PRO 5971 - Statistical Process Monitoring Shewhart control chart: monitoring the variance by R chart Linda Lee Ho March 29, 2023 Department of Production Engineering University of São Paulo ## Outline - Before monitoring the stability of a mean, it is desirable to have firstly stable the variance. - For this aim, three most used control charts are: R, S and S^2 . - Let X_1, X_2, \dots, X_n be a random sample of size n of X - The range $R=max\{X_1,\ldots,X_n\}-min\{X_1,\ldots,X_n\}$. - Let $W = \frac{R}{\sigma}$ the standardized range - Table of cumulative distribution function (CDF) of W is available for n=2 to 20. See Pearson & Hartley (1942) - The upper and lower probability control limits of R chart are respectively: - $UCL_R = W_{1-\alpha/2} \times \sigma_0$ - $LCL_R = W_{\alpha/2} \times \sigma_0$, - ullet W_a represents the quantil of W at a-th level . ### Exact distribution of W The CDF of W is expressed as $$F_W(w) = \int_{-\infty}^{\infty} [F(x+w) - F(x)]^{n-1} f(x) dx$$ Next slides, Table of CDF of W built by Pearson & Hartley (1942) are presented for some sample sizes. ## Table - Pearson & Hartley (1942) - part 1 | 13 | 1 | 1 | 1 | 1 | 1 | i | 1 | | 1 | |--------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------| | w\ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 0.00 | 0.0000 | 0.0000 | | | | | | | | | 0.05 | .0282 | -0007 | 0.0000 | | 1 | | | | | | 0.10 | -0564 | -0028 | -0001 | | | 1 | 1 | 1 | | | 0.15 | .0845 | -0062 | -0004 | 0.0000 | | | | | | | 0-20 | -1125 | -0110 | -0010 | -0001 | | | | | | | 0-25 | 0·1403
·1680 | 0.0171 | 0.0020 | 0.0002 | | | | | | | 0-30
0-35 | -1955 | ·0245
·0332 | -0034
-0053 | -0004
-0008 | 0.0000 | | 1 | | 1 | | 0.40 | -1955 | -0431 | -0053 | -0008 | -0001
-0002 | 0-0000 | 1 | | | | 0-45 | -2497 | -0543 | -0111 | -0022 | -0004 | -0001 | ļ | | | | 0.50 | 0-2763 | 0.0666 | 0.0152 | 0.0033 | 0.0007 | 0-0002 | 0.0000 | | | | 0.55 | -3027 | -0800 | -0200 | -0048 | -0011 | -0003 | -0001 | 1 | | | 0.60 | -3286 | -0944 | -0257 | -0068 | -0017 | -0004 | -0001 | 0.0000 | 1 | | 0.65 | -3542 | -1099 | -0323 | 0092 | -0025 | -0007 | -0002 | -0001 | 1 | | 0.70 | -3794 | ·1263 | -0398 | -0121 | -0036 | -0011 | -0003 | -0001 | 0.0000 | | 0.75 | 0.4041 | 0-1436 | 0.0483 | 0-0157 | 0.0050 | 0.0016 | 0.0005 | 0.0002 | 0.0001 | | 0.80 | ·4284 | -1616 | -0578 | -0200 | -0068 | -0023 | -0008 | -0002 | -0001 | | 0.85 | -4522 | ·1805 | .0682 | -0250 | -0090 | -0032 | -0011 | -0004 | -0001 | | 90 | ·4755
·4983 | -2000 | -0797 | -0309 | -0117 | -0044 | -0016 | -0006 | -0002 | | 9-95 | -4983 | -2201 | -0922 | -0375 | -0150 | -0059 | -0023 | -0009 | -0003 | | L-00
L-05 | 0-5205
-5422 | 0.2407
.2618 | 0-1057
-1201 | 0.0450 | 0.0188 | 0.0078 | 0.0032 | 0.0013 | 0.0005 | | 1-10 | -5633 | ·2618
·2833 | 1355 | ·0535 | ·0234
·0287 | ·0101
·0129 | ·0043 | ·0018
·0025 | -0008
-0011 | | 1.15 | -5839 | -3051 | -1517 | -0629 | -0287 | -0129 | +0075 | -0025 | -0011 | | .20 | -6039 | -3272 | -1688 | -0847 | -0417 | -0203 | -0098 | -0047 | -0022 | | 1.25 | 0.6232 | 0-3495 | 0.1868 | 0-0970 | 0.0495 | 0-0250 | 0.0125 | 0-0062 | 0-0030 | | -30 | ·6420 | -3719 | .2054 | -1104 | .0583 | -0304 | -0157 | -0080 | .0041 | | -35 | ·6602 | -3943 | .2248 | ·1247 | -0680 | -0366 | -0195 | -0103 | .0054 | | -40 | -6778 | ·4168 | -2448 | ·1400 | -0787 | -0437 | .0240 | -0131 | -0071 | | -45 | -6948 | -4392 | -2654 | ·1562 | -0904 | -0517 | -0292 | -0164 | -0092 | | ·50 | 0.7112
.7269 | 0.4614 | 0-2865 | 0.1733 | 0-1031 | 0.0606 | 0-0353 | 0.0204 | 0.0117 | | -60 | -7421 | ·4835
·5053 | -3080
-3299 | ·1913
·2101 | ·1168 | -0705
-0814 | -0422
-0499 | -0250
-0304 | ·0148
·0184 | | -65 | -7567 | -5269 | -3521 | -2296 | -1473 | -0934 | -0587 | -0366 | -0184 | | .70 | -7707 | -5481 | -3745 | -2498 | -1639 | -1064 | -0684 | -0437 | -0277 | | -75 | 0.7841 | 0-5690 | 0.3971 | 0-2706 | 0.1815 | 0-1204 | 0.0792 | 0-0517 | 0-0336 | | -80 | .7969 | -5894 | 4197 | -2920 | 2000 | -1355 | -0910 | -0607 | -0403 | | -85 | -8092 | -6094 | -4423 | -3138 | -2193 | -1516 | -1039 | -0707 | -0479 | | -90 | -8209 | -6290 | -4649 | -3361 | -2394 | -1686 | -1178 | -0818 | -0565 | | -95 | -8321 | -6480 | -4874 | -3587 | -2602 | -1867 | -1329 | -0940 | -0661 | | -00 | 0.8427 | 0-6665 | 0-5096 | 0.3816 | 0-2816 | 0.2056 | 0-1489 | 0.1072 | 0.0768 | | -05 | -8528 | -6845 | -5317 | ·4046 | -3035 | 2254 | -1661 | ·1216 | -0886 | | ·10 | -8624 | .7019 | -5534 | ·4277 | -3260 | ·2460 | ·1842 | -1371 | ·1015 | | 20 | -8716
-8802 | ·7187 | -5748. | ·4508 | -3489- | -2673 | ·2033 | -1536 | 1156 | | | | | -5957 | -4739 | ·3720 | .2893 | -2232 | -1712 | ·1307 | | 25 | 0.8884 | 0.7505 | 0.6163 | 0.4969 | 0.3955 | 0-3118 | 0.2440 | 0.1899 | 0.1470 | | 30 | ·8961 | -7655 | -6363 | -5196 | ·4190 | -3348 | -2656 | -2095 | -1645 | | 40 | ·9034
·9103 | -7799
-7937 | ·6558
·6748 | ·5421
·5643 | ·4427
·4663 | ·3582
·3820 | -2878
-3107 | ·2300
·2514 | ·1830
·2025 | | 45 | -9168 | -8069 | -6932 | -5861 | ·4899 | ·3820
·4059 | -3107
-3341 | 2735 | ·2025
·2230 | | -50 | 0-9229 | 0.8195 | 0.7110 | 0-6075 | 0-5132 | 0-4300 | 0-3579 | 0-2964 | 0.2443 | | w n | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------| İ | | | | | İ | ļ | | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | - 05 | 0-0000 | | | | | | | | | | | 0-85
0-90 | -0001 | | | | | | | | | | | 0-95 | -0001 | 0-0000 | | , | | | | | | | | 1-00
1-05 | 0-0002
-0003 | 0-0001
-0001 | 0-0000
-0001 | | | | | | | | | 1-10 | -0005 | -0002 | -0001 | 0-0000 | | | | | | | | 1-15
1-20 | -0007
-0010 | -0003
-0005 | -0001
-0002 | -0001
-0001 | 0-0000 | | | | | | | 1-25 | 0-0015 | 0-0007 | 0-0004 | 0-0002 | 0-0001 | 0-0000 | | | | | | 1.30 | -0021 | -0010 | -0005 | -0003 | -0001 | -0001 | 0-0000 | | | | | 1-35 | -0028
-0038 | -0015
-0021 | -0008
-0011 | -0004
-0006 | -0002
-0003 | -0001
-0002 | -0001
-0001 | 0-0000
-0001 | | | | 1-45 | -0051 | -0028 | -0016 | -0009 | -0005 | -0003 | -0001 | -0001 | 0-0000 | | | 1·50
1·55 | 0-0067
-0087 | 0-0038
-0051 | 0.0022 | 0-0012
-0017 | 0-0007
-0010 | 0-0004
-0006 | 0-0002
-0003 | 0-0001
-0002 | 0.0001
.0001 | 0.00 | | 1-60 | -0111 | -0067 | -0030
-0040 | -0024 | -0014 | -0008 | -0005 | -0003 | -0002 | -00 | | 1.65 | -0140
-0175 | -0086
-0111 | -0053
-0069 | -0032
-0043 | -0020
-0027 | ·0012 | -0007
-0011 | -0004
-0007 | -0003 | -00 | | | | | | | | | | 0-0010 | 0-0006 | 0.00 | | 1-75
1-80 | 0-0217
-0266 | 0-0140
-0175 | 0-0090
-0115 | 0-0058
-0075 | 0-0037
-0049 | 0.0024 | 0.0015
-0021 | -0013 | -0009 | 0.00 | | 1-85 | -0323 | -0217 | -0145 | -0097 | -0065 | -0043 | -0028 | -0019 | -0012 | -00 | | 1·90
1·95 | -0388
-0463 | -0266
-0323 | ·0182
·0225 | ·0124
·0156 | -0084
-0108 | -0057
-0075 | ·0039
·0052 | ·0026
·0035 | -0018
-0024 | -00 | | 2.00 | 0-0548 | 0-0389 | 0.0276 | 0-0195 | 0.0137 | 0-0097 | 0.0068 | 0.0048 | 0-0033 | 0.00 | | 2.05 | -0643 | -0465 | -0335 | .0241 | -0173 | -0124 | -0088 | -0063 | -0045 | -00 | | 2-10 | -0749 | -0550 | -0403 | -0295 | -0215 | ·0156 | -0114
-0144 | -0082
-0106 | -0060
-0078 | -00 | | 2-15
2-20 | -0866
-0994 | -0646
-0753 | -0481
-0569 | -0357
-0429 | ·0264
·0323 | ·0196
·0242 | -0181 | -0136 | -0102 | -00 | | 2-25 | 0.1134 | 0.0872 | 0-0669 | 0.0511 | 0-0390 | 0.0297 | 0.0226 | 0.0172 | 0-0130 | 0-00 | | 2-30 | ·1286 | ·1003 | -0779 | -0605 | .0468 | -0361 | .0279 | .0215 | -0165 | -01 | | 2-35 | ·1450
·1625 | ·1145
·1300 | ·0902
·1037 | ·0709
·0825 | -0556
-0655 | -0435
-0519 | -0340
-0411 | ·0265
·0325 | ·0207 | ·01 | | 2-45 | -1811 | -1466 | 1183 | -0953 | -0766 | -0615 | -0493 | -0325 | -0256 | -02 | | 2-50 | 0.2007 | 0.1644 | 0.1342 | 0-1094 | 1 | 1 | 1 | I | 1 | i | ## Table - Pearson & Hartley (1942) - part 2 | w | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | W | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |--------------------------------------|--|--|--|--|--|--|--|--|--|--------------------------------------|--|--|--|--|--|--|--|--|--|--| | 2·50
2·55
2·60
2·65
2·70 | 0-9229
-9286
-9340
-9390
-9438 | 0-8195
-8315
-8429
-8537
-8640 | 0-7110
-7282
-7448
-7607
-7759 | 0-6075
-6283
-6487
-6685
-6877 | 0·5132
·5364
·5592
·5816
·6036 | 0-4300
-4541
-4782
-5022
-5259 | 0-3579
-3820
-4064
-4309
-4555 | 0·2964
·3198
·3437
·3680
·3927 | 0-2443
-2665
-2894
-3130
-3372 | 2-56
2-55
2-66
2-65
2-76 | ·2213
·2429
·2653 | 0-1644
-1833
-2033
-2243
-2462 | 0-1342
-1514
-1697
-1891
-2096 | 0-1094
-1247
-1413
-1591
-1780 | 0-0890
-1026
-1174
-1336
-1509 | 0-0722
-0842
-0974
-1120
-1278 | 0-0586
-0690
-0807
-0937
-1080 | 0-0474
-0565
-0668
-0783
-0911 | 0.0383
.0462
.0552
.0654
.0768 | 0.0309
.0377
.0455
.0545
.0647 | | 2-75
2-80
2-85
2-90
2-95 | 0-9482
-9523
-9561
-9597
-9630 | 0-8737
-8828
-8915
-8996
-9073 | 0·7905
·8045
·8177
·8304
·8424 | 0-7063
-7242
-7415
-7580
-7739 | 0-6252
-6461
-6665
-6863
-7055 | 0.5494
.5725
.5952
.6174
.6390 | 0-4801
-5044
-5286
-5525
-5760 | 0-4175
-4425
-4675
-4923
-5171 | 0-3617
-3867
-4119
-4372
-4625 | 2-75
2-86
2-85
2-96
2-95 | -3368
-3617
-3870 | 0-2690
-2926
-3169
-3417
-3670 | 0-2311
-2536
-2770
-3011
-3258 | 0-1981
-2194
-2416
-2647
-2887 | 0·1696
·1894
·2103
·2324
·2554 | 0·1449
·1632
·1829
·2036
·2255 | 0·1236
·1405
·1587
·1782
·1989 | 0·1053
·1208
·1376
·1558
·1752 | 0.0896
-1037
-1192
-1360
-1542 | 0-0761
-0889
-1031
-1186
-1355 | | 3.00
3.05
3.10
3.15
3.20 | 0-9661
-9690
-9716
-9741
-9763 | 0.9145
.9212
.9275
.9334
.9388 | 0-8537
-8645
-8746
-8842
-8931 | 0-7891
-8036
-8174
-8305
-8429 | 0.7239
.7416
.7587
.7750
.7905 | 0-6601
-6806
-7003
-7194
-7377 | 0-5991
-6216
-6436
-6649
-6856 | 0.5415
-5656
-5892
-6124
-6350 | 0-4878
-5129
-5378
-5623
-5864 | 3-06
3-08
3-16
3-18
3-26 | ·4639
·4895
·5150
·5401 | 0-3927
-4186
-4446
-4706
-4965 | 0·3512
·3769
·4029
·4292
·4555 | 0.3134
.3387
.3645
.3907
.4171 | 0-2792
-3039
-3292
-3551
-3814 | 0-2484
-2723
-2970
-3224
-3483 | 0.2207
.2436
.2675
.2923
.3177 | 0-1959
-2178
-2407
-2647
-2895 | 0-1737
-1944
-2164
-2394
-2635 | 0-1538
-1734
-1943
-2164
-2396 | | 3·25
3·30
3·35
3·40
3·45 | 0.9784
-9804
-9822
-9838
-9853 | 0-9439
-9487
-9531
-9572
-9609 | 0-9016
-9095
-9168
-9237
-9302 | 0.8546
.8657
.8761
.8859
.8951 | 0-8053
-8194
-8327
-8454
-8573 | 0-7553
-7721
-7881
-8034
-8179 | 0.7055
.7248
.7432
.7609
.7778 | 0-6569
-6782
-6988
-7186
-7376 | 0-6099
-6329
-6553
-6769
-6978 | 3-2!
3-36
3-46
3-48 | -5893
-6131
-6363
-6589 | 0.5222
-5475
-5725
-5970
-6209 | 0-4817
-5078
-5337
-5592
-5842 | 0.4437
.4703
.4967
.5230
.5489 | 0-4081
-4348
-4617
-4885
-5151 | 0-3748
-4016
-4286
-4557
-4827 | 0-3438
-3704
-3974
-4246
-4519 | 0-3151
-3413
-3681
-3953
-4227 | 0-2885
-3142
-3407
-3677
-3950 | 0-2638
-2890
-3150
-3417
-3689 | | 3-50
3-55
3-60
3-65
3-70 | 0.9867
-9879
-9891
-9901
-9911 | 0-9644
-9677
-9706
-9734
-9759 | 0.9361
-9417
-9468
-9516
-9559 | 0-9037
-9117
-9192
-9261
-9326 | 0-8685
-8790
-8889
-8981
-9067 | 0.8316
.8446
.8568
.8683
.8790 | 0.7939
-8091
-8236
-8372
-8501 | 0-7558
-7732
-7898
-8055
-8204 | 0-7180
-7373
-7558
-7735
-7902 | 3-56
3-58
3-68
3-70 | ·7017
·7220
·7414
·7600 | 0-6442
-6668
-6886
-7096
-7298 | 0.6087
-6326
-6558
-6782
-6998 | 0.5744
-5994
-6237
-6474
-6704 | 0-5413
-5672
-5926
-6173
-6414 | 0-5096
-5362
-5624
-5881
-6132 | 0-4792
-5063
-5332
-5596
-5856 | 0.4502
.4777
.5051
.5321
.5588 | 0-4226
-4504
-4781
-5056
-5329 | 0-3964
-4242
-4522
-4801
-5078 | | 3.85
3.90
3.95 | -9928
-9935
-9942
-9948 | -9803
-9822
-9839
-9856 | 0.9600
-9637
-9672
-9703
-9732 | 0-9386
-9441
-9493
-9540
-9583 | 0-9148
-9222
-9291
-9355
-9415 | 0.8891
.8985
.9073
.9155
.9230 | 0-8622
-8736
-8842
-8941
-9034 | 0-8345
-8477
-8602
-8718
-8827 | 0.8062
-8212
-8355
-8488
-8614 | 3-7!
3-86
3-85
3-96
3-95 | -8254
-8395 | 0.7491
.7675
.7850
.8016
.8173 | -7406
-7596
-7777
-7948 | 0.6925
-7138
-7342
-7537
-7723 | 0-6648
-6873
-7090
-7298
-7497 | 0-6376
-6613
-6841
-7061
-7273 | 0-6110
-6357
-6596
-6827
-7050 | 0-5850
-6106
-6355
-6596
-6829 | 0.5598
-5861
-6118
-6369
-6611 | 0-5352
-5622
-5887
-6145
-6397 | | 4·00
4·05
4·10
4·15
4·20 | 0-9953
-9958
-9963
-9967
-9970 | 0-9870
-9883
-9895
-9906
-9916 | 0-9758
-9782
-9804
-9824
-9842 | 0.9623
-9660
-9693
-9724
-9752 | 0.9469
-9519
-9566
-9608
-9647 | 0-9300
-9365
-9425
-9480
-9530 | 0-9120
-9199
-9273
-9341
-9404 | 0-8929
-9024
-9112
-9193
-9269 | 0.8731
-8841
-8943
-9038
-9126 | 4-06
4-08
4-16
4-15
4-26 | -8653
-8769
-8878
-8978 | 0-8321
-8460
-8590
-8712
-8826 | 0-8111
-8264
-8408
-8543
-8669 | 0-7899
-8065
-8223
-8371
-8509 | 0-7686
-7866
-8036
-8196
-8347 | 0.7474
.7666
.7848
.8021
.8183 | 0-7263
-7466
-7660
-7844
-8018 | 0.7053
.7268
.7472
.7667
.7852 | 0-6845
-7070
-7285
-7491
-7686 | 0-6640
-6874
-7099
-7315
-7520 | | 4-25
4-30
4-35
4-40
4-45 | 0-9974
-9976
-9979
-9981
-9984 | 0-9925
-9933
-9941
-9947
-9953 | 0.9859
-9874
-9887
-9899
-9910 | 0-9777
-9800
-9821
-9840
-9857 | 0-9682
-9715
-9744
-9771
-9795 | 0-9576
-9619
-9657
-9692
-9724 | 0.9461
-9514
-9562
-9607
-9647 | 0-9338
-9402
-9460
-9514
-9563 | 0-9208
-9283
-9352
-9416
-9474 | 4-25
4-30
4-35
4-40
4-45 | 0-9072
-9159
-9238
-9312
-9379 | 0-8931
-9029
-9120
-9204
-9281 | 0-8787
-8896
-8998
-9092
-9178 | 0.8639
-8760
-8872
-8976
-9073 | 0-8488
-8620
-8744
-8858
-8964 | 0-8336
-8479
-8613
-8737
-8853 | 0.8182
.8336
.8480
.8614
.8740 | 0-8027
-8191
-8345
-8490
-8625 | 0-7871
-8046
-8210
-8364
-8508 | 0.7715
.7899
.8073
.8237
.8391 | | 4·50
4·55
4·60
4·65
4·70 | 0-9985
-9987
-9989
-9990
-9991 | 0-9958
-9963
-9967
-9971
-9974 | 0-9920
-9929
-9937
-9944
-9951 | 0-9873
-9887
-9899
-9911
-9921 | 0-9817
-9837
-9855
-9871
-9885 | 0.9754
-9780
-9804
-9825
-9845 | 0-9684
-9717
-9747
-9775
-9799 | 0-9608
-9649
-9686
-9719
-9750 | 0-9527
-9575
-9620
-9660
-9696 | 4.50
4.55
4.60
4.65
4.70 | 0-9441
-9498
-9550
-9597
-9640 | 0-9352
-9417
-9476
-9530
-9579 | 0-9258
-9332
-9399
-9460
-9516 | 0-9162
-9244
-9319
-9388
-9451 | 0.9062
-9153
-9236
-9313
-9383 | 0-8960
-9060
-9151
-9235
-9312 | 0-8856
-8964
-9064
-9155
-9240 | 0.8750
.8867
.8975
.9074
.9165 | 0-8643
-8768
-8884
-8991
-9090 | 0-8534
-8667
-8791
-8906
-9012 | | 4·75
4·80
4·85
4·90
4·95 | 0-9992
-9993
-9994
-9995
-9995 | 0-9977
-9980
-9983
-9985
-9987 | 0-9956
-9962
-9966
-9970
-9974 | 0-9930
-9938
-9945
-9952
-9958 | 0.9898
.9910
.9920
.9930
.9938 | 0-9862
-9878
-9892
-9904
-9916 | 0-9822
-9842
-9860
-9876
-9890 | 0-9777
-9802
-9824
-9844
-9862 | 0.9729
-9759
-9786
-9810
-9832 | 4-75
4-80
4-85
4-90
4-95 | 0-9678
-9713
-9745
-9774
-9799 | 0-9624
-9665
-9702
-9735
-9765 | 0-9567
-9614
-9656
-9694
-9728 | 0-9508
-9560
-9608
-9650
-9689 | 0-9446
-9505
-9558
-9605
-9649 | 0.9383
-9447
-9505
-9559
-9607 | 0-9317
-9387
-9452
-9510
-9563 | 0.9249
-9326
-9396
-9460
-9518 | 0-9180
-9264
-9340
-9409
-9472 | 0-9110
-9199
-9281
-9356
-9424 | | 5-00 | 0.9996 | 0-9988 | 0.9977 | 0-9963 | 0-9946 | 0.9926 | 0.9903 | 0.9878 | 0.9851 | 5.00 | 0-9822 | 0.9791 | 0-9759 | 0.9724 | 0-9688 | 0.9650 | 0-9611 | 0.9571 | 0-9529 | 0.9486 | ## Table - Pearson & Hartley (1942) - part 3 | v\ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | W | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |--------------------------------------|---|--|--|--|--|--|---|--|--|--------------------------------------|--|---|--|--|--|--|--|--|---|----------| | 5-00
5-05
5-10
5-15
5-20 | 0-9996
-9996
-9997
-9997
-9998 | 0-9988
-9990
-9991
-9992
-9993 | 0-9977
-9980
-9982
-9985
-9986 | 0-9963
-9967
-9971
-9975
-9978 | 0-9946
-9952
-9958
-9963
-9968 | 0-9926
-9935
-9942
-9950
-9956 | 0-9903
-9915
-9925
-9934
-9942 | 0-9878
-9893
-9906
-9917
-9927 | 0-9851
-9869
-9884
-9898
-9911 | 5-00
5-05
5-10
5-15
5-20 | 0-9822
-9843
-9861
-9878
-9893 | 0-9791
-9815
-9837
-9856
-9874 | 0-9759
-9786
-9811
-9833
-9853 | 0-9724
-9756
-9784
-9809
-9832 | 0-9688
-9723
-9755
-9783
-9809 | 0-9650
-9690
-9725
-9757
-9785 | 0-9611
-9655
-9694
-9729
-9760 | 0-9571
-9618
-9661
-9700
-9735 | 0-9529
-9581
-9628
-9670
-9708 | 96
96 | | 5-25
5-30
5-35
5-40
5-45 | 0-9998
-9998
-9998
-9999
-9999 | 0-9994
-9995
-9995
-9996
-9997 | 0-9988
-9990
-9991
-9992
-9993 | 0-9981
-9983
-9985
-9987
-9989 | 0-9972
-9975
-9979
-9981
-9984 | 0-9961
-9966
-9971
-9974
-9978 | 0-9949
-9956
-9961
-9966
-9971 | 0-9936
-9944
-9951
-9957
-9963 | 0-9922
-9931
-9940
-9948
-9954 | 5-25
5-30
5-35
5-40
5-45 | 0-9906
-9917
-9928
-9937
-9945 | 0-9889
-9903
-9915
-9925
-9935 | 0-9871
-9887
-9901
-9913
-9924 | 0-9852
-9870
-9886
-9900
-9912 | 0-9832
-9852
-9870
-9886
-9900 | 0-9811
-9833
-9854
-9872
-9888 | 0-9789
-9814
-9836
-9856
-9874 | 0-9766
-9794
-9819
-9841
-9860 | 0-9742
-9773
-9800
-9824
-9846 | 9999 | | 5-50
5-55
5-60
5-65
5-70 | 0-9999
-9999
-9999
-9999
0-9999 | 0-9997
-9997
-9998
-9998
-9998 | 0-9994
-9995
-9996
-9996
-9997 | 0-9991
-9992
-9993
-9994
-9995 | 0-9986
-9988
-9989
-9991
-9992 | 0-9981
-9983
-9985
-9987
-9989 | 0-9975
-9978
-9981
-9983
-9986 | 0-9968
-9972
-9976
-9979
-9982 | 0-9960
-9965
-9970
-9974
-9977 | 5-50
5-55
5-60
5-65
5-70 | 0-9952
-9958
-9964
-9969
-9973 | 0-9943
-9951
-9957
-9963
-9968 | 0-9934
-9942
-9950
-9956
-9962 | 0-9924
-9933
-9942
-9950
-9956 | 0-9913
-9924
-9934
-9943
-9950 | 0-9902
-9914
-9925
-9935
-9944 | 0-9890
-9904
-9916
-9927
-9937 | 0-9878
-9893
-9907
-9919
-9929 | 0-9865
-9882
-9897
-9910
-9922 | 0.9 | | -75
-80
-85
-90
-95 | 1.0000 | 0-9999
-9999
-9999
-9999 | 0-9997
-9998
-9998
-9998
-9998 | 0-9995
-9996
-9997
-9997
-9998 | 0-9993
-9994
-9995
-9996
-9996 | 0-9991
-9992
-9993
-9994
-9995 | 0-9988
-9989
-9991
-9992
-9993 | 0-9984
-9986
-9988
-9990
-9991 | 0-9981
-9983
-9986
-9988
-9989 | 5-75
5-80
5-85
5-90
5-95 | 0-9976
-9980
-9982
-9985
-9987 | 0-9972
-9976
-9979
-9982
-9985 | 0-9967
-9972
-9976
-9979
-9982 | 0-9962
-9967
-9972
-9976
-9979 | 0-9957
-9963
-9968
-9972
-9976 | 0-9951
-9958
-9963
-9968
-9973 | 0-9945
-9952
-9959
-9964
-9969 | 0-9939
-9947
-9954
-9960
-9966 | 0-9932
-9941
-9949
-9956
-9962 | 0.1 | | 6-00
6-05
6-10
6-15
6-20 | | 0.9999
.9999
0.9999
1.0000 | 0-9999
-9999
-9999
-9999 | 0-9998
-9998
-9998
-9999 | 0-9997
-9997
-9998
-9998
-9998 | 0-9996
-9996
-9997
-9997
-9998 | 0-9994
-9995
-9996
-9997 | 0-9993
-9994
-9995
-9995
-9996 | 0-9991
-9992
-9993
-9994
-9995 | 6-00
6-05
6-10
6-15
6-20 | 0-9989
-9990
-9992
-9993
-9994 | 0-9987
-9989
-9990
-9992
-9993 | 0-9984
-9987
-9989
-9990
-9992 | 0-9982
-9984
-9987
-9989
-9990 | 0-9979
-9982
-9985
-9987
-9989 | 0-9977
-9980
-9983
-9985
-9987 | 0-9974
-9977
-9981
-9983
-9986 | 0-9971
-9975
-9978
-9981
-9984 | 0-9967
-9972
-9976
-9979
-9982 | 0- | | 6-25
6-30
6-35
6-40
6-45 | | | 0-9999
0-9999
1-0000 | 0-9999
-9999
-9999
0-9999
1-0000 | 0-9999
-9999
-9999
-9999 | 0-9998
-9998
-9999
-9999 | 0-9997
-9998
-9998
-9998
-9999 | 0-9997
-9997
-9998
-9998
-9998 | 0-9996
-9996
-9997
-9997
-9998 | 6-25
6-30
6-35
6-40
6-45 | 0-9995
-9996
-9996
-9997
-9997 | 0-9994
-9995
-9996
-9996
-9997 | 0-9993
-9994
-9995
-9996
-9996 | 0-9992
-9993
-9994
-9995
-9996 | 0-9991
-9992
-9993
-9994
-9995 | 0-9989
-9991
-9992
-9993
-9994 | 0-9988
-9990
-9991
-9992
-9994 | 0-9986
-9988
-9990
-9992
-9993 | 0-9985
-9987
-9989
-9991
-9992 | 0- | | 6-50
6-55
6-60
6-65
6-70 | | | | | 0-9999
0-9999
1-0000 | 0-9999
-9999
-9999
0-9999
1-0000 | 0-9999
-9999
-9999
-9999
0-9999 | 0-9999
-9999
-9999
-9999 | 0-9998
-9998
-9999
-9999 | 6-50
6-55
6-60
6-65
6-70 | 0-9998
-9998
-9998
-9999
-9999 | 0-9997.
-9998
-9998
-9998
-9999 | 0-9997
-9997
-9998
-9998
-9998 | 0-9996
-9997
-9997
-9998
-9998 | 0-9996
-9996
-9997
-9997
-9998 | 0-9995
-9996
-9997
-9997
-9998 | 0-9995
-9995
-9996
-9997
-9997 | 0-9994
-9995
-9996
-9997 | 0-9993
-9994
-9995
-9996
-9997 | 0. | | 6-75
6-80
6-85
6-90
6-95 | | | | | | 1.000 | 1-0000 | 0.9999
0.9999
1.0000 | 0-9999
-9999
-9999
1-0000 | 6-75
6-80
6-85
6-90
6-95 | 0-9999
-9999
-9999
0-9999
1-0000 | 0-9999
-9999
-9999
0-9999 | 0-9999
-9999
-9999
-9999 | 0-9999
-9999
-9999
-9999 | 0-9998
-9998
-9999
-9999 | 0-9998
-9998
-9999
-9999 | 0-9998
-9998
-9998
-9999 | 0-9997
-9998
-9998
-9998
-9999 | 0-9997
-9998
-9998
-9998
-9999 | 01111 | | 7-00
7-05
7-10
7-15
7-20 | | | | | | | | | | 7-00
7-05
7-10
7-15
7-20 | | 1-0000 | 0-9999
0-9999
1-0000 | 0-9999
0-9999
1-0000 | 0-9999
-9999
0-9999
1-0000 | 0-9999
-9999
0-9999
1-0000 | 0-9999
-9999
-9999
0-9999
1-0000 | 0-9999
-9999
-9999
0-9999
1-0000 | 0-9999
-9999
-9999
-9999
0-9999 | 9-0 | | 7-25 | | | | | | | | | | 7-25 | | | | | | | | | 1-0000 | 1-0 | ### The power of R chart - σ_0 may shift to $\sigma 1 = \delta \sigma_0$ - The power 1β $$= P(R > W_{1-\alpha/2} \times \sigma_0 | \sigma_1 = \delta \sigma_0) + P(R < W_{\alpha/2} \times \sigma_0 | \sigma_1 = \delta \sigma_0)$$ $$= P\left(\frac{R}{\sigma_1} > \frac{W_{1-\alpha/2} \times \sigma_0}{\sigma_1} | \sigma_1 = \delta \sigma_0\right) + P\left(\frac{R}{\sigma_1} < \frac{W_{\alpha/2} \times \sigma_0}{\sigma_1} | \sigma_1 = \delta \sigma_0\right)$$ $$= P\left(W > \frac{W_{1-\alpha/2}}{\delta} | \sigma_1 = \delta \sigma_0\right) + P\left(W < \frac{W_{\alpha/2}(W)}{\delta} | \sigma_1 = \delta \sigma_0\right)$$ I- Write a procedure indicating how the empirical distribution of W can be reached by Monte Carlo simulation. Using this procedure, write a program in R/Python to get the empirical distribution and how the probability control limits can be approximately obtained. $\ensuremath{\mathsf{II}}$ - Write a program in R/Python to get CDF (exact, by the integration) of W when X is normally distributed. III- Use the Pearson & Hartley Table: - 1. Find the control limits for R chart for sample sizes n=5,10,15 when $\sigma_0=1,10$ and $\alpha=0.05,0.01$. - 2. Find the power of this chart when the standard deviation shifts for $\sigma_1=\delta\sigma_0$, $\delta=1.25,1.5,2,3.$ - 3. Discuss the results. g #### More R chart To get asymptotic control limits • $$E(W) = \frac{E(R)}{\sigma} \rightarrow \sigma E(W) = E(R) = \sigma d_2.$$ • $$Var(W) = \frac{Var(R)}{\sigma^2} \rightarrow \sigma_W = \frac{\sigma_R}{\sigma} = d_3 \rightarrow \sigma_R = d_3 \sigma.$$ - Tables of values of d_2 and d_3 in function of n are available in the SPC books. - · Control limits and center line of R chart: - center line: $d_2\sigma_0$ - $UCL_R = d_2\sigma_0 + z_{1-\alpha/2}d_3\sigma_0$ - $LCL_R = max(0, d_2\sigma_0 z_{1-\alpha/2}d_3\sigma_0)$ ### Variable Control Chart: R chart - Performance ullet Power I- Probability to detect a shift: 1-eta $$P\left(R > \left(d_2 + z_{1-\alpha/2}d_3\right)\sigma_0|n, \sigma_1 = \delta\sigma_0\right)$$ $$P\left(\frac{R}{\sigma_1} > \frac{\left(d_2 + z_{1\alpha/2}d_3\right)\sigma_0}{\sigma_1}|n\right)$$ $$P\left(W > \frac{\left(d_2 + z_{1\alpha/2}d_3\right)}{\delta}|n\right)$$ ### R chart - If σ_0 is not available - Replace $d_2\sigma_0$ by $\overline{R}=\frac{R_1+\ldots+R_m}{m}$, an estimator of E(R) and σ_0 by $\hat{\sigma}=\frac{\overline{R}}{d_2}$ and make - center line: \overline{R} - $UCL_R = \overline{R} + 3d_3\overline{R}/d_2$ - $LCL_R = max(0, \overline{R} 3d_3\overline{R}/d_2)$ ### **Exercise** Table 1: Volumes of soft drink in cm^3 taken at every 30 min in 15 hours of production | Sample | X1 | X2 | X3 | Sample | X1 | X2 | X3 | |--------|--------|--------|--------|--------|--------|--------|--------| | 1 | 252.16 | 250.34 | 249.7 | 16 | 248.29 | 249.6 | 249.15 | | 2 | 248.34 | 248.61 | 250.63 | 17 | 249.59 | 249.89 | 248.51 | | 3 | 249.19 | 250.02 | 250.84 | 18 | 248.03 | 249.11 | 249.81 | | 4 | 251.29 | 249.93 | 250.24 | 19 | 250.99 | 251.5 | 249.92 | | 5 | 248.16 | 250.41 | 251.19 | 20 | 247.62 | 250.43 | 250.39 | | 6 | 250.37 | 251.98 | 248.44 | 21 | 250.6 | 250.54 | 250.2 | | 7 | 250.31 | 248.71 | 251.13 | 22 | 250.44 | 251.17 | 250.01 | | 8 | 250.27 | 249.64 | 249.92 | 23 | 249.35 | 249.16 | 250.2 | | 9 | 250.72 | 250.8 | 249.35 | 24 | 248.17 | 249.94 | 248.15 | | 10 | 250.45 | 249.18 | 250.04 | 25 | 249.98 | 251.57 | 249.79 | | 11 | 251.76 | 252.01 | 251.9 | 26 | 250.1 | 249.57 | 249.11 | | 12 | 249.33 | 251.21 | 250.58 | 27 | 248.82 | 251.01 | 248.9 | | 13 | 249.26 | 247.67 | 249.99 | 28 | 248.39 | 248.26 | 250.57 | | 14 | 249.41 | 249.01 | 249.51 | 29 | 251.43 | 250.92 | 250.12 | | 15 | 249.9 | 249.07 | 250.32 | 30 | 248.82 | 249.28 | 248.57 | Use data of Table 1 determine the control limits for R chart considering $\alpha=0.0027$ Is stable the variability of the volume of soft drink? # Building \overline{X} chart with $\overline{\overline{X}}$ and \overline{R} - Fixed α - Central line: $\overline{\overline{X}}$ - ullet Control limits: $\overline{\overline{X}} \pm z_{lpha/2} \frac{\overline{R}}{d_2 \sqrt{n}}$ - If $z_{\alpha/2}=3$, $A_2=\frac{3}{d_2\sqrt{n}}$, the control limits are: $\overline{\overline{X}}\pm A_2\overline{R}$ - See Tables for d_2, A_2 #### **Exercise** - Using the data of Table 1 obtain the control limits to monitor the average volume using as estimator of unknown σ, the average ranges. - Is the process mean stable? - If the average volume shift to 250.8 what the probability of the control chart signals this shift? Table 2: Exercise | # of sample | AVG | Range | # of sample | AVG | Range | |-------------|------|-------|-------------|------|-------| | 1 | 5.00 | 4.12 | 16 | 7.10 | 2.00 | | 2 | 7.05 | 6.18 | 17 | 4.90 | 0.12 | | 3 | 3.10 | 4.00 | 18 | 5.00 | 2.24 | | 4 | 6.15 | 7.04 | 19 | 4.00 | 4.12 | | 5 | 2.90 | 4.12 | 20 | 5.20 | 6.00 | | 6 | 5.05 | 0.08 | 21 | 3.85 | 2.12 | | 7 | 6.00 | 4.12 | 22 | 3.90 | 4.12 | | 8 | 3.25 | 6.12 | 23 | 6.00 | 1.19 | | 9 | 4.90 | 10.20 | 24 | 6.15 | 1.20 | | 10 | 5.00 | 2.06 | 25 | 4.90 | 5.24 | | 11 | 6.10 | 8.16 | 26 | 5.00 | 4.09 | | 12 | 3.75 | 4.12 | 27 | 4.90 | 4.24 | | 13 | 5.00 | 7.91 | 28 | 6.55 | 4.15 | | 14 | 2.95 | 3.00 | 29 | 5.00 | 4.12 | | 15 | 5.00 | 4.24 | 30 | 3.45 | 7.67 | #### **Exercise** Use data of Table 2 and $\alpha = 0.0027$ to solve the following items: - 1- What the probability to detect a shift of 1.5 standard deviation using R control chart? - 2- Determine the control limits for \overline{X} and R charts considering unknown μ_0 cm and $\sigma=5$ and known $\mu_0=5$ cm $\sigma=5$ To answer the next items consider the control limits determined in item 2. - 3 If the process mean shifts to $\mu_1 = 7.50$ what is the probability to detect such change immediately at the first sample after the shift using the \overline{X} chart? And to detect such shift before than the fourth sample after the change? - 4- If the standard deviation shifts to $\sigma_1 = 3.6$, what is the probability to detect such event by R chart at the first sample after the change? - 5- And what is the probability to detect the event describe in item 4 by \overline{X} chart at the first sample after shift? - 6 Beyond the change in the variability of item 4, consider that the process mean also shifts to $\mu_1=6$. Recalculate the probability of the item 5. References Pearson, E. & Hartley, H. (1942), 'The probability integral of the range in samples of n observations from a normal population', *Biometrika* 32(3/4), 301–310.