to new compiler er-
rors. Having the compiler-reject pat-
terns that proved problematic in the
past is a significant boost to Google’s
overall code health.

Storing all source code in a common
version-control repository allows code-
base maintainers to efficiently ana-
lyze and change Google’s source code.
Tools like Refaster11 and ClangMR15

(often used in conjunction with Rosie)
make use of the monolithic view of
Google’s source to perform high-level
transformations of source code. The
monolithic codebase captures all de-
pendency information. Old APIs can
be removed with confidence, because
it can be proven that all callers have
been migrated to new APIs. A single
common repository vastly simplifies
these tools by ensuring atomicity of
changes and a single global view of
the entire repository at any given time.

Costs and trade-offs. While impor-
tant to note a monolithic codebase in
no way implies monolithic software de-
sign, working with this model involves
some downsides, as well as trade-offs,
that must be considered.

These costs and trade-offs fall into
three categories:

 ˲ Tooling investments for both de-
velopment and execution;

 ˲ Codebase complexity, including
unnecessary dependencies and diffi-
culties with code discovery; and

 ˲ Effort invested in code health.
In many ways the monolithic repos-

itory yields simpler tooling since there
is only one system of reference for
tools working with source. However, it
is also necessary that tooling scale to
the size of the repository. For instance,
Google has written a custom plug-in for
the Eclipse integrated development
environment (IDE) to make work-
ing with a massive codebase possible
from the IDE. Google’s code-indexing
system supports static analysis, cross-
referencing in the code-browsing tool,
and rich IDE functionality for Emacs,
Vim, and other development environ-
ments. These tools require ongoing in-
vestment to manage the ever-increas-
ing scale of the Google codebase.

Beyond the investment in build-
ing and maintaining scalable tooling,
Google must also cover the cost of run-
ning these systems, some of which are
very computationally intensive. Much
of Google’s internal suite of devel-
oper tools, including the automated
test infrastructure and highly scalable
build infrastructure, are critical for
supporting the size of the monolithic
codebase. It is thus necessary to make
trade-offs concerning how frequently
to run this tooling to balance the cost
of execution vs. the benefit of the data
provided to developers.

An important aspect
of Google culture
that encourages
code quality is
the expectation
that all code is
reviewed before
being committed
to the repository.

86 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

Dependency-refactoring and clean-
up tools are helpful, but, ideally, code
owners should be able to prevent un-
wanted dependencies from being cre-
ated in the first place. In 2011, Google
started relying on the concept of
API visibility, setting the default
visibility of new APIs to “private.”
This forces developers to explicitly
mark APIs as appropriate for use by
other teams. A lesson learned from
Google’s experience with a large
monolithic repository is such mech-
anisms should be put in place as soon
as possible to encourage more hygienic
dependency structures.

The fact that most Google code is
available to all Google developers has
led to a culture where some teams ex-
pect other developers to read their
code rather than providing them with
separate user documentation. There
are pros and cons to this approach. No
effort goes toward writing or keeping
documentation up to date, but devel-
opers sometimes read more than the
API code and end up relying on under-
lying implementation details. This be-
havior can create a maintenance bur-
den for teams that then have trouble
deprecating features they never meant
to expose to users.

This model also requires teams to
collaborate with one another when us-
ing open source code. An area of the
repository is reserved for storing open
source code (developed at Google or
externally). To prevent dependency
conflicts, as outlined earlier, it is im-
portant that only one version of an
open source project be available at
any given time. Teams that use open
source software are expected to occa-
sionally spend time upgrading their
codebase to work with newer versions
of open source libraries when library
upgrades are performed.

Google invests significant effort in
maintaining code health to address
some issues related to codebase com-
plexity and dependency manage-
ment. For instance, special tooling
automatically detects and removes
dead code, splits large refactorings
and automatically assigns code re-
views (as through Rosie), and marks
APIs as deprecated. Human effort is
required to run these tools and man-
age the corresponding large-scale
code changes. A cost is also incurred

The monolithic model makes it
easier to understand the structure of
the codebase, as there is no crossing of
repository boundaries between depen-
dencies. However, as the scale increas-
es, code discovery can become more
difficult, as standard tools like grep
bog down. Developers must be able
to explore the codebase, find relevant
libraries, and see how to use them
and who wrote them. Library authors
often need to see how their APIs are
being used. This requires a signifi-
cant investment in code search and
browsing tools. However, Google has
found this investment highly reward-
ing, improving the productivity of all
developers, as described in more detail
by Sadowski et al.9

Access to the whole codebase en-
courages extensive code sharing and
reuse. Some would argue this model,
which relies on the extreme scalabil-
ity of the Google build system, makes
it too easy to add dependencies and
reduces the incentive for software de-
velopers to produce stable and well-
thought-out APIs.

Due to the ease of creating dependen-
cies, it is common for teams to not think
about their dependency graph, making
code cleanup more error-prone. Un-
necessary dependencies can increase
project exposure to downstream build
breakages, lead to binary size bloating,
and create additional work in building
and testing. In addition, lost productiv-
ity ensues when abandoned projects
that remain in the repository continue
to be updated and maintained.

Several efforts at Google have
sought to rein in unnecessary depen-
dencies. Tooling exists to help identify
and remove unused dependencies, or
dependencies linked into the prod-
uct binary for historical or accidental
reasons, that are not needed. Tooling
also exists to identify underutilized
dependencies, or dependencies on
large libraries that are mostly unneed-
ed, as candidates for refactoring.7 One
such tool, Clipper, relies on a custom
Java compiler to generate an accurate
cross-reference index. It then uses the
index to construct a reachability graph
and determine what classes are never
used. Clipper is useful in guiding de-
pendency-refactoring efforts by finding
targets that are relatively easy to remove
or break up.

A developer can
make a major
change touching
hundreds or
thousands of
files across the
repository in a
single consistent
operation.

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 87

contributed articles

by teams that need to review an ongo-
ing stream of simple refactorings re-
sulting from codebase-wide clean-ups
and centralized modernization efforts.

Alternatives
As the popularity and use of distrib-
uted version control systems (DVCSs)
like Git have grown, Google has con-
sidered whether to move from Piper
to Git as its primary version-control
system. A team at Google is focused
on supporting Git, which is used by
Google’s Android and Chrome teams
outside the main Google repository.
The use of Git is important for these
teams due to external partner and open
source collaborations.

The Git community strongly sug-
gests and prefers developers have
more and smaller repositories. A Git-
clone operation requires copying all
content to one’s local machine, a pro-
cedure incompatible with a large re-
pository. To move to Git-based source
hosting, it would be necessary to split
Google’s repository into thousands of
separate repositories to achieve reason-
able performance. Such reorganization
would necessitate cultural and work-
flow changes for Google’s developers.
As a comparison, Google’s Git-hosted
Android codebase is divided into more
than 800 separate repositories.

Given the value gained from the ex-
isting tools Google has built and the
many advantages of the monolithic
codebase structure, it is clear that mov-
ing to more and smaller repositories
would not make sense for Google’s
main repository. The alternative of
moving to Git or any other DVCS that
would require repository splitting is
not compelling for Google.

Current investment by the Google
source team focuses primarily on the
ongoing reliability, scalability, and
security of the in-house source sys-
tems. The team is also pursuing an
experimental effort with Mercurial,g
an open source DVCS similar to Git.
The goal is to add scalability fea-
tures to the Mercurial client so it can
efficiently support a codebase the
size of Google’s. This would provide
Google’s developers with an alterna-
tive of using popular DVCS-style work-
flows in conjunction with the central

g http://mercurial.selenic.com/

Tech Leads of CitC; Hyrum Wright,
Google’s large-scale refactoring guru;
and Chris Colohan, Caitlin Sadowski,
Morgan Ames, Rob Siemborski, and
the Piper and CitC development and
support teams for their insightful re-
view comments.

References
1. Bloch, D. Still All on One Server: Perforce at Scale.

Google White Paper, 2011; http://info.perforce.
com/rs/perforce/images/GoogleWhitePaper-
StillAllonOneServer-PerforceatScale.pdf

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C.,
Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., and
Gruber, R.E. Bigtable: A distributed storage system
for structured data. ACM Transactions on Computer
Systems 26, 2 (June 2008).

3. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost,
C., Furman, J., Ghemawat, S., Gubarev, A., Heiser,
C., Hochschild, P. et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems 31, 3 (Aug. 2013).

4. Gabriel, R.P., Northrop, L., Schmidt, D.C., and Sullivan,
K. Ultra-large-scale systems. In Companion to the
21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications
(Portland, OR, Oct. 22–26). ACM Press, New York,
2006, 632–634.

5. Kemper, C. Build in the Cloud: How the Build System
works. Google Engineering Tools blog post, 2011;
http://google-engtools.blogspot.com/2011/08/build-
in-cloud-how-build-system-works.html

6. Lamport, L. Paxos made simple. ACM Sigact News 32,
4 (Nov. 2001), 18–25.

7. Morgenthaler, J.D., Gridnev, M., Sauciuc, R., and
Bhansali, S. Searching for build debt: Experiences
managing technical debt at Google. In Proceedings
of the Third International Workshop on Managing
Technical Debt (Zürich, Switzerland, June 2–9). IEEE
Press Piscataway, NJ, 2012, 1–6.

8. Ren, G., Tune, E., Moseley, T., Shi, Y., Rus, S., and
Hundt, R. Google-wide profiling: A continuous profiling
infrastructure for data centers. IEEE Micro 30, 4
(2010), 65–79.

9. Sadowski, C., Stolee, K., and Elbaum, S. How
developers search for code: A case study. In
Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering (Bergamo, Italy, Aug. 30–
Sept. 4). ACM Press, New York, 2015, 191–201.

10. Sadowski, C., van Gogh, J., Jaspan, C., Soederberg, E.,
and Winter, C. Tricorder: Building a program analysis
ecosystem. In Proceedings of the 37th International
Conference on Software Engineering, Vol. 1 (Firenze,
Italy, May 16–24). IEEE Press Piscataway, NJ, 2015,
598–608.

11. Wasserman, L. Scalable, example-based refactorings
with Refaster. In Proceedings of the 2013 ACM
Workshop on Refactoring Tools (Indianapolis, IN, Oct.
26–31). ACM Press, New York, 2013, 25–28.

12. Wikipedia. Dependency hell. Accessed Jan.
20, 2015; http://en.wikipedia.org/w/index.
php?title=Dependency_hell&oldid=634636715

13. Wikipedia. Filesystem in userspace.
Accessed June, 4, 2015; http://en.wikipedia.
org/w/index.php?title=Filesystem_in_
Userspace&oldid=664776514

14. Wikipedia. Linux kernel. Accessed Jan. 20, 2015;
http://en.wikipedia.org/w/index.php?title=Linux_
kernel&oldid=643170399

15. Wright, H.K., Jasper, D., Klimek, M., Carruth, C., and
Wan, Z. Large-scale automated refactoring using
ClangMR. In Proceedings of the IEEE International
Conference on Software Maintenance (Eindhoven,
The Netherlands, Sept. 22–28). IEEE Press, 2013,
548–551.

Rachel Potvin (rpotvin@google.com) is an engineering
manager at Google, Mountain View, CA.

Josh Levenberg (joshl@google.com) is a software
engineer at Google, Mountain View, CA.

Copyright held by the authors

repository. This effort is in collabora-
tion with the open source Mercurial
community, including contributors
from other companies that value the
monolithic source model.

Conclusion
Google chose the monolithic-source-
management strategy in 1999 when
the existing Google codebase was
migrated from CVS to Perforce. Early
Google engineers maintained that a
single repository was strictly better
than splitting up the codebase, though
at the time they did not anticipate the
future scale of the codebase and all
the supporting tooling that would be
built to make the scaling feasible.

Over the years, as the investment re-
quired to continue scaling the central-
ized repository grew, Google leader-
ship occasionally considered whether
it would make sense to move from the
monolithic model. Despite the effort
required, Google repeatedly chose to
stick with the central repository due to
its advantages.

The monolithic model of source
code management is not for everyone.
It is best suited to organizations like
Google, with an open and collabora-
tive culture. It would not work well
for organizations where large parts
of the codebase are private or hidden
between groups.

At Google, we have found, with some
investment, the monolithic model of
source management can scale success-
fully to a codebase with more than one
billion files, 35 million commits, and
thousands of users around the globe. As
the scale and complexity of projects both
inside and outside Google continue to
grow, we hope the analysis and workflow
described in this article can benefit oth-
ers weighing decisions on the long-term
structure for their codebases.

Acknowledgments
We would like to recognize all current
and former members of the Google
Developer Infrastructure teams for
their dedication in building and
maintaining the systems referenced
in this article, as well as the many
people who helped in reviewing the
article; in particular: Jon Perkins and
Ingo Walther, the current Tech Leads
of Piper; Kyle Lippincott and Crutcher
Dunnavant, the current and former

