
SCC0251 + MAI5020 — Prof. Moacir Ponti

PAEs: Gustavo Evangelista Araújo and Leo Sampaio Ferraz Ribeiro

Assignment 2: Fourier Transform
Code the assignment by yourself. Ask if you need help. Plagiarism is not tolerated.

1 Introduction

1.1 Goal

The objective of this exercise is to deepen the students understanding of the frequency
domain of images and how to use Fourier Transform and filtering techniques to match
the expected results.

1.2 Task

In this assignment, your task is to match a set of given images using filters in the frequency
domain. Read the instructions for each step. Students are required to use python 3 and
the libraries numpy, imageio and scipy to complete the task.

Follow the instructions carefully:

1. Read the parameters:

a) Input image I (available in ./Dataset/in);

b) Expected image H (available in ./Dataset/gt);

c) Filter index i ∈ [0,1,2,3,4,5,6,7,8];

d) Filter Parameters respective to each index.

2. Implement the filters below:

a) Ideal Low-pass - with radius r;

b) Ideal High-pass - with radius r;

c) Ideal Band-pass - with radius r1 and r2;

d) Laplacian high-pass (edit: in a previous version we have wrongly asked for
low-pass);

e) Gaussian Low-pass - with σ1 and σ2;

f) Butterworth low-pass - with D0 and n;

g) Butterworth high-pass - with D0 and n;

h) Butterworth band-reject - with D0, n0, D1 and n1 Because of a confusion with
the order of parameters, the test cases with this filter will not count towards
your grades

1



i) Butterworth band-pass - with D0, n0, D1 and n1; Because of a confusion with
the order of parameters, the test cases with this filter will not count towards
your grades

3. Compare the restored images Ĥ against expected images H using Root Mean
Squared Error (RMSE);

4. Output the RMSE;

5. (Recommended) Save each restored image for further observations;

2 Dataset

Set12 is a collection of 12 grayscale images of different scenes that are widely used for
evaluation of image denoising methods [2]. The size of each image is 256×256. However,
the images will have varying levels of blur and periodic noises added to them or will
extract edges, as seen in 2. Your algorithms should aim to produce an RMSE that
closely matches the expected result, given the provided parameters.

01_in 02_in 03_in

01_out 02_out 03_out

Figure 1: Examples of inputs and ideal outputs images from Set12 to compare

2



3 Filters

As previously described, the students are required to test various filter types on real
grayscale images. This includes the ideal low-pass, ideal high-pass, and band filters that
were covered in class. In addition, they need to learn about three other filter types:
Laplacian, Gaussian, and Butterworth filters, which will be introduced.All filters in use
follow the theory presented in the book "Digital Image Processing - 3º edition" [1].

Your algorithm will need to compute the 2D FFT of the input image img using
np.fft.fft2(), a function takes an input array as its argument and returns the complex-
valued 2D FFT of the input. The resulting complex-valued array is then shifted so that
the zero-frequency component is at the center using np.fft.fftshift(). This is nec-
essary because the FFT outputs the frequency components in a format where the zero
frequency is at the origin. In summary, the image in the frequency domain F , will be
expressed as:

F = np.fft.fftshift(np.fft.fft2(img))

This operation will be needed in every filter function, in order to initiate the filter
shape (P,Q) and values. It’s important to define dtype as a float32, as shown below:

filter = np.zeros((P,Q), dtype=np.float32)
or
filter = np.ones((P,Q), dtype=np.float32)

It’s important to note that each filter will compute the H[u, v] values in the frequency
domain. It’s worth mentioning that not all filters presented below will be evaluated for
the students’ grades, only those specified in section 1.2. However, all variations of the
filters are explained here to provide a complete understanding of the topic.

In summary, remember to do computations in the correct domain: (1) Get the FFT of
the image F ; (2) Do the filtering process in the frequency domain; (3) Apply the filter
in F ; (4) Get the inverse FFT of the image to return it back to the spatial domain ĥ.

3.1 Ideal Filters

In contrast to what was covered in class, the ideal filters used here are circular rather than
square in shape. An ideal lowpass filter (ILPF) is a 2D filter that allows all frequencies

3



within a circular region with a given radius from the center of the image to pass without
attenuation, and blocks all frequencies outside this region. It is called "ideal" because it
provides a perfect cutoff with no transition band or ripple in the passband.

The filter can be mathematically described as a binary function that is equal to 1 within
the circular region and 0 outside. This filter can be used to remove high-frequency noise
from an image while preserving its low-frequency content. It is specified by the functions:

D(u, v) =

√
(u− P

2
)2 + (v − Q

2
)2 (1)

Lowpass

H(u, v) =

{
1, if D(u, v) <= D0

0, if D(u, v) > D0

(2)

Highpass

H(u, v) =

{
0, if D(u, v) <= D0

1, if D(u, v) > D0

(3)

Bandpass and Bandreject

Both Bandpass and Bandreject algorithms can be created from operations with lowpass
and highpass filters. For example, assuming the radius r0 > r1, you could subtract a
ILPF with radius r0 from another ILPF with radius r1 to get a bandreject filter.

3.2 Laplacian

The Laplacian operator is a second-order derivative that is used in image processing to
enhance edges and details. The Laplacian filter can be implemented as a high-pass filter
to enhance edges or as a low-pass filter to smooth an image. The equation 4 is the
frequency response of a Laplacian low-pass filter in the frequency domain.

H[u, v] = −4π2((u− P

2
)2 + (v − Q

2
)2) (4)

4



The filter is defined by the function H(u,v), where u and v are the spatial frequency
variables, and P and Q are the dimensions of the image in the x and y directions,
respectively.

The Laplacian filter is a high-frequency filter that attenuates high-frequency compo-
nents in the image. The equation achieves this by applying a negative value to H(u,v) for
higher frequency components. The squared distance between the frequency components
(u,v) and the center of the frequency domain is calculated and multiplied by a factor
of −4π2. This factor determines the rate of attenuation for higher frequency compo-
nents. The farther away the frequency component is from the center, the greater the
attenuation.

3.3 Gaussian

A Gaussian low-pass filter is a type of filter used in image processing to suppress high-
frequency information in an image, providing a smooth alternative to the ideal low-
pass filters previously presented; the effect is effectively a “blur” and is the filter most
commonly used in user interface elements.

The equations 5 and 6 represents this filter. The standard deviation, σ, determines
the width of the Gaussian curve, with a smaller value of σ resulting in a sharper filter.

x = (
(u− P

2 )
2

2σ2
r

+
(v − Q

2 )
2

2σ2
c

) (5)

H(u, v) = e−x (6)

The frequency domain representation of the Gaussian filter is expressed in terms of
the frequency coordinates in the row and column directions, denoted by u − P/2 and
v−Q/2, respectively. The filter response at each frequency coordinate is determined by
evaluating the Gaussian function at that coordinate. The exponent in the equation is
the squared distance of the frequency coordinate from the center of the filter, divided by
twice the squared standard deviation in the corresponding direction. Note that you can
subtract the filter from a fully blank filter to get a high-pass version.

5



3.4 Butterworth

The transfer function of a Butterworth lowpass filter (BLPF) of order n, and with cutoff
frequency at a distance D0 from the origin, is defined as:

H[u, v] =
1

1 + [D(u, v)/D0]2n
(7)

and for D(u, v), we have:

D(u, v) = [(u− P

2
)2 + (v − Q

2
)2]1/2 (8)

where u and v are the spatial frequency variables, and P and Q are the dimensions
of the image in the x and y directions, respectively. The Butterworth filter approaches
the ideal filter in higher order values. For lower order values, the Butterworth filter is
more like a Gaussian filter. Thus, the Butterworth filter may be viewed as providing a
transition between two extremes.

One of the principal applications of bandreject filtering is for noise removal in appli-
cations where the general location of the noise component(s) in the frequency domain is
approximately known. A good example is an image corrupted by additive periodic noise
that can be approximated as two-dimensional sinusoidal functions.

Note that the Butterworth highpass filter (BHPF) can be obtained from a simple
operation with the BLPF, as were possible with the previous filters. The same goes for
the bandpass and bandreject algorithms.

6



4 Input and Output

The following parameters will be input to your program in the following order through
stdin, as usual for run.codes:

input output
Dataset/in/01.png 0.1037
Dataset/out/01.png
4
20
1

5 Comparing against expected

Your program must compare the restored image against expected h. This comparison
must use the root mean squared error (RMSE). Print this error in the screen, rounding
to 4 decimal places. Because the RMSE values will be higher in this assignment, convert
the matrices to np.int32 before computing to avoid under and overflow.

RMSE =

√∑
i

∑
j(g(i, j)− f(i, j))2

n ·m

6 Grading

Your work will be graded as:

R+ F1 + F2 + F3 + F4

5
− P

where each value ranges from 0− 10, R is the grade from run-codes-local, A is the grade
for each new filter implemented (Ideal, Laplacian, Gaussian and Butterworth Filters,
respectively). P goes up to 1.0 and is a possible penalty for failing to follow the rules
from the previous section.

7



7 Submission

Submit your source code to e-disciplinas (only the .py file). You can check for correctness
by downloading the test cases from e-disciplinas and testing with run-codes-local, which
will be used by the PAEs to grade your work.

1. Use your USP number as the filename for your code.

2. Include a header. Use a header with name, USP number, course code, year/semester
and the title of the assignment. A penalty on the evaluation will be applied if your
code is missing the header.

3. Comment your code. For any computation that is not obvious from function
names and variables, add a comment explaining.

4. Organize your code in programming functions. Use one function for each
filter method.

References
[1] R. C. Gonzales and P. Wintz. Digital image processing. Addison-Wesley Longman Publishing

Co., Inc., 1987.

[2] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian denoiser: Resid-
ual learning of deep CNN for image denoising. IEEE Transactions on Image Processing,
26(7):3142–3155, 2017.

8

https://edisciplinas.usp.br
https://github.com/leosampaio/run-codes-local

	Introduction
	Goal
	Task

	Dataset
	Filters
	Ideal Filters
	Laplacian
	Gaussian
	Butterworth

	Input and Output
	Comparing against expected
	Grading
	Submission

