ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ENGENHARIA AMBIENTAL — 1º SEMESTRE 2023

PQI 3221: CINÉTICA QUÍMICA E PROCESSOS AMBIENTAIS

AULA 03

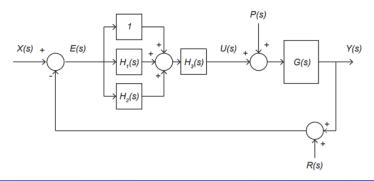

REPRESENTAÇÃO ESQUEMÁTICA DO FENÔMENO EM ESTUDO: ELABORAÇÃO DE FLUXOGRAMAS

DIAGRAMA DE BLOCOS vs. FLUXOGRAMA

Quando for solicitado a você que faça estimativas (ou determinações) envolvendo Balanços Materiais, é essencial organizar as ideias antes de abordar o(s) problema(s)

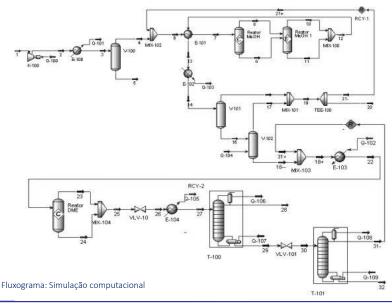

Para isso vale a pena usar de recursos gráficos para descrever a situação em análise, pelo fato deles serem (exatamente) visuais e intuitivos. Suas modalidades mais frequentes são o DIAGRAMA DE BLOCOS, forma de descrição simplificada, e o FLUXOGRAMA que dispõe de mais recursos que o anterior, mas que exige conhecimentos técnicos prévios para sua elaboração

Diagrama de Blocos: exemplo: Circuito elétrico

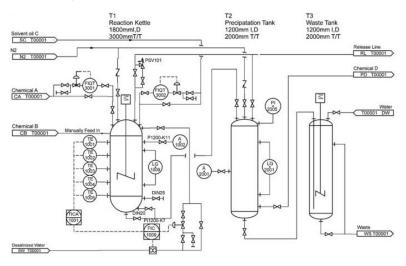
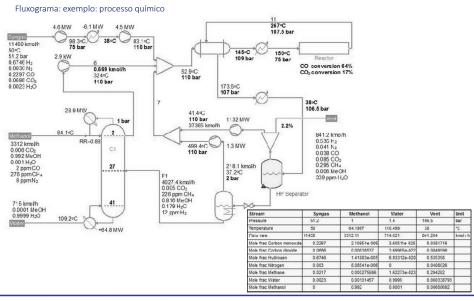

3

DIAGRAMA DE BLOCOS vs. FLUXOGRAMA


DIAGRAMA DE BLOCOS vs. FLUXOGRAMA

Fluxograma: Instrumentação de processo

5

DIAGRAMA DE BLOCOS vs. FLUXOGRAMA

REPRESENTAÇÃO ESQUEMÁTICA DO FENÔMENO EM ESTUDO: FLUXOGRAMA DE PROCESSO

Problema

Suponha que 1000 mol $\rm O_2$ do ar são colocados em contato com 100 mol propano ($\rm C_3H_8$) em uma câmara de combustão que opera segundo processo de batelada.

 O_2 e C_3H_8 reagem entre si no interior desse compartimento, consumindo 25% da quantidade total de oxigênio alimentado ao sistema, mas apenas uma parte do C_3H_8 . Além de energia, essa interação gera também CO_2 e H_2O como subprodutos materiais.

Para que o gás carbônico possa ser aproveitado em outro processo, ele precisa ser separado da água. Para tanto, a corrente emanada do reator alimenta um condensador. O equipamento foi projetado para que os gases de combustão circulem em seu interior por tempo suficiente para que toda a água passe para a fase líquida. Nessas condições, ela é então recolhida em um compartimento interno do condensador, de onde será drenada para o ambiente.

Pede-se:

A) Construir o fluxograma que representa o processo em questão indicando valores e condições que descrevam seu funcionamento.

- 7

FLUXOGRAMA: INDICAÇÃO DAS UNIDADES DE PROCESSO

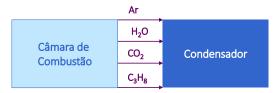
Unidades de Processo: Câmara de Combustão e Condensador

Unidade de Processo n.1: Câmara de Combustão

Correntes de Entrada: propano (C₃H₈) e ar

9

Unidade de Processo n.1: Câmara de Combustão


Correntes de Saída: CO₂,H₂O além de **propano (C₃H₈) e ar**

Observe que nem todo o ${\rm C_3H_8}$ e nem todo o ar foram consumidos para formar produtos

Unidade de Processo n.2: Condensador

Correntes de Entrada: C₃H₈, ar, CO₂ e H₂O

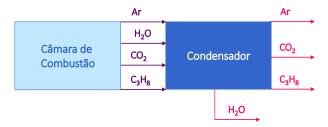
11

REPRESENTAÇÃO ESQUEMÁTICA DO FENÔMENO EM ESTUDO: FLUXOGRAMA DE PROCESSO

Problema

Suponha que $1000 \text{ mol } O_2$ do ar são colocados em contato com 100 mol propano (C_3H_8) em uma câmara de combustão que opera segundo processo de batelada.

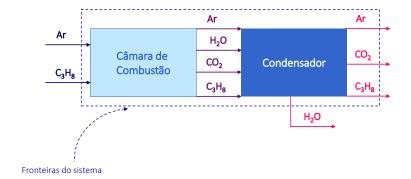
 $O_2 e C_3 H_8$ reagem entre si no interior desse compartimento, consumindo 25% da quantidade total de oxigênio alimentado ao sistema, mas apenas uma parte do $C_3 H_8$. Além de energia, essa interação gera também CO_2 e H_2O como subprodutos materiais.


Para que o gás carbônico possa ser aproveitado em outro processo, ele precisa ser separado da água. Para tanto, a corrente emanada do reator alimenta um condensador. O equipamento foi projetado para que os gases de combustão circulem em seu interior por tempo suficiente para que **toda a água passe para a fase líquida**. Nessas condições, ela é então recolhida em um compartimento interno do condensador, de onde será drenada para o ambiente.

Pede-se:

A) Construir o fluxograma que representa o processo em questão indicando valores e condições que descrevam seu funcionamento.

Unidade de Processo n.2: Condensador


Correntes de Entrada: C₃H₈, ar, CO₂ e H₂O

Observe que de acordo com o enunciado, o condensador é o equipamento em que ocorre a mudança de fase da água de vapor → líquido. Assim, é recomendável que essa substância seja colocada em uma posição de destaque no fluxograma, de modo a caracteriza precisamente a separação

13

FLUXOGRAMA COMPLETO DO PROCESSO

FLUXOGRAMA: CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO

Após o fluxograma ter sido elaborado, inicia-se a etapa de identificação das correntes que circulam pelo sistema.

Isso se faz associando a cada corrente, quaisquer informações que sobre elas estejam disponíveis no enunciado do problema, ou, em situações reais, em um memorial descritivo do processo, gerado, por exemplo a partir de levantamentos de campo

As atividades de identificação e caracterização de correntes consiste de um procedimento sistematizado que envolve duas etapas:

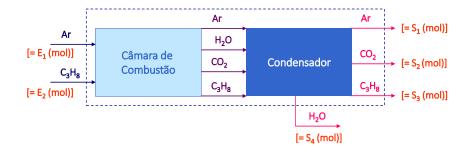
- A) Registro das quantidades (com as respectivas unidades), de todas as variáveis que estejam disponíveis para caracterizar uma determinada corrente
- B) Aplicação de notação (ou simbologia algébrica) convencional, mas adequada, para definir as variáveis não conhecidas que de corrente

15

REPRESENTAÇÃO ESQUEMÁTICA DO FENÔMENO EM ESTUDO: FLUXOGRAMA DE PROCESSO

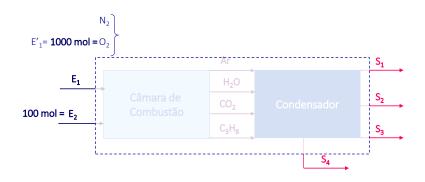
Problema

Suponha que $1000 \text{ mol } O_2$ do ar são colocados em contato com $100 \text{ mol propano } (C_3H_8)$ em uma câmara de combustão que opera segundo processo de batelada.


 $O_2 e C_3 H_8$ reagem entre si no interior desse compartimento, consumindo 25% da quantidade total de oxigênio alimentado ao sistema, mas apenas uma parte do $C_3 H_8$. Além de energia, essa interação gera também CO_2 e H_2O como subprodutos materiais.

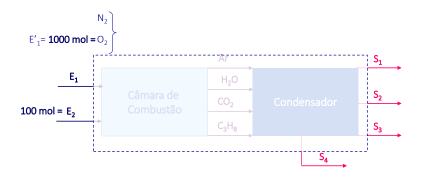
Para que o gás carbônico possa ser aproveitado em outro processo, ele precisa ser separado da água. Para tanto, a corrente emanada do reator alimenta um condensador. O equipamento foi projetado para que os gases de combustão circulem em seu interior por tempo suficiente para que toda a água passe para a fase líquida. Nessas condições, ela é então recolhida em um compartimento interno do condensador, de onde será drenada para o ambiente.

Pede-se:


A) Construir o fluxograma que representa o processo em questão indicando valores e condições que descrevam seu funcionamento.

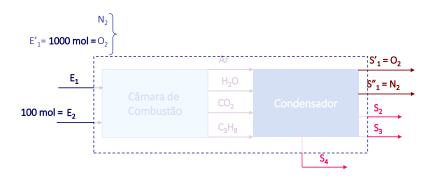
CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (A)

17


CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (B)

O enunciado fala em 1000 mol O_2 . No entanto, a fonte do comburente remete ao ar atmosférico. Assim a corrente E_1 pode na verdade ser subdividida em $E'_1 = O_2$ e $E''_1 = N_2$

Já a corrente E_2 compreende $100 \text{ mol } C_3H_8$


CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (B)

Da mesma forma, à saída do sistema, a corrente S_1 irá então ser subdividida em outras duas: $S'_1 = O_2 \in S''_1 = N_2$

19

CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (B)

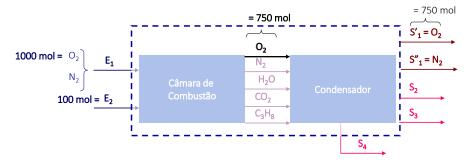
Da mesma forma, à saída do sistema, a corrente S_1 irá então ser subdividida em outras duas: $S'_1 = O_2 \in S''_1 = N_2$

REPRESENTAÇÃO ESQUEMÁTICA DO FENÔMENO EM ESTUDO: FLUXOGRAMA DE PROCESSO

Problema

Suponha que $1000 \text{ mol } O_2$ do ar são colocados em contato com 100 mol propano (C_3H_8) em uma câmara de combustão que opera segundo processo de batelada.

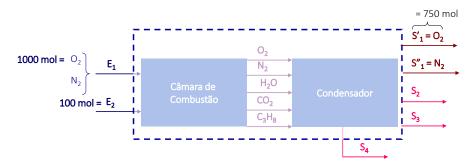
 $O_2 e C_3 H_8$ reagem entre si no interior desse compartimento, **consumindo 25% da quantidade total de oxigênio** alimentado ao sistema, mas apenas uma parte do $C_3 H_8$. Além de energia, essa interação gera também CO_2 e H_2O como subprodutos materiais.


Para que o gás carbônico possa ser aproveitado em outro processo, ele precisa ser separado da água. Para tanto, a corrente emanada do reator alimenta um condensador. O equipamento foi projetado para que os gases de combustão circulem em seu interior por tempo suficiente para que toda a água passe para a fase líquida. Nessas condições, ela é então recolhida em um compartimento interno do condensador, de onde será drenada para o ambiente.

Pede-se:

A) Construir o fluxograma que representa o processo em questão indicando valores e condições que descrevam seu funcionamento.

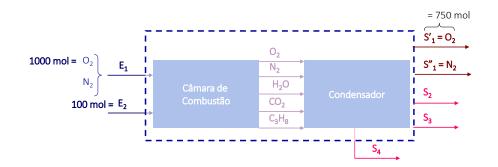
21


CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (B)

Observe que, de acordo com o enunciado, apenas 25% do oxigênio que entra com o ar reage efetivamente com C_3H_8 e assim, o restante (75% dos 1000 mol de O_2) seguem para o condensador

Além disso, como o condensador não tem ação física sobre esse gás, a mesma quantidade de O_2 deixará o sistema na corrente S_1'

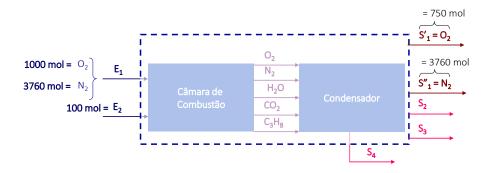
CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (B)


Note-se que a reação ocorre em base molar. Logo é possível – indicando como **premissa**, conhecer a quantidade de N_2 que circula pelo sistema. Isso ocorre pois, em base molar a composição do ar atmosférico é de **21%** O_2 e **79%** N_2 .

Logo:

$$\binom{N_2}{O_2} = \binom{79}{21} = 3,76$$

23


CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (B)

Assim, se entram no sistema com o ar, 1000 mol O_2 , a estes virão agregados **3760 mol N_2**.

Como o N_2 é inerte às transformações que ocorrem ao longo do processo, esse sairá sem alterações de quantidade na corrente $S^{\prime\prime}_{1}$.

CARACTERIZAÇÃO DAS CORRENTES DE PROCESSO: Passo (B)

Assim, se entram no sistema com o ar, 1000 mol O₂, a estes virão agregados 3760 mol N₂.

Como o N_2 é inerte às transformações que ocorrem ao longo do processo, esse sairá sem alterações de quantidade na corrente $S^{\prime\prime}_1$.

25

FLUXOGRAMA DE PROCESSO

Problema

A desidrogenação catalítica do propano (C_3H_8) , ocorre em um reator de recheio que opera em regime contínuo. Exatos 1000 kg/h de C_3H_8 puro são pré-aquecidos a uma temperatura de 670°C antes de passarem pelo reator. O efluente gasoso emanado desse equipamento – no qual estão incluídos propano, propileno, metano e hidrogênio – é resfriado de 800°C para 110°C e alimentado em uma torre de absorção na qual o C_3H_8 e o C_3H_6 são solubilizados em óleo.

A mistura óleo-hidrocarbonetos é enviado a uma torre de separação para que os gases sejam liberados por aquecimento. C_3H_6 e C_3H_8 são recomprimidos e enviados a uma torre de destilação onde serão separados entre si. O C_3H_8 será circulado a fim de se juntar à alimentação do pré-aquecedor do reator. O produto de topo da torre de destilação contém 96% C_3H_6 em massa, enquanto a corrente de reciclo, 98% molar de C_3H_8 . O óleo separado é circulado novamente para a torre de absorção.

Pede-se:

- A) Construir o fluxograma que descreve o processo em questão
- B) Identificar as correntes que circulam por ele com os dados disponíveis

EQUAÇÃO GERAL DE BALANÇO

Problema

A cada ano, 50000 pessoas se mudam para determinada cidade e 75000 pessoas a deixam. No mesmo período, nesta mesma localidade são registrados em média, 22000 nascimentos e 19000 óbitos.

Pergunta-se:

O que se pode dizer a respeito variação populacional deste centro metropolitano?

27

EQUAÇÃO GERAL DE BALANÇO

Um balanço constituído para qualquer quantidade conservada (p.e. massa, quantidade de matéria, massa específica, energia, momento, entre outros) em um dado sistema, o qual pode corresponder a um processo simples, uma coleção de unidades interligadas ou mesmo, uma planta inteira, será descrito como:

$$[A] = [E] - [S] + [G] - [C]$$

Onde:

 $\hbox{\cite{thmulum:energy:energ$

[S]: SAÍDA – quantidade de matéria que saem pela fronteira do sistema;

[G]: GERAÇÃO – matéria produzida no sistema por transformação de reagentes;

[C]: CONSUMO – matéria consumida no sistema para a geração de produtos;

CONDIÇÕES DE PROCESSO

Regime Permanente

Se estabelece quando os valores de parâmetros de processo (taxas, temperaturas, pressões, volumes, concentrações, etc.) NÃO variam com o tempo, exceto por conta de flutuações mínimas no entorno de um valor médio. Essa condição faz com que NÃO haja acúmulo de material dentro do sistema

Se:

[A] = 0

 \rightarrow [E] + [G] = [S] + [C]

Regime Transiente

Ocorre quando uma (ou mais) das variáveis de processo varia(m) com o tempo. Essa situação gera acúmulo de material

Se:

[A] \neq 0 (ou seja: [A] < 0 ou > 0)

 \rightarrow

[A] = [E] - [S] + [G] - [C]

29

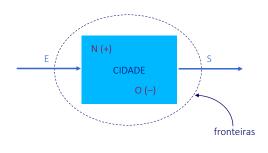
SOLUÇÃO

Base de Cálculo: 1 ano

Fenômeno: variação da população

Variável em estudo: nº. de pessoas

Equação Geral de Balanço de Matéria


$$A = E - S + G - C$$

Premissas:

- a) Variação populacional = A
- b) Pessoas que vêm morar na cidade = E
- c) Pessoas que se transferem da cidade = S
- d) Nascimentos = N [= G (aporte positivo)]
- e) Óbitos = O [= C (aporte negativo)]

Ou seja,

$$A = E - S + N - O$$

SOLUÇÃO

A = E - S + N - O

A = 50000 - 75000 + 22000 - 19000

A = - 22000 pessoas / ano

Observações:

- A) Como o total de ACÚMULO A ≠ 0: sistema "CIDADE" opera em REGIME TRANSIENTE;
- B) Tendo em vista o fato de A < 0: no ano em referência ocorreu um DÉFCIT populacional na cidade

31

PROCESSOS DE MISTURA

Problema

Uma solução aquosa contém 20% de NaOH em massa. A partir dela, pretende-se produzir uma solução com 8,0% NaOH e, para tanto, a solução original será diluída com água pura.

Para esse contexto, pede-se que sejam calculadas:

- a) Desenhar o diagrama de blocos do processo indicando as correntes envolvidas e demais informações disponíveis no enunciado
- b) Razão R_1 = (quantidade de água / quantidade alimentada);
- c) Razão R_2 = (quantidade de produto / quantidade água)