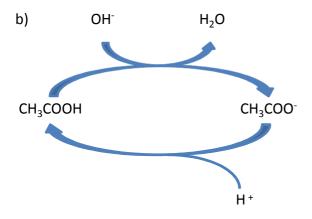
Resolução dos exercícios QBQ-0116

Gustavo C. Dias

pH e Sistemas Tampão



Girl in Hydrangea Garden, Karin Schaffer. A coloração das flores da hortência é o resultado da presença de antocianinas, um pigmento presente em plantas cuja coloração varia do rosa ao azul, podendo adquirir tonalidades de verde, amarelo e até branco dependendo do pH do meio.

Questão 01

a) Os componentes de um tampão acetato são o ácido fraco e sua base conjugada:

CH₃COOH = ácido acético (doador de prótons) CH₃COO⁻ = acetato (receptor de prótons)

b) Adições de base consumirão os prótons provenientes da dissociação do ácido fraco (CH₃COOH), neutralizando os íons OH⁻. Contrariamente, adições de H ⁺ podem ser compensadas ao reagirem com a base conjugada (CH₃COO⁻), fazendo com que o pH varie mais lentamente nos valores próximos ao pKa do ácido fraco.

Questão 02

A capacidade de tamponamento resulta doequilíbrio entre duas reações reversíveis (1) ocorrendo em uma solução de concentraçõesquase iguais de doador de prótons (ácido fraco) e aceptor de prótons (base conjugada), $[HA] \approx [A^-]$.

$$HA \rightleftharpoons H^+ + A^-$$
 (1)

Ou seja, a máxima eficiência de tamponamento é obtida quando o pH da solução for igual ao valor de pKa do ácidofraco, estendendo-se por cerca de uma unidade acima e abaixo deste ponto.

A eficiência de tamponamento é diretamenteproporcional à concentração da solução tampão, [HA] + [A-]. Assim, quanto maior a concentração do ácido fraco e de sua base conjugada, maior será a resistência à variaçãode pH quando pequenas quantidades deácido ou base fortes forem adicionadas à solução

Questão 03

a)
$$pH = 3.7$$

Devemos encontrar a proporção entre o ácidoacético e acetato que devemos utilizar para fazer uma solução tampão de pH = 3,7. Para isso podemos utilizar a equação de Henderson-Hasselbalch:

$$pH = pKa + log[A-]/[HA]$$
 (1)

Sendo o pKa do ácido acétido 4,7 basta substituir na equação dada acima (1).

$$3.7 = 4.7 + \log[A^{-}]/[HA]$$

 $\log[A^{-}]/[HA] = -1$
 $\log[HA]/[A^{-}] = 1$
 $[HA] = 10[A^{-}]$ (2)

Para produzir um tampão acetato 0,1 M, deveremos utilizar:

$$[HA] + [A^{-}] = 0,1$$
 (3)

Substituindo (2) em

$$(3),10[A^{-}] + [A^{-}] = 0,1$$

 $[A^{-}] = 0,0091 M$ (4)

e substituindo (4) em (3),

b)
$$pH = 5.7$$

Usando o mesmo raciocínio da letra (a), temos:

$$5.7 = 4.7 + \log[A^{-}]/[HA]$$

 $\log[A^{-}]/[HA] = 1$
 $[A^{-}] = 10[HA]$ (5)

Para produzir um tampão acetato 0,1 M, deveremos utilizar:

$$[HA] + [A^{-}] = 0,1$$
 (6)

Substituindo (5) em

$$(6),[HA] + 10[HA] =$$

E substituindo (7) em (6), temos

$$0,0091 + [A^{-}] = 0,1$$

 $[A^{-}] = 0,091 M$

Questão 04

a) A relação $[HCO_3^-]/[H_2CO_3]$ no plasma sanguíneo em pH = 7,4. (pKa = 3,77)

pH = pKa + log[A
$$^{-}$$
]/[HÁ]
7,4 = 3,77 + log[HCO $_{3}^{-}$]/[H $_{2}$ CO $_{3}$]
log[HCO $_{-}^{-}$]/[H CO] = 3,63

$$[HCO_3^-]/[H_2CO_3] = 4265,8$$

b) A relação $[HPO_4^2-]/[H_2PO_4^-]$ no plasma sanguíneo em pH = 7,4. (pKa = 7,20)

c) Em um espaço fechado, o tampão $[HPO_4^{2-}]$ / $[H_2PO_4^{-}]$ é o mais eficiente.

No plasma sanguíneo, o tampão $[HCO_3^-]$ / $[H_2CO_3]$ está em equilíbrio com CO_2 dissolvido, o qual está em equilíbrio com o CO_2 atmosférico.

Questão 05

a) Para calcular a razão [HCO₃-]/[CO₂] no plasma sanguíneo a pH 7,4, basta usar a equação de Henderson-Hasselbalch:

pH = pKa +
$$log[A^-]/[HA]$$

7,4 = 6,1 + $log[HCO_3^-]/[CO_2]$
 $[HCO_3^-]/[CO_2] \approx 20$

$$[HCO_3^-] + [CO_2] = 2,52 . 10^{-2} M$$

21 $[CO_2] = 2,52 . 10^{-2}$
 $[CO_2] = 1,26 . 10^{-3} M$

$$[HCO_3^-] = 20 [CO_2]$$

 $[HCO_3^-] = 2,39 . 10^{-2} M$

b) Todo o H⁺ adicionado reagirá com o ânion carbonato produzindo CO₂. (Seja x a [H⁺])

$$CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+$$

1,26.10⁻³ 2,39.10⁻²
1,26.10⁻³ + x 2,39.10⁻² - x

$$[CO_2] = 1,26.10^{-3} + 10^{-2} = 1,126 . 10^{-2} M$$

 $[HCO_3^-] = 2,39.10^{-2} - 10^{-2} = 1,394 . 10^{-2} M$

pH = pKa +
$$log[HCO_3^-]/[CO_2]$$

pH = 6,1 + $log(1,394.10^{-2}/1,126.10^{-2})$
pH = 6,19

c) Se $[CO_2]$ permanecer constante frente à adição de H^+ teremos:

$$[CO_2] = 1,26.10^{-3}$$

 $[HCO_3^-] = 2,39.10^{-2} - 10^{-2} = 1,394 \cdot 10^{-2} M$

pH = pKa +
$$log[HCO_3^-]/[CO_2]$$

pH = 6,1 + $log(1,394.10^{-2} / 1,26.10^{-3})$
pH = 7,14