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1 Introduction

Let us recall a simple fact from the theory of ordinary differential equations: the equation

du
dt

= f (t,u)

can be uniquely solved for a given initial condition u(0) = u0, provided that f is a continuous

function of t and u. The solution may exists for all time or may blow up at some finite time.

If we now allow the equation and the initial condition to depend on a parameter x, then the

solution u also depend on x and may be written as u(x, t). In fact, u become a solution of

∂u
∂ t

= f (x, t,u) with u(x,0) = F(x)

This may be thought of as an initial value problem for a PDE in which the derivative ∂u/∂x
does not appear. Assuming f and F are continuous functions of x, the solution u(x, t) will also
be continuous in x as well as t. Geometrically, the graph u = u(x, t) represents a surface in R3

that contains the curve (initial data) F(x). This surface may be defined for all t > 0, or may

blow up at some finite time.

This elementary ideas from ODE theory is the basis of the Method of Characteristics (MoC)

which applies to general quasilinear PDEs.

1.1 Solution of linear advection equation using MoC

For the purpose of illustration of method of characteristics, let us consider the simple case of a

one-dimensional linear advection equation also called wave equation

∂u
∂ t

+ a
∂u
∂x

= 0 (1a)

u(x,0) = F(x) (1b)

where u(x, t) is the unknown function of (x, t) and a the uniform advection speed. F(x) is called
the initial data (waveform specified along the initial curve, t = 0) and the equation (1b) is called
the initial condition of the problem. Let us try to reduce this problem to a ODE along some
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Figure 1: A typical characteristic curve.

curve x(t) in (x, t) plane whose slope is given by dt/dx. That is, we determine the curve x(t)
such that

du(x(t), t)
dt

=
∂u
∂ t

+ a
∂u
∂x

= 0 (2)

From the chain rule of differentiation, we have

du(x(t), t)
dt

=
∂u
∂x

dx
dt

+
∂u
∂ t

dt
dt

=
∂u
∂ t

+
∂u
∂x

dx
dt

(3)

A comparison of equations (2) and (3) shows that ODE on the left-hand side of (2) is equivalent
to PDE in the same equation if the reciprocal of slope of the curve x(t)

dx
dt

= a

It follows from this result that the PDE (1a)can be regarded as the ordinary differential equation

du
dt

= 0 (4a)

along any member of the family of curves x(t) which are the solution curves of the equation

given by
dx
dt

= a (4b)

A characteristic curve of PDE (1a) is a curve in the (x, t)-plane given by x = x(t), where x(t)
is a solution of the differential equation (4b). From (4a) it is clear that the value of u remains

a constant along such curves. Thus, the solution of (1a) has been reduced to the solution

of a pair of simultaneous ordinary differential equations (4a) and (4b). We now integrate the

equation (4b) to obtain the characteristic curves:

x(t) = at + ξ

where ξ is the x-intercept of the curve (see figure 1). It shows that the characteristic curves

are straight lines with slope, dt/dx = 1/a. Further, since u is a constant along a given charac-

teristic curve its value can be readily determined from the initial data. That is, along a given

characteristic curve we must have

u(x, t) = u(ξ , 0) = F(ξ )
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Since ξ = x−at, the solution of the PDE (1a) is simply given by

u(x, t) = F(x−at) (5)

Indeed, if F has a C1 continuity, it can be easily verified that u(x, t) = F(x−at) satisfies the
PDE and the initial condition. The reduction of a PDE to an ODE along its characteristics is

called the method of characteristics.

The solution of PDE (1a) corresponds to transporting the initial profile F(x) unaltered

(preserving the shape of initial waveform) along the characteristics with a speed dx/dt = a (see

figure 1). To prove this, consider the transport of u over a period of time ∆t. Let ∆x be the

displacement in the x-direction during the time ∆t. From solution (5) we obtain

u(x, t +∆t) = F [x−a(t +∆t)] = F(x−at −a∆t) = F[(x−∆x)−at] = u(x−∆x, t)

or, after a time period of t1 from the initial time,

u(x, t1) = F(x−at1) = u(x−at1, 0)

Thus, the solution after a time t1 is a copy of the initial profile F(x), but displaced to the right

to a distance at1 for a > 0 as shown in figure 2.

x

u

t

t = 0

t1

t2

(ξ ,0)

u(x,0) = F(x)

slope= 1/a

u(x, t) = F(ξ ) = const.

Figure 2: Initial profile, characteristics, and solution at various times.

2 Method of Characteristics for Quasilinear PDE

The method of characteristics is a technique for solving hyperbolic partial differential equa-

tions (PDE). Typically the method applies to first-order equations, although it is valid for any
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hyperbolic-type PDEs. The method involves the determination of special curves, called char-

acteristics curves, along which the PDE becomes a family of ordinary differential equations

(ODE). Once the ODEs are found, they can be solved along the characteristics curves to obtain

the solutions of ODE and subsequently the solutions of ODE can be related to the solution of

original PDE.

MoC can be applied to linear, semilinear, or quasilinear PDEs. For the purpose of illustration

of MoC, let us consider a general quasilinear first-order PDE

a(x,y,u)
∂u
∂x

+ b(x,y,u)
∂u
∂y

= c(x,y,u) in D (6)

for the variable u. We assume that the coefficients a, b, and c are at least C1 continuous of

variables x, y, u. Further, we assume that the possible solution of (6) in the form u = u(x,y),
then the graph u = u(x,y) represents the solution surface S embedded in R3 (just as y = y(x)
represents a curve Γ embedded in R2, i.e., (x,y) plane). Here u(x,y) is a function of x and y, for
example, we may have u(x,y)= x2−y2. The solution surface S can also be represented implicitly

by the equation of the form f (x,y,u) = 0. In the present case we have f (x,y,u) = u(x,y)−u.
Now, recall from vector calculus that the normal vector to the surface f (x,y,u) = 0 is given by

∇ f . Therefore, the equation of the normal vector to the surface S is given by

∇ f =
∂ f
∂x

î +
∂ f
∂y

ĵ +
∂ f
∂u

k̂ =
∂u(x,y)

∂x
î +

∂u(x,y)
∂y

ĵ − ∂u
∂u

k̂ ≡
(

∂u
∂x

,
∂u
∂y

,−1

)

= (ux, uy,−1)

Thus the vector (ux, uy,−1) represents the normal vector at any point on the solution surface

u = u(x,y). Further, we introduce the vector field A = aî + b ĵ + ck̂, where a, b, and c are

the given coefficients of the quasilinear equation (6). Therefore, the PDE given by equation (6)
can be written as A ·∇ f = 0, or

(

aî + b ĵ + ck̂
)

·
(

∂u
∂x

î +
∂u
∂y

ĵ − k̂

)

= 0, or (7a)

(a, b, c) · (ux, uy,−1) = 0 (7b)

Equation (7) shows that the vectors (a,b,c) and (ux, uy,−1) are orthogonal, and because

(ux, uy,−1) is normal to the surface u = u(x,y), the vector A = (a,b,c) must be a tangent

vector of the solution surface S at every point (x,y,u). Therefore, A defines a vector field

in (x,y,u) space, that are tangents to the graphs of solutions of (6) at each point (x,y,u).
Surfaces that are tangent to a vector field at each point in R3 are called integral surfaces of the

vector field. To summarize, we have shown that f (x,y,u) = u(x,y)−u = 0, as a surface in the

(x,y,u) space, is a solution of (6) if and only if the direction vector field A = (a,b,c) lies in the

tangent plane of the integral surface f (x,y,u) = 0 at each point (x,y,u). The vector (a,b,c)
determines a direction, which is tangent to the integral surface at every point (x,y,u), called
the characteristic direction or Monge axis.

Since the vector A is tangent to the solution surface at every point (x,y,u), we have the

condition

A×ds =

∣

∣

∣

∣

∣

∣

î ĵ k̂
a b c
dx dy du

∣

∣

∣

∣

∣

∣

= 0
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where ds(= dxî+dy ĵ+duk̂) is an elemental length along A on the solution surface. Expanding

the determinant we obtain the following equation:

(bdu− cdy)î + (cdx−adu) ĵ + (ady−bdx)k̂ = 0

which leads to what is called the Lagrange–Charpit equations:

dx
a

=
dy
b

=
du
c

(8)

The solution of the quasilinear equation can therefore be expressed by the description of the

tangent plane in terms of the slope of this surface; so we may write

du
dx

=
c
a

and
du
dy

=
c
b

(9a)

or, equivalently, one of this pair together with

dx
dy

=
a(x, y, u)
b(x, y, u)

(9b)

This last equation (9b) defines a family of curves (but dependent on u) in (x,y,u) space that

sit in the solution surface. These curves are usually called characteristics (after Cauchy); and

the set of equations (9) is usually called the characteristic equations of the quasilinear PDE (6).
The projection of a characteristic curve on the (x,y) plane (u = 0) is called a characteristic base

curve, or projected characteristic curve, or simply characteristic.

It may be noted that there are only two independent ordinary differential equations in the

system (9) and thus, solving these equations gives a two-parameter family of characteristic

curves in (x,y,u) space that can be expressed in the form

F(x,y,u,A,B) = 0, G(x,y,u,A,B) = 0

Through each point (x,y,u) in space there is a unique characteristic curve and a tangent vector

(a,b,c) to every such point (Figure 1.3). Any smooth surface composed of characteristic curves

is a solution of PDE (6). Such surfaces can be found analytically by specifying B as a function

of A, B = f (A). This leads a one-parameter family of characteristic curves, a surface,

F[x,y,u,A, f (A)] = 0, G[x,y,u,A, f (A)] = 0

The equation of the surface is found implicitly or explicitly by eliminating A between these

equations. Here is an example to illustrate these ideas.

Example 1

Find the general solution of the quasilinear PDE

a
∂u
∂x

+
∂u
∂ t

= 0
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Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂ t

= c

where

b = 1, c = 0

Using equation (9b), we have the reciprocal of the slope of characteristic curves

dx
dt

=
a
b
= a

Separating the variables and integrating to obtain

x = at +A

where A is an arbitrary constant. Further, from (9a), we have

du
dt

=
c
b
= 0

which leads to

u = B

where B is an arbitrary constant. Thus,

x−at = A, u = B

is a two-parameter family of characteristic curves. Specifying B as a function of A defines a

one-parameter family of characteristic curves, a solution surface. Thus, the general solution is

expressed by writing B = f (A). Therefore, the general solution is

u(x,y) = f (x−at)

where f (·) is an arbitrary function. By direct substitution, it is east to see that we do indeed

have a solution of the equation for arbitrary f .

Example 2

Find the general solution of the quasilinear PDE

x
∂u
∂x

+ y
∂u
∂y

= u

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂y

= c
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where

a = x, b = y, c = u

From the Lagrange–Charpit equations (8), we have

dx
x

=
dy
y

=
du
u

Using the first of Lagrange–Charpit equation, we have the reciprocal of the slope of characteristic

curves
dx
dy

=
x
y

Separating the variables and integrating to obtain

lnx = lny+ lnA =⇒ x = Ay

where A is an arbitrary constant. Further, we have

du
dy

=
u
y

Separating the variables and integrating to obtain

lnu = lny+ lnB =⇒ u = By

where B is an arbitrary constant. Thus,

x
y
= A,

u
y
= B

is a two-parameter family of characteristic curves. Specifying B as a function of A defines a

one-parameter family of characteristic curves, a solution surface. Thus, the general solution is

expressed by writing B = f (A). Therefore, the general solution is

u(x,y) = y f

(

x
y

)

where f (·) is an arbitrary function. By direct substitution, it is east to see that we do indeed

have a solution of the equation for arbitrary f .
It may be noted that had we selected the equations of the form

dy
dx

=
y
x
,

du
dx

=
u
x

we would have obtained the general solution as

u(x,y) = xg
(y

x

)

where g(·) is an arbitrary function. This is essentially the same as the previous form of the

solution.
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Example 3

Find the general solution of the quasilinear PDE

x2∂u
∂x

+ y2∂u
∂y

= (x+ y)u

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂y

= c

where

a = x2, b = y2, c = (x+ y)u

From the Lagrange–Charpit equations (8), we have

dx
x2 =

dy
y2 =

du
(x+ y)u

Using the first of Lagrange–Charpit equation, we have the reciprocal of the slope of characteristic

curves
dx
dy

=
x2

y2

Separating the variables and integrating to obtain

x−1 = y−1+A′

where A′ is an arbitrary constant. In addition, when we subtract the equation dy = y2 du
(x+ y)u

from dx = x2 du
(x+ y)u

to obtain

dx − dy = (x2− y2)
du

(x+ y)u
=⇒ dx−dy

x− y
=

du
u

=⇒ u = B(x− y)

where B is an arbitrary constant. Thus,

xy
x− y

= A,
u

x− y
= B

is a two-parameter family of characteristic curves. Specifying B as a function of A defines a

one-parameter family of characteristic curves, a solution surface. Thus, the general solution is

expressed by writing B = f (A). Therefore, the general solution is

u(x,y) = (x− y) f

(

xy
x− y

)

where f (·) is an arbitrary function.
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Example 4

Find the general solution of the Cauchy problem governed by the quasilinear PDE

2y
∂u
∂x

+ u
∂u
∂y

= 2yu2

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂y

= c

where

a = 2y, b = u, c = 2yu2

From the Lagrange–Charpit equations (8), we have

dx
2y

=
dy
u

=
du

2yu2

Using the first of Lagrange–Charpit equation, we have the reciprocal of the slope of characteristic

curves
dx
dy

=
2y
u

Further, we have
du
dy

=
2yu2

u
= 2yu (for u 6= 0)

Separating the variables and integrating to obtain

∫

du
u

= 2
∫

ydy + lnB =⇒ lnu = y2 + lnB

where B is an arbitrary constant. The above equation can be rewritten as

u = Bey2

Plugging the value of u in the expression for dx/dy yields

dx
dy

=
2y

Bey2

which on integration

B
∫

dx =
∫

2ye−y2
dy+A =⇒ Bx = −e−y2

+A

where A is the second arbitrary constant. Thus,

Bx + e−y2
= A, u = Bey2
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is a two-parameter family of characteristic curves. Specifying B as a function of A defines a

one-parameter family of characteristic curves, a solution surface. Thus, the general solution is

expressed by writing B = f (A), where

A = Bx + e−y2
= ue−y2

x + e−y2
= (xu+1)e−y2

which gives

u(x,y) = ey2
f
[

(1+ xu)e−y2
]

an implicit relation for u(x,y), where f (·) is an arbitrary function.

Remark: That we have obtained an implicit, rather than explicit, representation of the solution

is to be expected: the original PDE is nonlinear. In the light of this complication, it is a useful

exercise to confirm, by direct substitution, that we do indeed have a solution of the equation

for arbitrary f ; this requires a little care.

We summarize these ideas in the following theorem: Every one-parameter family of charac-

teristic curves generates a solution surface to PDE (6). Conversely, every solution surface may

be considered as a one-parameter family of characteristic curves.

2.1 Parametric form of characteristic equations

It is often convenient to solve the characteristic equations (9) and the associated Cauchy problem
if various curves in the problem are represented in parametric form. Let

x = x(s), y = y(s), u = u(s)

be the parametric equations of C in terms of the variable s. With the introduction of the

parameter s, we may write the Lagrange–Charpit equations (8) as

dx
a

=
dy
b

=
du
c

= ds

Then the set of equations may be written as a system of ODE for x(s), y(s), and u(s):

dx
ds

= a (10a)

dy
ds

= b (10b)

du
ds

= c (10c)

where s actually gives a measure of the distance (arc length) along the curve. The system of

ODE (10) is called the characteristic equations of the PDE (6) in parametric form. The family

of curves x = x(s), y = y(s), u = u(s) determined by solving the system of ODEs (10), are called
the characteristic curves of the original PDE (6).

The existence and uniqueness theory of ODEs, assuming that certain smoothness conditions

on the coefficients a, b, and c, guarantees that exactly one solution curve (x(s),y(s),u(s)) of
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(10) (i.e., a characteristic curve) passes through a given point (x0,y0,u0) in (x,y,u) space.

Often, we are not interested in the determination of a general solution of the PDE (6) but

rather a specific solution u = u(x,y) along a given curve Γ that passes through a given point

(x,y), typically (x0,y0) when s = 0.

2.2 A general case of first-order quasilinear PDE

Consider a general quasilinear partial differential equation of the form:

n

∑
i=1

ai(x1,x2, . . . ,xn,u)
∂u
∂xi

= c(x1,x2, . . . ,xn,u) (11)

The parametrized form of characteristics curves of (11) are obtained by solving the following

system of ODEs

dxi

ds
= ai(x1,x2, . . . ,xn,u) (12a)

du
ds

= c(x1,x2, . . . ,xn,u) (12b)

where s is the parametric variable. Equations (12a)and (12b) are the characteristic equations

of the PDE (11).

3 One-dimensional linear advection equation

We will now illustrate the solution of one-dimensional linear advection equation also called

one-way (or unidirectional) wave equation

a
∂u
∂x

+
∂u
∂ t

= 0 (13a)

using method of characteristics written in parametric form. Let the initial data (waveform) of

u is given in the form:

u(x,0) = F(x) (13b)

The value of function u at an arbitrary point ξ on the initial curve (t = 0 in this case) is then

given by u(ξ , 0) = F(ξ ). The curve starts at the initial point (x = ξ , t = 0), when s = 0, where
the parameter s gives a measure of the distance along the curve.

From equation (12), we see that the characteristic equations of (13a) is given by

dt
ds

= 1 with t(0) = 0 (14a)

dx
ds

= a with x(0) = ξ (14b)

du
ds

= 0 with u(0) = F(ξ ) (14c)
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These equations can be solved to get the equation of characteristic curves as explained below.

Solving equation (14a)produces
t = s + c1

where c1 is the integration constant. Using the initial condition t(s = 0) = 0, we find that

c1 = 0. Therefore, we have

s = t

The solution of (14b) is given by

x = as+ c2

where c2 is a constant. Using initial condition x(s = 0) = ξ , we get c2 = ξ . Therefore, the

characteristic curve along which the PDE simplifies to an ODE is given by

x = at +ξ (15)

where we have used the result that s = t. Equation (15) represents a straight line in (x, t) plane
with a slope

dt
dx

=
1
a

Since the characteristics are straight lines with constant slope, they do not intersect in (x, t)
plane.

Now the solution of (14c) is given by

u = c3

where c3 is a constant. Using initial condition u(0)= F(ξ ), we get c3 =F(ξ ). Thus we see that
u is a constant along the characteristic line. The value of the constant is F(ξ ). The constancy
of u along the characteristics combined with (15) shows that the characteristics propagate with
constant speed a. Since u is constant along the characteristics, we have

u(x, t) = u(ξ , 0) = F(ξ ) (16)

It means that the value of F(ξ ) on the initial data line (t = 0 line) uniquely determine the value

of u at every point of every characteristic curve that issues from t = 0 line. So, one can obtain

the value of u(x, t) at any point P(x, t) by tracing it back to the x-axis along the characteristics

(see figure 3):

u(x, t) = u(x−at, t − t) = u(ξ , 0) = F(ξ )

Since ξ = x− at, the solution of the PDE (6) along the characteristic curve (straight line in

this case) is given by

u(x, t) = F(x−at) (17)

As mentioned earlier, the initial profile F(x) translates unaltered with speed a along the char-

acteristics. Let us now consider the solution of equation (13) for various initial conditions.
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Figure 3: Characteristics solution of linear advection equation (13a).

Example 1

Find the solution of the Cauchy problem governed by the linear PDE

a
∂u
∂x

+
∂u
∂ t

= 0

that takes on the values

F(x) = u(x, 0) =







−x
3

if x ≤ 0

2x+3 if x > 0

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂ t

= c

where

b = 1, c = 0

From the Lagrange–Charpit equations (8), we have

dx
a

=
dt
1

=
du
0

Using the Lagrange–Charpit equation, we have the reciprocal of the slope of characteristic

curves
dx
dt

= a

Separating the variables and integrating to obtain

x = at + A

where A is an arbitrary constant. Further, we have

du
dt

= 0
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which leads to

u = B

where B is an arbitrary constant. Note that for selecting the second equation above, we have

two choices; they are du/dt and du/dx. We select du/dt if the Cauchy data is specified on

t = 0 line as a function of x. On the other hand, du/dx is selected if the Cauchy data is specified

on x = 0 line as a function of t.
Thus,

x − at = A, u = B

is a two-parameter family of characteristic curves. For solution curves to pass through the initial

data, F(x) = u(x,0) =−x/3 for x ≤ 0, we set

ξ = A, −ξ
3

= B =⇒ A = ξ , B = −ξ
3

where ξ is a constant (x-intercept, in this case) that identifies a characteristic curve. Thus, the

characteristic and solution curves through this part of the initial curve are

x = at + ξ , u = −ξ
3

Eliminating ξ from the second equation using the first yields

u(x, t) = −1
3
(x−at) =

1
3
(at − x)

We could also obtain the general solution first and then use the Cauchy data to obtain the

particular solution. The general solution is expressed by writing B = f (A) as follows

u(x, t) = f (x−at)

where f (·) is an arbitrary function. For solution curves to pass through the initial data, u(x,0)=
−x/3 for x ≤ 0, we set

−x
3
= f (x) =⇒ f (x−at) = −x−at

3

Therefore the solution of the PDE for x ≤ 0 is

u(x, t) = f (x−at) =
1
3
(at − x)

For solution curves to pass through the initial data, F(x) = u(x,0) = 2x+3 for x > 0, we
set

ξ = A, 2ξ +3 = B =⇒ A = ξ , B = 2ξ +3

Thus, the characteristic and solution curves through this part of the initial curve are

x = at + ξ , u = 2ξ +3

14



Eliminating ξ from the second equation using the first yields

u(x, t) = 2(x−at)+3

Again, we could obtain the general solution first and then use the Cauchy data to obtain

the particular solution. The general solution is expressed by writing B = f (A) as follows

u(x, t) = f (x−at)

where f (·) is an arbitrary function. For solution curves to pass through the initial data, u(x,0)=
2x+3 for x > 0, we set

2x + 3 = f (x) =⇒ f (x−at) = 2(x−at) + 3

Therefore the solution of the PDE for x > 0 is

u(x, t) = f (x−at) = 2(x−at) + 3

The solution surface is composed of two planes, and to determine regions in the (x, t) plane onto
which these planes project, we draw base characteristic curves. They are the lines x = at +ξ
shown in Figure 1.10a. Below the characteristic curve x = at are characteristic curves along

which u = −ξ/3; along characteristic curves above x = at, u = 2ξ +1. The solution surface

in Figure 1.10b, consists of two planes above the regions corresponding to these two sets of

characteristic curves. It is discontinuous along the base characteristic curve x = at through the

point (0,0) where the initial data is discontinuous.

Example 2

Find the solution surface for the linear PDE

∂u
∂x

+ 2
∂u
∂y

= 0

subject to the Cauchy condition that u = sinx on y = 3x+1.

Solution The Cauchy condition in this case is prescribed on an oblique straight line C. The

characteristic equations of the PDE in nonparametric form is given by

dx
dy

=
1
2

du
dy

= 0

These equations are now solved to get the equation of characteristic curves. Integrating gives

x =
y
2
+ A, u = B
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where A and B are arbitrary constants that identifies the characteristics. In fact, A is the x-
intercept (denoted by ξ ) of the characteristics. The y-intercept of the characteristic line η is

then equal to 2ξ . Therefore,
x =

y
2
+ ξ , u = B

For solution curves to pass through the initial data u = sinx on y = 3x+1, we set

x =
3x+1

2
+ ξ , sinx = B

which leads to

x =−2ξ −1, B = sin(−2ξ −1)

on y = 3x+1 line. Thus the characteristic and solution curves through the initial curve are

x =
y
2
+ ξ , u = sin(−2ξ −1)

Eliminating ξ from the second equation using the first yields

u(x,y) = sin(y−2x−1)

Differentiation confirms that u(x,y) satisfies the PDE, and it also satisfies the Cauchy condition

on the line y = 3x+1, so it is the required solution.

We could have also obtained the general solution first and then use the Cauchy data to

obtain the particular solution. The general solution is expressed by writing B = f (A) as follows

u(x,y) = f
(

x− y
2

)

where f (·) is an arbitrary function. For solution curves to pass through the initial data u = sinx
on y = 3x+1, we set

sinx = f

(

−x−1
2

)

=⇒ sin(x−1) = f (−x/2) =⇒ f (x) = sin(−2x−1)

Therefore the solution of the PDE is

u(x, t) = f
(

x− y
2

)

= sin
[

−2
(

x− y
2

)

−1
]

= sin(y−2x−1)

3.1 Inhomogeneous one-dimensional linear advection equation

Next we consider the case of a one-dimensional inhomogeneous linear advection equation, which

has a nonzero right-hand side:

a
∂u
∂x

+
∂u
∂ t

= c (18a)

The initial profile of u is

u(x,0) = F(x) (18b)
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The value of u at a point ξ on the initial profile is given by u(ξ , 0) = F(ξ ). The curve starts

at the initial point (x = ξ ), when t = 0.
The characteristic equations of (18a) in nonparametric form is given by

dx
dt

= a with x(0) = ξ (19a)

du
dt

= c with u(0) = F(ξ ) (19b)

These equations are now solved to get the equation of characteristic curves. The solution of

(19a)using initial condition x(t = 0) = ξ is given by

x = at +ξ (20)

Equation (20) represents a straight line in (x, t) plane. Hence, characteristics from a family

of non-intersecting straight lines with same slopes. Finally, the solution of (19b) using initial

condition u(t = 0) = F(ξ ) is given by

u = ct + F(ξ )

Since ξ = x−at, the solution of the PDE (18a)along the characteristic lines is given by

u(x, t) = F(x−at) + ct (21)

Note that the value of u does not remain constant along the characteristics. In fact, it increases

linearly with time from the initial value of F(ξ ).

Example 3

Find the solution surface for the linear PDE

3
∂u
∂x

+ 4
∂u
∂y

= 10

that contains the lines y = 2x, u = 2x/5. Show that the projection of the initial curve in the

(x,y) plane is nowhere tangent to a base characteristic curve.

Solution The Lagrange–Charpit equations (8) for the PDE are

dx
3

=
dy
4

=
du
10

From this, we have
dx
dy

=
3
4
,

du
dy

=
10
4

Integration of these gives characteristic curves

x =
3
4

y + A, u =
5
2

y + B

17



where A and B are arbitrary constants. From the first of the above equation, we have

x − 3
4

y = A

Specifying B as a function of A gives a solution surface,

u =
5
2

y + f

(

x− 3
4

y

)

where f (·) is an arbitrary function. For solution curves to pass through the initial data, y = 2x,
u = 2x/5, we set

2
5

x = 5x + f

(

x− 3
4

2x

)

=⇒ −23
5

x = f
(

−x
2

)

=⇒ f (x) =
46
5

x

Therefore the solution of the PDE is

u(x, t) =
5
2

y + f

(

x− 3
4

y

)

=
5
2

y +
46
5

(

x− 3
4

y

)

=
46
5

x − 22
5

y

The solution surface is a plane defined for all x and y. Base characteristic curves are straight

lines y = 4x/3+A with slope 4/3. Since the projection of the initial curve in the (x,y) plane is
the line y = 2x with slope 2, it is nowhere tangent to a base characteristic curve.

Example 4

Find the solution of the Cauchy problem governed by the linear PDE

∂u
∂x

+ 2x
∂u
∂y

= 2xu

subject to the conditions (a) u(x,0) = x2 for all x and (b) u(0,y) = y2 for all y.

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂y

= c

where

a = 1, b = 2x, c = 2xu

From the Lagrange–Charpit equations (8), we have

dx
1

=
dy
2x

=
du
2xu

(a) Using the Lagrange–Charpit equation, we have the reciprocal of the slope of characteristic

curves
dx
dy

=
1
2x

18



Separating the variables and integrating to obtain

x2 = y + A

where A is an arbitrary constant. Further, we have

du
dy

= u

which leads to

u = Bey

where B is an arbitrary constant. Thus,

x2 − y = A, ue−y = B

is a two-parameter family of characteristic curves. For solution curves to pass through the initial

data, F(x) = u(x,0) = x2, we set

ξ 2 = A, ξ 2 = B =⇒ A = ξ 2, B = ξ 2

where ξ is a constant (x-intercept, in this case) that identifies a characteristic curve. Thus, the

characteristic and solution curves through this part of the initial curve are

x2 = y + ξ 2, u = ξ 2ey

Eliminating ξ from the second equation using the first yields

u(x,y) = (x2− y)ey

We could have also obtained the general solution first and then use the Cauchy data to

obtain the particular solution. The general solution is expressed by writing B = f (A) as follows

u(x,y) = ey f (x2− y)

where f (·) is an arbitrary function. For solution curves to pass through the initial data, u(x,0)=
x2, we set

x2 = f (x2) =⇒ f (x2) = x2

Therefore the solution of the PDE is

u(x, t) = ey f (x2− y) = ey(x2− y)

(b) Using the Lagrange–Charpit equation, we have the reciprocal of the slope of characteristic

curves
dy
dx

= 2x

Separating the variables and integrating to obtain

y = x2 + A
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where A is an arbitrary constant. Further, we have

du
dx

= 2xu

which leads to

u = Bex2

where B is an arbitrary constant. Thus,

y − x2 = A, ue−x2
= B

is a two-parameter family of characteristic curves. For solution curves to pass through the initial

data, F(y) = u(0,y) = y2, we set

η = A, η2 = B =⇒ A = η, B = η2

where η is a constant (y-intercept, in this case) that identifies a characteristic curve. Thus,

the characteristic and solution curves through this part of the initial curve are

y = x2 + η, u = η2ex2

Eliminating η from the second equation using the first yields

u(x,y) = (y− x2)2ex2

It is a simple matter to verify that this is the required solution.

Example 5

Find the solution of the Cauchy problem governed by the semilinear PDE

x
∂u
∂x

+ y
∂u
∂y

= xe−u

subject to the Cauchy data u = 0 on y = x2.

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂y

= c

where

a = x, b = y, c = xe−u

From the Lagrange–Charpit equations (8), we have

dx
x

=
dy
y

=
du

xe−u
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Using the Lagrange–Charpit equation, we have the reciprocal of the slope of characteristic

curves
dy
dx

=
y
x

Separating the variables and integrating to obtain

y = Ax

where A is an arbitrary constant. Further, we have

du
dx

= e−u

which leads to

eu = x + B

where B is an arbitrary constant. Thus,

y
x
= A, eu − x = B

is a two-parameter family of characteristic curves. The general solution is expressed by writing

B = f (A) as follows

eu − x = f
(y

x

)

where f (·) is an arbitrary function. Applying the Cauchy data u = 0 on y = x2

1− x = f (x) =⇒ f
(y

x

)

= 1− y
x

Therefore the solution of the PDE is

eu − x = 1 − y
x

or

u(x,y) = ln
(

x+1− y
x

)

Example 6

Find the solution surface for the semilinear PDE

y
∂u
∂x

+ x
∂u
∂y

= u

in the first quadrant that takes on values x3 along the positive x-axis and values y3 along the

positive y-axis.

Solution The Cauchy conditions are given by u(x,0) = x3 and u(0,y) = y3. Characteristic

equations (9) for the PDE are
dx
y

=
dy
x

=
du
u

21



The first two of these give

dy
dx

=
x
y

=⇒ y2 = x2 + A

In addition, when we add the equations dx = y
du
u

and dy = x
du
u

to obtain

dx + dy = (x+ y)
du
u

=⇒ dx+dy
x+ y

=
du
u

=⇒ u = B(x+ y)

Characteristic curves in the first quadrant are the hyperbolas y2− x2 = A in Figure 1.11. The

characteristic curve y = x(A = 0) separates the first quadrant into two regions R1 and R2

corresponding to base characteristic curves that have A < 0 and A > 0, respectively. Solution

surfaces to the PDE are obtained by specifying B as a function of A, i.e., B = f (A),

y2 − x2 = A, u = f (A)(x+ y)

To find B = f (A) so that the solution surface contains the initial curve in region R1, we use the

initial condition u(x,0) = x3,

−x2 = A, x3 = f (A)x =⇒ f (A) = −A

In region R1 then, the solution surface is given by

y2 − x2 = A, u = −A(x+ y)

Eliminating A from the second equation using the first yields

u(x,y) = (x2− y2)(x+ y)

To find B = f (A) so that the solution surface contains the initial curve in region R2, we use

the initial condition u(0,y) = y3,

y2 = A, y3 = f (A)y =⇒ f (A) = A

In region R2 then, the solution surface is given by

y2 − x2 = A, u = A(x+ y)

Eliminating A from the second equation using the first yields

u(x,y) = (y2− x2)(x+ y)

The solution is continuous for all x and y, even across the characteristic curve y = x that

separates regions R1 and R2. However, derivatives ∂u/∂x and ∂u/∂y are discontinuous across

the characteristic curve y = x through (0,0) as shown below. In region R1,

∂u
∂x

= (x2− y2) + 2x(x+ y) = (x+ y)(3x− y)
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∂u
∂y

= (x2− y2) − 2y(x+ y) = (x+ y)(x−3y)

whereas in region R2,

∂u
∂x

= (y2− x2) − 2x(x+ y) = (x+ y)(y−3x)

∂u
∂y

= (y2− x2) + 2y(x+ y) = (x+ y)(3y− x)

If points (x,y) on y = x are approached from region R1,

∂u
∂x

= 2x(2x) = 4x2,
∂u
∂y

= 2x(−2x) = −4x2

If points (x,y) on y = x are approached from region R2,

∂u
∂x

= 2x(−2x) = −4x2,
∂u
∂y

= 2x(2x) = 4x2

Thus, although u(x,y) itself is continuous, its derivatives ∂u/∂x and ∂u/∂y are discontinuous

across the characteristic curve y = x through (0,0).

Example 7

Solve the quasilinear PDE

u
∂u
∂x

+
∂u
∂ t

= u

subject to the Cauchy condition u(x,0) = 2x for 1≤ x ≤ 2.

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂ t

= c

where

a = u, b = 1, c = u

From the Lagrange–Charpit equations (8), we have

dx
u

=
dt
1

=
du
u

The last two of these give
du
dt

= u

which leads to

u = Bet

where B is an arbitrary constant. Using the initial condition u(x,0) = 2x for 1≤ x ≤ 2, we get

2ξ = B
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Therefore, the solution may be written as

u = 2ξ et

We also have
dx
dt

= u

Using the result u = 2ξ et in the above equation becomes

dx
dt

= 2ξ et

which leads to

x = 2ξ et + B

where B is an arbitrary constant. Using the initial condition u(x,0) = 2x for 1≤ x ≤ 2 again to

obtain

ξ = B

Therefore, the equation of the characteristic curve is given by

x = ξ
(

2et +1
)

Eliminate ξ from the equation for u using the above equation to obtain

u(x, t) =
2xet

(2et +1)
for 1≤ x ≤ 2

It is a simple matter to verify that this is the required solution.

Example 8

Find the solution of the Cauchy problem governed by the quasilinear PDE

(u+ y)
∂u
∂x

+ y
∂u
∂y

= x− y

passing through the initial curve x = y−1, u = y2+1.

Solution The given PDE is of the form

a
∂u
∂x

+ b
∂u
∂y

= c

where

a = u+ y, y = 1, c = x− y

From the Lagrange–Charpit equations (8), we have

dx
u+ y

=
dy
y

=
du

x− y
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The first two of these give
dx
dy

=
u+ y

y
=

u
y
+ 1

In addition, when we subtract the equation dy =
y

x− y
du from dx =

u+ y
x− y

du to obtain

dx − dy =
u

x− y
du =⇒ (x− y)d(x− y) = udu =⇒ u2 = (x− y)2+B

where B is an arbitrary constant. Using the initial condition x = y−1, u = y2+1, we get

(η2+1)2 = 1+B =⇒ η = C

where C2 =
√

B+1−1 is an arbitrary constant. Therefore, we have

u2 = (x− y)2 + (η2+1)2 − 1

Plugging the value of u in the expression for dx/dy yields

dx
dy

=

√

(x− y)2+B
y

+ 1

This is a nonlinear nonstandard differential equation whose solution can be obtained only nu-

merically.
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