ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ENGENHARIA AMBIENTAL — 1º SEMESTRE 2023

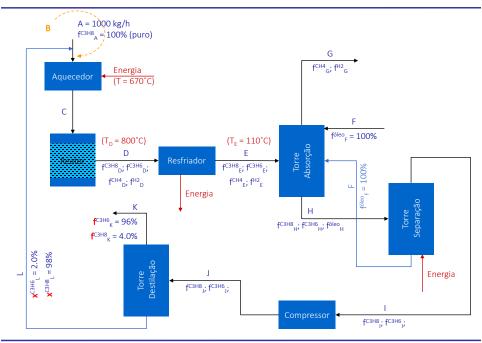
PQI 3221: CINÉTICA QUÍMICA E PROCESSOS AMBIENTAIS

AULA 04

REPRESENTAÇÃO ESQUEMÁTICA DO FENÔMENO EM ESTUDO: ELABORAÇÃO DE FLUXOGRAMAS

FLUXOGRAMA DE PROCESSO

Problema


A desidrogenação catalítica do propano (C_3H_8) , ocorre em um reator de recheio que opera em regime contínuo. Exatos 1000 kg/h de C_3H_8 puro são pré-aquecidos a uma temperatura de 670°C antes de passarem pelo reator. O efluente gasoso emanado desse equipamento — no qual estão incluídos propano, propileno, metano e hidrogênio — é resfriado de 800°C para 110°C e alimentado em uma torre de absorção na qual o C_3H_8 e o C_3H_6 são solubilizados em óleo.

A mistura óleo-hidrocarbonetos é enviado a uma torre de separação para que os gases sejam liberados por aquecimento. C_3H_6 e C_3H_8 são recomprimidos e enviados a uma torre de destilação onde serão separados entre si. O C_3H_8 será circulado a fim de se juntar à alimentação do pré-aquecedor do reator. O produto de topo da torre de destilação contém 96% C_3H_6 em massa, enquanto a corrente de reciclo, 98% molar de C_3H_8 . O óleo separado é circulado novamente para a torre de absorção.

Pede-se:

- A) Construir o fluxograma que descreve o processo em questão
- B) Identificar as correntes que circulam por ele com os dados disponíveis

3

PROCESSOS DE MISTURA

Problema

Uma solução aquosa contém 20% de NaOH em massa. A partir dela, pretende-se produzir uma solução com 8,0% NaOH e, para tanto, a solução original será diluída com água pura.

Para esse contexto, pede-se que sejam calculadas:

- a) Desenhar o diagrama de blocos do processo indicando as correntes envolvidas e demais informações disponíveis no enunciado
- b) Razão R_1 = (quantidade de água / quantidade alimentada);
- c) Razão R₂ = (quantidade de produto / quantidade água)

5

SOLUÇÃO

a) Desenhar o diagrama de blocos do processo indicando as correntes envolvidas e demais informações disponíveis no enunciado

Um balanço constituído para qualquer quantidade conservada (p.e. massa, quantidade de matéria, massa específica, energia, momento, entre outros) em um dado sistema, o qual pode corresponder a um processo simples, uma coleção de unidades interligadas ou mesmo, uma planta inteira, será descrito como:

[A] = [E] - [S] + [G] - [C]

Onde:

- [A]: ACÚMULO variação quantidade conservada;
- [E]: ENTRADA quantidade de matéria que entra pela fronteira do sistema;
- [S]: SAÍDA quantidade de matéria que saem pela fronteira do sistema;
- [G]: GERAÇÃO matéria produzida no sistema por transformação de reagentes;
- [C]: CONSUMO matéria consumida no sistema para a geração de produtos;

-

SOLUÇÃO

Equação Geral de Balanço de Matéria

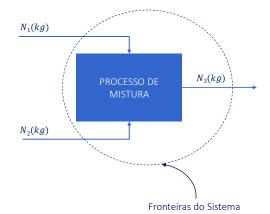
$$A = E - S + G - C$$

Hipóteses:

a) Não há reação química

$$G = C = zero$$

b) Não há acúmulo


$$A = zero$$

Equação Geral de Balanço de Matéria

$$E = S$$

Ou seja,

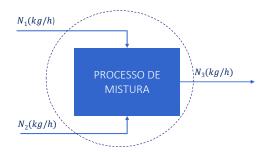
$$N_1 + N_2 = N_3$$
 (Equação 1)

A partir da Equação Geral de Balanço de Matéria é então possível combinar variáveis que deveremos usar para calcular o que se pede no problema. Isso se daria da seguinte forma:

$$N_1 + N_2 = N_3$$

Se além disso, pudéssemos transformar uma das variáveis dessa equação em valor conhecido, as coisas ficariam mais fáceis.

O que você sugere para conseguirmos isso??


Uma ideia seria definir uma das correntes como **base de cálculo**. Por exemplo, façamos isso com N_3 . Nesse caso, como os valores indicados no enunciado são concentrações mássicas expressas em valores relativos (%) uma base de cálculo de **100 kg/h** ajudaria bastante. Com isso, a Equação 1 fica:

$$N_1 + N_2 = 100$$

9

SOLUÇÃO

Note que a partir disso, todas as estimativas serão realizadas tendo em conta que N₃ = 100 kg/h

Balanço Global:

$$E_{totais}=S_{totais} \ \rightarrow \ \Sigma E=\Sigma S$$

$$N_1 \ + \ N_2 = \ N_3$$

$$N_1 \ + \ N_2 = \ 100$$
 (Equação 1)

Nesse momento temos uma equação e duas incógnitas!

Assim, precisamos encontrar outra equação que represente o fenômeno em estudo, e ao mesmo tempo, relacione as mesmas variáveis que a Equação 1. Apenas dessa forma resolveremos o problema!

Essa equação, ou 'recurso de balanço' existe e se chama BALANÇO COMPONENTE

O Balanço Componente pode ser entendido da seguinte maneira:

Se a somatória de todas as correntes de entradas é igual à somatória de todas as correntes de saída, então a somatória **dos componentes** de todas as correntes de **entrada** será **igual** à somatória **dos componentes** de todas as correntes de **saída**

Ou seja, se

 $E_1 + E_2 + \dots + E_n = S_1 + S_2 + \dots + S_n$

Então,

$$\left(E_1^A + E_1^B + \cdots\right) + \left(E_2^A + E_2^B + \cdots\right) + \ \dots = \left(S_1^A + S_1^B + \cdots\right) + \left(S_2^A + S_2^B + \cdots\right) + \ \dots$$

em que A, B, ... são substâncias que compõem as correntes E_1 , E_2 , ...

11

SOLUÇÃO

Além disso, pode-se dizer também para o caso de um balanço em estado estacionário e sem reação, que as quantidades dos componentes se conservam.

Ou seja, para nosso problema em específico, o que entra de NaOH no sistema é igual ao que sai de NaOH do sistema, assim como o que entra de H₂O no sistema é igual ao que sai de H₂O do sistema.

Logo, a equação de Balanço Global pode ser escrita assim:

$$N_1 + N_2 = N_3$$

e, a partir disso,

$$(N_1^{NaOH} + N_1^{H2O}) + (N_2^{NaOH} + N_2^{H2O}) = (N_3^{NaOH} + N_3^{H2O})$$

Nesse contexto, separando as variáveis teremos:

$$N_1^{NaOH} + N_2^{NaOH} = N_3^{NaOH}$$

$$N_1^{H2O} + N_2^{H2O} = N_3^{H2O}$$

Assim, percebemos que a equação que faltava para solucionar o problema sai do balanço componente

$$N_1^{NaOH} + N_2^{NaOH} = N_3^{NaOH}$$
 (Equação 2)

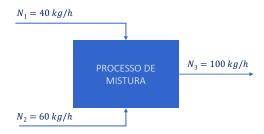
ou

$$N_1^{H2O} + N_2^{H2O} = N_3^{H2O}$$
 (Equação 3)

ATENÇÃO!

Muito embora fazendo balanços componentes tenhamos agora três equações para resolver o problema, elas NÃO poderão ser usadas simultaneamente, já que são interdependentes. Isso que dizer que quando duas delas (quaisquer duas...) se interrelacionam, acabam resultando na terceira.

13


SOLUÇÃO $N_1(kg/h)$ PROCESSO DE MISTURA $N_2(kg/h)$

Balanço Componente: NaOH

$$\sum E_{NaOH} = \sum S_{NaOH}$$

 $(20/100).N_1 + 0.00 = (8/100).N_3$

$$N_1 = 40kg/h e N_2 = 60kg/h$$

Relações:

$$R_1 = {N_2/N_1 \choose N_1} = {60/40} = {3/2}$$

$$R_2 = {N_3/N_2 = 100/60} = 5/3$$

15

PROCESSOS DE DESTILAÇÃO

Problema

Uma mistura líquida formada por Benzeno (B) e Tolueno (T) em proporção mássica 45:55 é alimentada a uma coluna de destilação.

A corrente de topo que deixa o equipamento contém 95% (mol) de Benzeno, e a de fundo, 8,0% de todo o Benzeno alimentado ao sistema. Finalmente, sabe-se que a corrente de alimentação tem vazão volumétrica de 2000 L/h e sua densidade ρ = 0,872 g/cm³.

Pede-se:

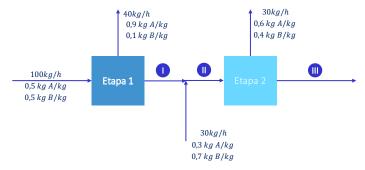
- A. Determine o valor da corrente de topo em base mássica
- B. Determine o valor da corrente de fundo em base mássica
- C. Calcule a composição da corrente de fundo em base molar

"SCALE UP" DE PROCESSOS

Problema

Uma mistura 60-40 (em base molar) estabelecida entre os compostos A e B será separada em quantidades iguais. O fluxograma do processo em questão aparece representado a seguir.

Pede-se:


- A. Ajustar as vazões do sistema em questão atingindo os mesmos níveis de separação para o caso de uma alimentação contínua, realizada à razão de 1250 mol/h;
- B. Seria possível ajustar as vazões de topo e fundo do processo de separação de forma a obter quantidades iguais de A e B nas correntes N₂ e N₃? Justifique de maneira fundamentada sua resposta.

17

PROCESSOS COM MÚLTIPLAS UNIDADES

Problema

Considere um processo que opera em estado estacionário, constituindo de múltiplas unidades conectadas entre si na forma como indicado no fluxograma abaixo.

Pede-se:

Calcule as taxas e composições das correntes I, II e III.