PRO 5971 - Statistical Process Monitoring

Shewhart control chart: monitoring the variance by R chart

Linda Lee Ho
March 29, 2023

Department of Production Engineering
University of São Paulo

Outline

R chart

- Before monitoring the stability of a mean, it is desirable to have firstly stable the variance.
- For this aim, three most used control charts are: R, S and S^{2}.
- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n of X
- The range $R=\max \left\{X_{1}, \ldots, X_{n}\right\}-\min \left\{X_{1}, \ldots, X_{n}\right\}$.
- Let $W=\frac{R}{\sigma}$ the standardized range
- Table of cumulative distribution function (CDF) of W is available for $n=2$ to 20 . See Pearson \& Hartley (1942)
- The upper and lower probability control limits of R chart are respectively:
- $U C L_{R}=W_{1-\alpha / 2} \times \sigma_{0}$
- $L C L_{R}=W_{\alpha / 2} \times \sigma_{0}$,
- W_{a} represents the quantil of W at $a-$ th level .

Exact distribution of W

The CDF of W is expressed as

$$
\left.\left.F_{W}(w)=\int_{-\infty}^{\infty}[F(x+w)-F) x\right)\right]^{n-1} f(x) d x
$$

Next slides, Table of CDF of W built by Pearson \& Hartley (1942) are presented.

Table - Pearson \& Hartley (1942) - part 1

n	2	3	4	5	6	7	8	9	10
0.00	0.0000	0.0000							
0.05	. 0282	. 00007	0.0000						
$0 \cdot 10$	-0564	-0028	. 00001						
$0 \cdot 15$.0845	-0062	. 0004	0.0000					
$0 \cdot 20$	$\cdot 1125$.0110	. 0010	-0001					
0.25	0.1403	0.0171	0.0020	0.0002					
0.30	$\cdot 1680$.0245	. 0034	. 00004	0.0000				
0.35	-1955	-0332	. 0053	-0008	-0001				
0.40	-2227	-0431	-0079	-0014	-0002	0.0000			
0.45	-2497	-0543	. 0111	-0022	-0004	.0001			
0.50	0.2763	0.0666	0.0152	0.0033	0.0007	0.0002	0.0000		
0.55	$\cdot 3027$.0800	. 0200	-0048	. 00011	.0003	. 0001		
0.60	-3286	-0944	-0257	-0068	-0017	-0004	-0001	0.0000	
0.65	-3542	-1099	-0323	. 0092	. 0025	-0007	-0002	. 0001	
0.70	-3794	-1263	-0398	-0121	-0036	-0011	-0003	-0001	$0 \cdot 0000$
0.75	0.4041	0.1436	0.0483	0.0157	0.0050	0.0016	0.0005	0.0002	0.0001
0.80	- 4284	$\cdot 1616$. 0578	. 0200	. 0068	-0023	-0008	. 00002	-0001
0.85	-4522	-1805	-0882	-0250	-0090	. 0032	. 0011	-0004	. 0001
0.90	-4755	-2000	.0797	.0309	. 0117	-0044	-0016	-0006	-0002
0.95	-4983	-2201	-0922	-0375	-0150	-0059	-0023	-0009	-0003
1.00	0.5205	$0 \cdot 2407$	$0 \cdot 1057$	0.0450	0.0188	0.0078	0.0032	0.0013	0.0005
1.05	- 5422	-2618	-1201	. 0535	-0234	. 0101	.0043	-0018	-0008
$1 \cdot 10$	-5633	-2833	$\cdot 1355$	-0629	-0287	. 0129	.0057	-0025	-0011
1.15	-5839	-3051	-1517	. 0733	-0348	. 0163	-0075	-0035	-0016
1.20	-6039	-3272	-1688	. 0847	-0417	-0203	-0098	-0047	-0022
1.25	0.6232	0.3495	$0 \cdot 1868$	0.0970	0.0495	0.0250	0.0125	0.0062	0.0030
1.30	-6420	+3719	-2054	$\cdot 1104$	-0583	. 0304	. 0157	-0080	-0041
1.35	-6602	-3943	-2248	-1247	-0680	-0366	. 0195	-0103	-0054
1.40	-6778	$\cdot 4168$	-2448	$\cdot 1400$	-0787	-0437	. 0240	. 0131	-0071
1.45	-6948	-4392	-2654	$\cdot 1562$	-0904	. 0517	-0292	-0164	-0092
1.50	0.7112	0.4614	0.2865	0.1733	0-1031 ${ }^{\circ}$	0.0606	0.0353	0.0204	0.0117
1.55	$\cdot 7269$	-4835	-3080	-1913	$\cdot 1168$. 0705	. 0422	. 0250	-0148
1.60	$\cdot 7421$	- 5053	-3299	- 2101	-1316	-0814	-0499	. 0304	-0184
1.65	$\cdot 7567$	-5269	-3521	-2296	$\cdot 1473$	-0934	-0587	-0366	-0227
1.70	$\cdot 7707$. 5481	-3745	- 2498	-1639	-1064	-0684	. 0437	-0277
1.75	0.7841	0.5690	0.3971	$0 \cdot 2706$	$0 \cdot 1815$	0.1204	0.0792	0.0517	0.0336
1.80	$\cdot 7969$	- 5894	$\cdot 4197$	-2920	-2000	$\cdot 1355$.0910	. 0607	. 0403
1.85	-8092	-6094	-4423	- 3138	. 2193	- 1516	-1039	-0707	. 0479
1.90	-8209	-6290	$\cdot 4649$	-3361	- 2394	+1686	-1178	-0818	-0565
1.95	. 8321	-6480	- 4874	-3587	- 2602	-1867	$\cdot 1329$	-0940	-0661
2.00	0.8427	$0 \cdot 6665$	0.5096	0.3816	0.2816	$0 \cdot 2056$	0.1489	$0 \cdot 1072$	0.0768
2.05	+8528	. 6845	. 5317	$\cdot 4046$	- 3035	-2254	- 1661	$\cdot 1216$. 0886
$2 \cdot 10$	- 8624	$\cdot 7019$	- 5534	- 4277	-3260	- 2460	-1842	+1371	- 1015
2.15	-8716	$\cdot 7187$	- 5748	-4508	-3489	$\cdot 2673$	- 2033	-1536	$\cdot 1156$
2.20	. 8802	-7349	- 5957	-4739	-3720	-2893	. 2232	-1712	-1307
2.25	0.8884	0.7505	0.6163	0.4969	0.3955	0.3118	0.2440	$0 \cdot 1899$	$0 \cdot 1470$
2.30	. 8961	. 7655	. 6363	. 5196	$\cdot 4190$	-3348	- 2656	- 2095	$\cdot 1645$
$2 \cdot 35$	-9034	-7799	-6558	. 5421	$\cdot 4427$	-3582	2878	+2300	-1830
2.40	-9103	+7937	-6748	. 5643	-4663	- 3820	- 3107	. 2514	- 2025
2.45	-9168	-8069	-6932	- 5861	-4899	$\cdot 4059$	-3341	-2735	- 2230
2.50	0.9229	0.8195	0.7110	0.6075	0.5132	0.4300	0.3579	$0 \cdot 2964$	0.2443

Table - Pearson \& Hartley (1942) - part 2

	2	3	4	5	6	7	8	9	10
2.50	0.9229	0.8195	0.7110	$0 \cdot 6075$	0.5132	$0 \cdot 4300$	0.3579	0.2964	0.2443
2.55	-9286	. 8315	$\cdot 7282$	-6283	- 5364	.454]	-3820	- 3198	-2665
2.60	-9340	. 8429	-7448	-6487	- 5592	-4782	-4064	-3437	-2894
2.65	-9390	. 8537	-7607	-6685	- 5816	-5022	-4309	-3680	- 3130
2.70	-9438	-8640	$\cdot 7759$	-6877	-6036	-5259	-4555	-3927	-3372
2.75	0.9482	0.8737	0.7905	$0 \cdot 7063$	0.6252	0.5494	0.4801	0.4175	0.3617
2.80	-9523	. 8828	-8045	$\cdot 7242$	-6461	-5725	. 5044	. 4425	3867
2.85	-9561	. 8915	-8177	-7415	-6665	-5952	-5286	-4675	-4119
2.90	-9597	. 8999	-8304	-7580	- 6863	-6174	. 5525	$\cdot 4923$	$\cdot 4372$
2.95	-9630	-9073	-8424	-7739	-7055	-6390	-5760	$\cdot 5171$	-4625
3.00	0.9661	0.9145	0.8537	0.7891	$0 \cdot 7239$	$0 \cdot 6601$	0.5991	0.5415	0.4878
3.05	-9690	-9212	. 8645	. 8036	-7416	-6806	. 6216	$\cdot 5656$. 5129
$3 \cdot 10$	-9716	-9275	. 8746	-8174	-7587	-7003	. 6436	. 5892	. 5378
$3 \cdot 15$	-9741	-9334	. 8842	. 8305	-7750	-7194	-6649	-6124	- 5623
$3 \cdot 20$	-9763	-9388	. 8931	-8429	-7905	-7377	-6856	-6350	- 5864
3.25	0.9784	0.9439	0.9016	0.8546	0.8053	0.7553	0.7055	$0 \cdot 6569$	0.6099
3.30	-9804	-9487	. 9095	. 8657	. 8194	-7721	. 7248	-6782	. 6329
3.35	-9822	-9531	-9168	. 8761	. 8327	-7881	7432	-6988	-6553
3.40	-9838	-9572	-9237	-8859	. 8454	-8034	7609	-7186	-6769
3.45	-9853	-9609	. 9302	. 8951	. 8573	-8179	-7778	. 7376	-6978
3.50	0.9867	0.9644	0.9361	0.9037	0.8685	0.8316	0.7939	0.7558	0.7180
3.55	-9879	-9677	-9417	-9117	. 8790	. 8446	. 8091	. 7732	-7373
$3 \cdot 60$	-9891	-9706	-9468	-9192	. 8889	-8568	. 8236	-7898	-7558
3.65	-9901	-9734	-9516	-9261	-8981	. 8683	.8372	-8055	-7735
$3 \cdot 70$	-9911	-9759	-9559	-9326	-9067	. 8790	. 8501	-8204	-7902
3.75	0.9920	0.9782	0.9600	0.9386	0.9148	0.8891	0.8622	0.8345	0.8062
3.80	-9928	-9803	-9637	-9441	-9222	. 8985	. 8736	. 8477	. 8212
$3 \cdot 85$	-9935	-9822	-9672	-9493	-9291	. 9073	. 8842	. 8602	. 8355
3.90	-9942	-9839	-9703	. 9540	-9355	. 9155	. 8941	- 8718	. 8488
3.95	-9948	-9856	-9732	. 9583	. 9415	-9230	. 9034	. 8827	. 8614
4.00	0.9953	0.9870	0.9758	0.9623	0.9469	0.9300	0.9120	0.8929	0.8731
$4 \cdot 05$	-9958	-9883	$\cdot 9782$	$\cdot 9660$	-9519	-9365	-9199	-9024	. 8841
$4 \cdot 10$	-9963	-9895	-9804	-9693	-9566	-9425	-9273	-9112	. 8943
$4 \cdot 15$	-9967	-9906	-9824	-9724	-9608	-9480	-9341	-9193	. 9038
$4 \cdot 20$	-9970	-9916	-9842	. 9752	-9647	-9530	9404	-9269	-9126
$4 \cdot 25$	0.9974	0.9925	0.9859	$0 \cdot 9777$	0.9682	0.9576	0.9461	0.9338	0.9208
$4 \cdot 30$	-9976	. 9933	-9874	. 9800	-9715	. 9619	. 9514	9402	-9283
$4 \cdot 35$	-9979	-9941	-9887.	-9821	-9744	$\cdot 9657$	-9562	-9460	. 9352
$4 \cdot 40$	-9981	-9947	-9899	-9840	-9771	$\cdot 9692$	-9607	-9514	-9416
$4 \cdot 45$	-9984	-9953	-9910	-9857	. 9795	-9724	-9647	-9563	-9474
4.50	0.9985	0.9958	0.9920	0.9873	0.9817	0.9754	0.9684	0.9608	0.9527
4.55	-9987	$\cdot 9963$	$\cdot 9929$	-9887	.9837	. 9780	$\cdot 9717$	-9649	-9575
4.60	-9989	-9967	-9937	-9899	. 9855	-9804	-9747	. 9686	. 9620
4.65	-9990	-9971	-9944	-9911	-9871	-9825	-9775	-9719	. 9660
$4 \cdot 70$	-9991	-9974	-9951	-9921	-9885	-9845	-9799	. 9750	.9696
4.75	0.9992	0.9977	0.9956	0.9930	0.9898	0.9862	0.9822	0.9777	0.9729
$4 \cdot 80$	-9993	-9980	-9962	-9938	-9910	-9878	-9842	-9802	9759
$4 \cdot 85$	-9994	-9983	-9966	-9945	-9920	-9892	-9860	-9824	-9786
4.90	-9995	. 9988	. 9970	-9952	. 9930	-9904	-9876	- 9844	-9810
4.95	-9995	-9987	-9974	-9958	-9938	-9916	-9890	-9862	-9832
$5 \cdot 00$	0.9996	0.9988	0.9977	0.9963	0.9946	0.9926	0.9903	0.9878	0.9851

	11	12	13	14	15	16	17	18	19	20
2.50	0.2007	0.1644	0.1342	0.1094	0.0890	0.0722	0.0586	0.0474	0.0383	$0 \cdot 0309$
2.55	-2213	- 1833	$\cdot 1514$	- 1247	- 1026	-0842	. 0690	. 0565	-0462	$\cdot 0377$
2.60	- 2429.	-2033	-1697	$\cdot 1413$	$\cdot 1174$	-0974	. 0807	-0668	-0552	- 0455
2.65	- 2653	- 2243	-1891	$\cdot 1591$	-1336	- 1120	. 0937	-0783	-0654	. 0545
2.70	- 2885	$\cdot 2462$	-2096	$\cdot 1780$	$\cdot 1509$	$\cdot 1278$	-1080	-0911	-0768	. 0647
2.75	0.3124	0.2690	0.2311	0.1981	$0 \cdot 1696$	0.1449	$0-1236$	$0 \cdot 1053$	$0 \cdot 0896$	0.0761
2.80	- 3368	$\cdot 2926$	$\cdot 2536$	-2194	-1894	$\cdot 1632$	1405	- 1208	-1037	. 0889
2.85	- 3617	-3169	-2770	+2416	- 2103	-1829	1587	-1376	-1192	-1031
2.90	- 3870	$\cdot 3417$	-3011	- 2647	-2324	- 2036	-1782	-1558	- 1360	- 1186
2.95	-4126	-3670	-3258	-2887	-2554	-2255	-1989	$\cdot 1752$	$\cdot 1542$	$\cdot 1355$
3.00	0.4382	0.3927	0.3512	0.3134	0.2792	0.2484	0.2207	$0 \cdot 1959$	$0 \cdot 1737$	$0 \cdot 1538$
3.05	$\cdot 4639$	$\cdot 4186$	-3769	- 3387	-3039	-2723	2436	-2178	-1944	- 1734
$3 \cdot 10$	- 4895	- 4446	-4029	- 3645	-3292	-2970	2675	-2407	-2164	- 1943
$3 \cdot 15$	- 5150	-4706	-4292	-3907	-3551	-3224	-2923	- 2647	-2394	$\cdot 2164$
$3 \cdot 20$	-5401	-4965	-4555	-4171	-3814	-3483	-3177	-2895	-2635	-2396
3.25	0.5649	0.5222	0.4817	0.4437	0-4081	$0 \cdot 3748$	0.3438	0.3151	$0 \cdot 2885$	0.2638
3.30	-5893	$\cdot 5475$	- 5078	-4703	-4348	- 4016	-3704	-3413	-3142	- 2890
$3 \cdot 35$	-6131	- 5725	$\cdot 5337$	-4967	-4617	- 4286	-3974	- 3681	-3407	-3150
$3 \cdot 40$	-6363	- 5970	- 5592	- 5230	-4885	-4557	-4246	-3953	-3677	-3417
3.45	-6589	-6209	$\cdot 5842$	- 5489	$\cdot 5151$	$\cdot 4827$	$\cdot 4519$	-4227	-3950	-3689
3.50	0.6807	0.6442	0.6087	0.5744	0.5413	0.5096	0.4792	0.4502	$0 \cdot 4226$	0.3964
3.55	+7017	-6668	-6326	-5994	-5672	. 5362	$\cdot 5063$	$\cdot 4777$	-4504	- 4242
3.60	-7220	- 6888	-6558	-6237	-5926	-5624	. 5332	. 5051	. 4781	-4522
3.65	-7414	-7096	-6782	-6474	-6173	-5881	-5596	. 5321	-5056	- 4801
3.70	$\cdot 7600$	-7298	-6998	-6704	-6414	-6132	$\cdot 5856$	-5588	-5329	-5078
3.75	$0 \cdot 7776$	$0 \cdot 7491$	0.7206	0.6925	$0 \cdot 6648$	0.6376	0.6110	0.5850	0.5598	0.5352
3.80	-7944	-7675	-7406	-7138	-6873	-6613	. 6357	-6106	-5861	- 5622
3.85	- 8103	-7850	-7596	-7342	-7090	-6841	. 6596	-6355	. 6118	- 5887
3.90	-8254	. 8016	. 7777	. 7537	-7298	7061	-6827	-6596	-6369	-6145
3.95	. 8395	. 8173	-7948	$\cdot 7723$	-7497	-7273	-7050	-6829	-6611	-6397
4.00	0.8528	0.8321	0.8111	$0 \cdot 7899$	0.7686	0.7474	0.7263	0.7053	0.6845	0.6640
4.05	. 8653	-8460	-8264	-8065	-7866	. 7666	7466	7268	. 7070	-6874
$4 \cdot 10$	-8769	. 8590	- 8408	-8223	-8036	-7848	7660	-7472	. 7285	-7099
$4 \cdot 15$	- 8878	. 8712	-8543	-8371	. 8196	. 8021	. 7844	-7667	-7491	-7315
$4 \cdot 20$. 8978	. 8826	-8669	-8509	. 8347	. 8183	- 8018	-7852	-7686	-7520
$4 \cdot 25$	0.9072	0.8931	0.8787	0.8639	0.8488	0.8336	0.8182	0.8027	0.7871	0.7715
4.30	-9159	-9029	. 8896	-8760	-8620	-8479	. 8333	. 8191	. 8046	. 7899
4.35	-9238	-9120	- 8998	-8872	. 8744	-8613	-8480	. 8345	. 8210	-8073
$4 \cdot 40$. 9312	-9204	-9092	-8976	. 8858	. 8737	. 8614	. 8490	. 8364	-8237
$4 \cdot 45$	-9379	-9281	-9178	-9073	. 8964	. 8853	. 8740	-8625	-8508	-8391
4.50	0.9441	0.9352	0.9258	0.9162	0.9062	0.8960	0.8856	0.8750	0.8643	0.8534
4.55	-9498	-9417	. 9332	-9244	. 9153	-9060	. 8964	8867	. 8768	. 8667
4.60	-9550	-9476	-9399	-9319	-9236	-9151	-9064	-8975	- 8884	. 8791
4.65	-9597	-9530	. 9460	-9388	. 9313	-9235	. 9155	-9074	. 8999	-8906
4.70	-9640	-9579	-9516	-9451	. 9383	-9312	-9240	9165	-9090	.9012
4.75	0.9678	0.9624	0.9567	0.9508	0.9446	0.9383	0.9317	0.9249	0.9180	0.9110
4.80	-9713	. 9665	. 9614	. 9560	-9505	. 9447	-9387	9326	. 9264	.9199
4.85	-9745	-9702	-9656	-9608	-9558	-9505	9452	. 9396	-9340	-9281
4.90	-9774	.9735	-9694	. 9650	-9605	-9559	9510	-9460	-9409	. 9356
4.95	-9799	-9765	. 9728	-9689	-9649	-9607	-9563	-9518	. 9472	-9424
$5 \cdot 00$	0.9822	0.9791	0.9759	0.9724	0.9688	0.9650	0.9611	0.9571	0.9529	0.9486

Table - Pearson \& Hartley (1942) - part 3

W \backslash	2	3	4	5	6	7	8	9	10	W	11	12	13	14	15	16	17	18	19	20
5.00	0.9996	0.9988	0-9977	0-9963	0.9946	0.9926	0-9903	0.9878	0.9851	5.00	0-9822	0.9791	0.9759	0.9724	0.9688	0.9650	0.9611	0.9571	0.9529	0.9486
5.05	. 9996	-9990	-9980	.9967	. 9952	. 9935	.9915	. 9893	. 9889	5.05	. 9843	. 9815	. 9786	. 9756	-9723	. 9690	. 9655	. 9618	. 9581	-9543
5-10	-9997	. 9991	-9982	-9971	-9958	-9942	-9925	-9906	. 9884	$5 \cdot 10$	-9861	-9837	. 9811	. 9784	. 9755	. 9725	-9694	-9661	. 9628	-9593
$5 \cdot 15$	-9997	-9992	-9985	-9975	-9963	. 9950	. 9934	. 9917	-9898	5.15	. 9878	.9856	. 9833	. 9809	. 9783	-9757	. 9729	- 9700	. 9670	-9639
$5 \cdot 20$. 9998	. 9993	-9986	.9978	-9968	. 9956	. 9942	-9927	.9911	5.20	.9893	.9874	. 9853	.9832	9809	. 9785	. 9760	. 9735	. 9708	. 9681
5.25	0.9998	0.9994	0-9988	0-9981	0.9972	0.9961	0.9949	0.9936	0.9922	5.25	0.9906	0-9889	0.9871	0.9852	0.9832	0.9811	0.9789	0.9766	0.9742	0.9718
5.30	. 9998	. 9995	. 9990	. 9983	. 9975	. 9966	. 9956	-9944	.9931	5.30	. 9917	. 9903	. 9887	. 98870	. 9852	. 9833	. 9814	. 9794	. 9773	. 9751
5.35	-9998	-9995	-9991	-9985	-9979	-9971	. 9961	. 9951	.9940	$5 \cdot 35$. 9928	. 9915	. 9901	. 9886	9870	. 9854	-9836	$\cdot 9819$. 9800	-9781
5-40	-9999	-9996	-9992	-9987	-9981	-9974	-9966	. 9957	-9948	$5 \cdot 40$. 9937	. 9925	.9913	.9900	. 9886	. 9872	. 9856	-9841	. 9824	. 9807
5-45	-9999	-9997	-9993	.9989	-9984	. 9978	.9971	.9963	-9954	$5 \cdot 45$. 9945	.9935	. 9924	. 9912	$\cdot 9900$. 9888	. 9874	-9860	. 9846	-9831
5.50	0.9999	0-9997	0.9994	0.9991	0.9986	0.9981	0.9975	0.9968	$0 \cdot 9960$	5.50	0.9952	0.9943	0.9934	0.9924	0.9913	0.9902	0.9890	0.9878	0.9865	0.9852
5-55	. 9999	. 9997	. 99995	. 9992	. 9988	-9983	. 9978	-9972	. 9985	$5 \cdot 55$	-9958	. 9951	. 99942	. 9933	. 9924	. 9914	-9904	. 9893	-9882	. 9870
$5 \cdot 60$. 9999	. 9998	-9996	-9993	. 9989	-9985	. 9981	-9976	-9970	5.60	. 9964	. 9957	. 9950	.9942	. 9934	. 9925	-9916	-9907	-9897	-9887
5.65	. 9999	-9998	-9996	-9994	-9991	-9987	. 9983	. 9979	. 9974	5.65	. 9969	. 9983	. 9956	. 9950	$\cdot 9943$. 9935	-9927	-9919	$\cdot 9910$. 9901
5.70	0.9999	. 9998	-9997	. 9995	-9992	-9989	. 9986	-9982	. 9977	5.70	. 9973	. 9988	. 9962	. 9956	.9950	. 9944	.9937	. 9929	. 9922	. 9914
5.75	1-0000	0.9999	0.9997	0.9995	0.9993	0-9991	0.9988	0.9984	0.9981	5.75	0.9976	0.9972	0.9967	0.9962	0.9957	$0-9951$	0.9945	$0 \cdot 9939$	0.9332	0.9925
$5 \cdot 80$. 9999	-9998	-9996	.9994	-9992	. 9989	+9986	-9983	$5 \cdot 80$. 9980	. 9976	. 9972	-9967	.9963	-9958	.9952	-9947	-9941	-9935
5.85		. 9999	. 9998	. 9997	. 9995	-9993	. 9991	. 9988	. 9986	5-85	. 9982	. 9979	. 9976	. 9972	. 9968	-9963	-9959	-9954	-9949	-9944
5.90		-9999	. 9998	-9997	. 9996	-9994	. 9992	-9990	-9988	5.90	-9985	. 9982	. 9979	. 9976	-9972	-9968	. 9964	. 9960	. 9956	-9952
5.95		. 9999	. 9998	-9998	-9996	. 9995	. 9993	. 9991	. 9989	5.95	. 9987	-9985	. 9982	-9979	-9976	-9973	-9969	-9966	-9962	-9958
6.00		0.9999	0.9999	0.9998	0-9997	0.9996	0.9994	0.9993	0-9991	6.00	0.9989	0.9987	0.9984	0.9982	0.9979	0.9977	0.9974	0.9971	0.9967	0-9964
6.05		. 9999	.9999	. 9998	. 9997	. 9996	.9995	. 9994	. 99992	6.05	. 9990	. 9989	. 9988	. 9988	-9982	. 9988	. 9977	. 9975	-9972	-9969
${ }^{6} \cdot 10$		0.9999	-9999	-9998	-9998	. 9997	. 9996	-9995	-9993	6-10	. 9992	-9990	-9989	-9987	-9985	-9983	. 9981	+9978	. 9976	-9973
6.15		1.0000	-9999	-9999	-9998	-9997	. 9996	-9995	.9994	6-15	. 9993	. 9992	. 9990	:9989	-9987	-9985	-9983	. 9981	-9979	-9977
6.20			. 9999	. 9999	-9998	. 9998	. 9997	. 9996	. 9995	$6 \cdot 20$. 9994	.9993	-9992	-9990	-9989	-9987	-9986	-9984	-9982	-9980
6.25			0.9999	0.9999	0-9999	0.9998	0.9997	0.9997	0.9996	6.25	0.9995	0.9994	0.9993	0.9992	0-9991	0.9989	$0 \cdot 9988$	0.9986	0.9985	0-9983
6.30			0.9999	-9999	-9999	. 9998	. 99988	-9997	. 99996	$6 \cdot 30$. 9996	. 9995	.9994	-9993	-9992	-9991	-9990	-9988	-9987	-9986
$6 \cdot 35$			1-0000	-9999	-9999	-9999	-9998	-9998	-9997	6.35	-9996	. 9996	. 9995	-9994	-9993	-9992	-9991	-9990	. 9989	-9988
6.40				0.9999	. 9999	. 9999	. 9998	-9998	-9997	${ }^{6 \cdot 40}$. 9997	. 9996	. 9996	-9995	- 9994	-9993	. 9992	-9992	-9991	-9990
$6 \cdot 45$				1.0000	-9999	. 9999	. 9999	. 9998	-9998	$6 \cdot 45$	-9997	. 9997	.9996	-9096	. 9995	.9994	. 9994	. 9993	-9992	. 9991
6.50					0-9999	0.9999	0.9999	0.9999	0-9998	6.50	0.9998	0.9997.	0.9997	0.9996	0-9996	0.9995	0.9995	0.9994	0.9993	0.9993
6.55					0-9999	-9999	. 9999	-9999	. 9998	${ }^{6.55}$. 9998	. 9998	-9997	-9997	-9996	-9996	. 9995	-9995	-9994	-9994
6.60					1-0000	-9999	. 9999	-9999	-9999	6.60	. 9998	. 9998	. 9998	-9997	-9997	-9997	-9996	-9996	-9995	-9995
6.65						0-9999	-9999	-9999	. 9999	6.65	-9999	. 9998	. 9998	. 9998	- 9997	-9997	-9997	. 9996	. 9996	. 9995
6.70						1.0000	0.9999	. 9999	-9999	6.70	. 9999	. 9999	. 9998	. 9998	. 9998	. 9998	.9997	.9997	. 9997	. 9996
6.75							1.0000	0.9999	0-9999	6.75	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997	0.9997	0.9997
6.80								0.9999	. 9999	6.80	-9999	. 9999	. 9999	. 9999	-9998	.9998	-9998	-9998	-9998	-9997
6.85								1.0000	.9999	6.85	. 9999	. 9999	-9999	-9999	-9999	-9999	-9998	-9998	-9998	-9998
6.90 6.95									0.9999	6.90 6.95	0.9999	. 9999	. 9999	-9999	. 9999	-9999	- 9999	-9998	-9998	-9998
6.95									1-0000	6.95	$1 \cdot 0000$	0.9999	-9999	-9999	. 9999	.9999	. 9999	-9999	-9999	-9998
7.00										7.00		1-0000	0.9999	0.9999	0.9999	0-9999	0-9999	0-9999	0.9999	0.9999
7.05										7.05			0.9999	0.9999	. 9999	.9999	-9999	-9999	-9999	-9999
7.10										7.10 7			1.0000	$1 \cdot 0000$	0.9999	0-9999	-9999	-9999	-9999	-9999
$7 \cdot 15$										7.15 7.20					1.0000	1-0000	0-9999	0-9999	-9999	-9999
7.20										7.20							1-0000	1-0000	0-9999	0.9999
7.25										7.25									$1 \cdot 0000$	1.0000

The power of R chart

- σ_{0} may shift to $\sigma 1=\delta \sigma_{0}$
- The power $1-\beta$

$$
\begin{aligned}
& =P\left(R>W_{1-\alpha / 2} \times \sigma_{0} \mid \sigma_{1}=\delta \sigma_{0}\right)+P\left(R<W_{\alpha / 2} \times \sigma_{0} \mid \sigma_{1}=\delta \sigma_{0}\right) \\
& =P\left(\left.\frac{R}{\sigma_{1}}>\frac{W_{1-\alpha / 2} \times \sigma_{0}}{\sigma_{1}} \right\rvert\, \sigma_{1}=\delta \sigma_{0}\right)+P\left(\left.\frac{R}{\sigma_{1}}<\frac{W_{\alpha / 2} \times \sigma_{0}}{\sigma_{1}} \right\rvert\, \sigma_{1}=\delta \sigma_{0}\right) \\
& =\quad P\left(\left.W>\frac{W_{1-\alpha / 2}}{\delta} \right\rvert\, \sigma_{1}=\delta \sigma_{0}\right)+P\left(\left.W<\frac{W_{\alpha / 2}(W)}{\delta} \right\rvert\, \sigma_{1}=\delta \sigma_{0}\right)
\end{aligned}
$$

Exercise

Use the Pearson \& Hartley Table:

1. Find the control limits for R chart for sample sizes $n=5,10,15$ when $\sigma_{0}=1,10$ and $\alpha=0.05,0.01$.
2. Find the power of this chart when the standard deviation shifts for $\sigma_{1}=\delta \sigma_{0}$, $\delta=1.25,1.5,2,3$.
3. Discuss the results.

Write a program in $\mathrm{R} /$ Python to get CDF of W when X is normally distributed

More R chart

To get asymptotic control limits

- $E(W)=\frac{E(R)}{\sigma} \rightarrow \sigma E(W)=E(R)=\sigma d_{2}$.
- $\operatorname{Var}(W)=\frac{\operatorname{Var}(R)}{\sigma^{2}} \rightarrow \sigma_{w}=\frac{\sigma_{R}}{\sigma}=d_{3} \rightarrow \sigma_{R}=d_{3} \sigma$.
- Tables of values of d_{2} and d_{3} in function of n are available in the SPC books.
- Control limits and center line of R chart:
- center line: $d_{2} \sigma_{0}$
- $U C L_{R}=d_{2} \sigma_{0}+z_{1-\alpha / 2} d_{3} \sigma_{0}$
- $L C L_{R}=\max \left(0, d_{2} \sigma_{0}-z_{1-\alpha / 2} d_{3} \sigma_{0}\right)$

Variable Control Chart: R chart - Performance

- Power I- Probability to detect a shift: 1- β

$$
\begin{gathered}
P\left(R>\left(d_{2}+z_{1-\alpha / 2} d_{3}\right) \sigma_{0} \mid n, \sigma_{1}=\delta \sigma_{0}\right) \\
P\left(\left.\frac{R}{\sigma_{1}}>\frac{\left(d_{2}+z_{1 \alpha / 2} d_{3}\right) \sigma_{0}}{\sigma_{1}} \right\rvert\, n\right) \\
P\left(\left.W>\frac{\left(d_{2}+z_{1 \alpha / 2} d_{3}\right)}{\delta} \right\rvert\, n\right)
\end{gathered}
$$

\mathbf{R} chart - If σ_{0} is not available

- Replace $d_{2} \sigma_{0}$ by $\bar{R}=\frac{R_{1}+\ldots+R_{m}}{m}$, an estimator of $\mathrm{E}(\mathrm{R})$ and σ_{0} by $\hat{\sigma}=\frac{\bar{R}}{d_{2}}$ and make
- center line: \bar{R}
- $U C L_{R}=\bar{R}+3 d_{3} \bar{R} / d_{2}$
- $L C L_{R}=\max \left(0, \bar{R}-3 d_{3} \bar{R} / d_{2}\right)$

Exercise

Table 1: Volumes of soft drink in cm^{3} taken at every 30 min in 15 hours of production

Sample	X1	X2	X3	Sample	X1	X2	X3
1	252.16	250.34	249.7	16	248.29	249.6	249.15
2	248.34	248.61	250.63	17	249.59	249.89	248.51
3	249.19	250.02	250.84	18	248.03	249.11	249.81
4	251.29	249.93	250.24	19	250.99	251.5	249.92
5	248.16	250.41	251.19	20	247.62	250.43	250.39
6	250.37	251.98	248.44	21	250.6	250.54	250.2
7	250.31	248.71	251.13	22	250.44	251.17	250.01
8	250.27	249.64	249.92	23	249.35	249.16	250.2
9	250.72	250.8	249.35	24	248.17	249.94	248.15
10	250.45	249.18	250.04	25	249.98	251.57	249.79
11	251.76	252.01	251.9	26	250.1	249.57	249.11
12	249.33	251.21	250.58	27	248.82	251.01	248.9
13	249.26	247.67	249.99	28	248.39	248.26	250.57
14	249.41	249.01	249.51	29	251.43	250.92	250.12
15	249.9	249.07	250.32	30	248.82	249.28	248.57

Use data of Table 1 determine the control limits for \mathbf{R} chart considering $\alpha=0.0027$
Is stable the variability of the volume of soft drink?

Building \bar{X} chart with \bar{X} and \bar{R}

- Fixed α
- Central line: $\overline{\bar{X}}$
- Control limits: $\overline{\bar{X}} \pm z_{\alpha / 2} \frac{\bar{R}}{d_{2} \sqrt{n}}$
- If $z_{\alpha / 2}=3, A_{2}=\frac{3}{d_{2} \sqrt{n}}$, the control limits are: $\overline{\bar{X}} \pm A_{2} \bar{R}$
- See Tables for d_{2}, A_{2}

Exercise

- Using the data of Table 1 obtain the control limits to monitor the average volume using as estimator of unknown σ, the average ranges.
- Is the process mean stable?
- If the average volume shift to 250.8 what the probability of the control chart signals this shift?

Data

Table 2: Exercise

\# of sample	AVG	Range	\# of sample	AVG	Range
1	5.00	4.12	16	7.10	2.00
2	7.05	6.18	17	4.90	0.12
3	3.10	4.00	18	5.00	2.24
4	6.15	7.04	19	4.00	4.12
5	2.90	4.12	20	5.20	6.00
6	5.05	0.08	21	3.85	2.12
7	6.00	4.12	22	3.90	4.12
8	3.25	6.12	23	6.00	1.19
9	4.90	10.20	24	6.15	1.20
10	5.00	2.06	25	4.90	5.24
11	6.10	8.16	26	5.00	4.09
12	3.75	4.12	27	4.90	4.24
13	5.00	7.91	28	6.55	4.15
14	2.95	3.00	29	5.00	4.12
15	5.00	4.24	30	3.45	7.67

Exercise

Use data of Table 2 and $\alpha=0.0027$ to solve the following items:
1- What the probability to detect a shift of 1.5 standard deviation using R control chart?

2- Determine the control limits for \bar{X} and R charts considering unknown $\mu_{0} \mathrm{~cm}$ and $\sigma=5$ and known $\mu_{0}=5 \mathrm{~cm} \sigma=5$

To answer the next items consider the control limits determined in item 2.
3 - If the process mean shifts to $\mu_{1}=7.50$ what is the probability to detect such change immediately at the first sample after the shift using the \bar{X} chart? And to detect such shift before than the fourth sample after the change?

4- If the standard deviation shifts to $\sigma_{1}=3.6$, what is the probability to detect such event by R chart at the first sample after the change?

5- And what is the probability to detect the event describe in item 4 by \bar{X} chart at the first sample after shift?

6 - Beyond the change in the variability of item 4, consider that the process mean also shifts to $\mu_{1}=6$. Recalculate the probability of the item 5 .

References

Pearson, E. \& Hartley, H. (1942), 'The probability integral of the range in samples of n observations from a normal population', Biometrika 32(3/4), 301-310.

