
Variational Calculus 

 

 
 

1)  Consider the optimization problem below that aims to maximize the thermal conductivity of a bar subject to 

a distributed heat source, and boundary conditions shown in the figure.     
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Derive the optimality equation for the optimization problem, as well as the thermal equilibrium equation for the 

bar. For that: 

 

a) Write the Lagrangian function (L) of the problem; 

b) Variate the Lagrangian function and impose the stationarity condition (δL =0); 

c) Isolate the terms referring to the variationals of the design variable functions ( u e δδA ) and determine the 

required equations 

 

 

 

 

2) Consider the optimization problem below that aims to minimize the flexibility of a bar subjected to a force as 

shown in the figure. 
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Derive the optimality equation from the optimization problem as well as the bar equilibrium equation. For that: 

 

a) Write the Lagrangian function (L) of the problem; 

b) Variate the Lagrangian function and impose the stationarity condition (δL =0); 

c) Isolate the terms referring to the variationals of the design variable functions ( u e δδA )) and determine 

the required equations 
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