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Image analysis for ornamental crops is discussed with examples from the bedding plant

industry. Feed-forward artificial neural networks are used to segment top and side view

images of three contrasting species of bedding plants. The segmented images provide

objective measurements of leaf and flower cover, colour, uniformity and leaf canopy

height. On each imaging occasion, each pack was scored for quality by an assessor panel

and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality

scores for the three species, respectively. Stereoscopy for crop height and uniformity is

outlined briefly. The methods discussed here could be used for crop grading at marketing

or for monitoring and assessment of growing crops within a glasshouse during all stages of

production.

ª 2009 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction developed for industrial applications can be readily adapted
Monitoring the growth and development of crops in

commercial glasshouses requires accurate quantification of

a wide range of plant characteristics from plant height and

flower cover to indications of the presence of pests and

diseases. Ehret et al. (2001) reviewed automated monitoring for

glasshouse crops and Caponetto et al. (2000) discussed the use

of sensors to monitor the crop environment. Langton et al.

(2004) discussed direct measurement of the crop response to

environment while Koumpouros et al. (2004) discussed image

processing for distance diagnosis in pest management.

Modern digital imaging technology is used widely for

routine monitoring in industry, and particularly in food

production (Brosnan & Sun, 2004) and software methods
hool, University of Warw
c.uk (N.R. Parsons).
. Published by Elsevier Ltd
for grading, on-line sorting and management of individual

high value ornamental plants (Brons et al., 1993; Timmermans

& Hulzebosch, 1996). Image grading systems are used for

individual plants such as pot-plants on moving tracks or belts

and machine graders for trays of seedlings where individual

seedlings can be clearly distinguished from their neighbours.

However, the general problem of assessing an area of tightly

packed plants or a batch or pack of plants is much less well

developed. Image analysis methods for complex structures

such as beds or packs of flowering plants are much more

challenging and present many difficulties both in the collec-

tion and the processing of the images.

Ehret et al. (2001) discuss applications of digital imaging

for monitoring glasshouse crops, but do not present any
ick, Coventry CV4 7AL, UK.
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practical results. For many producers, grading and moni-

toring are tackled almost exclusively by a combination of

manual measurement and visual inspection which is highly

labour-intensive and subjective. Computer vision systems

and image analysis offer the potential to automate detailed

measurement and assessment of plants as crops, not just

individual plants and as a first step towards this goal, we

develop reliable methods for routinely extracting important

attributes from images of multiple ornamental plants in

packs. Plant height and height variation is an important

quality attribute and we discuss methods for determining

leaf canopy heights using single fixed side images. Recent

research (Song et al., 2007) has shown the feasibility of

stereoscopic methods for height measurement using over-

head images and future development of stereoscopic

methods should allow height information to be collected for

tightly spaced crops on benches or growing floors where side-

imaging is not feasible.

Commercial protected glasshouse crop environments

allow many important environmental factors (e.g. lighting

and temperature) to be partly or totally controlled during

growth. Currently, most crop husbandry management deci-

sions during production are based on experience, frequent

visual inspection of the crop and time-consuming manual

methods such as tracking plant heights using hand

measurement of pre-selected plants in a growing crop (e.g.

poinsettia tracker, Harwood & Hadley, 2004). The aim of this

paper is to relate overall plant quality to key plant character-

istics measured from digital crop images using automated

image analysis methods. The methodology is applied to

bedding plants in packs and could be used directly for imaging

individual packs on a grading line at marketing. Stereoscopy is

not discussed in detail here but we do show how height

information from a stereoscopic image can be used to improve

the fit of a plant quality model.
2. Materials and methods

2.1. Plants and image acquisition

Bedding plant crops are grown in packs containing typically

12, 24 or 30 plants and must meet tight marketing specifica-

tion often with a tight marketing schedule. A range of bedding

plant species including pansy (Turbo yellow) in spring 2006

and dianthus (Festival Cherry Picotee), viola (Bicolour-

Magnifico) and cyclamen (Silverado Scarlett) in autumn 2006

were grown simultaneously at a UK commercial grower and at

a large research glasshouse facility located at WHRI (Univer-

sity of Warwick, UK). The various species were typical exam-

ples of commercial plant crops selected to represent dense

and sparse leaf canopy cover and flower distributions, and

also wide height variations (see www.warwick.ac.uk/go/

cropimaging for example images). All plants were subjected

to a range of treatments, reported in detail elsewhere

(Edmondson et al., 2007). At the end of production, 72 packs of

pansy, 24 packs each of cyclamen and dianthus, and 48 packs

of viola (24 packs of 24 small plants and 24 packs of 12 large

plants) were selected for imaging and quality assessment.

Only the cyclamen, dianthus and viola results are discussed in
detail here but the pansy is used to illustrate the application of

stereo imaging for bedding plants.

Images were collected both at the end of production and

after two weeks of simulated shelf-life. A single fixed image

captured from the side of each pack allowed estimates to be

made of mean leaf canopy height and flower height. Red–

green–blue (RGB) colour digital images were captured, at

a resolution of 1136� 852 pixels, from all packs routinely

under controlled conditions in a purpose-built light-box from

a fixed height (0.5 m) and orientation directly above and to one

side (0.4 m) of each pack, using a pair of standard commer-

cially available digital cameras.

Although three-dimensional representations of objects

are used widely in medicine and biology, applications in

agriculture are rare (Takizawa et al., 2005), with few devel-

opments in commercial horticulture. In situations where it is

difficult or impossible to collect side view images (e.g. during

plant production), the three-dimensional representation

proves to be an important tool for routine plant quality

assessment and crop scheduling. A detailed discussion of the

recovery of height information from stereo images is beyond

the scope of this paper, so will not be discussed further;

however, a detailed description of the methods used here for

determining individual pixels heights is given by Song et al.

(2007) and Song (2008). The stereo algorithm used here

provided a matrix of heights corresponding to the original

image file, allowing a map of the canopy surface to be

constructed.

2.2. Image segmentation

The first step in analysis was segmentation into multiple

regions of interest (sets of pixels), corresponding to different

objects or parts of objects. A comprehensive discussion of

the principles of image processing is provided by Jain (1989)

and applications in the biological sciences are discussed by

Glasbey and Horgan (1994). Our main aim was to identify

important plant features (e.g. leaves and flowers) from

individual images, which was achieved by classifying indi-

vidual pixels into disjoint groups based on the similarity of

the colour characteristics and vertical positioning (height),

relative to a fixed base point, of each pixel. A wide range of

possible approaches to image segmentation have been

described in the research literature (see for example Pal &

Pal, 1993; Cheng et al., 2001) but in general, the selection of

an appropriate segmentation algorithm depends largely on

the type of image and the application. For our purposes,

unsupervised approaches such as k-means and fuzzy c-

means (MacQueen, 1967; Bezdek, 1981) were found to be

slow and unreliable so a supervised learning method was

developed. This used a training data set, consisting of pairs

of input and target outputs, to develop a model that allo-

cated all valid inputs to only one of a small number of output

classes.

Artificial neural networks are widely applied to problems

in image processing (Egmont-Petersen et al., 2002) and have

been found to be particularly useful for classification prob-

lems generally in agriculture (Jayas et al., 2000; Cerna &

Chytry, 2005). More specifically they have been used both in

computer vision applications for classification of potted

http://www.warwick.ac.uk/go/cropimaging
http://www.warwick.ac.uk/go/cropimaging
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plants (Brons et al., 1993; Timmermans & Hulzebosch, 1996;

Van Kaam, 2001) and for complex knowledge acquisition,

manipulation and extraction of data for other horticulture

applications (Woodford, 2008). Feed-forward neural

networks provide a powerful and general framework for

representing non-linear relationships between input and

output variables; for a detailed description see for instance

Bishop (1995). For classification problems involving mutually

exclusive classes, the most widely used error function

(Ripley, 1994; Bishop, 1995) for training feed-forward neural

networks is

E ¼ �
X

r

X

k

trk loge

�
yrk

�
:

This represents the cross-entropy between the logarithm of

the predicted class membership loge yrk and the observed

indicator of class membership, trk for K mutually exclusive

classes and R training pixels. To avoid over-fitting, it is

common to use the sum of squares of the weights C as

a penalty on the fit criterion E to give Eþ lC. This penalty is

called weight decay and it reduces the ‘noisiness’ of the fit by

reducing the magnitude of weights at each step in the fitting

algorithm; the degree and smoothness of fit is controlled by

the weight decay term l.

An unbiased estimate of the misclassification rate is found

by using n-fold cross-validation (Stone, 1974; Bishop, 1995),

with cross-validated misclassification rates (CVMR) deter-

mined by counting zero if the predicted class (class with the

largest predicted probability yrk) is correct and one otherwise.

A more sensitive method is to use logarithmic scoring, where

�loge yrk is the score for the true class k and zero is the score

for the other classes, giving cross-validated logarithmic scores

(CVLS); mean logarithmic scores, across the R training cases,

provide a useful measure of separation for discrimination

between classes (Titterington et al., 1981).
2.3. Image colour characteristics

Each pixel in an M�N image can be readily allocated to an

appropriate class (e.g. leaf or flower) by a simple visual

inspection of the image and, by replicating this process for

sets of randomly selected pixels, a large training database of

pixel characteristics can be created. The colour values for each

pixel, in each RGB digital image file, are given by rmn, gmn and

bmn where, for the data used here, the red, green and blue

colour intensities are measured on an 8-bit scale from 0 to 255.

The colour properties of each pixel are best expressed in the

normalised colour space using the red Rmn and green Gmn

chromatics and the overall intensity Imn where

Rmn ¼
rmn

rmn þ gmn þ bmn
; Gmn ¼

gmn

rmn þ gmn þ bmn
and

Imn ¼
1

3� 255

�
rmn þ gmn þ bmn

�
;

It follows from the definitions that 0� Rmn� 1, 0�Gmn� 1

and 0� Imn� 1.

The pixels neighbouring each pixel are also important for

determining its classification (see for example Foucher et al.,

2004), therefore the local region properties based on the 8-

connected neighbourhood region for each pixel were also
calculated. The mean red Rmn and green Gmn chromatics and

intensity Imn within the 8-connected region for each pixel are

given by the following expressions:
Rmn ¼
1
9

X

p¼m�1;m;mþ1

q¼n�1;n;nþ1

Rpq; Gmn ¼
1
9

X

p¼m�1;m;mþ1

q¼n�1;n;nþ1

Gpq and Imn ¼
1
9

X

p¼m�1;m;mþ1

q¼n�1;n;nþ1

Ipq;

Standard deviations of the red sd(Rmn) and green sd(Gmn)

chromatics and the intensity sd(Imn) within the 8-connected

spatial region can be defined, and constrained to lie in the

interval [0, 1], in an analogous manner to conventional stan-

dard deviations for each pixel.
2.4. Image analysis

The extraction of quantitative information from images, such

as counts of objects, areas, distances and boundaries, is the

aim of much image analysis (Glasbey & Horgan, 1994).

Previous work has investigated the relationship between hand

measured plant attributes and overall quality for other orna-

mental plant species (Parsons, 2004; Parsons et al., 2006) and

has shown that a small number of key factors usually account

for a large proportion of the variability in recorded quality

assessments. The four most important of these characteris-

tics are defined here and methods are described for their

estimation from segmented images;

(i) Leaf and flower cover. The percentage leaf and flower

cover within an image were estimated by calculating

the percentage class membership based on counts of

the number of pixels in each class in the segmented

image.

(ii) Leaf and flower cover uniformity. The variability in leaf and

flower cover across each pack image was used to estimate

uniformity. The image was sub-divided into regions

covering the individual cells of a pack and the coefficient

of variation of the percentage cover across these regions

provided an estimate of pack uniformity.

(iii) Leaf canopy height and shape. Leaf canopy heights were

estimated from side view images by sub-dividing each

image into a grid which, for our images were

24� 24 pixels representing a square of area 1 cm2, and

then determining the proportion of leaf material within

each grid square. The centre of the lowermost (and

uppermost) square in each column within the grid

designated as leaf material, that is a square containing

�50% leaf material, directly below (above) a square

designated as non-leaf material (<50% leaf) was used as

an estimate of the lower (upper) extent of the canopy.

Given upper and lower limits within each column,

a quadratic curve was fitted across the width of the image

grid and estimates for the mean height and linear and

quadratic coefficients were determined using regression

analysis (Sen & Srivastava, 1997).

(iv) Leaf and flower colour. The leaf greenness index was esti-

mated as the normalised colour characteristic given by

the mean value of 100�Gmn (Section 2.3) for all pixels



b i o s y s t e m s e n g i n e e r i n g 1 0 4 ( 2 0 0 9 ) 1 6 1 – 1 6 8164
identified as belonging to class leaf. Similar definitions,

lead to estimates for flower blue and red normalised

colour characteristics being given by 100� Bmn and

100� Rmn.

Nine characteristics, denoted as zrk where r¼ 1,2.9, were

estimated for each of the k packs for each species; (i) leaf cover

(%), (ii) flower cover (%), (iii) leaf uniformity (%), (iv) flower

uniformity (%), (v) leaf canopy height (cm), (vi) leaf canopy

height squared (cm2), (vii) leaf greenness (%), (viii) flower

blueness (%) and (ix) flower redness (%).
2.5. Plant quality scores

An assessment panel comprising 20 members of the WHRI

(University of Warwick) staff was randomly selected from

individuals with an interest in horticulture. Assessors from

both a horticultural (specialist) and non-horticultural (non-

specialist) background were used. Packs were scored for

quality by each member of the panel on two separate occa-

sions, two weeks apart. On each occasion, two assessments

were made on consecutive days using a different randomized

ordering of the packs on each assessment day. Packs were

assessed visually and each panel member gave a score indi-

cating their own independent assessment of the quality of the

plant material using a scale where 1¼ very poor, 2¼ poor,

3¼ average, 4¼ good and 5¼ very good quality. The ability of

individual panel members to repeat their quality scores was

assessed by calculating the Spearman rank correlation coef-

ficient after the randomized change in pack number. The

mean quality score for each pack was calculated as the

weighted mean of the individual scores from the 20 panel

members, using the individual correlations as weights (all

correlations were positive). This resulted in a mean score qk

for each of the K packs for each species that gave little or no

weight to those panel members who were unable to consis-

tently replicate their scores on the same material at each

occasion.
2.6. Statistical models

The effect of the pack characteristics, described in Section 2.4,

on the pack mean quality score (Section 2.5) for each species

was investigated using the multiple regression model

E
�
qk

�
¼ b0 þ

X9

r¼1

brzrk;

where EðqkÞ denotes the expected quality score for pack k, and

b0 and br are regression coefficients that are estimated from

the data. Assuming a Normal distribution for the response

variable qk, the regression coefficients were estimated using

generalized estimating equations (Hardin & Hilbe, 2002), that

accommodated a first order autoregressive correlation model

for the repeat scores on the same packs made at two occasions

separated by two weeks. Model fitting proceeded using the

open source statistical software R (R Development Core Team,

2007) and the gee procedure library. The significance of indi-

vidual regression coefficients was assessed using Z-statistics

based on the robust variance estimator, the goodness of fit for
each species model was assessed using an adjusted Radj
2 value

and diagnostic plots were used to check the model

assumptions.
3. Results

3.1. Image processing

Fifty pixels were randomly selected from each of the 48

available cyclamen and dianthus side images, and visually

classified into one of three mutually exclusive classes (flower,

leaf and other) using the Image Processing Toolbox (version 5.1)

available in Matlab (The MathWorks, 2007). Similarly,

25 pixels were randomly selected from each of the 96 avail-

able cyclamen side images and visually classified. The

number of pixels selected within each image was based

largely on pragmatic considerations and for the most complex

networks the ratio of data records to network weights was

never less than 30:1; the overall performance of the networks

was not unduly sensitive to the number of selected training

pixels. The nine colour characteristics, described in Section

2.4, were calculated for each of the sampled pixels and neural

networks, with 10 input layer nodes and three output layer

nodes, were fitted using function libraries available in the

open source statistical package R (R Development Core Team,

2007). All data, model fitting code and example processed side

and top view images for dianthus, cyclamen and viola are

available from the authors at www.warwick.ac.uk/go/

cropimaging.

3.2. Stereoscopy

The image stereoscopy work is reported elsewhere (Song et al.,

2007; Song, 2008) and is not discussed in detail here. However,

Fig. 1 illustrates the use of stereoscopy to generate a false

colour relative surface height map for a pansy pack in centi-

metres. The false colour contour map accurately represents

the relative height of the flowers and leaves in the image and

can be used for capturing information about the uniformity

and habit of a crop. With proper calibration, the algorithm can

also be used to calculate absolute crop height for crop growth

monitoring (Harwood & Hadley, 2004) but this application is

beyond the scope of this article and will not be discussed

further here.

3.3. Segmentation

CVLS, based on 10 replications of 10-fold leave-one-pixel-out

cross-validation, were not unduly sensitive to the weight

decay parameter used for values <0.1, so the largest of the

tested values (0.01) was selected to give the smoothest fit to

the data without loss of predictive power. There was little

substantive improvement in fit for more than three hidden

layer nodes for any of the species used here, so the best per-

forming network for segmenting side images consisted of 10

input nodes, three hidden layer nodes and three output nodes;

30 weights connecting the input nodes to the three hidden

layer nodes, nine weights connecting the hidden layer nodes

to the outputs and three weights connecting the bias node to

http://www.warwick.ac.uk/go/cropimaging
http://www.warwick.ac.uk/go/cropimaging
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each output – 42 weights in total. No attempt is made here to

fully optimize the networks for robust performance, for

instance by pruning redundant nodes and weights; this would

be required for practical implementation in a commercial

system, but is not discussed here for reasons of brevity. The

observed mean CVLS for dianthus, viola and cyclamen (0.070,

0.175 and 0.036) indicated that on average each pixel was

classified correctly with a probability of 0.932, 0.840 and 0.965;

considerably better than would be achieved by purely random

allocation of pixels to the three designated classes (0.333). The

misclassification tables (cross-tabulation of true versus pre-

dicted classes) for these networks gave no indications that the

networks performed differentially better at classifying pixels

into any of the individual classes and the final trained

networks for dianthus, viola and cyclamen gave good

segmentation of images into flowers and leaves, misclassify-

ing 2.25%, 6.83% and 1.38% of pixels, respectively.

Segmentation for the dianthus crop was challenging due to

lack of visual distinction between white flower parts and the

white polystyrene pack and for this example, height infor-

mation was obtained using stereoscopic methods. Data were

collected from top view images using random pixel selection
Fig. 1 – A false colour image, showing crop canopy height

(cm) for an individual pack of bedding plants, and the

original pack image with the area selected for height

determination.
in exactly the manner and number described for the side view

images and visually classified into one of four mutually

exclusive classes (flower, leaf, pack and compost). In addition

to the nine colour characteristics, described in Section 2.4,

pairs of stereo images for dianthus were used to calculate

heights at each point in the image. Fig. 2 shows measured

heights from single fixed side view images for individual

packs of dianthus plants and mean pack heights measured

from matched stereo pairs of the corresponding packs. The

plot error bars indicate the pixel to pixel height variability for

each pack image, showing how fixed side view heights

simplify the true within and between plant height variability

within a crop. The individual estimated absolute and relative

pixel heights, determined by calibration based on either the

distance between camera and pack or on the maximum

height recorded within a pack, respectively, were also

included as inputs to the neural networks, as a means of

discriminating between pixels located on flowers and packs

possessing similar colour characteristics, but located at

differing heights within the crop canopy.

As for the side view image networks, a weight decay

parameter of 0.01 was used for the artificial neural network

(ANN) for the top view images that comprised 10 input nodes

and four output nodes for cyclamen and viola, and 12 input

nodes (two additional nodes for absolute and relative crop

heights) and four output nodes for dianthus. The observed

mean CVLS for dianthus, viola and cyclamen (0.103, 0.109 and

0.125) indicated that on average each pixel was classified

correctly with a probability of 0.902, 0.897 and 0.882. The

trained networks for dianthus, viola and cyclamen gave good

segmentation of images into flowers and leaves, misclassify-

ing 4.08%, 3.62% and 4.12% of pixels, respectively. Misclassi-

fication rates were generally not as good for the top view
Fig. 2 – Measured heights from single fixed side view

images of individual packs of plants and mean heights

measured from matched stereo pairs of the corresponding

packs for dianthus. Bars represent one standard deviation.



Fig. 3 – Images showing dianthus plants at marketing (left)

and segmented into four classes (right); red pixels

represent flowers, green pixels leaves, white pixels the

polystyrene pack and black pixels the growth medium.
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images as for the side view images, because of the greater

depth and complexity of the images, due mainly to the

shading of underlying material from leaves and flowers

further up the plant canopy. The results of the segmentation

for dianthus are illustrated in the right-hand pane of Fig. 3.

The flowers and the polystyrene pack are sufficiently well

distinguished to make good estimates of class cover;

leaf¼ 66.8%, flower¼ 19.4%, pack¼ 5.1% and compost¼ 8.7%.
3.4. Plant quality models

The quality scores from the panel of 20 assessors were

weighted and averaged, using the methods described in

Section 2.5, to give a mean score qk for each of the K packs for

each species. Models of the form described in Section 2.6 were

fitted to data for each species using the model selection
Table 1 – Parameter estimates, s.e. and Z-statistics for crop qu

Parameter

Dianthus

Est. s.e. Z Es

Constant 0.224 1.205 0.19 4.9

Leaf cover (%) 0.032 0.007 4.54 0.1

Flower cover (%) 0.015 0.006 2.43 0.0

Leaf uniformity (%) – – – –

Flower uniformity (%) – – – �0.0

Leaf height (cm) 0.345 0.060 5.76 �0.1

Leaf height2 (cm2) �0.016 0.004 �4.52 –

Leaf greenness (%) �0.091 0.024 �3.77 �0.2

Flower blueness (%) – – – –

Flower redness (%) 0.083 0.011 7.19 –
methods described by Parsons et al. (2006). Estimated regres-

sion parameters and standard errors (s.e.) are shown for each

species in Table 1. Diagnostic plots of model residuals showed

no significant departures from the model assumptions.

The parameter estimates in Table 1 describe the effect of

each attribute on overall plant quality. In general, increasing

leaf and flower cover increased assessments of pack quality

and the significant negative coefficients for leaf greenness

indicated that quality assessments improved for packs that

had darker green coloured leaves than those packs that had

paler leaves. For dianthus and cyclamen, flower colour was

also important, with coefficients indicating a preference

amongst the assessment panel for darker red coloured

flowers. A more even distribution of flowers across the visible

pack surface improved quality for cyclamen, whereas for viola

the opposite effect was observed and quality improved when

flower uniformity indicated that flower cover was more vari-

able across the visible pack surface although the reason is

unclear. Leaf canopy height showed a clear maximum in

quality at approximately 11 cm for dianthus, but for the range

of pack heights available for viola quality increased as pack

heights decreased. Models accounted for 88.5%, 81.7% and

70.4% of the variation in quality scores for dianthus, viola and

cyclamen, respectively. The relationship between observed

and predicted quality scores for each pack, based on the fitted

models, is shown in Fig. 4.
4. Discussion

Artificial neural networks based on colour characteristics

from individual pixels and surrounding pixels together with

information on height obtained from stereo pairs of images,

performed well in segmenting all the images used here.

Where segmentation based on pixel data alone is poor,

information about the typical shape of objects or knowledge of

the spatial arrangement and textures of objects could also be

incorporated into the networks (Egmont-Petersen et al., 2002).

Random pixel selection worked well for the well-populated

classes discussed here but for detecting rarer classes such as

disease symptoms, a more structured sampling procedure

could be appropriate.
ality models for each species

Species

Viola Cyclamen

t. s.e. Z Est. s.e. Z

21 3.095 1.59 �2.408 2.440 �0.99

29 0.031 4.12 0.057 0.025 2.25

91 0.030 3.03 0.061 0.024 2.55

– – – – –

07 0.002 �3.91 0.002 0.001 2.86

91 0.026 �7.43 – – –

– – – – –

46 0.021 �11.59 �0.078 0.034 �2.28

– – – – –

– – 0.051 0.009 5.79



Fig. 4 – Observed and predicted quality scores, based on the

fitted statistical models, for each species.
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Our image segmentation work has been based mainly on

ANNs but an alternative method can be based on support

vector machines (Vapnik, 2000; Karatzoglou et al., 2006),

a supervised machine learning method that is becoming

increasing popular (Karimi et al., 2006). We have little direct

experience of support vector machines but the literature

suggests that support vector machines are at least as powerful

as ANN methods therefore a comparison of the two methods

for classification of plant quality could be of value.

Our models accounted for 88.5%, 81.7% and 70.4% of the

variation in quality scores for dianthus, viola and cyclamen,

respectively, but it should be remembered that the panel

quality scores were themselves estimates and were subject to

considerable variation. Our view is that the image analysis

scores are in fact more objective and more reliable than panel

scores and the high level of correlation between the two sets

of scores confirms that image analysis methods can routinely

capture the same information that a human assessor can

reliably capture. For accurate estimates of heights and more

detailed descriptions of the canopy shape and variability of

a growing crop in a commercial setting, three-dimensional

images can be captured from cameras directly above the crop.

We have shown that this can be achieved using a single

camera collecting images at two fixed positions, but similar

results could be obtained using a pair of cameras or from

a single moving camera collecting a series of images over

a growing crop. These are currently areas of active research.

Although we have concentrated on image analysis for

grading and crop monitoring, we would also expect, more

generally, that digital imaging would be capable of detecting

localised pests and diseases or other types of plant damage.

The imaging sensors could also be easily combined with

additional sensors to monitor automatically for stress using

infra-red temperature (Langton et al., 2004), chlorophyll
fluorescence (Van Kooten et al., 1991; DeEll et al., 1999), spectral

information (Zwiggelaar, 1998) and potentially other sensors

at the same time that the crop was being visually imaged.
5. Conclusion

The development of methods for image processing and

statistical modelling of quality scores for routine quality

control of ornamental bedding plant crops has been reported.

Artificial neural networks have been used to segment digital

images into regions of interest and key morphological and

chromatic characteristics of the crops have been incorporated

into statistical models that explain much of the variation in

overall quality scores made by a panel of assessors. The

morphological and chromatic characteristics for each orna-

mental plant pack provide a rich source of information that

have the potential to assist in making complex decisions

regarding the scheduling and quality management of

a growing plant crop. In the near future, we would expect

machine vision and intelligent image analysis software to

become of key importance in the monitoring and control of

growing crops especially in protected crop environments in

glasshouses.
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