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The completed cost of a competitively bid construction project often exceeds the 
original low bid. This paper presents two models to predict completed construction cost 
based upon characteristics of the submitted bids. Data on completed projects were 
obtained from Ncw Jersey Departmcnl of Transportation for 298 highway construction 
projects. Median bid and normalized median absolute deviation (NMAD) were selected 
from various bid characteristics as the best predictors of completed construction cost. 
Regrcssion and neural network models were developed from the data. Both models have 
similar utility to predict completed costs. Due to ease of use, the regression model is 
preferred over the neural network model. 

Construction involves bringing equipment, materials and labor to a unique site 
and building a unique product. The product remains fixed at the site after the 
construction team leaves. Construction differs from manufacturing where 

product lots or batches are produced at fixed locations and finished products are 
distributed to the user [12]. Most public works projects are procured through 
competitive bidding. Constructors submit bids based upon a defined scope of 
work, and contracts are awarded to the lowest responsive, responsible bidder. 

The constructor's compensation can be based upon a fixed lump sum fee for the 
defined scope of work but frequently a unit-price contract is used. Through 
change orders, additions and deductions to the scope of work are made, and the 

constructor's compensation is increased or decreased respectively. 
The completed cost to the owner of a competitively bid project often 

exceeds the original low bid. Factors that contribute to cost overruns include 
bidding errors, poor design, design constructibility, project complexity, poor 
construction management, location, weather, labor relations and material 



availability. The impact of these factors is difficult to predict. Large increases 
i n  cost present a risk to the owner because they can exceed the project budget. If 
the completed construction cost could be predicted, the financial risk could be 
objectively evaluated. The following actions could be taken if the projected 
co~npleted cost exceeds the construction budget: 

1 .  accept the low bid and the increase in  the project budget 
2. reject all bids and solicit new bids 
3. implement tighter construction management controls. 

Recent research has focused on the development of complcx and 
mathematically rigorous models to evaluate the effects of many different factors 
on completed construction cosls [ I]  [9] [16]. Other researchers have used 
common statistical techniques. Pedwell, Hartman and Jergeas [I31 used 
multiple linear regression to evaluate the effect of contractual complexity, 
design complcteness and contract type on construction schedules and costs in 
the oil industry. Bacon, Besant-Jones and Heidarian [2] used multivariate 
regression to idcnlify correlation bctween project characteristics, and schcdule 
and cost ovcrruns on World-Bank-linanced, power generation projects in 
developing countries. Their dcpendent variables characterized plant technology 

and size, procurement environment and host country. These two studies used 
the rcsults to make recommendations about thc procurement processes studied. 
Brandon [3] reported on using stepwise linear regression to estimate the 
contract cost of building construction in the U.K. Building size, contract 
duration and number of bidders were used as cost predictors'. Williams. Miles & 

Moore [I71 used linear regression to develop models to predict the complcted 
cost from the low bid amount for highway construction projects in the U.K. and 
the U.S.A. They concluded that there is a distinct multiplicative relationship 
between low bid and final cost that indicates that final cost increases as a power 
of the low bid. 

Sinith and Mason [I41 compared the effectiveness of neural network and 
regression models for parametric cost estimating. They concluded that 
regression models have significant advantages with respect to accuracy, 
variability, model creation and model examination. This is true when an 
appropriate model can be discerned beforehand; however, neural networks have 
advantages when dealing with data that does not fi t  low order polynomials. 
Simple models that are easily understood and applied by practitioners are 
desired. This study attempts to show that a simple model can be developed. The 



goal was to predict completed construction cost of a project based upon 
characteristics of the bids received. In this study, both neural network and 

regression models were developed. Their effectiveness to predict completed 
construction cost based upon charactcristics of all the submitted bids were 
compared. 

Bid characteristics studicd include the number of bidders, lowest bid, mean bid, 
standard deviation, median bid, normalized ~nedian absolute deviation 
(NMAD) and' spread. These characteristics are discussed in the sections below. 

NUMBER OF BIDS 
The number of bids submitted on a project shows the competitiveness of the 
consll.uction markct. High numbers of bids suggest a very competitive market. 
The number of bids receivcd on the projects included in this study ranged from 
two to scvcnteen. (Projects with only one bid submitted were cxcludcd because 
standard deviation, NMAD and spread cannot be calculated.) In a highly 
co~npetitive market, bidders may be more willing to take risks by submitting 
unusually low bids. They hope to regain profit sacriticed to "buy" the contract 
by subinilting claitns [18]. This practice, if successful, increases the completed 
cost over the low bid and, potentially, over the budget. 

Low BID 
A high correlation was anticipated between thc low bid and the completed 
construction cost. If there were no change orders, there would be no difference 
between the bid and completed cost on a lump sum contract. On a unit price 
contract. the only difference between the low bid and the completed cost would 
be due to differences in measurement of quantities. 

MEAN BID AND MEDIAN BID 
The mean (or average) of the bids represents the market's consensus of the true 
cost of the project. Variiltions about the mean represent differences in 
judgment, assumptions or minor bidding errors [ S ] .  Crowley [6] suggests that 
the median is a better estimate of consensus cost because its robust nature 
eliminates the intluence of spurious bids. 



STANDARD DEVIATION AND NOI~MALIZED MEDIAN ABSOLUTE DEVIATION 
Standard deviation of bids measures the variation about the mean. It is an 
indicator of the bidders' uncertainty about the value of the project. Projects 
whcre high standard deviations occur indicate that there is considerable 
uncertaimy among the bidders about the project cost. It can be postulatcd that n 
project with a high standard dcviation inay be prone to larger cost escnlation 
during construction than a project with a low standard dcviation and little 

disagrce~nent arnong the bidders. This uncertainty could be due to vagueness of 
the contract documents. For example, the scope of work or ficld conditions lnay 
be poorly docu~nentcd. In addition, uncertainty could be due to other vnriablcs 
such as availability of labor, equipment or materials; availability of right-oi- 
way or sitc access; or third party involvement (railroads, utili~ies. etc.) Usually, 
unccrt~~inty causes individual bidders to submit higher bids. 

Alternatively, thc normalized mcdian nhsolutc deviation (NMAD) ciln be 
uscd. This statistic mcasurcs variation about thc mcdian. Likc standard 
dcvintion, rhis statistic can bc used as an indication of tlic variations bctwcen 
bidders. It is calculatcd as follows: 

NMAD = lncdian(1 ~ i r l ,  - M,,) / 0.6745) (1 ) 

whore Bid; is thc ith bid, M,, is tlic median of the bids and tlic constant 0.6745 
is a nor~nalizing constant corresponding to the Z-scorc partitioning 25% ol'thc 
normal distribution into thc right tail. Crowlcy [6] has li~und that NMAD is a 
supcrior cstirnator of hid variation. 

SPREAD 
Gates [8] dclincs sprcad as the dil'fercncc bctwcen tllc low bid and the second 

low bid or "thc lnoncy lcft on tlic tahle." This measure assulncs that thc sccond 
low bid is a rcasnnable bid and that the second low hid is not a spurious hid. 
Alternatively, sprcad can be calculatcd as the diffcrcnce betwecn the low bid 
and the lnean bid or consensus value. 

Spread is an indica~or of another risk to the owner. Occasionally, an 
unusually low bid is received. A bidder who does not recognize uncertainty can 
submit rhese unknowingly. In addition, a low bid can be submitted knowingly 
by a bidder who chooses to exploit uncertainty to generate claims for additional 
colnpensation [181. While the owner may want to contract with these bidders to 
obtain a bargain, the owner may be accepting additional risk. The first type of 
bidder may have trouble completing the work on time, if at all. When the error 
is discovered, the constructor may seek additional counpensation through claims 



and change orders to compensate for the inadequate bid. The second bidder 
type counts on change orders and claims to make a profit. In both cases, the 
owner will incur additional costs due to the claims themselves, processing and 
negotiating the claims and completion delays. 

COST ESCALATION AND COMPLETED COST 

Thc purpose of the study was to develop models to predict increases in 
construction cost above the low bid. Two dependent variables were selected for 
prediction: completed cost and escalation. Completed cost is the amount paid to 
the constructor after all change orders are negotiated and executed. Largely, the 
co~npleted cost depends on the project size. Escalation is detined, in  the study, 
as the ratio of the completed cost to the low bid. The ratio was selected so that 
comparisons over a range of different project sizes could be made. A ratio 
grcater than one represents an increase in cost to the owner. Conversely, a ratio 
less than one represents a cost saving for the owner. 

Data for this study was obtained from the New Jersey Department of 
Transportation (NJDOT). The Bureau of Roadway Plans and Specifications 
provided bid summary tables for highway construction projects advertised 
between February 1989 and January 1996, inclusive. The tables list the amount 
of each bid submitted on the projects. A database table was created manually by 
entcring each project and its bids into a database program. 

Information on completed projects was obtained from NJDOT's Bureau of 
Construction Engineering. Database tiles were provided from their computer 
records of colnpleted projects. The database files were imported into the 
database program and cross-tabulated with the bid data. After records with 
missing or suspect data were eliminated, a table containing 298 records was 
created. For each construction project, the database contained fields with an 
identifying number (DPNUM), project location, construction type, project size, 
hid data, completion date, original contract amount, completed contract amount 
and all bids received. This table was exported to a spreadsheet program for 
further data manipulation and preparation of data sets. 

The projects included in the study have a total value of $1.51 billion (in 
1999 dollars) or approximately 50 percent of the value of all NJDOT projects 
bid over the period. They include new highway and bridge construction, bridge 
and highway reconstruction, 'widening, resurfacing, bridge repair, intersection 
improvements, safety and traffic control, miscellaneous and unique projects. It 



was assumed that thcse projects represent a random sample of all projec~ types 
bid by the NJDOT. 

The bids were'received by NJDOT over a seven-year period. To eliminate 
the effects of inflation, all bids and costs were converted to 1999 dollars using 
the ENR Construction Cost Index [9] and the following equation: 

where C2 = cost in year two dollars, CI = cost in ycar one dollars. l2 = ENR 
Construction Cost Index for year 2 and 1, = the ENR Construction Cost index 
fbr year 1 .  TABLE I presents univariale statistics for the data set in 1999 
dollars. 

TAULE:~. Univariate Statistics of 298 NJDOT Projects (1999 dollars) 

- --- 

Ilescril,tion Lowcst First Quanilc Median Third Qunnile Highest 

Nu~nber of Bidders 2 5 6 9 1 7 

Low Bid $23.786 $737.266 $ 1.545.520 $3.449.208 f 66.567.024 

2nd Low Bid 526.829 18 12.174 5 1.622.628 $3.676.656 $73.264.2 10 

Mean Bid $33.992 5906.284 $1.782.257 $4.024.154 ' $72,080,807 

Median Bid $30.448 $886.041 $1.708.598 $3.943.882 570,348,202 

Stand;lrd Dcv. $12,309 $102.849 $ 210,590 $ 468.696 $ 7349,627 

NMAD $ 3,018 $ 79.485 S 177,619 S 408,199 $ 7.373.985 

Spread (Low Bid) S 107 5 30.821 $ 82.735 $ 216.824 5 6,697,186 

Spread (Mean Bid) 1 6.492 $ 9 1.222 f 212.723 f 485.484 5 10.040.701 

Cotlipleted Cost $ 8.626 $747.789 $1.639.458 $3.7 12.55 1 $73.036.689 

The technique of data-splitting (cross-validation) [ I  I ]  was used. as 
described below, to validate the models. The co~nplete data was separated into a 
model subset and a validation subset. The validation data, consisting of 50 
projects, was created by selecting every sixth project. This selection method 
eli~ninated effects of potential, hidden, temporal trends in the data. 

The tirst step in the development of the regression model was to test the 
correlation between the bid characteristics (independent variables) and 
escalation and completed construction cost (dependent variables). TABLE 2 lists 
the Pearson Correlation Coefficients for each bid characteristic. From 



inspection of the table, the correlation between hid characteristics and 
escalation is very weak so prediction of escalation was abandoned. Thc 
correlation between the remaining bid characteristics and completed cost is 
very strong except for the number of bidders. 

TABLE: 2. Correlations Between Bid Characteristics and Escalation and 
Completed Cost 

Sccond, n stcpwise lincar regression analysis was pcrlbr~ncd using the data 
sct. The analysis rcvcaled that all the hid characteristics contribute inlbrrnntion 
to thc rcgrcssion model except spread and standard dcviation. High 
rnulticolliniarity cxisted betwcen rncdian bid, mean bid, and low bid. This 
suggested that thcsc s~atistics contributed rcdundanl information to the   nod el 
so mean and low bid statistics wcre dropped. Mcdian bid and nor~nalizcd 
median absolute deviation were selected for further analysis. 

Third, using the method of least squares, a lincar rcgression modcl was 
constructed using 248 projccts in the model subset. The following equation was 
derived: 

CCast '= 0.95 1 O*(Mcdian) + 0.9094*(NMAD) - $278,973. (3) 

, 
Bid Clinnlcturisric 

Nuriiber of Ridden 
Low Bid 

2nd LOW Bid ' 

Mcall Bid 

Mcdian Bid 

Standard Ucvio~ion 

NMAU 

Sprc~d (Low Bid) 

Spread ( M~:ILI Bid) 

where CCost = completed construction cost, Median = median bid and NMAD 
= normalized median absolute deviation of the bids. The multiple coefticient of 
determination was 0.992 and the root mean square of error was $1,001,006. 

Fourth, a residuals analysis was performed. All tests were satisfactory 
except a plot of residuals versus predicted values of completed cost suggested 
heteroscedasticity. Natural logarithm variance-stabilizing transformation was 
applied to the dependent variable: completed cost; however, the resulting 

bcalatinn 

0.003 

0.079 

0 083 

0.083 

0.085 

0.104 

0.128 

0.090 

0.109 

Colnptdrd Cost 

0.24 1 

0.982 

0.079 

0.979 

0980 

0.877 

0.9 I I 

06.56 

0.833 



~nodcls pt-tduccd inferior results. A tnultiplicative tnodel was constructed by 
transforming both independent and dependent variables using the natural log 
function. Thc following model was developed: 

which can bc trnnst'orrncd into: 

This   nod el did not exhibit hcterosccdasticity as thc linear rntxlel did. The 
multiple cocfiicicnt of delcrmination was 0.967. 

Filili, the validation subset was used to make predictions and the 
cocllicicnt ol'dcter~nination was calculated. 

Artilicial ncur:ll nctwnrks (ANNs) attempt to imitate thc learning ability of 

biological brains. In ANNs, processing eletnenls callcd nodes or ncurons are 
arranged and intcrconnccted in a network. Many topologies with differing 
charictcristics have becn developed. Well-known examples arc the Hoptield 

network and the Kohoncn nctwork. ANNs can be "hardwired" in electronic 

circuits or sitnulaled using soliware on conventional scrial computers. For this 
study, sitnulation softwarc was used. 

A multi:laycr pcrccptron (MLP) tnodcl was selected for the study because 
MLP's are optitnizcd for prediction applications [15]. In MLP's, neurons are 

' 

arranged in layers. Each node is  connected to all nodcs in the next Iayer. Each 
connection has a weight ( w )  that determines how strong the connection is 
within the network. Higher weighted connections contribute more to the 

solution. Data are fed to the top layer or input layer. Each nodc processes the 
data and passes its output to the next lower level. Data is passed to lower layers 

until i t  reaches the lowest level or output Ievel. Intermediate layers are called 
hidden layers. One input node is required for each datum in the problem set, 

and one output node is required for each datum i n  the solution set. Nodes 
process the input data using the following equations [3]: 



where:lN = the net input to the node, wn = the weight of the nth connection and 
x,, = the input from the nth connection, and; 

OUT = I 1 ( I  + e-&*") (7) 

where OUT = the output from the node and k = a constant, and e = the base of 
the natural logarithm. The latter equation is called the activation function. The 
lbrm shown here is the siglnoid function. It has an S-shape curve. 

Training is accolnplished by presenting training sets of input patterns 
(problem data) and output patterns (solutions) to the network. As the training 
sct is processed by the network, the network learns how to estimate the correct 
solution. The steps in the training process are as follows [3]: 

I .  Prescnt an input pattern and let the ANN produce an output 
using its current weights. 

2. 11' the output is the same as the desired output, go back to step I 
using the next input pattern. 

3. If the output does not match the desired output, adjust the 
weights associated with each active connection. Inactive 
connection weights are not changed because they do not 
contribute to the solution. In MLP's using the backpropagation 
method, weights are adjusted to reduce half the sum of squares of 
errors. 

4. Repeat the process for each input pattern until the error falls 
below a given threshold. 

Once the ANN is trained, new problem data can be fed to it and solved. 
One problem with training ANNs is overtraining. Overtraining occurs when 
the ANN "memorizes" the input and output data. When overtrained, ANNs 
produce exact solutions for the training set but do not produce acceptable 
solutions for new problem data. To avoid overtraining, a validation subset is 
created from the training set. During the training cycle, the error of the 
validation set is measured. During the early stages of learning, the error of the 
validation set will decrease at the same rate as the training set if the ANN is 
training well. When the ANN begins to learn the noise in the data, the 
validation set error will begin to increase while the training set error will 



continue to decrease. The optimum network is the one that has the lowest 

validation set error [15]. 

The first step in selecting the MLP topology i s  determining the nulnbcr of 

layers and the number of nodes in each layer. The number of nodes in the input 

layer must match the number of tields in the input records. The input fields 

consist of median bid data and NMAD data so two input nodes are required. 
The output field i s  completed construction cost so one output node i s  required. 

Thc number of nodes in the hidden layers and the number of hidden layers 

required to produce good results cannot he determined beforehand. Trial-and- 

crror must be used to lind the best combination of layers and nodes. Ccrtain 

rules of thumb have been recornmendcd based upon expericnce of neural 

network developers. For most models, onc or two hiddcn layers i s  adequate [7j. 
Also, the maximum number of conncctions in the network should be one-tcnth 

the number of training scts [15]. Given 248 records in the training sct, thc 

maximum number of connections could be 25. Therclhre, the number of hidden 

ntdes in one hidden layer can bc calculated as follows: 

where W,,,;,, = maximum number of weights, Inode = input nodes and Onode = 
output nodcs and Hllude = hidden nodes. If  W,,,,, = 25, In,de = 2 and Oflode = I, 
then = 8 max. The selected MLP topology consisted of two input nodes 

connected to two hidden nodes in one laycr that in turn were connected to one 

output node resulting in six connections. 

Second, training options of the MLP were c0ntigured.a~ follows: 

The activation function defines how the net input to a node is 

translated into an output value. The hyperbolic tangent function was 

selected. 
Distribution of initial weights defines how weights are distributed at 

the start of training. A uniform distribution was used. 

The learning rule determine how the connection weights are changed 

as the neural network learns. The conjugate gradient rule was selected. 

I t  measures the error surface gradient and uses a compromise between 

the direction of the steepest gradient and the previous direction of 

change 1151. 



Training stop threshold sets goals for when training is complete. RMS 
= 0.001 and percentage correct = 75% were used. 

Training the MLP model was perfonned using the estimation subset. Thc 
problcm set (i.e. input data) consisted of median bid and NMAD. The solution 
set (i.e. output data) consisted of the corresponding completed construction 
costs. The input and output to the neural network were the same as the 
indepcndent and dependant variables used in the regression rnodel so that a 
comparison betwecn the two models could be made. 

Once trained, the tndel was used to predict completed cost. The validation 
subset was run through the neural network to make prcdictions. The rcsults 
wcre compared 10 the actual completed costs, and Ihe coeflicicnt of 
dctermination was calculated. 

Data-spl itting (cross-validation) was used to vatidatc the ~nodcl rcsults. This 
technique calls I'or splitting the data into model and validation subscts and 
comparing measures of inodcl vilidity such as cocflicients of dctertnination or 

Incan square of errors for each subset [I I]. If the validation tncasurcs are close, 
the modcl can be considered valid. Coefficients of determination werc 
calculated for the model subset and the validation subset for both ~nodcls. Thc 
rcsults are sulnmarizcd in TABLE 3. The resulls indicate that approximately 99 
percent of the variation in  co~npletcd construction cost is predicted by the 
lncdian bid and NMAD of the bids. The high coefticicnts of determination Ibr 
the estimation and validation subscts give high confidence in both models. 

TABLE 3. Mdel  Coefficients of Determination 

FIGURE I shows a plot of actual completed construction costs versus the 
models' predicted costs. The diagonal line represents a perfect match between 
actual cost and predicted cost. The tight clustering of points along this line 
shows graphically that the models give good predictions of completed 
construction cost. 

Validation Subset 

0.94 
0.98 

Model 

Neural Network 
Muttiplicative 

Model Subset 

0.99 
0.97 



FIGURE I: Actual Cost VS. Predicted Cost 

Thc f'ollowing example dcmonstrates an application of the multiplicative 
regression ~nodcl. Consider thc bids listed in  TABLE 4 for a represcntativc 

project sclcctcd Jioln thc dilta S C ~ .  The ~ncdian bid is $1,650,982. Using Eq. ( I ) ,  
NMAD is culculatcd to he $171.823. Substituting these villues illto Eq. (3, 
colnplctcd cost is prcdiclcd to he $1.429,2 1 I. Thc low hid was $1,465,966. This 
suggcsts that thc low bid was rcasonable. 

TAULE 4. Rcprcscntative Bid Data 

Low Bid $1,465,966 
Median Bid $1,650.982 

NMAD $171,823 
$1,465,966 
% 1,535,088 

$1,575,649 
$1,644,122 
$1,650,982 
$1,728,437 
$1,963,532 

Bid 8 $2,164,540 



The models are based upon highway construction projects in New Jersey, . 

USA, that had more than one bidder. The data set contains information on 

projects with median bids ranging from $30,448 to $10 1,096,058 and NMAD 

from $301 8 to $7,373,985. Due to the limitations of the regression and neural 
network models, application of the models should he limited to projects of 

similar size. In addition, application to other markets may produce unreliable 
results so  the model should be used with caution. 

This study demonstrates that a simple model can be developed to predict the 
completed cost of colnpetitively bid construction projects. Bid characteristics. 
spccilically median bid and normalized median absolute deviation, are valid 

predictors of completed construction cost. The multiplicative regression model 
and neural network modcl are valid models, and both models produce 

comparable results. The regression model produced a simple equation. It can be 

uscd to make predictions with any handheld calculator whereas the neural 
network  node! requires neural network simulation software. For this reason, 

the regression model is preferred. 

The authors would like to acknowledge two individuals for thcir valuable 
assistance. First, Mr. Robert Suess, former Chief NJDOT Bureau of Roadway 
Plans and Specitication, provided the bid summary tablcs. Sccond, Mr. Robert 
Scholink, NJDOT Bureau of Construction Engineering, provided completed 
project data from NJDOT's construction project database. 
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