PMR-5215 - Otimização Aplicada ao Projeto de Sistemas Mecânicos

2nd Assignment
(groups of at most 2 students)
submit date: 2023-04-10

Catenary.
A cable with length l is suspended between two points:

Let $y(x)$ be the cable height as a function of the horizontal coordinate x. In this case, the total gravitational potential energy is given by:

$$
E=\int \gamma y(x) \frac{d s}{d x} d x
$$

where γ is the cable specific weight by unity of length and $d s / d x$ is the variation of the total length s and the horizontal displacement x.
Notice that $d s^{2}=d y^{2}+d x^{2}$, such that $\frac{d s}{d x}=\sqrt{1+\frac{d y}{d x}}$, that is, $\quad \mathrm{E}=\int \gamma \mathrm{y}(\mathrm{x}) \sqrt{1+\mathrm{y}^{\prime}(\mathrm{x})^{2}} \mathrm{dx}$
On the other hand, the total length l is given by:

$$
\mathrm{l}=\int \frac{\mathrm{ds}}{\mathrm{dx}} \mathrm{dx}=\int \sqrt{1+\mathrm{y}^{\prime}(\mathrm{x})^{2}} \mathrm{dx}
$$

a) Write the Lagrangean of the problem of finding the cable shape $y(x)$ that minimizes the total gravitational potential energy subject to the constraint that its total length must be l.
b) Find the Lagrangean variation and the differential equation in $y(x)$ that makes the Lagrangean stationary. Attempt to simplify at the maximum your final equation.
c) You should have found a $2^{\text {nd }}$ order differential equation in item b). Now find from the stationarity condition of the Lagrangean a constant value along the cable as a function solely of $y(x)$ e $y^{\prime}(x)$ (that is, you must now find a first order diferential equation for $y(x)$).
Suggestion: Although the derivatives of the equation from item b) are in relation to the variable x, the
equation can be integrated in y observing that $y^{\prime \prime}(x)=\frac{d}{d x} y^{\prime}=\frac{d y}{d x} \frac{d y^{\prime}}{d y}=y^{\prime} \frac{d y^{\prime}}{d y} \quad$ and $\frac{d}{d y} \frac{y}{\sqrt{u}}=\frac{1}{\sqrt{u}}-\frac{y u^{\prime}}{2 u^{3 / 2}}$. Alternatively, you may apply Beltrami's Identity.
d) Show that the catenary curve $y(x)=a \cosh ((x-b) / a)$, where a e b are constants, is a solution of the differential equation from item c). $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ is the hyperbolic cosinus. Notice that $\frac{d}{d x} \cosh (x)=\sinh (x)=\frac{e^{x}-e^{-x}}{2}$ and $1+\sinh (x)^{2}=\cosh (x)^{2}$.

