

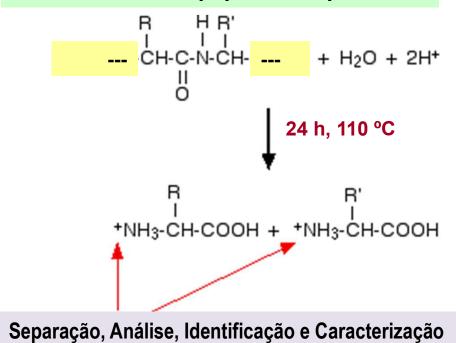
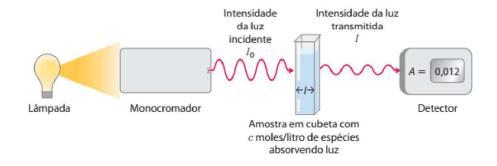
## Análise de aminoácidos puros

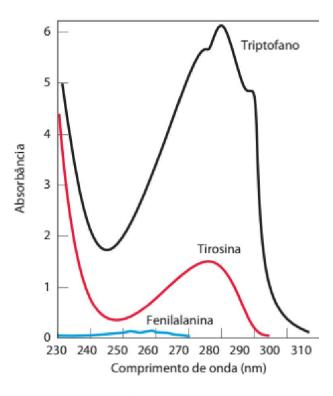
Apenas qualitativas, não são quantitativas.

Normalmente a amostra não é recuperada

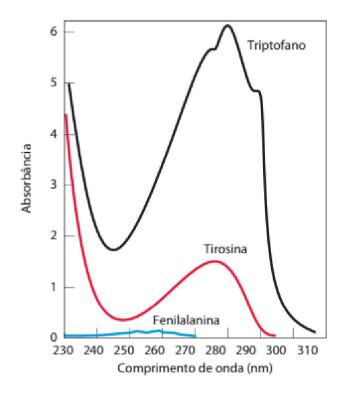
- Análise elementar (C, N, H, O, S).
- Espectroscopia de infravermelho (IFTR).
- Espectroscopia de ressonância magnética nuclear (H¹-RMN).
- Titulação.
- Medida de atividade ótica.

#### Conteúdo de aminoácidos Hidrólise total de peptídeos e proteínas



TABELA 3-3 Composição de aminoácidos de duas proteínas

|            | Citocromo cl                       | oovino                   | Quimotripsinogênio bovino          |                          |  |
|------------|------------------------------------|--------------------------|------------------------------------|--------------------------|--|
| Aminoácido | Número de resíduos<br>por molécula | Porcentagem<br>do total* | Número de residuos<br>por molécula | Porcentagem<br>do total* |  |
| Ala        | 6                                  | 6                        | 22                                 | 9                        |  |
| Arg        | 2                                  | 2                        | 4                                  | 1,6                      |  |
| Asn        | 5                                  | 5                        | 14                                 | 5,7                      |  |
| Asp        | 3                                  | 3                        | 9                                  | 3,7                      |  |
| Cys        | 2                                  | 2                        | 10                                 | 4                        |  |
| Gln        | 3                                  | 3                        | 10                                 | 4                        |  |
| Glu        | 9                                  | 9                        | 5                                  | 2                        |  |
| Gly        | 14                                 | 13                       | 23                                 | 9,4                      |  |
| His        | 3                                  | 3                        | 2                                  | 0,8                      |  |
| lle        | 6                                  | 6                        | 10                                 | 4                        |  |
| Leu        | 6                                  | 6                        | 19                                 | 7,8                      |  |
| Lys        | 18                                 | 17                       | 14                                 | 5,7                      |  |
| Met        | 2                                  | 2                        | 2                                  | 0,8                      |  |
| Phe        | (4)                                | 4                        | 6                                  | 2,4                      |  |
| Pro        | (4)                                | 4                        | 9                                  | 3,7                      |  |
| Ser        | 1                                  | 1                        | 28                                 | 11,4                     |  |
| Thr        | 8                                  | 8                        | 23                                 | 9,4                      |  |
| Trp        | 1                                  | 1                        | 8                                  | 3,3                      |  |
| Tyr        | 4                                  | 4                        | 4                                  | 1,6                      |  |
| Val        | 3                                  | 3                        | 23                                 | 9,4                      |  |
| Total      | 104                                | 102                      | 245                                | 99,7                     |  |


Nota: Em algumas análises usuais, como a hidrólise ácida, Asp e Asn não são distinguidos um do outro, sendo designados em conjunto como Asx (ou B). De forma semelhante, quando Glu e Gln não podem ser distinguidos, eles são designados juntos como Glx (ou Z). Adicionalmente, Trp é destruido por hidrólise ácida. Métodos adicionais devem ser utilizados para se obter uma avaliação precisa do conteúdo completo de aminoácidos.

### Absorbância



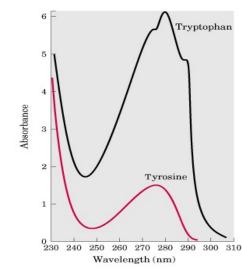


• Para proteínas e peptídeos uma limitação é a baixa ocorrência de triptofano.



| Aminoácido            |                        |       |                         | Valores de pK_          |                                      |       |                                      |                                 |
|-----------------------|------------------------|-------|-------------------------|-------------------------|--------------------------------------|-------|--------------------------------------|---------------------------------|
|                       | Abreviação/<br>simbolo | м,*   | p <i>K</i> ₁<br>(—C00H) | p <i>K</i> ₂<br>(—NH₃⁺) | p <i>K</i> <sub>k</sub><br>(grupo R) | pl    | Índice de<br>hidropatia <sup>†</sup> | Ocorrência em<br>proteínas (%)* |
| Grupos R alifá        | iticos, apolares       |       |                         |                         |                                      |       |                                      |                                 |
| Glicina               | Gly G                  | 75    | 2,34                    | 9,60                    |                                      | 5,97  | -0,4                                 | 7,2                             |
| Alanina               | Ala A                  | 89    | 2,34                    | 9,69                    |                                      | 6,01  | 1,8                                  | 7,8                             |
| Prolina               | Pro P                  | 115   | 1,99                    | 10,96                   |                                      | 6,48  | -1,6                                 | 5,2                             |
| Valina                | Val V                  | 117   | 2,32                    | 9,62                    |                                      | 5,97  | 4,2                                  | 6,6                             |
| Leucina               | Leu L                  | 131   | 2,36                    | 9,60                    |                                      | 5,98  | 3,8                                  | 9,1                             |
| Isoleucina            | Ile I                  | 131   | 2,36                    | 9,68                    |                                      | 6,02  | 4,5                                  | 5,3                             |
| Metionina             | Met M                  | 149   | 2,28                    | 9,21                    |                                      | 5,74  | 1,9                                  | 2,3                             |
| Grupos R aron         | náticos                |       |                         |                         |                                      |       |                                      |                                 |
| Fenilalanina          | Phe F                  | 165   | 1,83                    | 9,13                    |                                      | 5,48  | 2,8                                  | 3,9                             |
| Tirosina              | Tyr Y                  | 181   | 2,20                    | 9,11                    | 10,07                                | 5,66  | -1,3                                 | 3,2                             |
| Triptofano            | Trp W                  | 204   | 2,38                    | 9,39                    |                                      | 5,89  | -0,9                                 | 1,4                             |
| Grupos R pola         | res, não carrega       | ıdos  |                         |                         |                                      |       |                                      | 700 W.I                         |
| Serina                | Ser S                  | 105   | 2,21                    | 9,15                    |                                      | 5,68  | -0,8                                 | 6,8                             |
| Treonina              | Thr T                  | 119   | 2,11                    | 9,62                    |                                      | 5,87  | -0,7                                 | 5,9                             |
| Cisteína <sup>¶</sup> | Cys C                  | 121   | 1,96                    | 10,28                   | 8,18                                 | 5,07  | 2,5                                  | 1,9                             |
| Asparagina            | Asn N                  | 132   | 2,02                    | 8,80                    |                                      | 5,41  | -3,5                                 | 4,3                             |
| Glutamina             | Gln Q                  | 146   | 2,17                    | 9,13                    |                                      | 5,65  | -3,5                                 | 4,2                             |
| Grupos R carr         | egados positiva        | mente |                         |                         |                                      |       |                                      |                                 |
| Lisina                | Lys K                  | 146   | 2,18                    | 8,95                    | 10,53                                | 9,74  | -3,9                                 | 5,9                             |
| Histidina             | His H                  | 155   | 1,82                    | 9,17                    | 6,00                                 | 7,59  | -3,2                                 | 2,3                             |
| Arginina              | Arg R                  | 174   | 2,17                    | 9,04                    | 12,48                                | 10,76 | -4,5                                 | 5,1                             |
| Grupos R carr         | egados negativa        | mente |                         |                         |                                      |       |                                      |                                 |
| Aspartato             | Asp D                  | 133   | 1,88                    | 9,60                    | 3,65                                 | 2,77  | -3,5                                 | 5,3                             |
| Glutamato             | Glu E                  | 147   | 2,19                    | 9,67                    | 4,25                                 | 3,22  | -3,5                                 | 6,3                             |

• Para proteínas e peptídeos uma limitação é a baixa ocorrência de triptofano.


#### Proteínas e espectroscopia UV-Vis

#### Métodos espectrofotométricos diretos são restritos:

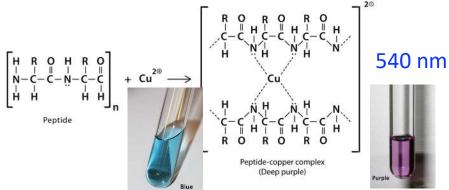
- a proteínas com grupos prostéticos/coenzimas que absorvem no uv-vis.
  - à absorção na região de ~230 nm (ligação peptídica) (grande interferência de constituintes celulares).
  - à absorção na região de ~280 nm (resíduos aromáticos)

proporções de Tyr e Trp variam nas diferentes proteínas. (A280= 1 (cubeta 1 cm) ~ 1mg/ml); interferência

de contaminantes, principalmente RNA e DNA (A260 nm).



#### Métodos espectrofotométricos indiretos


- baseados na absorção de luz visível são gerais e empregados para dosar proteínas em lisados de células e tecidos.

#### Métodos indiretos para dosar proteínas

- Baseados na absorção de luz visível por produtos resultantes da interação de proteínas com compostos químicos.

#### Método do biureto

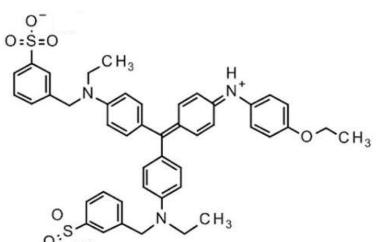
- Baseia-se na reação em meio fortemente alcalino entre íons de Cu(II) e os grupos amídicos da ligação peptídica (540 nm).



Baixa sensibilidade: detecta []s ≥ 1 mg/ml

#### Método de Folin-Ciocalteu

- Baseia-se na redução de íons de Cu<sup>+2</sup> pelos amino ácidos aromáticos e reação dos íons de Cu(I) resultantes com uma mistura de fosfotungstato e fosfomolíbdato formando complexos que absorvem na região de 660-700 nm.

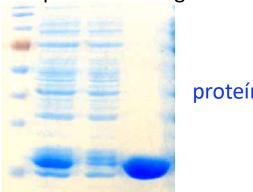

Boa sensibilidade: detecta []s ≥ 10 μg/ml

Desvantagem: pouca especificidade detecta poder redutor, não especificamente proteínas; no caso delas a intensidade depende do conteúdo de resíduos aromáticos; tióis são interferentes.

#### Métodos indiretos para dosar proteínas

#### Método de Bradford (Commassie brilliant blue G)

-Corante forma complexos com proteínas principalmente por meio de interações iônicas com amino ácidos básicos (Lys e Arg) que absorvem luz a de 595 nm (enquanto o reagente absorve a 469 nm).




469 nm 595 nm

Solução: proteina ≥ 5 μg/ml

Augusto 21

Revelar proteínas em géis

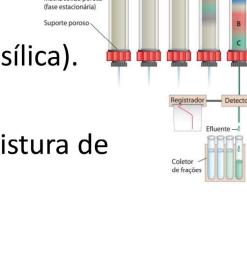


proteína ≥ 5 ng

Desvantagem: intensidade depende do conteúdo de resíduos de Lys e Arg. Usualmente, a proteína empregada para obter a curva padrão é a albumina de soro bovino.

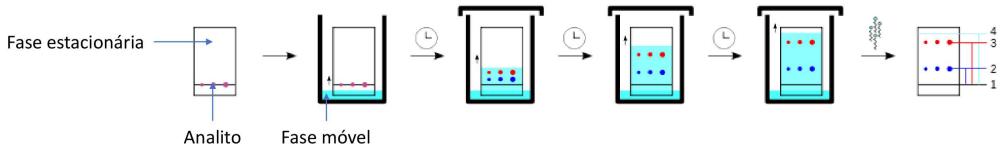
## Análise de misturas de aminoácidos (e proteínas)

Quantitativas e qualitativas.


- Absorbância.
- Eletroforese (papel ou gel poroso).
- Focalização isoelétrica.
- Cromatografia em papel.
- Cromatografia em coluna.
- Espectrometria de massa.

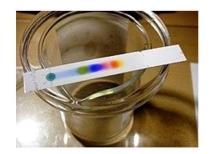
## Cromatografia

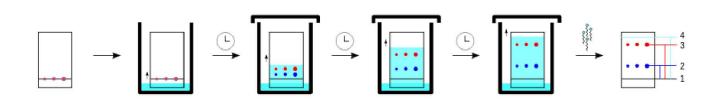
• Analitos: moléculas a serem separadas.


• Fase estacionária: fixa, geralmente porosa e sólida (papel ou sílica).

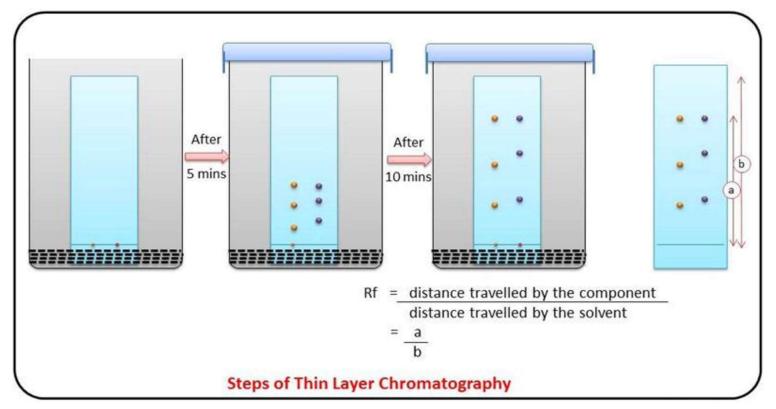
• Fase móvel: líquida ou gasosa, <u>carrega</u> os componentes da mistura de analitos a serem separados.




Fase móvel

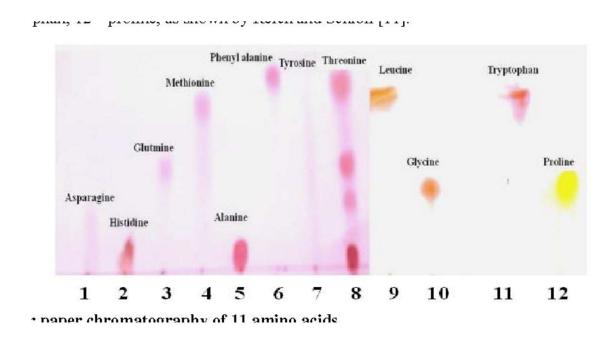

Analito




## Cromatografia em camada delgada (CCD)

- Em inglês TLC (Thin Layer Chromatography).
- Fase estacionária: folha de vidro ou plástico revestida por sílica gel, alumina ou celulose.
- Fase móvel: polar, apolar, ou misturas.
- Ambas as fases influenciam nas propriedades de separação.

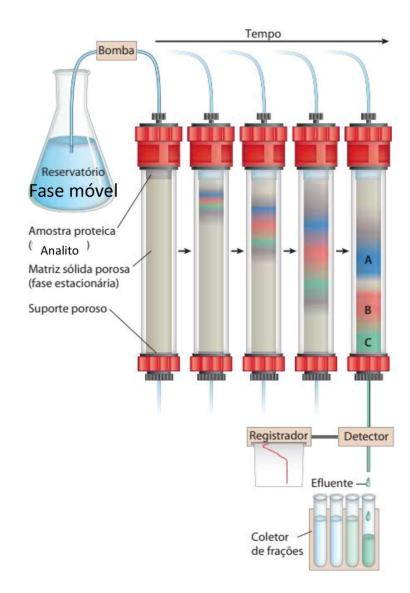




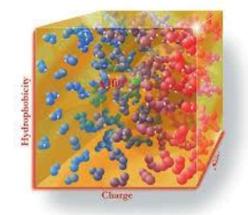

## Cromatografia em camada delgada (TLC)



• Os analitos migrarão em diferentes taxas de acordo com a sua interação com a fase estacionária e sua variada solubilidade na fase móvel.

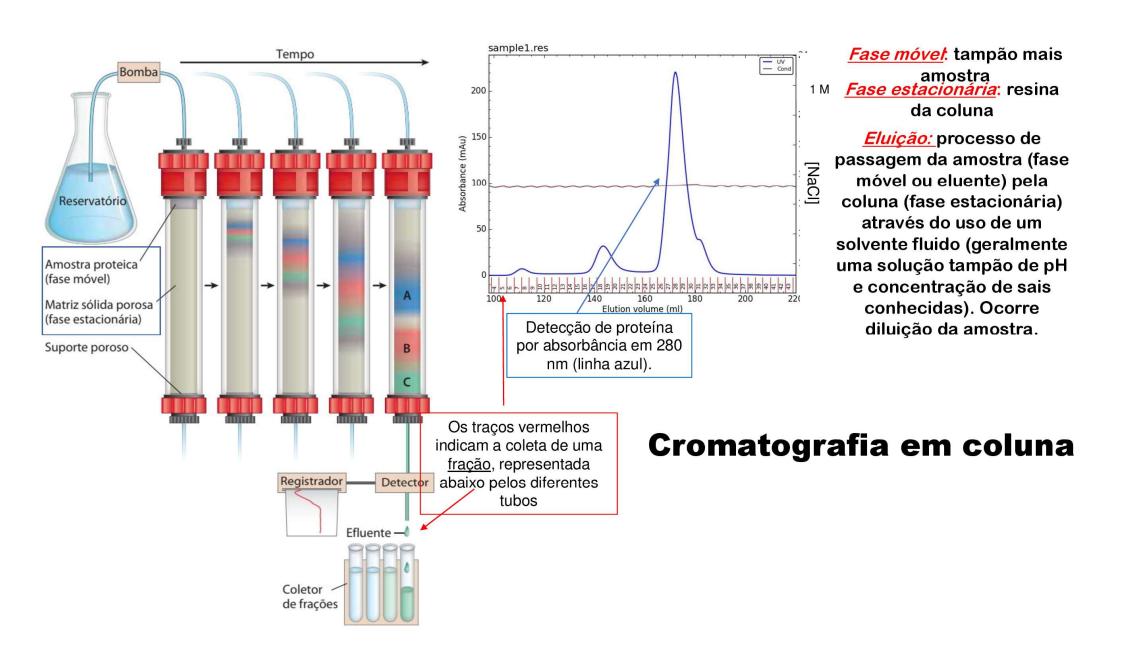

## Cromatografia em camada delgada (TLC)

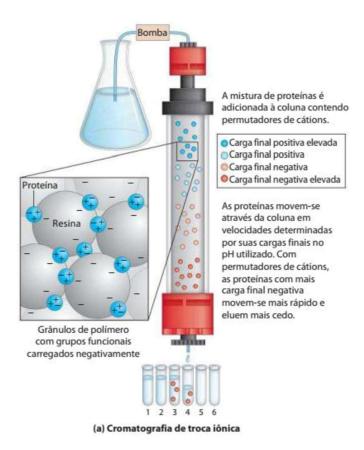



• Devem ser usados padrões, ou modificação química que gere cor específica nos aminoácidos (como acima).

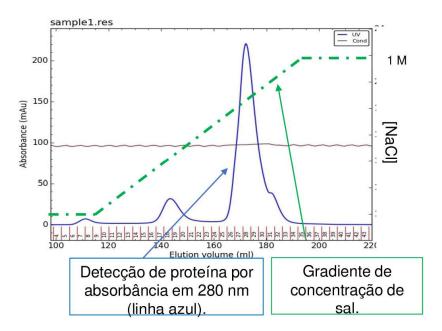
## Cromatografia

- Analitos: moléculas a serem separadas.
- Fase estacionária: <u>fixa</u>, geralmente porosa e sólida (papel ou sílica).
- **Fase móvel**: líquida ou gasosa, <u>carrega</u> os componentes da mistura de analitos a serem separados.



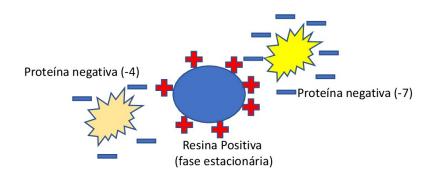


## Cromatografia em coluna




- A amostra é recuperada e mantém sua atividade biológica.
- A fase estacionária (resina de sílica) possui diferentes grupos químicos para explorar as propriedades das proteínas.
- A fase móvel (tampão) pode favorecer ou desfavorecer a inter das proteínas com a fase estacionária.








#### Cromatografia de Troca Iônica



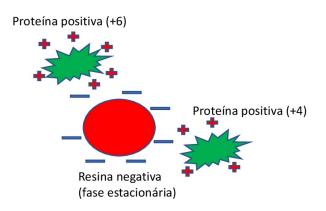
#### Vídeo

## Cromatografia de Troca Iônica



Resina <u>positiva</u>: liga moléculas <u>negativas</u>, portanto <u>troca ânions</u>

#### Cromatografia de troca aniônica


O balanço de cargas da molécula influi no grau de interação.

Quanto maior, mais interação.

Eluição em diferentes frações.

Separação das moléculas por carga.

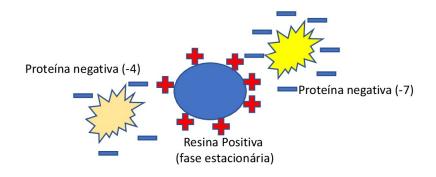
Proteínas com carga líquida <u>positiva</u> não interagem com a resina negativa.



Resina <u>negativa</u>: liga moléculas <u>positivas</u>, portanto <u>troca cátions</u>

#### Cromatografia de troca catiônica

O balanço de cargas da molécula influi no grau de interação.


Quanto maior, mais interação.

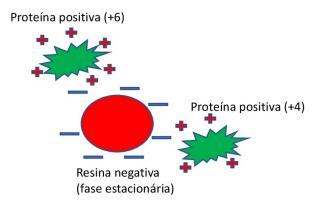
Eluição em diferentes frações.

Separação das moléculas por carga.

Proteínas com carga líquida <u>negativa</u> não interagem com a resina negativa.

## Cromatografia de Troca Iônica




Resina positiva: liga moléculas negativas, portanto troca ânions

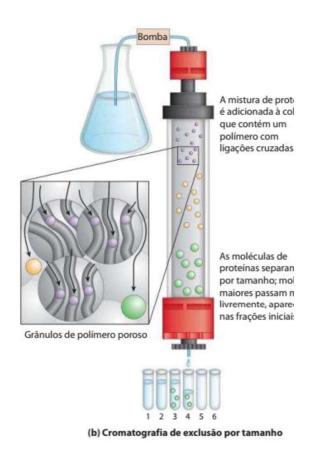
#### Cromatografia de troca aniônica

O balanço de cargas da molécula influi no grau de interação.

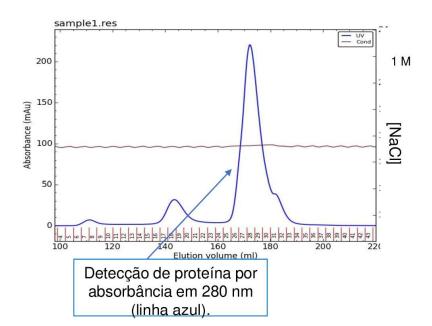
A passagem de sal em gradiente de concentração crescente faz com que haja competição pelas cargas da resina, <u>eluindo</u> (desligando) as proteínas de acordo com suas diferentes cargas líquidas, separando-as.

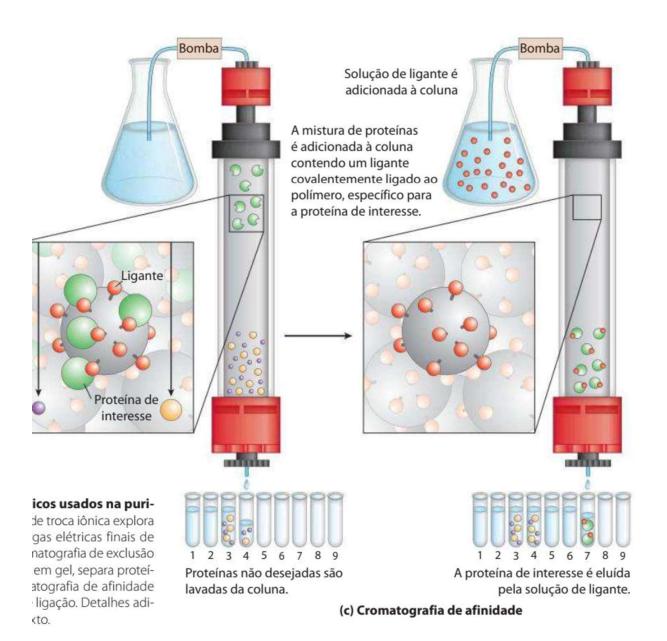
Alternativamente, um gradiente de pH altera o balanço de cargas das proteínas, fazendo com que elas se <u>eluam</u> gradativamente de acordo com seus PIs.




Resina <u>negativa</u>: liga moléculas <u>positivas</u>, portanto <u>troca cátions</u>

#### Cromatografia de troca catiônica


O balanço de cargas da molécula influi no grau de interação.


A mesma lógica é usada nesta situação.

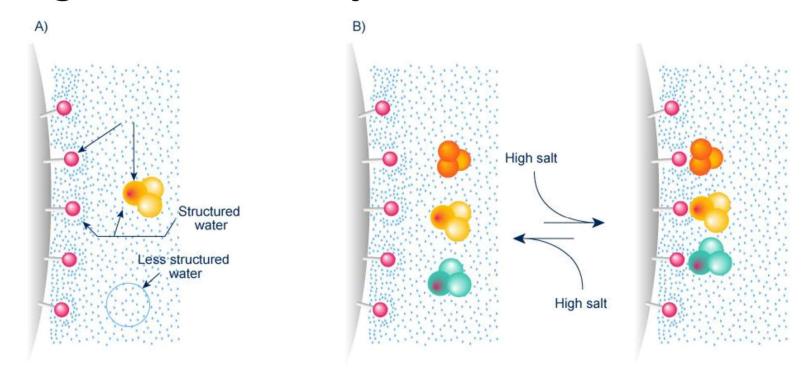




## Cromatografia de filtração em gel (ou de exclusão por tamanho)






## Cromatografia de Afinidade

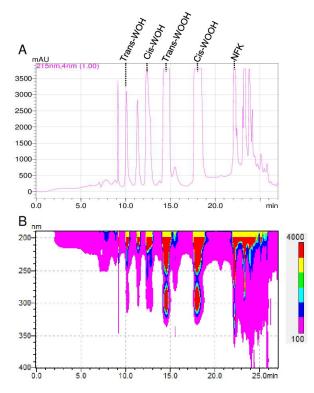
Ao invés de carga, a resina (fase estacionária) possui ligantes que interagem especificamente com a proteína-alvo.

Anticorpo

Parceiros de ligação que ocorrem nas células

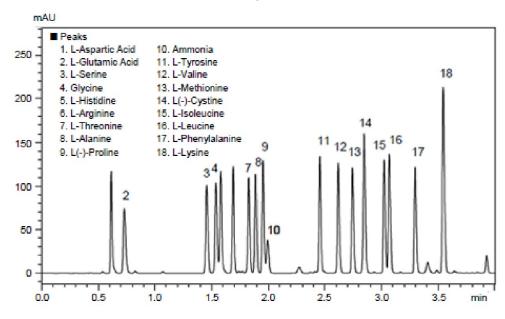
## Cromatografia de interação hidrofóbica




Grupos apolares ligados à resina (butil, fenil).

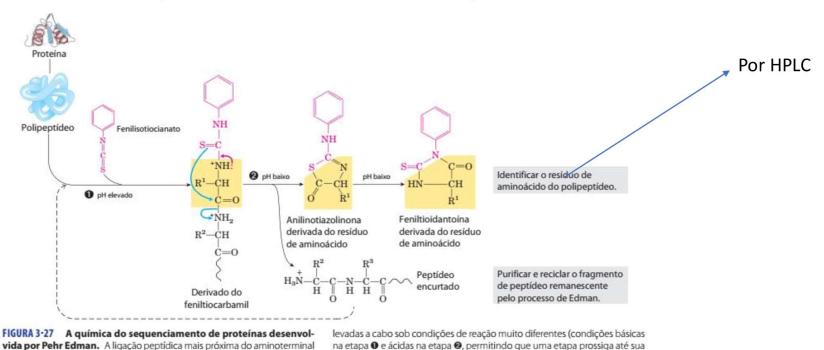
Alta concentração de sal inicial favorece a interação com a resina.

Eluição é feita com diminuição na concentração de sal.


# Cromatografia líquida de alta performance (HPLC)

- Até o momento estávamos citando sistemas do tipo FPLC (Fast Performance Liquid Chromatography).
- FPLC (baixa pressão no sistema): menor capacidade de separação.
- Mas geralmente mantém a estrutura nativa das proteínas.
- High Performance Liquid Chromatography: alta pressão; resinas, colunas e sistema mais robustos; maior capacidade de separação; menor quantidade de amostra



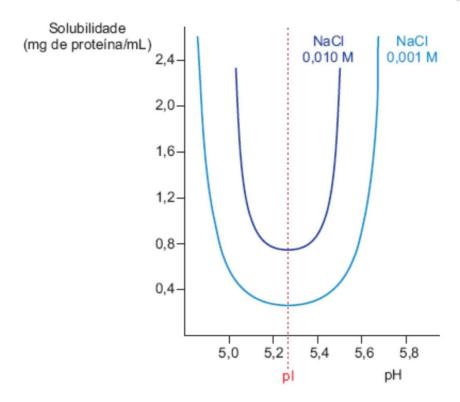

**Figure 1:** Purification of the tryptophan oxidation products by singlet oxygen. A) HPLC chromatogram ( $\lambda = 215$  nm) showing the collected fractions and its composition. B) Uv spectrum intensity ranging from  $\lambda = 200 - 400$  nm. AU, arbitrary units; FMK, N-formylkynurenine; WOH, tryptophan tricyclic alcohool; WOOH, tryptophan tricyclic hydroperoxide. Separation was peformed using a C18 column.

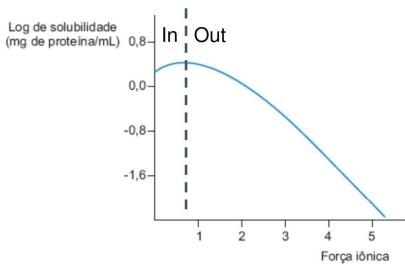
## Análise de aminoácidos por HPLC



- **Derivatização** dos aminoácidos: reação química que muda a sua estrutura para aumentar sua detectabilidade e/ou performance cromatográfica.
- Por exemplo, substituição de grupos polares das cadeias laterais por grupos apolares.
- A partir de padrões com conhecidos tempos de retenção (RT) é possível saber o conteúdo da sua amostra.
- A área do cromatograma é usada para quantificação com alta precisão (para qualquer analito quantificado por HPLC).
- Principal técnica usada pela indústria farmacêutica.

# Degradação de Edman – sequenciamento de proteínas (amino-terminal)

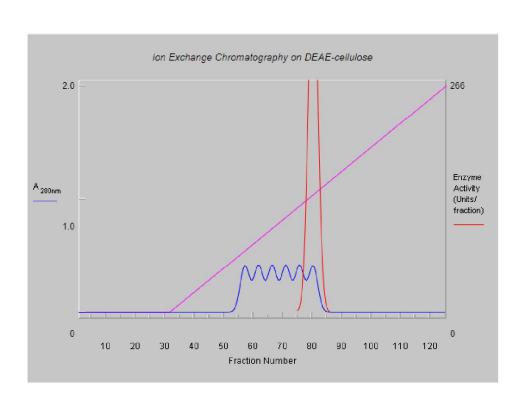




da proteína ou polipeptídeo é clivada em duas etapas. As duas etapas são conclusão antes que a segunda se inicie.

Pou co usada atualmente o segunda conclusão antes que a segunda se inicie.

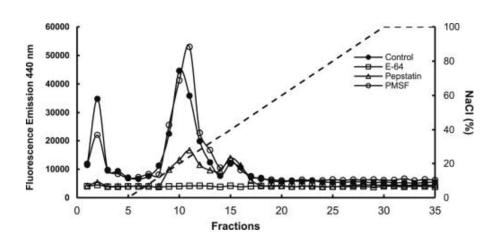
Pouco usada atualmente, o sequenciamento de proteínas em larga escala é feito majoritariamente por espectrometria de massas.

## Sal e a solubilidade de proteínas






Efeito de salting-in e salting-out


 Usar excesso de sal em um tampão pode fazer a sua proteína (ou "contaminantes") saírem de solução, sendo comumente um passo inicial de purificação. Mantém a atividade biológica (testar empiricamente).

## Purificação de proteínas na prática



#### http://www.agbooth.com/pp ajax/

Acompanhando a purificação de proteínas por atividade enzimática.



## Calculando o rendimento do processo de purificação

TABELA 3-5

Tabela de purificação para uma enzima hipotética

| Procedimento ou etapa                                | Volume da fração<br>(mL) | Proteína total<br>(mg) | Atividade<br>(unidades) | Atividade específica<br>(unidades/mg) |  |
|------------------------------------------------------|--------------------------|------------------------|-------------------------|---------------------------------------|--|
| Extrato celular bruto                                | 1.400                    | 10.000                 | 100.000                 | 10                                    |  |
| <ol><li>Precipitação com sulfato de amônio</li></ol> | 280                      | 3.000                  | 96.000                  | 32                                    |  |
| 3. Cromatografia de troca iônica                     | 90                       | 400                    | 80.000                  | 200                                   |  |
| 4. Cromatografia de exclusão por tamanho             | 80                       | 100                    | 60.000                  | 600                                   |  |
| 5. Cromatografia de afinidade                        | 6                        | 3                      | 45.000                  | 15.000                                |  |

Nota: Todos os dados representam o estado da amostra após a realização do procedimento designado. A atividade e a atividade específica são definidas na página 95.

#### http://www.agbooth.com/pp ajax/

Acompanhando a purificação de proteínas por atividade enzimática.

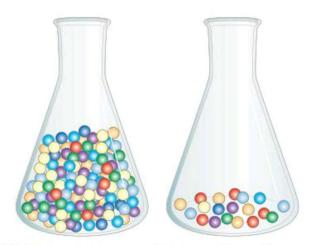



FIGURA 3-22 Atividade versus atividade específica. A diferença entre esses termos pode ser ilustrada considerando dois béqueres contendo esferas. Os béqueres contêm o mesmo número de esferas vermelhas, mas números diferentes de esferas de outras cores. Se as esferas representam proteínas, ambos os béqueres contêm a mesma atividade da proteína representada pelas esferas vermelhas. O segundo béquer, no entanto, apresenta a atividade específica maior porque as esferas vermelhas representam uma fração mais alta do total.