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Infrared thermography is a technique that has been utilized to assess the thermal status of

animals. This study proposes a convolutional neural network (CNN)-based method for the

individual classification of the thermal condition of dairy cows using thermal images of

specific body surface regions. The experiment was carried out with 26 lactating cows

(Holstein) during summer and winter (40 days). Meteorological data were collected every

30 min and rectal temperature (trectal), respiratory rate (RR), and surface temperature (tsf)

were measured three times a day (5 a.m., 1 p.m., and 7 p.m.). tsf was correlated with RR and

trectal and selected as input data of the models. Thus, thermal images were labelled ac-

cording to the RR and trectal categories and employed in the investigation of four CNN-based

models constructed by supervised learning and cross-validation protocols. Performance

was assessed by confusion matrix metrics (accuracy, precision, recall, and F1-score)

comparing the predicted labels and true labels. The best results were obtained with the

models that used forehead images. The model using images labelled according to three RR

thermal levels has an accuracy of 76%, and the model labelled according to three trectal
thermal levels has an accuracy of 71%. The method based on deep learning allowed us to

generate a computational classifier that considers not only the temperature intensities

from thermographic images but also their distribution profile to identify patterns referring

to thermal conditions in dairy cows.
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1. Introduction

Thermal stress evaluation has been increasingly performed to

maintain the welfare of dairy cattle, as its impact on the

health and productivity of animals has already been consoli-

dated. The infrared thermography technique has become a

useful tool for assessing thermal stress by monitoring the

body surface temperature (tsf) in dairy cattle (Sellier et al.,

2014).

If the internal temperature of animals is affected by envi-

ronmental factors, thermoregulatory mechanisms are acti-

vated to generate or dissipate heat, seeking to recover the

internal thermal balance (homeothermy). Thermal stress oc-

curs because of the imbalance in these heat exchanges that in

unfavourable environmental conditions require animals to

accelerate thermoregulatory activities. Under these condi-

tions, cattle may not express their genetic potential by using

the energy available to maintain homeothermy, affecting

their productive and reproductive performance (Allen et al.,

2015).

Cows subjected to high air temperatures tend to decrease

matter consumption, which directly affects the production

and composition of milk. Additionally, thermal stress affects

reproductive activity as it negatively influences natural mat-

ing behaviour, hormone production, and heat (Polsky & von

Keyserlingk, 2017).

Aside from the advantage of being able to quickly and

noninvasively collect a thermoregulatory response, thermal

images still require time and specialized staff to interpret the

results. An automatic way to interpret this type of image can

contribute to the generation of real-time information and

more efficient reports, despite the need to expand the data

exchange capacity between two systems (Van Hertem et al.,

2017). In this context, a convolutional neural network (CNN),

which is a deep learning (DL) technique, has been applied to

detect patterns in images.

Advances in CNN knowledge have stimulated the use of

the technique in livestock research to solve problems

involving image classification (Misimi et al., 2017), including

the prediction of body condition score (BCC) in dairy cows

(Rodrı́guez Alvarez et al., 2018), individual pig recognition

systems (Hansen et al., 2018), prediction of intramuscular fat

in live pigs through ultrasound image analysis (Kvam &

Kongsro, 2017) and posture recognition systems of lactating

sows using Kinect (Zheng et al., 2018). Nonetheless, CNNs

have not yet been widely employed to interpret thermal im-

ages, which are commonly used to monitor heat exchange

between animals and the environment (Pacheco et al., 2020;

Ricci et al., 2019; Salles et al., 2016). CNNs can be useful for

extracting patterns and colour distribution (temperature dis-

tribution) to predict the thermal condition of dairy cows. In

addition, this technique enables the use of raw images to

predict heat stress in dairy cows without requiring additional

on-farm expertise, significantly reducing the workload of

processing, standardizing and pipeline analysis of the images.

To date, no work has developed a CNN model that only

used thermal images to assess the thermal condition level of

cows. Therefore, the objective of this work is to propose an

innovative method using a CNN-based model to classify
thermal images obtained from dairy cattle using two image

databases: a database labelled according to three respiratory

rate (RR) levels and a database labelled according to three

rectal temperature (trectal) levels.
2. Materials and methods

The investigated computational models were based on CNNs

and applied thermal images of different body regions of

lactating cows (Holstein) as input. For this purpose, the ther-

mal images were labelled according to thermal levels defined

for the RR and trectal readings to build an image database for

model training. The experiment was carried out according to

the Institutional Animal Care and Use Committee Guidelines

of the Faculty of Animal Science and Food Engineering of the

University of S~ao Paulo (protocol 4,768,290,118). Data collec-

tion and modelling are detailed below.

2.1. Experimental design and data collection

The experiments were carried out during the winter and sum-

mer seasons at the facilities of the Faculty of Animal Science

and FoodEngineering (FZEA)of theUniversity of S~aoPaulo (USP)

in Pirassununga, SP, Brazil, located at 21�5700200S, 47�2705000W, at

a mean elevation of 630 m above sea level. The climate of the

region is K€oeppen Cwa with two well-defined seasons (rainy

summer and drywinterwith rare occurrences of frost). The city

has an average annual air temperature of 21.5 �C. In winter, the

mean air temperature, relative humidity, and dew point were

19.17±4.97 �C,70.81%±18.73%,and13.00±3.04 �C, respectively.
In summer, the parameters were 29.21 ± 6.20 �C,
62.59% ± 20.51%, and 20.33 ± 1.79 �C, respectively.

The adult cows are housed in a free-stall barn with a

cement tile roof (uninsulated), wooden structures separating

bays, a rough cement floor with a slope of 10%, and a ceiling

height of 3.2 m (total covered area of 200 m2, 16 � 13 m,

southeast orientation, with an outside pasture area). The

building has 20 free-stall bayswith sand litter. The feeding area

is covered and located inside the building and is dimensioned

based on an extension of 80 cm per animal. The water troughs

are located at the ends and centre of the free-stall barn. The

feed distribution (fodder) and milking were performed twice a

day at 7 a.m. and 2 p.m. The animalswere fed corn silage (30%),

Tifton hay (10%), and concentrate (60%) twice a day at 7 a.m.

and 3 p.m., which contained 76% total digestible nutrients and

18% crude protein. RR and trectal were collected with data from

an experiment carried out for 20 days in winter and 20 days in

summer. In both seasons, RR, trectal and thermal images (in this

order) were collected to evaluate body surface temperatures

(tsf) of different regions of the animals.

The physiological measurements of trectal, RR, and tsf of all

cows were conducted for 20 days in winter and 20 days in

summer with all cows at 5 a.m., 1 p.m., and 7 p.m. The trectal
was manually recorded with a digital thermometer (VMDT01,

Viomed, China). The RR was determined through a time count

of every ten flank movements (breaths), and then breaths per

minute were calculated. tsf was measured with a thermo-

graphic camera (875e2, Testo SE & Co. KGaA, Germany) with

an emissivity of 0.98, approximately 2 m from each of the four
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animal body regions: forehead, ocular area, rib, and flank. The

weather data were monitored with a data logger (HOBO U12,

Onset Computer Corporation, USA), which was fixed to the

centre of the pens at a height of 3 m. The weather variables

were automatically recorded every 30 min throughout both

the summer period and winter period and accordingly

matched the physiological measurements.

The thermal images were interpreted with the software

IRsoft 4.4 (Testo SE & Co. KGaA, Germany) to determine the

mean temperatures of the forehead (tsf-fr), rib (tsf-r), and flank

(tsf-fl) and the maximal temperature of the ocular area (tsf-o).

The reflective temperature in the software was set according

to the average air temperature during the time of collection

and the emissivity was set to 0.95. For each body region, a

specific smaller area defined a subarea in each image (Fig. 1).

2.2. Data analysis and construction of the thermal
image database

The SAS Corr procedure (SAS Institute Inc., Cary, NC) was

selected to determine the best Pearson correlation coefficient

among physiological data (tsf by thermography, RR, and trectal)

to choose which body regions would be most suited for the

CNN model. Subsequently, the images of the selected body

regions (tsf-fr and tsf-o) were preprocessed using the software

IRsoft and scripts developed in Python 3.5.4 rc1 and MATLAB

R2015a to improve and organise the database according to the

following steps: (1) saving temperature matrices (IRSoft); (2)

reconstruction of the thermal images; (3) regions of interest

(RoIs) defined by a rectangular area of the forehead (RoIf) and a

circle of the ocular area (RoIo) was selected in the recon-

structed images; (4) determination of the temperature range

used to reconstruct the thermal image database; (5) data

augmentation operations; and (7) organization of the image

database labelled according to RR and trectal labelling classes.

Using IRSoft software, the images were selected as tem-

perature matrices of 160 � 120 pixels, reflecting the temper-

ature profile of each region of the selected body surface (tsf-fr
and tsf-o). In total, 1867 images of the RoIf and 1865 images of

the RoIo were saved. Thermal images were reconstructed so
Fig. 1 e Thermal images of the specific sub-areas for each

animal body region: (a) ocular area, (b) forehead, (c) rib, and

(d) flank, respectively.
that each specific region of each image was cropped (MATLAB

R2015a script), generating new temperature matrices. The

cutout sizes are listed as follows: 32 � 48 pixels for the RoIf
and 24 � 24 pixels for the RoIo. From these RoIs, a general

histogram was developed for each region to determine the

ideal temperature range for the uniform reconstruction of the

RoIs from the thermal images (Fig. 2). The temperatures were

converted to the Jet colourmap, and the palette was selected

from the matplotlib library (Python). The palettes (colour-

maps), including the jet, have 256 different colours in which

the temperatures can be represented. To obtain a colour

image with a good representation of the temperature matrix,

a different colour (or tone) is selected for each tenth of a de-

gree of temperature variation. In the case of the RoIf, as the

histogram was broader, the range of 14e39 �C was selected,

resulting in images with 250 different colours. In the case of

the RoIo, as the histogram was narrower, the range of

24e39 �C was utilized, resulting in images with 150 different

colours.

Translation and mirroring techniques have also been

applied to the original images to enlarge the database using

Python script. Translation consists of applying a crop filter

that is smaller than the original image at different positions of

the image so that new images are formed from the cropped

pieces of the original image. Themirroring technique consists

of making a 180� rotation in the original image to form a

second image with the inverse of the original image. Thus, 10

samples with 20 � 20 pixels (jpg) were obtained from each

cropped thermal image (jpg) through horizontal mirroring

combined with 5 translations (Fig. 3).

The total thermal image database that was constructed

was labelled according to three RR labelling classes and three

trectal labelling classes (Table 1). The criteria for the limits for

the RR and trectal labelling classes were created to establish a

balanced database in each class according to available data

and previous studies (Burfeind et al., 2012; Kadzere et al.,

2002), but the proposed method allows adjustment of these

limits before running new models according to the need for

age and lineage race. Thus, it was possible to work with

similar amounts of images in each class of RR and trectal, which

is important for the learning process of the CNN-based

models. Thus, two image databases were manually created

from thermal images, hereinafter referred to as “true label”,

with each database having its thermal images divided into 3

RR or trectal labelling classes.

2.3. Deep learning-based modelling and evaluation

The CNN-based models that use thermal images were setup,

trained, and modified, if necessary, to obtain accurate re-

sponses and the best model for automatic classification of

thermal images. At the end of this work, four classifiermodels

were developed. Two classifiers employed thermographic

RoIf: the first classifier was trained with respiration rate-based

labelling (CNNF-RR), and the second classifier was trained with

rectal temperature-based labelling (CNNF-RT). Similarly, two

more models were built with thermographic RoIo: the first

model was trained with respiration rate-based labelling

(CNNO-RR), and the second model was trained with rectal

temperature-based labelling (CNNO-RT).

https://doi.org/10.1016/j.biosystemseng.2022.07.001
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Fig. 2 e Temperature distribution histograms from the temperature maps of regions of interest of the forehead (tsf-fr) (a) and

ocular area (tsf-o) (b).

Fig. 3 e Example of the mirroring and translation techniques to increase the database of the region of interest of the ocular

area RoIo.
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The CNN architecture was built according to the sequential

model and uses TensorFlow of the Keras 2.0.6 library for Py-

thon, using TensorFlow as the back-end. According to the

cross-validation protocol, the RoIs images were divided into

80% for training, 10% for validation, and 10% for testing. The

models were built from the training data and their evolution

followed through the validation data. The trained models

were compared with the test data during a process that was

repeated 3 times, preserving themodelwith better accuracy. A

fine-tuning process based on the best accuracy model made it

possible to define values for the following hyperparameters:

type (convolution and pooling), size and number of filters,

step, activation function (‘relu’) and number of layers until the

final models were obtained (Fig. 4). The results reflect the best

accuracy obtained for eachmodel (CNNF-RR, CNNF-RT, CNNO-RR

and CNNO-RT).
The performance of the trained models was evaluated

using the confusion matrices by comparing the predicted

labels obtained from the test phase of the classifiers with

the true labels. Through the confusion matrix, it is possible

to evaluate the efficiency of the classifiers in terms of ac-

curacy, precision, recall, and F1 score, as described by

Sokolova and Lapalme (2009; Eqs. (1)e(4)). General accuracy

is an important metric that cannot be evaluated in isolation.

As the accuracy observes the general sum for the correct

answers, it can count on the addition of erroneously clas-

sified examples, or in the case of unbalanced classes, it can

represent the correct answers accumulated in just one class.

Therefore, it is important to observe other metrics, such as

precision and recall. Precision indicates the classifier's
ability to avoid classifying incorrect data such as correct

answers, and recall shows the classifier's ability to obtain all

https://doi.org/10.1016/j.biosystemseng.2022.07.001
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Table 1 e Respiratory rate (RR) and rectal temperature (trectal) labelling classes considered for the distribution of the thermal
imaging database.

RR labeling class (breaths/min) RoIf (Number of images) RoIo (Number of images)

<40 6500 6490

41e60 6370 6380

>60 5610 5610

Total 18,480 18,480

trectal labeling class (�C) RoIf (Number of images) RoIo (Number of images)

<38.4 6740 6730

38.5e39.0 6640 6650

>39.0 5130 5130

Total 18,510 18,510

aThe difference in the number of samples between the databases is due to the difference in the number of images between the region of interest

of the forehead (RoIf) and the region of interest of the ocular area (RoIo) and the existence or not of the RR and/or trectal value associated with a

given image.
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the correct samples for each class (Sokolova & Lapalme,

2009). Thus, if the precision is low, the model is giving ex-

amples from other classes to the observed class. On the

other hand, if the recall is low, the classifier encounters

difficulty obtaining correct examples. To concurrently

evaluate these two metrics, the F1 score is calculated as the

harmonic average between precision and recall. An ideal

model has an F1 score value similar to that of accuracy. All

metrics were calculated based on the values identified in the

confusion matrix as true positives (tp), true negatives (tn),

false-positives (fp) and false negatives (fn). Values identified

as tp are those correctly identified as belonging to the class,

and tn are the values correctly identified as not belonging to

the analysed class. The fp values are those misidentified as

belonging to the class and the fn values misidentified as not

belonging to the analysed class (Sokolova & Lapalme, 2009).

Accuracy¼
Pl

itp
n

(1)

Precision¼ tp
tp þ fp

(2)

Recall¼ tp
tp þ fn

(3)

F1� Score ¼
Pl

i
2 * Precisioni* Recalli
Precisioni* Recalli

classes
(4)

where n is total number of images classified, and l is the

number of classes.
Fig. 4 e Layer's structure of the developed model.
3. Results

Table 2 presents the descriptive data from the animals (RR,

trectal, and tsf) and from the environment (DBT and WBT) ob-

tained during the entire period of the experiment. The DBT

(37.65 �C) and the maximum RT (41.1 �C) observed indicated

that the animals were exposed to thermal stress.

The mean (tsf-fr, tsf-r, and tsf-fl) and maximum (tsf-o) values

were correlated with physiological data (RR and trectal) (Table

3). Among all body surface areas, tsf-fr was more correlated
with the RR (0.70), and tsf-o was the best correlated with trectal
(0.61); therefore, the thermal images of these specific body

regions were selected as inputs for CNN-based computational

models. Therefore, considering the available database, 18,480

thermal images from RoIf were selected to build CNNF-RR and

CNNF-RT, and 18,510 images from RoIo were utilized in the

construction of CNNO-RR and CNNO-RT.

Although tsf-fr was better correlated with RR and tsf-o was

better correlated with trectal, all body regions showed median

values of correlation with these variables (between 0.55 and

0.70).

3.1. Forehead thermographic classifier with respiration
rate-based labelling

The CNNF-RR confusionmatrix is shown in Table 4. The correct

classifications accounted for an accuracy of 76.3% distributed

in the following classes: <40 breaths/min (26.9%), 41e60

breaths/min (23.7%), and >61 breaths/min (25.8%). To obtain

https://doi.org/10.1016/j.biosystemseng.2022.07.001
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Table 2 e Descriptive statistics.

Data Variables Mean Standard Deviation Min Max

Physiology RR (breaths/min) 52.83 20.55 14.19 126.05

trectal (ºC) 38.74 0.73 36.40 41.10

Infrared Thermography (ºC) tsf-fr Ave 27.85 5.48 12.70 41.10

Min 24.81 6.40 7,00 39.70

Max 32.05 3.65 20.40 43.00

tsf-fl Ave 32.01 3.58 15.50 38.90

Min 30.40 4.07 12.40 37.70

Max 33.40 4.07 12.40 37.70

tsf-r Ave 32.14 3.42 17.50 38.80

Min 30.22 3.78 15.10 38.10

Max 33.67 3.07 19.20 40,00

tsf-o Max 36.65 3.78 15.10 38.10

Temperature DBT (ºC) 23.45 7.43 7.71 37.65

WBT (ºC) 18.36 4.46 6.60 25.70

*Physiological data: respiration rate; trectal: rectal temperature; tsf-fr: forehead surface temperature; tsf-o: surface temperature of ocular area; tsf-r:

rib surface temperature; tsf-fl: flank surface temperature. Weather data: dry bulb temperature (DBT); wet bulb temperature (WBT). Parameters:

average (Ave); minimum (Min); maximum (Max).

Table 3 e Pearson's correlation coefficient relating
physiological variables.

Variable trectal tsf-fr tsf-o tsf-r tsf-fl

RR 0,72 0,70 0,66 0,68 0,66

trectal e 0,55 0,61 0,56 0,55

aRR: respiration rate;: rectal temperature; tsf-fr: mean forehead

surface temperature; tsf-o: maximal surface temperature of ocular

area; tsf-r: mean rib surface temperature; tsf-fl: mean flank surface

temperature.
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these accuracy values in the classes, we divide the number of

correct answers in the class by the total number of images.

CNNF-RR presented medium to high values of precision

(mean ¼ 76.7%) and recall (mean ¼ 76.7%) and an F1-score of

76.6%. The lowest values of precision and recall were in the

41e60 breaths/min class (67.3% and 68.8%, respectively).

In the <41 breaths∕min class, 496 images were correctly

classified by CNNF-RR (precision¼ 80.0% and recall¼ 76.3%). Of

the 650 images belonging to this class, the model could not

obtain 154 images, of which 136 images were classified as

belonging to the 41e60 breaths/min class and 18 images were

classified as belonging to the >60 breaths/min class. Consid-

ering an applied situation, themodel would consider 154 cows

with an RR higher than the real RR. Regarding the images that

the model considered as belonging to the <41 breaths∕min

class (620 images), it incorrectly classified 124 images: 117
Table 4 e Confusion matrix between the predicted label by CN
(RR) labeling.

True label e RR (breaths∕min) Predict

<41

< 41 496

41e60 117

> 60 7

Precision 80.0%

aBold cells indicate the correct predictions in each class.
images were incorrectly classified as belonging to the 41e60

breaths∕min class and 7 images were incorrectly classified as

belonging to the>60 breaths∕min class. In this case, themodel

would consider 117 cows with an RR lower than the real RR in

an applied situation.

In relation to the central class (41e60 breaths∕min), 438

images were correctly classified (precision ¼ 67.3% and

recall ¼ 68.8%). Of the total images belonging to this class (637

images), themodel predicted 199 images as belonging to other

classes (117 in the <41 breaths∕min class and 82 in the >60
breaths∕min class). In an applied situation, 117 cowswould be

classified with an RR below the real RR and 82 with an RR

above the real RR. Additionally, of the 651 images that the

model classified as belonging to the central class (41e60

breaths∕min), 213 images belonged to other classes. Thus, 136

cows would be considered to have an RR lower than the real

RR, and 77 cows would be considered to have an RR higher

than the real RR.

In the last class (>60 breaths∕min), 477 images were

correctly classified (precision¼ 82.7% and recall¼ 85%). Of the

561 images that were tested, the model incorrectly classified

84 images: 77 images in the 41e60 breaths∕min class, and 7

images in the <41 breaths∕min class. On the other hand, of the

577 images that the model considered for this class, 100 im-

ages belonged to the other classes (82 images belonged to the

41e60 breaths∕min class and 18 images belonged to the <41
breaths∕min class).
NF-RR and the true label, obtained from the respiratory rate

ed labele RR (breaths∕min) Recall

41e60 >60

136 18 76.3%

438 82 68.8%

77 477 85.0%

67.3% 82.7% 76.3%

https://doi.org/10.1016/j.biosystemseng.2022.07.001
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3.2. Forehead thermographic classifier with rectal
temperature-based labelling

A confusionmatrix was also created to evaluate the efficiency

of CNNF-RT (Table 5). The accuracy of themodelwas 70.5%, and

the correct answers were 27.8% in the <38.5 �C class, 20.8% in

the 38.5e39.0 �C class and 21.9% at > 39.1 �C class. Precision

(mean ¼ 70.8%) and recall (mean ¼ 71.1%) presented medium

values, and as with the previousmodel, the results were lower

in the central class (38.5e39.0 �C), with values of 65.7% and

58.0%, respectively. In this case, the F1-score was 70.9%.

Of the 674 images belonging to the <38.5 �C class, 514 im-

ages were correctly classified (precision ¼ 69.4% and

recall ¼ 76.3%). In this class, the model could not obtain 160

images, of which 132 images were classified as belonging to

the 38.5e39.0 �C class and 28 images were classified as

belonging to the >39.0 �C class. Considering an applied situa-

tion, the model would consider 160 cows with a trectal higher

than the real trectal for this true label. Regarding the images

that CNNF-RT considered to belong to the <38.5 �C class (740

images), it incorrectly classified 226 images: 188 images were

incorrectly classified as belonging to the 38.5e39.0 �C class,

and 38 images were incorrectly classified as belonging to the

>39.0 �C class. In this class, the model would consider 88 cows

with a trectal lower than the real trectal in an applied situation.

In the central class (38.5e39.0 �C), 385 images were

correctly placed (precision ¼ 65.7% and recall ¼ 58.0%). In a

total of 664 images, CNNF-RT classified 279 images as belonging

to other classes (188 imageswere classified as belonging to the

<38.5 �C class and 91 images were classified as belonging to

the >39.0 �C class). In this case, 188 cows would be classified

with a trectal below the real trectal, and 91 cows would be clas-

sified with a trectal above the real trectal. Additionally, of the 586

images that the model classified as belonging to the central

class (38.5e39.0 �C), 201 images belonged to other classes.

Thus, 132 cows would be considered to have a trectal lower

than the real trectal, and 69 cowswould be considered to have a

trectal higher than the real trectal. As previously mentioned, the

middle category is the most difficult to predict, as it is a

transition region between the lowest trectal region and the

highest trectal region, and not all animals have the same

physiological response pattern when they are submitted to

the same environmental stimulus.

In the last class (>39.0 �C), 406 imageswere predicted in the

correct class (precision ¼ 77.3% and recall ¼ 79.1%). Of the 513

images that were tested in this class, CNNF-RT classified 69
Table 5 e Confusion matrix between the predicted label
by CNNF-RT and the true label, obtained from the rectal
temperature (trectal) labeling.

True label e trectal (�C) Predicted label e trectal (�C) Recall

<38.5 38.5e39.0 >39.0

< 38.5 514 132 28 76.3%

38.5e39.0 188 385 91 58.0%

> 39.0 38 69 406 79.1%

Precision 69.4% 65.7% 77.3% 70.5%

aBold cells indicate the correct predictions in each class.
images in the 38.5e39.0 �C class and 38 images in the <39.0 �C
class (107 errors). Additionally, of the 525 images that the

model considered for this class, 119 images belonged to the

other classes (91 images belonged to the 38.5e39.0 �C class,

and 28 images belonged to the <38.5 �C class).

3.3. Ocular thermographic classifier with respiration
rate-based labelling

In the confusionmatrix between the CNNO-RR predicted labels

and the true labels, it was possible to observe that CNNO-RR

reached an accuracy of 64.0% (Table 6). The correct answers

were distributed as follows: 24.3% for the <41 breaths/min

class, 17.6% for the 41e60 breaths/min class and 22.1% for the

>60 breaths/min class. For CNNO-RR, the precision value and

recall value were lower in the central class (41e60 breaths/

min), with values of 52.1% and 50.1%, respectively. The pre-

cision value (mean¼ 64.5%) and recall value (mean¼ 39.8%) of

CNNO-RR were below the values of CNNF-RR. The F1-score value

was 64.3%, which was similar to that of accuracy.

A total of 449 images were correctly classified as belonging

to the <41 breaths/min class (precision ¼ 65.7% and

recall ¼ 69.2%). Of the 649 images belonging to this class, 171

images were erroneously classified as belonging to the 41e60

breaths/min class and 29 images were erroneously classified

as belonging to the >60 breaths/min class. In this case, the

model would consider 200 cows with an RR higher than the

real RR. Regarding the images that the CNNO-RR considers to

belong to the <41 breaths/min class (683 images), it mis-

classified 234 images, that is, the model considered 234 cows

with an RR higher than the real RR.

The central class had 325 images correctly labelled

(precision ¼ 52.1% and recall ¼ 50.1%). Of the 638 images

belonging to the central class (41e60 breaths/min), 313 images

were incorrectly classified as belonging to other classes (210

images in the <41 breaths/min class and 103 images in the >60
breaths/min class). In an applied situation, 210 cows would be

classifiedwith an RR below the real RR, and 103 cowswould be

classifiedwith an RR above the real RR. Additionally, of the 624

images that the model classified as belonging to the central

class (41e60 breaths/min), 171 cowswere classifiedwith an RR

lower than the observed RR, and 128 cows were classified as

belonging to the highest class (>60 breaths/min). This class, as

occurred in the CNNO-RR, had the lowest values of precision

and recall. Following the same protocol for the RoIf, these

images seem to have been influenced by the adopted
Table 6 e Confusion matrix between the predicted label
by CNNO-RR and the true label, obtained from the
respiratory rate (RR) labeling.

True label e RR
(breaths∕min)

Predicted labele RR (breaths∕min) Recall

<41 41e60 >60

< 41 449 171 29 69.2%

41e60 210 325 103 50.1%

> 60 24 128 409 72.9%

Precision 65.7% 52.1% 75.6% 64.0%

aBold cells indicate the correct predictions in each class.
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temperature range (24e39 �C). In the case of RoIo, the range

was smaller, which improved the contrast.

The last class (>60 breaths/min) had 409 correctly labelled

images (precision ¼ 75.6% and recall ¼ 72.9%). Of the 561 im-

ages belonging to this class, CNNO-RR could not identify 152

images, which were misclassified, and of the 541 images that

CNNO-RR considered from this class, 132 images belonged to

the other labelling classes. CNNO-RR represents 152 animals

with an RR above 60 breaths/min classified as having a lower

RR and 132 animals with a low RR classified as having an RR

above 60 breaths/min (representing 8.2% and 7.1% of the total

data, respectively). As with the classification of RoIf, the im-

ages of the RoIo were classified with the highest precision and

recall values for the last category (>60 breaths∕min), which is

themost important for accessing thermal stress in dairy cows.

3.4. Ocular thermographic classifier with rectal
temperature-based labelling

The accuracy of the CNNO-RT (Table 7) was 60.1%, and the

correct answers were distributed as follows: 26.6% in the

<38.5 �C class, 12.9% in the 38.5e39.0 �C class and 20.6% in the

>39.0 �C class. The precision (mean ¼ 60.0%) and recall

(mean ¼ 62.7%) presented more unbalanced results compared

with the othermodels, and lower values were obtained for the

central class (52.4% and 40.0%, respectively). For the CNNO-RT

model, the F1-score was 61.3%, which was similar to that of

accuracy.

CNNO-RT classified 492 corrected images from 673 images

classified as belonging to the <38.5 �C class (precision ¼ 58.1%

and recall ¼ 73.1%). Of the 847 images that the model

considered to belong to this class, 355 images were incorrectly

classified: 299 images were incorrectly classified as belonging

to the 38.5e39.0 �C class, and 56 images were incorrectly

classified as belonging to the >39.0 �C class. In this case, the

model indicated 181 cows with a trectal higher than the real

trectal and 355 cows with a trectal lower than the real trectal.

In the central class (38.5e39.0 �C), 238 were correctly clas-

sified (precision ¼ 52.4% and recall ¼ 40.0%). In this class,

which had 665 test images, the CNNO-RT predicted 427 images

as belonging to other classes (299 images in the <38.5 �C class

and 128 images in the >39.0 �C class). In addition, of the 454

images that the model predicted to belong to the central class

(38.5e39.0 �C), 216 images belonged to other classes. Thus, 141

cows would be considered to have a trectal higher than the real

trectal, and 75 cows would be considered to have a trectal lower
Table 7 e Confusion matrix between the predicted by
CNNo-RT and the true label, obtained from the rectal
temperature (trectal) labeling.

True label e trectal (�C) Predicted label e trectal (�C) Recall

<38.5 38.5e39.0 >39.0

< 38.5 492 141 40 73.1%

38.5e39.0 299 238 128 40.0%

> 39.0 56 75 382 74.9%

Precision 58.1% 52.4% 69.4% 60.1%

aBold cells indicate the correct predictions in each class.
than the real trectal. The adopted temperature range (24e39 �C)
for RoIo was smaller and improved the contrast but did not

improve the model's performance.

In the last class (>39.0 �C), 382 images were correctly

classified (precision ¼ 69.4% and recall ¼ 74.9%) of the 513

images that were tested, and the model misclassified 131

images: 75 images in the 38.5e39.0 �C class, and 56 images in

the <38.5 �C class. Of the 550 images that the model consid-

ered for this class, 168 images belonged to the other classes

(128 images belonged to the 38.5e39.0 �C class and 40 images

belonged to the class <38.5 �C). In this case, 168 cows with a

trectal less than 39.0 �C were considered to have a higher

trectal. The critical situation, which would be to classify im-

ages as belonging to the >39 �C class as lower classes and to

classify the lower classes as belonging to the >39.5 �C class,

would be represented by 7.1% and 9.1%, respectively, of the

total data.
4. Discussion

In general, the CNN developed from thermography of the RoIf
presented better results than those developed with the RoIo.

The results are promising when considering the challenges in

standardizing thermal images. Although several authors have

verified the potential of thermography as a noninvasive tool to

monitor the surface temperature of animals (Brown-Brandl

et al., 2013; Church et al., 2014; Salles et al., 2016), there is a

consensus among researchers regarding the difficulty of

standardizing methodologies, both in the use of the equip-

ment and regarding the best body region to capture images

(Church et al., 2014; Schaefer et al., 2004). Meteorological fac-

tors and differences among the investigated animals should

be considered when calibrating equipment, as they influence

the radiation patterns detected by the thermographic camera

(Montanholi et al., 2015).

The accuracy and F1-score showed approximate values for

both CNNF-RR (76.3 and 76.7%, respectively) and CNNF-RT

(70.5% and 70.9%, respectively). These results indicate that the

correct answers were well distributed among the classes. The

F1-scores of CNNO-RR (64.0% and 64.3%) and CNNO-RT (60.1%

and 61.3%) also showed approximate values but were smaller

than those of CNNF-RR and CNNF-RT. In view of this context, the

CNNF-RR and CNNF-RT classifiers presented better results for

predicting the physiological true labelling classes when the

data were submitted to the test stages.

As observed in the methodology, the temperature ranges

represented by the colourmaps for the images of RoIf and RoIo
differed. With a broader histogram, to generate the RoIf, the

range of 14e39 �C was selected, resulting in images with 250

different colours. In the case of the RoIo, with a narrower

histogram, the range of 24e39 �C was selected, resulting in

images with 150 different colours. The adoption of different

temperature ranges and/or colour scales can affect the accu-

racy of the model, since as previously mentioned, they learn

through the pattern of colours and shapes observed in the

images. The range of colours defined to represent the tem-

peratures of the RoIo and the humidity present in the ocular

areamay have influenced the lower precision obtained for the

CNNO-RR and CNNO-RT models compared with CNNF-RT and
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CNNF-RT. The temperature limits distributed over a wide range

may have caused the images in the central temperatures to

lose their shape. This region is the most difficult to predict, as

it is a transition region between the lowest and highest. As

these computational models detect patterns by observing

shapes and colours, this may have impaired the performance

of the model and contributed to the decrease in precision and

recall.

Church et al. (2014) investigated the influence of solar

charge, wind speed, and distance between camera and object

on infrared temperature measurements. The results showed

a difference of 0.56 �C (p < 0.05) between eye temperature

data for the conditions of direct sunlight exposure or no

direct sunlight exposure. Regarding wind speed, when the

measurements were performed under conditions of low

wind speed (7 km/h) and high wind speed (12 km/h), the

temperature reduction was 0.43 �C and 0.78 �C, respectively
(p < 0.001). Church et al. (2014) also cited that the direct solar

charge on Holstein cows has a major influence on body

surface temperature, indicating a difference of up to 15 �C
above the light (white) parts in the dark (black) parts. This

finding reinforces the difficulties encountered in the stan-

dardization of methodologies and the need to adopt certain

measures to reduce variations in the image capture and

analysis process, such as capturing images with the smallest

possible variation in the distance between the camera and

the analysed object; avoiding measurements with direct

sunlight on the object; and monitoring the wind speed,

relative humidity, air temperature, and surface humidity of

the object.

Although these measures were taken into account, some

sources of variation, such as luminosity and wind speed, were

not controlled as the thermal imageswere captured in the field.

Note that the luminosity and wind speed were sources of

variation in this study since the collections were performed at

different times (5 a.m., 12 p.m. and 5 p.m.) and in different

seasonal periods (summer and winter). As CNN learning con-

siders the shape and colour of images to learn patterns, the

conversion of temperatures to colours influenced the learning

of these models. In addition, inherent climatic factors influ-

enced the capture of surface temperatures, and consequently,

the conversion to colour scale. Thus, exploring how these

sources of variation influence image quality and associated

information of period and time of day can further contribute to

improving the accuracy of these CNN-based models.
5. Conclusion

This research explored the potential of deep learning tools for

use as a rapid interpreter of thermal images of adult dairy

cows. Four CNN-based models were designed and compared

using the input of thermal images labelled according to ther-

mal conditions related to the respiration rate and rectal tem-

perature of cows. The models have better potential to classify

thermal images as belonging to three different classes of

stress for the forehead and ocular regions in relation to the

other regions of the body surface. The model generated for

forehead images labelled from respiration rate is more accu-

rate, although both respiration rate and rectal temperature
have served as a good reference for labelling images. The need

to standardise the collection of thermal images and to include

characteristics of the weather in the models is identified, as

these factors directly interfere in the calculation of body sur-

face temperature and colour distribution.
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