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CHAPTER 

Biological Macromolecules 

1.1 GENERAL PRINCIPLES 

In physical biochemistry, we are interested in studying the physical properties of bi­
ological macromolecules, including proteins, RNA and DNA, and other biological 
polymers (or biopolymers). These physical properties provide a description of their 
structures at various levels, from the atomic level to large multisubunit assemblies. 
To measure these properties, the physical biochemist will study the interaction of 
molecules with different kinds of radiation, and their behavior in electric, magnetic, 
or centrifugal fields. This text emphasizes the basic principles that underlie these 
methodologies. 

In this introductory chapter, we briefly review some of the basic principles of 
structure and structural complexity found in biological macromolecules. Most read­
ers will have already learned about the structure of biological macromolecules in 
great detail from a course in general biochemistry. We take a different point of view; 
the discussion here focuses on familiarizing students with the quantitative aspects of 
structure. In addition, this discussion includes the symmetry found at nearly all lev­
els of macromolecular structure. This approach accomplishes two specific goals: to 
illustrate that the structures of macromolecules are very well defined and, in many 
ways, are highly regular (and therefore can be generated mathematically); and to in­
troduce the concepts of symmetry that help to simplify the study and determination 
of molecular structure, particularly by diffraction methods (Chapters 6 and 7). This 
discussion focuses primarily on the structures of proteins and nucleic acids, but the 
general principles presented apply to other macromolecules as well, including poly­
saccharides and membrane systems. 

1 
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1.1.1 Macromolecu les 

As a basic review of molecular structure, perhaps the place to start is to ask the 
question, What is a molecule? Here, the definition of a biological molecule differs 
slightly from the definition learned in chemistry. In organic chemistry, a molecule 
consists of two or more atoms that are covalently bonded in speoific proportions ac­
cording to weight or stoichiometry, and with a unique geometry. Both stoichiometry 
(the chemical formula) and geometry (the chemical structure) are important. 
Dichloroethylene, for example, has the specific chemical formula C 2H 2C12• This, 
however, does not describe a unique molecule, but rather three different molecules. 
The geometry for one such molecule is defined by the arrangements of the chlorine 
atoms, as in cis-1,2-dichloroethylene (Figure 1.1). Now, the identity of the molecule 
is unambiguous. 

In biochemistry, a single molecule is considered to be a component that has 
well-defined stoichiometry and geometry, and is not readily dissociated. Thus, to a 
biochemist, a molecule may not necessarily have all the parts covalently bonded, but 
may be an assembly of noncovalently associated polymers. An obvious example of 
this is hemoglobin. This is considered to be a single molecule, but it consists of four 
distinct polypeptides, each with its own heme group for oxygen binding. One of 
these polypeptide-heme complexes is a subunit of the molecule. The heme groups 
are non covalently attached to the polypeptide of the subunit, and the subunits are 
noncovalently interacting with each other. The stoichiometry of the molecule can 
also be described by a chemical formula, but is more conveniently expressed as the 

Molecule Stoichiometry Geometry (Structure) 

CI Cl 

cis-l,2-Dichloroethylene '" / C=C 

/ '" H H 

H"moglobin 

Figure 1.1 Examples of molecules in chemistry and macromolecules in biochemistry. The simple com­
pound cis-l,2-dichloroethylene is uniquely defined by the stoichiometry of its atomic components and 
the geometry of the atoms. Similarly, the structure of a biological macromolecule such as hemoglobin is 
defined by the proportions of the two subunits (the a and J3-polypeptide chains) and the geometry by the 
relative positions of the subunits in the functional complex. 
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composition of monomer units. The stoichiometry of a protein therefore is its amino 
acid composition. The geometry of a biological molecule is again the unique linear 
and three-dimensional (3D) arrangements of these components. This is the structure 
of a biochemical molecule. 

A macromolecule is literally a large molecule. A biological macromolecule or 
biopolymer is typically defined as a large and complex molecule with biological 
function. We will take a chemical perspective when dealing with macromolecules, so, 
for this discussion, size will be judged in terms of the number of components (atoms, 
functional groups, monomers, and so on) incorporated into the macromolecule. 
Complexity generally refers to the organization of the three-dimensional structure 
of the molecule. We will treat size and structural complexity separately. 

What is considered large? It is very easy to distinguish between molecules at 
the two extremes of size. Small molecules are the diatomic to multiple-atom mole­
cules we encounter in organic chemistry. At the upper end of large molecules is the 
DNA of a human chromosome, which contains tens of billions of atoms in a single 
molecule. At what point do we decide to call something a macromolecule? Since 
these are biopolymers, their size can be defined by the terms used in polymer chem­
istry, that is, according to the number of sugar or amino acid or nucleic acid residues 
that polymerize to form a single molecule. Molecules composed of up to 25 residues 
are called oligomers, while polymers typically contain more than 25 residues. This is 
an arbitrary distinction, since some fully functional molecules, such as the DNA­
condensing J-protein of the virus G4, contain 24 residues. 

The structure of biological macromolecules is hierarchical, with distinct levels 
of structure (Figure 1.2). These represent increasing levels of complexity, and are de­
fined below. 

Monomers are the simple building blocks that, when polymerized, yield a 
macromolecule. These include sugars, amino acids, and nucleic acid residues of 
the polymers described above. 
Primary structure (abbreviated as 1°) is the linear arrangement (or sequence) 
of residues in the covalently linked polymer. 
Secondary structure (abbreviated as 2°) is the local regular structure of a macro­
molecule or specific regions of the molecule. These are the helical structures. 

Tertiary structure (abbreviated as 3°) describes the global 3D fold or topology 
of the molecule, relating the positions of each atom and residue in 3D space. 
For macromolecules with a single subunit, the functional tertiary structure is 
its native structure. 

Quaternary structure (abbreviated as 4°) is the spatial arrangement of mUltiple 
distinct polymers (or subunits) that form a functional complex. 

Not all levels of structure are required or represented in all biological macro­
molecules. Quaternary structure would obviously not be relevent to a protein such 
as myoglobin that consists of a single polypeptide. In general, however, all biological 
macromolecules require a level of structure up to and including 2°, and typically 3° 
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Figure 1.2 Hierarchical organization of macromolecular structure. The structures of macromolecules are orga­
nized starting with the simple monomers to form the sequence in the primary structure, which folds into the local 
n.;gular helices of secondary structure, the global tertiary structure, and the association of folded chains to form 
complexes in the quaternary structure. 

for biological function. The relationship between these levels of structure is often 
presented in sequential order as P, followed by 2°, which is followed by 3°, and fi­
nally 4° (if present). This sequential relationship is a convenient means of presenting 
the increasing complexity of macromolecular structure; however, it is not clear that 
this is how a molecule folds into its functional form. The most recent models for pro­
tein folding suggest that a less compact form of 3° (often called a molten globule 
state, see Section 4.4.3) must occur first in order to form the environment to stabilize 
helices (2°). One of the goals in physical biochemistry is to understand the rules that 
relate these levels of structural complexity. This is often presented as the problem of 
predicting 3D structure (2° to 3°) from the sequence (1°) of the building blocks. The 
problem of predicting the complete 3D structure of a protein from its polypeptide se­
quence is the protein-folding problem. We can define a similar folding problem for all 
classes of macromolecules. 

We will see how this hierarchical organization of structure applies to the structures 
of proteins and nucleic acids, but first we need to discuss some general principles that 
will be used throughout this chapter for describing molecular structure. It should be em­
phasized that we cannot directly see the structure of a molecule, but can only measure 
its properties. Thus, a picture of a molecule, such as that in Figure 1.2, is really only a 
model described by the types of atoms and the positions of the atoms in 3D space. This 
model is correct only when it conforms to the properties measured. Thus, methods for 
determining the structure of a molecule in physical biochemistry measure its interac­
tions with light, or with a magnetic or electric field, or against a gradient. In all cases, we 
must remember that these are models of the structure, and the figures of molecules 
presented in this book are nothing more than representations of atoms in 3D space. It 
is just as accurate (and often more useful) to represent the structure as a list of these 
atoms and their atomic coordinates (x, y, z) in a standard Cartesian axis system. 
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1.1.2 Configuration and Conformation 

The arrangement of atoms or groups of atoms in a molecule is described by the 
terms configuration and conformation. These terms are not identical. The configura­
tion of a molecule defines the position of groups around one or more nonrotating 
bonds or around chiral centers, defined as an atom having no plane or center of sym­
metry. For example, the configuration of cis-l,2-dichloroethylene has the two chlo­
rine atoms on the same side of the nonrotating double bond (Figure 1.3). To change 
the configuration of a molecule, chemical bonds must be broken and remade. A con­
version from the cis- to trans-configuration of 1,2-dichloroethylene requires that we 
first break the carbon-carbon double bond, rotate the resulting single bond, then re­
make the double bond. In biological macromolecules, configuration is most impor­
tant in describing the stereochemistry of a chiral molecule. A simple chiral molecule 

Configuration 

Cl Cl Cl H '" / C=C ~ 

/ '" '" / ~ c=c 
/ '" H H H Cl 

cis-l ,2-Dichloroethylene Sp3 intermediate trans-l ,2-Dichloroethylene 
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[ 
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~. H<;: 

/.' . 
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~ . I:\ .. H ~--H~~ ___ OH . C _ 

/0-'" : 
HO CH20H CH20H 

L-Glyceraldehyde Planar achiral intermediate D-Glyceraldehyde 
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~/, X' 'R 
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Eclipsed gauche 

Cl R,o .,R 

Kf
''':~'' 

C :­
Cl 

H H 
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Figure 1.3 Configuration and conformation both describe the geometry of a molecule. The configuration 
of a molecule can be changed only by breaking and remaking chemical bonds, as in the conversion of a cis­
double bond to one that is in the trans-configuration, or in converting from the L- to the D-stereoisomer 
of a chiral molecule. Conformations can be changed by simple rotations about a single bond. 
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has four unique chemical groups arranged around a tetrahedral atom (usually a car­
bon atom with Sp3 hybridization). To change the configuration or chirality of this 
molecule, we must break one bond to form a planar achiral intermediate, and re­
form the bond on the opposite side of the plane. The resulting molecule is the 
stereoisomer or enantiomer of the starting structure. The stereoisomers of a mole­
cule, even though they are identical in chemical composition, are completely differ­
ent molecules with distinct properties, particularly their biological properties. 
Sugars that have more than one chiral center have more complex stereochemistry. 

The conformation of a molecule, on the other hand, describes the spatial 
arrangement of groups about one or more freely rotating bonds. For example, 1,2-
dichloroethane, the saturated version of dichloroethylene, has no restrictions to ro­
tation about the chemical bonds to prevent the chlorine atoms from sitting on the 
same or opposite sides of the central carbon-carbon bond. These positions define 
the gauche and anti structural isomers, respectively. In addition, the conformation 
can be eclipsed or staggered, depending on whether the groups are aligned or mis­
aligned relative to each other on either side of the carbon-carbon bond. The confor­
mation of a molecule thus describes the structural isomers generated by rotations 
about single bonds (Figure 1.3). A molecule does not require any changes in chemi­
cal bonding to adopt a new conformation, but may acquire a new set of properties 
that are specific for that conformation. 

The stereochemistry of monomers. The monomer building blocks of bio­
logical macromolecules are chiral molecules, with only a few exceptions. There are 
many conventions for describing the stereochemistry of chiral molecules. The stere­
ochemistry of the building blocks in biochemistry has traditionally been assigned ac­
cording to their absolute configurations. This provides a consistent definition for the 
configuration of all monomers in a particular class of biopolymer. For example, the 
configurations of sugar, amino acid, and nucleic acid residues are assigned relative to 
the structures of L- and D-glyceraldehyde (Figure 1.4). In a standard projection for­
mula, the functional groups of D-glyceraldehyde rotate in a clockwise direction 
around the chiral carbon, starting at the aldehyde, and going to the hydroxyl, then 
the hydroxymethyl, and finally the hydrogen groups. The configuration of the build­
ing blocks are therefore assigned according to the arrangement of the analogous 
functional groups around their chiral centers. Since glyceraldehyde is a sugar, it is 
easy to see how the configurations of the carbohydrate building blocks in polysac­
charides are assigned directly from comparison to this structure. Similarly, the con­
figuration of the ribose and deoxyribose sugars of the nucleic acids can be assigned 
directly from glyceraldehyde. Biopolymers are typically constructed from only one 
enantiomeric form of the monomer building blocks. These are the L-amino acids in 
polypeptides and the D-sugars in polysaccharides and polynucleotides. 

For an amino acid such as alanine, the chiral center is the CO! carbon directly 
adjacent to the carboxylic acid. The functional groups around the CO! carbon are 
analogous but not identical to those around the chiral center of glyceraldehyde. 
The L-configuration of an amino acid has the carboxylic acid, the amino group, 
the a-hydrogen and the methyl side chain arranged around the C", carbon in a 
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Figure 1.4 Absolute configuration of monomer 
building blocks. The stereochemistry of the monomers 
in biopolymers are assigned relative to L- and D­
glyceraldehyde. Carbohydrates and the sugars of 
nucleic acids are assigned directly according to the 
rotation starting at the carbonyl group. For amino 
acids, the stereochemistry is defined according to 
the rotation starting at the analogous carboxyl 
group. 

manner analogous to the aldehyde, hydroxyl, hydrogen, and hydroxymethyl groups 
in L-glyceraldehyde. 

Conformation of molecules. Unlike the configuration of a macromole­
cule, the number of possible conformations of a macromolecule can be enormous 
because of the large number of freely rotating bonds. It is thus extremely cumber­
some to describe the conformation of a macromolecule in terms of the alignment of 
each group using the gauche/anti and eclipsed/staggered distinctions. It is much 
more convenient and accurate to describe the torsion angle e about each freely ro­
tating bond. The torsion angle is the angle between two groups on either side of a 
freely rotating chemical bond. The convention for defining the torsion angle is to 
start with two nonhydrogen groups (A and D) in the staggered anti conformation 
with e = -180°. Looking down the bond to be rotated (as in Figure 1.5) with atom 
A closest to you, rotation of D about the B - C bond in a clockwise direction gives 
a positive rotation of the bond. Thus, the values for e are defined as 0° for the 

Torsion Angle 
Staggered Eclipsed Staggered 

i~ ~ ~~ 
Dihedral Angle ~ 

e C B 

D 

Figure 1.5 Torsion angles and dihedral angles 
(8). The rotation around a single bond is de­
scribed by the torsion angle of the four atoms 
around the bond (A - B - C - D) and the 
dihedral angle 8 relating the planes defined by 
atoms A-B-Cand byB-C-D. 
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eclipsed gauche conformation to + 1800 for the staggered anti conformation. Notice 
that the start and end points «(J = ± 1800

) are identical. 
The angle between the two groups of atoms can also be defined by the 

dihedral angle. Mathematically, the dihedral angle is defined as the angle between 
two planes. Any three atoms about a freely rotating bond (two atoms in the bond, 
plus one extending from that bond, as in A - B - C and B - C - D in Figure 1.5) 
defines a plane. Thus, we can see from this definition that the torsion and dihedral 
angles are identical. 

Changing the conformation of a molecule does not make a new molecule, but 
can change its properties. The properly folded conformation of a protein, referred to 
as the native conformation, is its functional form, while the unfolded or denatured 
conformation is nonfunctional and often targeted for proteolysis by the cell. Thus, 
both the configuration and conformation of a molecule are important for its shape 
and function, but these represent distinct characteristics of the molecule and are not 
interchangeable terms. The conformations of polypeptides and polynucleic acids 
will be treated in greater detail in later sections. 

1.2 MOLECULAR INTERACTIONS IN 
MACROMOLECULAR STRUCTURES 

The configurations of macromolecules in a cell are fixed by covalent bonding. The 
conformations, however, are highly variable and dependent on a number of factors. 
The sequence-dependent folding of macromolecules into secondary, tertiary, and 
quaternary structures depends on a number of specific interactions. This includes 
the interactions between atoms in the molecule and between the molecule and its 
environment. How these interactions affect the overall stability of a molecule and 
how they can be used to construct models of macromolecules are discussed in 
greater detail in Chapter 3. In this introductory chapter, we define some of the char­
acteristics of these interactions, so that we can have some understanding for how the 
various conformations of proteins and polynucleic acids are held together. 

1.2.1 Weak Interactions 

The covalent bonds that hold the atoms of a molecule together are difficult to 
break, releasing large amounts of energy during their formation and concomitantly 
requiring large amounts of energy to break (Figure 1.6). For a stable macromole­
cule, they can be treated as invariant. The conformation of a macromolecule, how­
ever, is stabilized by weak interactions, with energies of formation that are at least 
one order of magnitude less than that of a covalent bond. The weak interactions de­
scribe how atoms or groups of atoms are attracted or repelled to minimize the en­
ergy of a conformation. 

These are, in general, distance-dependent interactions, with the energies 
being inversely proportional to the distance r or some power of the distance (r2, r3, 
etc.) separating the two interacting groups (Table 1.1). As the power of the inverse 
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Figure 1.6 Energies of molecular interactions. The inter­
actions that define the structure of a molecule range from 
the strong interactions of covalent bonds (200 to 800 
kJ/mol) to the weak charge-charge (or ion-ion), dipole­
dipole, dispersion, and hydrogen-bonding interactions 
(0 to 60 kJ/mol). 
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distance dependency increases, the interaction approaches zero more rapidly as r 
increases, and thus becomes a shorter range interaction. The interaction energy be­
tween two charges varies as lIr; this is a long-range interaction. At the other ex­
treme are the induced dipole-induced dipole (or dispersion) interactions. These 
interactions describe the natural tendency of atoms to attract, regardless of charge 
and polarity, because of the pol ariz ability of the electron clouds. Its dependence on 
lIr6 defines this as a very short-range interaction, having a negligible interaction 
energy at about 1 nm or greater. Directly opposing this attraction, however, is 
steric repulsion, which does not allow two atoms to occupy the same space at the 
same time. This repulsion occurs at even shorter distances and is dependent on 
lIr12. Together, the attractive dispersion and repulsive exclusion interactions define 
an optimal distance separating any two neutral atoms at which the energy of inter­
action is a minimum. This optimal distance thus defines an effective radius (the van 
der Waals radius, or rvdw) for each type of atom. The potential energy functions for 

Table 1.1 Relationship of Noncovalent Interactions to the 
Distance Separating the Interacting Molecules, r 

Type of Interaction 

Charge-charge 
Charge-dipole 
Dipole-dipole 
Charge-induced dipole 
Dispersion 
Repulsion 

Distance Relationship 

l/r 
1Ir2 

1Ir3 

1Ir4 

1Ir6 

l/r12 
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each interaction and their application to simulating the thermodynamic properties 
of macromolecules are treated in detail in Chapter 3. 

The energies associated with long-range interactions (charge-charge, charge­
dipole, and dipole-dipole) are dependent on the intervening medium. The interac­
tion between two charged atoms, for example, becomes shielded in a polar medium 
and is therefore weakened. The least polarizable medium is a vacuum, with a dielec­
tric constant of KEO = 41T8.85 X 10-12 C2 J. m, where EO = 8.85 X 10-12 c2 J. m 
and K = 41T for a point charge. The polarizability of a medium is defined as its di­
electric constant D relative to that of a vacuum. The expressions for the energy of 
long-range interactions are all inversely related to the dielectric of the medium and 
are therefore weakened in a highly polarizable medium such as water. 

With the dielectric constant, we introduce the environment as a factor in stabi­
lizing the conformation of a macromolecule. How the environment affects the weak 
interactions is discussed in the next section. In the process, two additional interac­
tions (hydrogen bonds and hydrophobicity) are introduced that are important for 
the structure and properties of molecules. 

1.3 THE ENVIRONMENT IN THE CELL 

The structures of macromolecules are strongly influenced by their surrounding en­
vironment. For biopolymers, the relevant environment is basically the solvent within 
the cell. Because the mass of a cell is typically more than 70% water, there is a ten­
dency to think of biological systems primarily as aqueous solutions. Indeed, a large 
majority of studies on the properties of biological macromolecules are measured 
with the molecule dissolved in dilute aqueous solutions. This, however, does not pre­
sent a complete picture of the conditions for molecules in a cell. First, a solution that 
is 70% water is in fact highly concentrated. In addition, the cell contains a very large 
surface of membranes, which presents a very different environment for macromole­
cules, particularly for proteins that are integral parts of the bilayer of the mem­
branes. The interface between interacting molecules also represents an important 
nonaqueous environment. For example, the recognition site of the TATA-binding 
protein involves an important aromatic interaction between a phenylalanyl residue 
of the protein and the nucleotide bases of the bound DNA. 

In cases where solvent molecules are observed at the molecular interfaces (for 
example, between the protein and its bound DNA), the water often helps to mediate 
interactions, but is often treated as part of the macromolecule rather than as part of 
the bulk solvent. In support of this, a well-defined network of water molecules has 
been observed to reside in the minor groove of all single-crystal structures of DNA 
duplex. Results from studies using nuclear magnetic resonance (NMR) spec­
troscopy indicate that the waters in this spine do not readily exchange with the bulk 
solvent and thus can be considered to be an integral part of the molecule. We start 
by briefly discussing the nature of the aqueous environment because it is the domi­
nant solvent system, but we must also discuss in some detail the nonaqueous envi­
ronments that are also relevant in the cell. 



CHAPTER 

Molecular Thermodynamics 

3.1 COMPLEXITIES IN MODELING 
MACROMOLECULAR STRUCTURE 

One of the basic principles in biochemistry is that the information needed to fold a 
macromolecule into its native three-dimensional (3D) structure is contained within 
its sequence. This principle was first demonstrated by Anfinsen (1961, 1973), who 
showed that unfolded (denatured) ribonuclease spontaneously refolded (renatured) 
to an enzymatically active form. A long-sought goal in physical biochemistry is to 
accurately predict the 3D structure of a macromolecule starting with its sequence­
this is the folding problem for macromolecules. In this chapter, we describe methods 
to model the conformations of macromolecules by using the basic principles of ther­
modynamics at the level of individual molecules. This includes a description of the 
interactions that facilitate the proper folding of macromolecules and how these in­
teractions are formulated into energy functions that are useful for modeling macro­
molecular structures and behavior through molecular simulation. However, we 
stress that the folding problem has not been solved and that the principles described 
here represent only steps toward a general solution to the problem. 

In theory, all the chemical properties of a macromolecule, including its 3D 
structure, can be predicted from an accurate description of the total thermodynamic 
state of the system at the atomic level. Although atoms are most accurately de­
scribed by quantum mechanics (Chapter 8), most descriptions to date are only ap­
proximate. In this chapter, we review the methods of classical Newtonian physics to 
describe the thermodynamic properties of macromolecules. 

Even with this classical approach, modeling macromolecular structures is 
complicated by the large number of atoms in the system. Insulin, a small protein of 
51 amino acid residues, is composed of over 760 atoms, nearly 400 of which are non­
hydrogen atoms. If we include ions and water molecules that are associated with each 

107 
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molecule, the system becomes even more unwieldy. For example, an insulin mole­
cule in a 1 mM solution would, on average, interact with over 108 water molecules. 

Finally, the conformations of the molecules are highly variable, with both the 
macromolecule and its solvent environment assuming any of a large number of dif­
ferent structures at any time. Each macromolecule has many degrees of freedom, 
not only in rotation and translation in solution, but also internal degrees of freedom 
at each freely rotating bond. Thus, the problem in trying to model macromolecular 
structures de novo stems from the large size and complexity of the system. The strat­
egy, therefore, is to simplify the system. We will start by discussing some of these 
simplifications and the assumptions required to make them work. 

3.1.1 Simplifying Assumptions 

One of the first simplifications in trying to model a system of biological molecules in 
solution is to assume that the average behavior of the system can be represented by 
a single molecule (Figure 3.1). In this model, a single macromolecule and its associ­
ated solvent is isolated in a box. If the single molecule in this box is truly dynamic, it 
will eventually sample all the possible conformations accessible to the system. The 
properties of a population of molecules is thus represented by the time-averaged be­
havior of a single macromolecule in an isolated box. By making this a periodic (re­
peating) box, the contents of one box are identical to that of all the other boxes, and 
anything that leaves the box from one direction must simultaneously enter it from 
the opposite direction so that the concentration of material remains constant. Mole­
cules are not allowed to move freely in or out of the box except in this periodic man­
ner. This limitation may appear trivial, but in fact it is important if we consider that 
many biological molecules are dramatically affected by self-association, association 
with salts, and so on. One of the logistical problems in this type of model is to define 
a box that is large enough to accurately simulate the system, including the behavior 

Figure 3.1 Simplifying macro­
molecular systems. An ensem­
ble of dynamic molecules in 
solution is first Simplified to a 
single molecule in a periodic 
box surrounded by solvent, 
then to an isolated molecule in 
the absence of solvent, and fi­
nally to a static molecule at a 
low-energy state. 

Periodic 
box 

Dynamic 
ensemble of 
molecules in 
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of the bulk solvent. From an experimental point of view, there are now a number of 
very exciting methods to detect and study the structure and behavior of single mole­
cules (Chapter 15). However. one needs to be cautioned that the characteristics of 
each individual molecule is unique and, therefore, many single-molecule measure­
ments must be made in order to understand the average properties of a population. 

Many macromolecular systems are still too unwieldy to simulate even when 
isolated in a periodic box. The next step in reducing the size and complexity of the 
system is to remove much or all the individual solvent and ions in the box. Obvi­
ously, if a molecule is treated in vacuo, in the absence of a solvent environment, 
there is no need for a physical box to contain the system. The problems with this 
simplification are obvious. Nearly all macromolecules make some contact with 
water, with the degree of solvent interaction defining the properties of the molecule. 
Thus, both hydrophilic and hydrophobic effects are largely ignored. However, a sim­
ulation in vacuo does reduce the number of atoms in the system by at least an order 
of magnitude. A number of approximations have been incorporated into the various 
molecular simulation methods as attempts to include the effects of the solvent with­
out explicitly including solvent molecules as part of the system. We will discuss some 
of these approximations for treating the solvent and how they contribute to our un­
derstanding of macromolecular folding. 

Finally, we can make the assumption that the native conformation of a mole­
cule is the one with the lowest overall potential energy. The dynamic properties of 
the system are ignored in this case. Nonetheless, this general principle lays a founda­
tion for methods that try to study and predict macromolecular structure, and does 
help to simplify the overall system. 

We will start at the lowest level of molecular structure (the atom), and work 
through methods that attempt to rebuild the original complex system in a series of 
manageable steps. 

3.2 MOLECULAR MECHANICS 

3.2.1 Basic Principles 

The best predictions of the structure and physical properties for a molecule come 
from an exact quantum mechanical treatment of every atom within a molecular sys­
tem (Chapter 8). However, this is only analytically possible for the hydrogen atom. 
Using approximations to the wavefunctions for larger atoms introduces errors that 
are compounded as the molecule increases in size and complexity. The alternative is 
to apply a classical rather than quantum mechanical treatment to describe the inter­
actions between atoms. 

According to classical mechanics, the total energy E within a system includes 
both the kinetic K and the potential energies V, as discussed in Chapter 2 and as 
summarized in Eq. 3.1. 

E=K+V (3.1) 



110 Molecular Thermodynamics Chapter 3 

The kinetic energy used here includes all the motions of the atoms in the system, and 
thus is the sum of their kinetic energies. The potential energy of a macromolecule in 
its various conformations can be represented by a multidimensional surface with 
hills and valleys (Figure 3.2); any particular conformation corresponds to one point 
on this surface. 

The description of molecular interactions is based on the principles of New­
tonian physics. This is molecular mechanics, where molecular motions are deter­
mined by the masses of and the forces acting on atoms. The nuclei contribute the 
mass while the electrons provide the force of interaction between atoms. Thus, in 
classical molecular mechanics, the electrons and nuclei are treated together. 

The basic relationship in molecular mechanics is Newton's second law of mo­
tion, which relates the force F along a molecular trajectory (the distance vector r) to 
the acceleration a of a mass m along that trajectory. 

F = ma (3.2) 

To simplify this discussion, we will only consider one component (for example x) of r. 
The potential energy surface, therefore, becomes an energy profile (Figure 3.2), but the 
relationships that we derive in one dimension apply to all three directions for the mo­
lecular trajectory. 

Figure 3.2 The potential energy surface for rotat­
ing a tyosine side chain in the protein pancreatic 
trypsin inhibitor. The potential energy is plotted as 
a function of the ring dihedral angle 4> defined by 
the atoms C a-Cf3-Cy-CM of the tyrosyl residue and 
a virtual dihedral angle 4>v, which measures the 
angle of the ring relative to the plane of the pep­
tide bond (defined by the atoms Cf3-Cy-C82 of the 
tyrosyl residue and the amino nitrogen of the next 
amino acid). The three-dimensional surface is pro­
jected onto a flat topographical map of the surface, 
where each contour represents an isoenergy level. 
The cross-section through the two-dimensional 
map (dotted line through) shows the profile of the 
potential energy along the reaction pathway. 
[Data from J. A. McCammon et al. (1983), J. Am. 

Chern. Soc. 105,2232-2237.] Reaction pathway 
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The force exerted in the direction of r is related to the potential energy by 

av 
F= -­

ar (3.3) 

The force applied on an atom thus depends on how the potential energy changes as 
the distance between interacting atoms changes. The local gradient in the potential 
energy defines the force field in molecular mechanics. There are a number of differ­
ent force fields used for modeling the structures of macromolecules, each having its 
own distinctive advantages and disadvantages. Our discussion will focus on energy 
functions that are common features of macromolecular force fields. 

Newton's first law of motion is the special case for a system at equilibrium, 
where the net force is defined as F = O. A system at equilibrium thus has 
-aV/ar = 0, which means that the molecule sits at a potential energy minimum. 
This is the basic principle behind energy minimization methods, which attempt to 
find the lowest energy conformation of a macromolecule, providing a static picture 
of the system at equilibrium. 

The kinetic energy K of an atom is related to its velocity v or, equivalently, its 
momentump. 

1 1 p2 
K = -mv2 =--

2 2m 
(3.4) 

The parameter K describes the dynamic change in the atomic positions at any time 
t. Thus, the methods of molecular dynamics are used to simulate the time-dependent 
changes in a system. 

We discuss the application of molecular force fields to the simulation of mo­
lecular properties using energy minimization and molecular dynamics in greater de­
tail later in this chapter. First, we must define the potential energy functions 
describing atomic and molecular interactions that are common to macromolecular 
force fields. This is followed by a discussion of how protein and nucleic acid struc­
tures are stabilized through these interactions. 

3.2.2 Molecular Potentials 

A description of the total potential energy in a macromolecular system must include 
the intermolecular interactions among molecules and the intramolecular interac­
tions among atoms within the molecule. The potential energy of a single, isolated 
molecule depends only on the intramolecular interactions. The total intramolecular 
potential energy l'total is thus the sum of two types of interactions, the bonding 
Vbonding and the non bonding interactions Vnonbonding' For N number of atoms in the 
molecule, we can write 

N 

l'total = 2.: (Vbonding + Vnonbonding); 
;=1 

(3.5) 

Every conceivable conformation of a system has a corresponding value of 1-'total' If 
we plot l'total as a multidimensional surface where the coordinates are the positions 
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of all atoms in the system, this is the energy surface for the system. To calculate the 
total potential, it is often sufficient to add together the interactions between pairs 
or small groups of adjacent atoms. These may be either bonded or nonbonded pairs 
or groups. 

The bonding interactions are the covalent bonds that hold the atoms together, 
while the non bonding interactions include electrostatic, dipolar, and steric interac­
tions. In molecular mechanics, the potential energy functions are derived empiri­
cally, based on how molecules behave, as opposed to ab initio derivations from 
quantum mechanics. In many instances, the empirically derived functions are more 
accurate because they are based on the macroscopic properties that are actually ob­
served for macromolecules, while quantum mechanical functions are often very ap­
proximate. We should note, however, that many parameters for these properties (for 
example, partial charges of atoms in peptide bonds) are derived from quantum me­
chanical calculations. 

3.2.3 Bonding Potentials 

The chemical b9nd that holds two atoms together is conceptually the easiest inter­
action in the total potential energy surface to understand. It also dominates the sur­
face because of its magnitude (~150 to >1000 kJ/mol). The bond energy is the 
energy absorbed in breaking a bond or released in forming a bond (Table 3.1). Bond 
energies are therefore enthalpic energies. 

The bonding energy is modeled in a force field as a distance-dependent func­
tion. An equilibrium distance '0 is defined for the standard length of the chemical 
bond where, according to Eq. 3.3, no force is exerted on either of the bonded atoms. 
For any distance, *- '0 the atoms are forced toward '0 by the potential energy sur­
face. Therefore, how this force is applied depends on how V is defined. 

The potential energy profile for a chemical bond is an anharmonic function 
with a minimum value at '0, a steep ascending curve for, < '0, and a more gradual 
ascending curve that approaches V = 0 for r > ro (Figure 3.3). The simplest form 
of the potential treats the chemical bond as a spring. Like a bond, a spring has an 

Table 3.1 Average Dissociation Energies of 
Chemical Bonds in Organic Molecules 

Bond Type 

C-H 
C-C 
C=C 
C=N 
C=O 
O-H 

Bond Energy (kJ/mol) 

408 
342 
602 
606 
732 
458 

Source: From A. Streitwieser, Jr., and C. H. Heath­
cock (1976), Introduction to Organic Chemistry, 
Macmillan, New York. 
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Figure 3.3 The potential energies for a hydrogen-hydrogen bond, and for deforming a covalent bond Vbond and 
the bond angle between three bonded atoms Ve as treated by simple spring models. The potential energies calcu­
lated from quantum mechanics (upper curve) is compared to the experimental values (lower curve) for a hydro­
gen-hydrogen covalent bond (H - H). The deformations associated with any bond length are modeled, in the 
simplest case, as harmonic springs, with a spring constant for stretching + Ar or compressing - Ar a bond from the 
equilibrium bond length roo The spring model greatly overestimates the potential energy for stretching to large Ar. De­
formations to the bond angle 80 can be similarly treated as a spring between the 1-3 atoms of the three bonded atoms. 

equilibrium length, and stretching or compressing the spring from ro requires an 
applied force. The potential energy of a chemical bond Vbond is thus dependent on 
the equilibrium potential (vgond ) and a function that describes the deformation of 
the spring from ro, and the spring constant k bond' 

(3.6) 

The treatment of the chemical bond as a spring is approximate. Vbond as de­
scribed by Eq. 3.6 is symmetric about ro and is thus a simple harmonic function. Con­
sequently, the spring model matches the steep ascent of the potential energy profile 
for compressing a chemical bond, as described by the quantum mechanical model. 
However, it also defines a steep potential for bond stretching and therefore does not 
allow the extension to long distances that ultimately leads to dissociation. Thus, this 
approximation depicts molecules more tightly bonded than they really are. The har­
monic spring model obviously could not be applied in simulating a true chemical re­
action, such as those catalyzed by enzymes. However, for macromolecules at or near 
equilibrium, where the atomic fluctuations are small, this is a good approximation. 

In addition to being stretched and compressed, a bond can be bent and 
twisted. The lateral bending of a bond is not explicitly treated in most molecular me­
chanics force fields. For a three-atom center held by two bonds, bending falls into the 
category of deformations to the bond angle. The bond angle 8 is defined as the angle 
between three bonded atoms A - B - C (Figure 3.3). We can think about a defor­
mation to the bond angle as a compression or extension of a spring that connects 
atom A to atom C. Thus, the potential energy function Ve for the bond angle can be 
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treated in a manner similar to Vbond with eo defining the equilibrium bond angle and 
ke the spring constant for deforming this angle. 

(3.7) 

Alternatively, since A and C are the number 1 and 3 atoms of the three-atom center, 
the distance between the two atoms is called the 1-3 distance (rl-3), and the poten­
tial for the bond angle is often referred to as the 1-3 potential (Vl - 3). VI - 3 is defined 
identically as Ve, where ro is the equilibrium distance for the standard bond angle, 
and k l - 3 is the spring constant for bending the bond angle. 

(3.8) 

The twisting of a bond defines the dihedral angle cp around the central bond 
between atoms Band C of the four-atom center A - B - C - D (Chapter 1). The 
potential energy function for cp, Vq" depends on the type of the bond connecting B to 
C. Single bonds, for example, are relatively free to rotate, while double bonds have 
very distinct energy minima at cp = 0° and 180°. Vq, is not treated as a simple har­
monic spring function, but takes the form of the periodic function. 

(3.9) 

In Eq. 3.9, Vn is the torsion force constant (equivalent to a spring constant), n is the 
period of the function, and y is the phase angle that defines the position of the min­
ima. For a single bond, the function defines three minima, at cp = 60°, 180°, and 300° 
(Figure 3.4), associated with the staggered conformations around the bond. The 
height of each potential barrier is Vn- For a double bond, there are two minima, at 
cp = 0° and 180°. Thus, n = 2 and y = -180° in Eq. 3.9. In analogy to the bond 

Figure 3.4 Potential energies for rotations 
about the dihedral angle rP for a single bond 
(a) and a double bond (b). Curves were cal­

culated from Eq. 3.9, with n = 3 and y = 0° 
for a single bond and n = 2. and 'Y = ± 1800 

for a double bond. 

(a) 

(b) 

Staggered Staggered 

-180° -120° -60° 0° 60° 

Torsion angle (rP) 
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angle, the potential for the dihedral angle is often referred to as the 1-4 potential. 
However, it is more difficult to think of the 1-4 potential in terms of a spring con­
necting atoms A to D. 

These are the minimum definitions of the bonding potentials. Certain force 
fields include explicit functions to define the planarity of aromatic groups, such as 
the bases of nucleic acids and the aromatic amino acid side chains. However, much 
of this can be handled by stringent definitions of the bond angles and dihedral an­
gles. In general, most force fields reduce the bonding interactions between atoms in 
a molecule to that of simple harmonic springs. The potential energies for these in­
teractions are very large, but they do not drive the folding of macromolecules be­
cause they are approximately the same for all conformations of a molecule. The 
conformations of macromolecules are defined by the weaker interactions between 
nonbonded atoms. 

3.2.4 Nonbonding Potentials 

The nonbonding potentials define all of the interactions that are not directly in­
volved in covalent bonds. We describe these briefly in Chapter 1. Here, we provide a 
more detailed discussion of the potential energy functions for each interaction. The 
two broad categories of noncovalent interactions are the intermolecular interac­
tions (those between molecules, and between a molecule and the solvent) and the 
intramolecular interactions (those between the atoms or groups of atoms within a 
single molecule). Both types of interactions include charge-charge, dipolar, disper­
sion, and steric interactions. The potential energy functions for nonbonding interac­
tions (Table 2.1) have two common features. First, they are distance dependent and, 
second, the long and medium range interactions (electrostatic and dipolar) are 
strongly dependent on the polarizability of the intervening medium, as measured by 
the dielectric constant (D = 47Teo). 

The potential energy functions for the non bonding interactions are inversely 
related to some power n of the distance (r) between atoms (as in lIrn). The range at 
which a particular interaction becomes dominant depends on n. For large r, lIrn ap­
proaches zero more rapidly for higher values of n. Conversely, for small r, lIrn ap­
proaches 00 more rapidly for higher values of n (Figure 3.5). Thus, functions that 
depend on high powers of r (where n is large) are short-range interactions, while 
those with low powers of r (n is small) are long-range interactions. 

3.2.5 Electrostatic Interactions 

The treatment of the electrostatic potential Ve between two unit charges Zl and Z2 
is given by Coulomb's law 

(3.10) 

The interaction is directly proportional to the product of the two charges (the charge 
of a proton, e = 1.602 X 10-19 C), and inversely proportional to the dielectric 
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Figure 3.5 Potential energy functions in­
versely related to rn. As the distance r in­
creases, functions that are dependent on 
higher powers (n) of r approach E = 0 
more rapidly and are therefore shorter­
range interactions. Electrostatic interac­
tions have an n = 1 relationship, while 
dipole-dipole interactions have n = 3, Lon­
don dispersion forces have n = 6, and steric 
repulsion forces have n = 12. 
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constant of the medium D and the distance separating the two charged species r. v" 
is thus defined for charges that are paired-it is a pairwise interaction. The potential 
for single isolated charges in a dielectric medium is modeled by the self-energy (see 
Chapter 1 for a discussion of the self-energy). It should be noted that Coulomb's law 
as expressed in Eq. 3.10 does not explicitly account for shielding of the charges from 
counterions in solution. Methods to treat the more complex electrostatic potentials 
of macromolecules in solution are discussed later in this chapter. However, the sim­
ple potential function in Eq. 3.10 is the form typically incorporated into molecular 
mechanics force fields. 

The effect of the dielectric constant D on electrostatic interactions is discussed 
in some detail in Chapter 1. An accurate treatment of the dielectric constant allows 
molecular mechanics force fields to account for the effects of a solvent on molecular 
structure without explicitly incorporating solvent atoms into the model. There are 
many strategies for assigning the dielectric constant to a macromolecule such as a 
globular protein. One approach is to define a boundary that distinguishes the interior 
from the exterior of the protein. The dielectric constant for exposed atoms can then 
be set to a value similar to that of the solvent. If the solvent is water, D = 78.5K80 at 
the exterior of the protein. The interior of the protein is then treated as a low-dielectric 
cavity. Typical values for the dielectric constant for the interior of a protein range 
from 1K80 to 20K80, with a good approximation being 3.5K80' This is, of course, a 
rough estimate, since the true dielectric character must vary continuously throughout 
the molecule. Therefore, other, more sophisticated models have been sought. 

One approach is to treat the dielectric constant as a distance-dependent vari­
able. This strategy is based on the assumption that two interacting atoms are likely 
to be separated by a polarizable medium in the intervening space at long distances, 
while two closely spaced atoms will have fewer intervening polarizable atoms. A 
simple function to describe a distance-dependent dielectric is 

D = f(r)KBo (3.11) 
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From this definition, the dielectric constant approaches that for a vacuum at close 
distances (or zero, if the distances between atoms are allowed to approach r = 0), 
while at long distances it approaches that of water. At intermediate distances, the di­
electric constant would be estimated to be somewhere between the two extremes. 

Alternatively, the dielectric constant can be described as a local function of 
the protein density p at each point and the dielectric constants of water Dw and the 
protein Dp. 

D = (1 - p)Dw + pDp (3.12) 

The assumption here is that the highly compact core of a folded molecule excludes 
water and is thus more dense, while less dense regions will be mixtures of protein 
and solvent. The problem is that such a function is difficult to incorporate into a stan­
dard force field for atomic interactions, since density is a gross measure of molecular 
structure. However, this relationship has been used to simulate the gross topology of 
proteins from simple models (see Chapter 4). 

3.2.6 Dipole-Dipole Interactions 

A separation of the centers of positive and negative charges (0+ and 0_, indicating 
full and partial charges) in a group give rise to a dipole. This is characterized by a di­
pole moment, /J-, a vector quantity whose magnitude is given by the product or, 
where r is the charge-charge distance. The direction of the vector is conventionally 
taken from 0_ to 0+. The Coulombic interaction between two dipoles can be ap­
proximated by considering only the distance between the dipoles and the dielectric 
constant of the medium separating two dipoles. The significance of direction is illus­
trated by considering the interaction between two dipoles oriented in different di­
rections (Figure 3.6). In this analysis, we consider two dipole moments separated by 
a distance vector r. A simple potential energy function for dipole-dipole interaction 
is given in Table 2.1. 

If the two dipoles lie side by side, their moments can be oriented either paral­
lel or antiparallel to each other. In the antiparallel orientation, where the positive 
ends interact with the negative ends, we would expect an attractive force (or a nega­
tive potential). In contrast, we would expect a repulsive force (or a positive poten­
tial) for the parallel orientation of the dipoles. The dipole-dipole interaction is 

(3.13) 

which depends on the orientation of the two dipole moments relative to the distance 
vector. If the two dipoles are oriented either parallel or antiparallel to each other, 
but are arranged side by side, then both /J-l and /J-2 will be perpendicular to r. Thus, 
/J-l • r = 0 and /J-2 • r = 0, and Eq. 3.13 reduces to 

/J-l • /J-2 
Vdd = DJrJ 3 (3.14) 
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Figure 3.6 Potential energy functions for 
dipole-dipole interactions. Dipoles that are 
arranged side by side in parallel and antipar­
allel directions have dipole moments that are 
perpendicular to the distance vector r. The 
potential energy is calculated by Eq. 3.14. The 
potential energies of the head-to-tail and 
head-to-head alignments of dipoles, however, 
must be evaluated using the more general re­
lationship in Eq. 3.13. 
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Side by side 

+11-1-1111-1-21 -11-1-1 11 1-1-21 
Vdd = Dlrl3 Dlrl3 

Aligned ", ! 1-1-1 

! l· tl~ ~ ! 
-211-1-1 11 1-1-21 +211-1-1111-1-21 

Vdd= ~ Dlrl3 

Vdd for dipoles that are aligned parallel and antiparallel are -21fLl11fLzIlDlrl3 and 
+21 fL1" fL211D1r13, respectively, from Eq. 3.13. 

Equation 3.13 gives us an intuitive understanding of dipole-dipole interac­
tions. However, in many force fields, Vdd is incorporated into the potential function 
for electrostatic interactions by treating each atom as a monopole having a defined 
partial valence (Table 3.2). Then Coloumb's law in Eq. 3.10 can be used directly to 
evaluate the interaction between the individual atoms that constitute the dipole. 
This approach also treats charge-dipole interactions without the need for a separate 
function in the force field. The interaction between charges or permanent dipoles 
with induced dipoles are not normally treated separately in molecular mechanics 
force fields. Induced dipole-induced dipole interactions are included in the van der 
Waals interactions, which are discussed in Section 3.2.7. 

3.2.7 van der Waals Interactions 

Two noble gas atoms will attract each other, although neither has a permanent 
charge or dipole moment. The attractive force derives from an instantaneous and 
short-lived imbalance in the electron distribution of an atom that generates a tem­
porary dipole. This temporary dipole induces the electron distribution of a neigh­
boring atom to polarize in order to minimize electron-electron repulsion between 
the atoms. The resulting synchronous interaction is thus an induced dipole-induced 
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Table 3.2 Examples of Partial Charges of Atoms in 
Proteins Calculated from Quantum Mechanics 

Amino Acid Atom Type Charge 

Backbone N -0.36 
HN +0.18 

C" +0.06 

H" +0.02 
C +0.45 
0 -0.38 

Ser Cf3 +0.13 
Hfl +0.02 
Oy -031 
Hy +0.17 

Tyr O~ -0.33 
H~ +0.17 

Cys Sy +0.01 
Hy +0.01 

Source: From Momany et al. (1975), f. Phys. Chern. 79, 
2361-2381. 
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dipole interaction. London (1937) showed that this attraction, known as London 
dispersion forces, is a natural consequence of quantum mechanics. 

The magnitude of the attractive potential is dependent on the volume and the 
number of polarizable electrons in each interacting group. The London dispersion 
potential VL between two uncharged atoms is 

31 (Xl(X2 v: - ---
L - 4r6 (3.15) 

where I is the ionizing energy, and (Xl and (X2 are the polarizability of each atom. The in­
verse relationship at r6 makes this a very short-range interaction, with the attraction be­
tween atoms dropping off dramatically for even a small increase in distance. All atoms 
are polarizable to some extent and therefore show this short-range attractive inter­
action. However, for groups that have a permanent charge or dipole moment, this inter­
atomic attraction is dwarfed by the larger electrostatic interactions at longer distances. 

With all atoms attracted to each other, we would expect r to approach zero to 
minimize the potential energy. We know, however, that this cannot be the case. 
Counteracting this attraction is a repulsive force, acting at extremely short distances, 
that keep atoms at respectable distances. At the atomic level, this is associated with 
the repulsion of electrons clouds and, to a lesser extent, from nucleus-nucleus repul­
sion. These two repulsions dominate the potential energy function for two atoms at 
closest approach. 

The simpest model to accommodate the repulsive force is the hard sphere ap­
proximation, which treats each atom as an impenetrable spherical volume. How­
ever, this model is too stringent to accurately represent the behavior of atoms. A 
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Figure 3.7 The van der Waals 
potential is a sum of the very 
short-range attraction between 
atoms (London dispersion forces) 
and the extremely short-range 
steric repulsion between atoms. 
Together, the two functions de­
fine an optimal distance ro, which 
is sum of the van der Waals radii 
rvdw of the two atoms. 

~ 
lO-

S 
;:; 
~ 

6il 0 
'""' 0) 

<= 
~ 

-10 

-20 

0.2 0.3 0.4 0.5 0.6 

Table 3.4 Coefficients for the Repulsive (A) and Attractive (B) Terms of the 6-12 van der Waals 
Potential in Eq. 3.17 

Atomic Interaction A (kJ.nm12/mol) B (kJ·nm6/mol) ro (nm) 

H···H 1.84 X 10-8 1.92 X 10-4 0.240 
H···C 1.57 X 10-7 5.27 X 10-4 0.290 
H···N 1.11 x 10-7 5.15 X 10-4 0.275 
H···O 1.03 x 10-7 5.11 X 10-4 0.272 
H···P 6.35 x 10-7 1.43 X 10-3 0.310 
C···C 1.18 x 10-6 1.52 X 10-3 0.340 
C.··N 8.90 x 10-7 1.51 X 10-3 0.325 
C···O 8.49 x 10-7 1.51 X 10-3 0.322 
C···P 4.49 x 10-6 4.12 X 10-3 0.360 
N···N 6.63 x 10-7 1.50 X 10-3 0.310 
N···O 6.30 x 10-7 1.50 X 10-3 0.307 
N···P 3.44 x 10-6 4.08 X 10-3 0.345 
0···0 5.97 x 10-7 1.51 X 10-3 0.304 
O···P 3.28 x 10-6 4.10 X 10-3 0.342 
p ... p 1.68 x 10-5 1.12 X 10-2 0.380 

The equilibrium distance '0 is the sum of the van der Waals radii of the two interacting atoms. 

Source: From F. Jordan (1973),1. Theor. Biol. 30,621-630. 


