SCC0251 + MAI5020 — Prof. Moacir Ponti

PAEs: Gustavo Evangelista Aradjo and Leo Sampaio Ferraz Ribeiro

Assignment 03: image descriptors

‘ Code the assignment by yourself. Ask if you need help. Plagiarism is not tolerated.

1 Introduction

1.1 The Task

In this assignment you have to implement a classic feature extractor called Histogram
of Oriented Gradients (HoG). It was first introduced by Dalal and Triggs [I] for human
detection in CCTV images. We will follow in their steps and implement a solution for
the same task using both the descriptor and the Machine Learning algorithm K-nearest-
neighbours. Read the instructions for each step. Use python 3 and the libraries numpy,
imageio and scipy to complete the task.

Follow the instructions carefully:

1.
2.

Read the parameters

Load the three image collections Xo = {po, - - ,pn} ,» X1 = {po, - ,pm} and
Xiest = {to, -+ ,to}, containing images without humans (Xj), images with humans
(X1) and test images (Xiest)-

. Transform all images to black&white using the Luminance technique

Implement and compute the HoG descriptor of all images.

. Implement and Train a K-nearest-neighbours model with K = 3 using the

training images Xy and Xj.

. Predict the classes for each of the test images Xyest-

Print the predictions separated by a single space.

1.2 Input Parameters

The following parameters will be input to your program in the following order through

stdin (standard input):

1.

one line with list of space-separated filenames for training images without humans
in them,

. one line with list of space-separated filenames for training images with humans in

them,

. one line with list of space-separated filenames for testing images



2 Preprocessing

Before computing the image descriptors we need to transform the images to black&white.
For this task we are are going to use the common Luminance method, for each RGB pixel:

f(z,y) = |0.299R + 0.587G + 0.114B],

where |.| is the floor operation and letters R, G, B represent each colour channel.

3 Histogram of Oriented Gradients

This descriptor is a good way of capturing how the textures in an image are “arranged”
by looking at the angle of the gradients (the rate-of-change from one pixel to the
next at a certain angle). To compute this we must first obtain the gradient of the
image in both x and y directions. This can be done by performing convolution (use
scipy.ndimage.convolve) of an image with the sobel operator in each direction:

-1 -2 -1 -1 0 1
WYy = 0 0 0 s wsy =1 —2 0 2
1 2 1 -1 0 1

After computing the convolution between the image and each filter, we will have the image
gradients g, and g,. Using those matrices, we can separate the gradient’s magnitude and
angle into two other matrices. The magnitude can be computed:
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M(l’,y) =

and the angles:
~1 9y(2,y)
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Now, we need to use those angles to accumulate magnitudes in a binned fashion. First,
(i) sum 7/2 to all values in ¢ to make the angle range shift from [—7/2, 7/2] to [0, 7], then,
(i) convert the angles from radians to degrees (see np.degree); (iii) digitise the angles
into 9 bins, this means slicing the angle range in 20 degree intervals [0, 19], [20, 39], ... and
then for each ¢(x,y), determine in which of the 9 bins the value falls into.

We want to use the bins determined for each z,y position to accumulate the magni-
tudes. Let’s consider an example with post-shift and conversion matrix:

10 23 34
=143 12 91
0 92 1



And the magnitude matrix:

1 2 3
M=|3 2 1
1 2 3
Computing the bins for each position we would have:
01 1
pa=12 0 4
0 40

where, for example, ¢4(1,2) = 4 because ¢(1,2) = 91 falls into the range [80,99], which
is bin 4. Now, using this setup to accumulate magnitudes using the bins, we’d have a
resulting descriptor:

dg=17 5303 00 0 0

where, for example, dy(1) = 5 because positions ¢4(0,1) and ¢4(0,2) are in bin 1 and
the magnitude for those positions is M (0,1) = 2, M(0,2) = 3.

This descriptor is then a vector with 9 dimensions, d,.

NOTE: In this example there will be some divisions by zero that will result in
infinity. This is ok as np.arctan works with infinity. Your code will however produce
some warnings that are flagged by the auto-grader. You can silence the warnings with
np.seterr(divide=’ignore’, invalid=’ignore’).

4 K-Nearest Neighbours

Just as the Histogram of Oriented Gradients is a classic of image feature extractors,
K-Nearest Neighbours (KNN) is a classic of Machine Learning literature. The concept
for KNN is very simple: there is no training step to the model and inference/prediction
is done by comparing new samples against the training set

With a selection of labelled feature vectors (which we have in the form of the features
extracted from Xy and X), prediction with KNN consists of comparing a new sample
(a feature vector from an image in Xz for instance) against all of the vectors in the
labelled training set. For doing such comparison we will make use of euclidean distance
between the vectors:

D(a,b) = \/Z<dg<a> —dy ()2

where a and b are images and d, is the HoG feature extractor.

After computing the euclidean distance between a test sample and all of the training
sample, the predicted class (has human or does not) is determined by a “voting system”.
The K (here defined as K = 3) training samples closest to the test sample each get “a
vote”, which is determined by their original class. For example, if 2 of the closest samples
came from Xy and one came from X7, then the majority of votes goes to class 0, meaning
that no human was detected in the test sample (the predicted label is 0).



Your goal then is to run this prediction algorithm for each of the test samples in Xieg
and print out the resulting predictions for weather there is a human (1) or not (0) in
each image. The output of your code consists of printing out the predictions for each
test sample separated by a single space.

5 Input and Output

Input Example 01. 10 images without humans, 10 images with humans and 10 images
for test are input to your code:

0/0.png 0/1.png 0/2.png 0/3.png 0/4.png 0/5.png 0/6.png 0/7.png 0/8.png 0/9.png
1/0.png 1/1.png 1/2.png 1/3.png 1/4.png 1/5.png 1/6.png 1/7.png 1/8.png 1/9.png
0/0.png 0/1.png 0/2.png 0/3.png 0/4.png 0/5.png 0/6.png 0/7.png 0/8.png 0/9.png

Output Example 01. The result of using the HoG descriptor of the 20 input training
images to train a KNN model and then using this model to predict whether the 10 testing
samples have humans or not:

0011000000

6 Submission

Submit your source code to e-disciplinas (only the .py file). You can check for correctness
by downloading the test cases from e-disciplinas and testing with run-codes-local, which
will be used by the PAEs to grade your work.

1. Use your USP number as the filename for your code.

2. Include a header. Use a header with name, USP number, course code, year /semester
and the title of the assignment. A penalty on the evaluation will be applied if your
code is missing the header.

3. Comment your code. For any computation that is not obvious from function
names and variables, add a comment explaining.

4. Organize your code in programming functions. Use one function for the
HoG feature extractor and one for the KNN algorithm.

7 Grading

Your work will be graded as:

0.3R+0.5A41 +0.243 — P

where each value ranges from 0 — 10, R is the grade from run-codes-local, A; and Ag refer
to the correct implementation of the HoG descriptor and KNN respectively. P goes up
to 1.0 and is a possible penalty for failing to follow the rules from the previous section.


https://edisciplinas.usp.br
https://github.com/leosampaio/run-codes-local
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