WIV – Wake-Induced Vibration

Prof Gustavo R. S. Assi Dept. Naval Arch. & Ocean Eng., EPUSP University of São Paulo

PNV 5203 Fluid-Structure Interaction

References

- GRS Assi (2009) Mechanisms for flow-induced vibration of interfering bluff bodies, PhD Thesis, Imperial College London
- GRS Assi, PW Bearman, JR Meneghini (2010) On the Wake-Induced Vibration of Tandem Circular Cylinders: the Vortex Interaction Excitation Mechanism, Journal of Fluid Mechanics, v. 661, p. 365-401.
- GRS Assi, PW Bearman, BS Carmo, JR Meneghini, SJ Sherwin, RHJ Willden (2013) The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair, Journal of Fluid Mechanics, v. 718, p. 210-245.

Motivation

Motivation

VIV – VORTEX-INDUCED VIBRATION

 $f_s = St \frac{U}{D}$

Re=10⁴ (van Dyke, 1982)

WIV – WAKE-INDUCED VIBRATION

Wake interference

 $\frac{\hat{y}}{D} = f\left(\frac{\rho UD}{\mu}, \frac{U}{Df_0}, \frac{x_0}{D}, m^*, \zeta\right)$

UNIVERSITY OF SÃO PAULO

Lift

PROF GUSTAVO ASSI

What sustains high-amplitude vibrations so far from the resonance range?

Excitation mechanism

Lift on the downstream cylinder

Investigate lift on the downstream cylinder...

Key to understand hydroelastic mechanism

Phase lag $\phi \rightarrow$ Energy transfer \rightarrow WIV excitation

Steady lift field

Quasi-steady approach? Staggered arrangement...

$$m\ddot{y} + c\dot{y} + ky = \frac{1}{2}\rho U^2 DL \left[\overline{C}_y + \hat{C}_y \sin(2\pi ft + \phi)\right]$$

UNIVERSITY OF SÃO PAULO

PROF GUSTAVO ASSI

Lift

Mean lift and drag

PROF GUSTAVO ASSI

UNIVERSITY OF SÃO PAULO

Quasi-steady approach

Attempts to model WIV

Classical galloping

Stabilising force

Quasi-steady model does not provide phase lag to excite WIV

 $x_0 / D = 4.0$ $y_0 / D = 1.0$

Unsteady approach

Unsteady approach

PROF GUSTAVO ASSI

2

0

-2

-3 ∟ 0

0.5

1.5

1

2.5

3

2

t [s]

 $y/D, C_{y_V}$

PROF GUSTAVO ASSI

UNIVERSITY OF SÃO PAULO

Vortex-interaction mehanism

Can result in reinforcement or attenuation of the vibration.

Depending on the wake at each time (unsteadiness).

Unsteady mechanism

WIV excitation mechanism

Requires interaction with unsteady vortices "Vortex-interaction excitation mechanism"

There is no excitation without unsteady vortices...

Idea: What if we remove a fundamental frequency? Make $f_s = 0$, i.e. no vortex-shedding frequency

Verification...

Experiment

"Steady wake": no vortices, but with an equivalent mean velocity profile.

Conclusion

WIV excitation mechanism

Comes form the unsteady interaction with upstream vortices

The unsteadiness is necessary

Remove the unsteady vortices and there will be no WIV

WAKE STIFFNESS

Frequency signature

Frequency

Amplitude of vibration

Variation of peaks

Deviation increasing beyond VIV resonance.

Frequency of vibration Well behaved... $f \neq f_s$

 $f \neq f_0$

Why?

Investigating frequency...

Excitation does not depend on resonance...

Idea: remove a fundamental frequency

make $f_0 = 0$ by removing the springs

Expected response without springs...

No local peak of VIV... (no resonance $f_s = f_0$) Oscillatory motion?

With springs

Local VIV resonance Amplitude build-up

Without springs

Oscillatory motion! No VIV resonance Amplitude increasing $U/Df_0 = \infty$ Dependency on Re

Similar response...

Small variations

Without springs: k = 0

$$m\ddot{y} + c\dot{y} = C_y \frac{1}{2}\rho U^2 D$$

Fig. 7.5: Normalised PSD of lift force acting on the upstream static cylinder (top) and downstream cylinder without springs (bottom). Please refer to Appendix A.

Mean lift field: staggered cylinders

Staggered arrangement: Restoring force

The wake stiffness concept

$$k_w = \alpha_{\overline{C}_y} \frac{1}{2} \rho U^2$$

$$f_w = \frac{1}{2\pi} \sqrt{\frac{k_w}{(m^* + C_a)\rho\frac{\pi D^2}{4}}}$$

$$\frac{f_w D}{U} = 0.054$$

PROF GUSTAVO ASSI

0

Without springs: k = 0

$$m\ddot{y} + c\dot{y} = C_y \frac{1}{2}\rho U^2 D$$

$$\frac{\hat{y}}{D} = \frac{1}{4\pi} \hat{C}_y \sin \phi \left(\frac{U}{Df}\right) \left(\frac{\rho UD}{\mu}\right) \left(\frac{\mu}{c}\right)$$

$$\underbrace{\psi \psi \psi \psi}_{\mu} \mathbf{Cte} \quad \mathbf{Re} \quad \mathbf{Cte}$$

UNIVERSITY OF SÃO PAULO

PROF GUSTAVO ASSI

PROF GUSTAVO ASSI

UNIVERSITY OF SÃO PAULO

Fig. 7.8: WIV response of a downstream cylinder mounted without springs at various x_0 separations. Top: displacement; bottom: dominant frequency of oscillation.

prof GUSTAVO ASSI g.assi@usp.br

THANK YOU

$$m\ddot{y} + c\dot{y} = C_y \frac{1}{2}\rho U^2 D$$

$$\frac{\hat{y}}{D} = \frac{1}{4\pi} \hat{C}_y \sin\phi \frac{\rho U^2}{cf}$$

$$\frac{\hat{y}}{D} = \frac{1}{4\pi} \hat{C}_y \sin\phi \left(\frac{U}{Df}\right) \left(\frac{\rho UD}{\mu}\right) \left(\frac{\mu}{c}\right)$$

$$\left|\frac{\partial \overline{C}_y}{\partial (y_0/D)}\right| \equiv \Delta_{\overline{C}_y} \approx 0.65$$

$$k_w = \Delta_{\overline{C}_y} \frac{1}{2} \rho U^2$$

$$f_w = \frac{1}{2\pi} \sqrt{\frac{k_w}{(m^* + C_a)\rho \frac{\pi D^2}{4}}}$$

PROF GUSTAVO ASSI

UNIVERSITY OF SÃO PAULO