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Chapter One

Preliminaries

Math is a formal language useful in clarifying and exploring connections between
concepts. Like any language, it has a syntax that must be understood before
its meaning can be parsed. We discuss the building blocks of this syntax in this
chapter. The first is the variables that translate concepts into mathematics, and
we begin here. Next we cover groupings of these variables into sets, and then
operators on both variables and sets. Most data in political science are ordered,
and relations, the topic of our fourth section, provide this ordering. In the fifth
section we discuss the level of measurement of variables, which will aid us in
conceptual precision. In the sixth section we offer an array of notation that
will prove useful throughout the book; the reader may want to bookmark this
section for easy return. Finally, the seventh section discusses methods of proof,
through which we learn new things about our language of mathematics. This
section is the most difficult, is useful primarily to those doing formal theory or
devising new methods in statistics, and can be put aside for later reading or
skipped entirely.

1.1 VARIABLES AND CONSTANTS

Political scientists are interested in concepts such as participation, voting, democ-
racy, party discipline, alliance commitment, war, etc. If scholars are to com-
municate meaningfully, they must be able to understand what one another is
arguing. In other words, they must be specific about their theories and their
empirical evaluation of the hypotheses implied by their theories.

A theory is a set of statements that involve concepts. The statements com-
prise assumptions, propositions, corollaries, and hypotheses. Typically, assump-
tions are asserted, propositions and corollaries are deduced from these assump-
tions, and hypotheses are derived from these deductions and then empirically
challenged.1 Concepts are inventions that human beings create to help them
understand the world. They can generally take different values: high or low,
present or absent, none or few or many, etc.

Throughout the book we use the term “concept,” not “variable,” when dis-
cussing theory. Theories (and the hypotheses they imply) concern relationships
among abstract concepts. Variables are the indicators we develop to measure

1Of course, assumptions and the solution concepts from which deductions are made may
be empirically challenged as well, but this practice is rarer in the discipline.
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our concepts. Current practice in political science does not always honor this
distinction, but it can be helpful, particularly when first developing theory, to
speak of concepts when referring to theories and hypotheses, and reserve the
term variables for discussion of indicators or measures.

We assign variables and constants to concepts so that we may use them in
formal mathematical expressions. Both variables and constants are frequently
represented by an upper- or lowercase letter. Y or y is often used to represent
a concept that one wishes to explain, and X or x is often used to represent a
concept that causes Y to take different values (i.e., vary). The letter one chooses
to represent a concept is arbitrary—one could choose m or z or h, etc. There are
some conventions, such as the one about x and y, but there are no hard-and-fast
rules here.

Variables and constants can be anything one believes to be important to
one’s theory. For example, y could represent voter turnout and x the level of
education. They differ only in the degree to which they vary across some set
of cases. For example, students of electoral politics are interested in the gender
gap in participation and/or party identification. Gender is a variable in the US
electorate because its value varies across individuals who are typically identified
as male or female.2 In a study of voting patterns among US Supreme Court
justices between 1850 and 1950, however, gender is a constant (all the justices
were male).

More formally, a constant is a concept or a measure3 that has a single
value for a given set. We define sets shortly, but the sets that interest political
scientists tend to be the characteristics of individuals (e.g., eligible voters), col-
lectives (e.g., legislatures), and countries. So if the values for a given concept
(or its measure) do not vary across the individuals, collectives, or countries, etc.,
to which it applies, then the value is a constant. A variable is a concept or a
measure that takes different values in a given set. Coefficients on variables (i.e.,
the parameters that multiply the variables) are usually constants.

1.1.1 Why Should I Care?

Concepts and their relationships are the stuff of science, and there is nothing
more fundamental for a political scientist than an ability to be precise in concept
formation and the statement of expected relationships. Thinking abstractly in
terms of constants and variables is a first step in developing clear theories and
testable hypotheses.

2Definitions of concepts are, quite properly, contested in all areas of academia, and gender
is no exception. Though it is not a debate that generates a great deal of interest among
students of participation or party identification, it will be rather easy for you to find literature
in other fields debating the value of defining gender as a binary variable.

3By measure we mean an operational indicator of a concept. For example, the concept
gender might be measured with a survey question. The survey data provide a measure of the
concept.
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Table 1.1: Common Sets

Notation Meaning

N Natural numbers
Z Integers
Q Rational numbers
R Real (rational and irrational) numbers
C Complex numbers

Subscript: N+ Positive (negative) values of the set
Superscript: Nd Dimensionality (number of dimensions)

1.2 SETS

This leads us naturally into a discussion of sets. For our purposes,4 a set is just
a collection of elements. One can think of them as groups whose members have
something in common that is important to the person who has grouped them
together. The most common sets we utilize are those that contain all possible
values of a variable. You undoubtedly have seen these types of sets before, as
all numbers belong to them. For example, the counting numbers (0, 1, 2, . . .,
where . . . signifies that this progression goes on indefinitely) belong to the set
of natural numbers.5 The set of all natural numbers is denoted N, and any
variable n that is a natural number must come from this set. If we add negative
numbers to the set of natural numbers, i.e., . . . ,−3,−2,−1, then we get the set
of all integers, denoted Z. All numbers that can be expressed as a ratio of two
integers are called rational numbers, and the set of these is denoted Q. This set
is larger than the set of integers (though both are infinite!) but is still missing
some important irrational numbers such as π and e. The set of all rational and
irrational numbers together is known as the real numbers and is denoted R.6

Political scientists are interested in general relationships among concepts.
Sets prove fundamental to this in two ways. We have already discussed the
association between concepts and variables. As the values of each variable, and
so of each concept, are drawn from a set, each such set demarcates the range
of possible values a variable can take. Some variables in political science have
ranges of values equal to all possible numbers of a particular type, typically
either integers, for a variable such as net migration, or real numbers, for a

4These purposes, you will recall, are to build intuition rather than to be exact. We play
somewhat loosely with ordered sets in what follows, and ignore things like Russell’s paradox.

5Some define the natural numbers without the zero. We are not precise enough in this
book to make this distinction important.

6You may have occasion to use complex numbers, denoted C. These have two components,
a real and an imaginary part, and can be written a+ bi, where a and b are both real numbers
and i =

√
−1. These are beyond the scope of this book, though amply covered by classes in

complex analysis.
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variable such as GDP. More typically, variables draw their values from some
subset of possible numbers, and we say the variable x is an element of a subset of
R. For example, population is typically an element of Z+, the set of all positive
integers, which is a subset of all integers. (A + subscript typically signifies
positive numbers, and a − negative.) The size and qualities of the subset can
be informative. We saw this earlier for the gender variable: depending on the
empirical setting, the sets of all possible values were either {Male,Female} or
{Male}.7 The type of set from which a variable’s values are drawn can also
guide our theorizing. Researchers who develop a formal model, game theoretic
or otherwise, must explicitly note the range of their variables, and we can use
set notation to describe whether they are discrete or continuous variables, for
example. A variable is discrete if each one of its possible values can be associated
with a single integer. We might assign a 1 for a female and 2 for male, for
instance. Continuous variables are those whose values cannot each be assigned
a single integer.8 We typically assume that continuous variables are drawn from
a subset of the real numbers, though this is not necessary.

A solution set is the set of all solutions to some equation, and may be discrete
or continuous. For example, the set of solutions to the equation x2− 5x+ 6 = 0
is {2, 3}, a discrete set. We term a sample space a set that contains all of the
values that a variable can take in the context of statistical inference. When
discussing individuals’ actions in game theory, we instead use the term strategy
space for the same concept. For example, if a player in a one-shot game9 can
either (C)ooperate with a partner for some joint goal or (D)efect to achieve
personal goals, then the strategy space for that player is {C,D}. This will make
sense in context, as you study game theory.

Note that each of these is termed a space rather than a set. This is not a
typo; spaces are usually sets with some structure. For our purposes the most
common structure we will encounter is a metric—a measure of distance between
the elements of the set. Sets like Z and R have natural metrics. These examples
of sets form one-dimensional spaces: the elements in them differ along a single
axis. Sets may also contain multidimensional elements. For example, a set
might contain a number of points in three-dimensional space. In this case, each
element can be written (x, y, z), and the set from which these elements are drawn
is written R3. More generally, the superscript indicates the dimensionality of
the space. We will frequently use the d-dimensional space Rd in this book.
When d = 3, this is called Euclidean space. Another common multidimensional
element is an ordered pair, written (a, b). Unlike elements of R3, in which each

7As explained below, curly brackets indicate that the set is discrete. Continuous sets are
demarcated by parentheses and square brackets.

8Formally, a discrete variable draws values from a countable set, while a continuous variable
draws from an uncountable set. We define countability shortly.

9A one-shot game is one that is played only once, rather than repeatedly. You will en-
counter unfamiliar terms in the reading you do in graduate school. It is important to get in
the habit of referencing a good dictionary (online or printed) and looking up terms. A search
on a site like Google is often a useful way to find definitions of terms that are not found in
dictionaries.
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of x, y, and z is a real number, each member of an ordered pair may be quite
different. For example, an ordered pair might be (orange, lunch), indicating that
one often eats an orange at lunch. Ordered pairs, or more generally ordered n-
tuples, which are ordered pairs with n elements, are often formed via Cartesian
products. We describe these in the next section, but they function along the
lines of “take one element from the set of all fruit and connect it to the set of
all meals.”

Political scientists also think about sets informally (i.e., nonmathematically)
on a regular basis. We may take as an example the article by Sniderman,
Hagendoorn, and Prior (2004). The authors were interested in the source of the
majority public’s opposition to immigrant minorities and studied survey data to
evaluate several hypotheses. The objects they studied were individual people,
and each variable over which they collected data can be represented as a set. For
example, they developed measures of people’s perceptions of threat with respect
to “individual safety,” “individual economic well-being,” “collective safety,” and
“collective economic well-being.” They surveyed 2,007 people, and thus had four
sets, each of which contained 2,007 elements: each individual’s value for each
measure.10 In this formulation sets contain not the possible values a variable
might take, but rather the realized values that many variables do take, where
each variable is one person’s perception of one threat. Thus, sets here provide
us with a formal way to think about membership in categories or groups.

Given the importance of both ways of thinking about sets, we will take some
time now to discuss their properties. A set can be finite or infinite, countable
or uncountable, bounded or unbounded. All these terms mean what we would
expect them to mean. The number of elements in a finite set is finite; that
is, there are only so many elements in the set, and no more. In contrast, there
is no limit to the number of elements in an infinite set. For example, the set
Z is infinite, but the subset containing all integers from one to ten is finite.
A countable set is one whose elements can be counted, i.e., each one can be
associated with a natural number (or an integer). An uncountable set does not
have this property. Both Z and the set of numbers from one to ten are countable,
whereas the set of all real numbers between zero and one is not. A bounded
set has finite size (but may have infinite elements), while an unbounded set
does not. Intuitively, a bounded set can be encased in some finite shape (usually
a ball), whereas an unbounded set cannot. We say a set has a lower bound if
there is a number, u, such that every element in the set is no smaller than it,
and an upper bound if there is a number, v, such that every element in the
set is no bigger than it. These bounds need not be in the set themselves, and
there may be many of them. The greatest lower bound is the largest such lower
bound, and the least upper bound is the smallest such upper bound.

Sets contain elements, so we need some way to indicate that a given element

10One could also view this as four sets of ordered pairs, with each pair containing a variable
name and a person’s perceptions, or one set of ordered 5-tuples, each with a person’s name
and her responses to each question, in order.
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is a member of a particular set. A “funky E” serves this purpose: x ∈ A states
that “x is an element of the set A” or “x is in A.” You will find this symbol used
when the author restricts the values of a variable to a specific range: x ∈ {1, 2, 3}
or x ∈ [0, 1]. This means that x can take the value 1, 2, or 3 or x can be any
real number from 0 to 1, inclusive. It is also convenient to use this notation
to identify the range of, say, a dichotomous dependent variable in a statistical
analysis: y ∈ {0, 1}. This means that y either can take a value of 0 or a value
of 1. So the “funky E” is an important symbol with which to become familiar.
Conversely, when something is not in a set, we use the symbol /∈, as in x /∈ A.
This means that, for the examples in the previous paragraph, x does not take
the values 1, 2, or 3 or is not between 0 and 1. As you may have guessed from
our usage, curly brackets like {} are used to denote discrete sets, e.g., {A,B,C}.
Continuous sets use square brackets or parentheses depending on whether they
are closed or open (terms we define in Chapter 4), e.g., [0, 1] or (0, 1), which are
the sets of all real numbers between 0 and 1, inclusive and exclusive, respectively.

Much as sets contain elements, they also can contain, and be contained by,
other sets. The expression A ⊂ B (read “A is a proper subset of B”) implies
that set B contains all the elements in A, plus at least one more. More formally,
A ⊂ B if all x that are elements in A are also elements in B (i.e., if x ∈ A,
then x ∈ B). A ⊆ B (read “A is a subset of B”), in contrast, allows A and
B to be the same. We say that A is a proper subset of B in the first case but
not in the second. So the set of voters is a subset of the set of eligible voters,
and is most likely a proper subset, since we rarely experience full turnout. We
also occasionally say that a set that contains another set is a superset of the
smaller one, but this terminology is less common. The cardinality of a set
is the number of elements in that set. Note that proper subsets have smaller
cardinalities than their supersets, finite sets have finite cardinalities, and infinite
sets have infinite cardinalities.

A singleton is a set with only one element and so a cardinality of one. The
power set ofA is the set of all subsets ofA, and has a cardinality of 2|A|, where |A|
is the cardinality of A. Power sets come up reasonably often in political science
by virtue of our attention to bargaining and coalition formation. When one
considers all possible coalitions or alliances, one is really considering all possible
subsets of the overall set of individuals or nations. Power sets of infinite sets are
always uncountable, but are not usually seen in political science applications.
The empty set (or null set) is the set with nothing in it and is written ∅.
The universal set is the set that contains all elements. This latter concept is
particularly common in probability.

Finally, sets can be ordered or unordered. The ordered set {a, b, c} differs
from {c, a, b}, but the unordered set {a, b, c} is the same as {c, a, b}. That is,
when sets are ordered, the order of the elements is important. Political scientists
primarily work with ordered sets. For example, all datasets are ordered sets.
Consider again the study by Sniderman et al. (2004). We sketched four of the
sets they used in their study; the order in which the elements of those sets is
maintained is critically important. That is, the first element in each set must
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refer to the first person who was surveyed, the second element must refer to
the second person, and the 1,232nd element must refer to the 1,232nd person
surveyed, etc. All data analyses use ordered sets. Similarly, all equilibrium
strategy sets in game theory are ordered according to player. However, this
does not mean all sets used in political science are ordered. For example, the
set of all strategies one might play may or may not be ordered.

1.2.1 Why Should I Care?

Sets are useful to political scientists for two reasons: (1) one needs to under-
stand sets before one can understand relations and functions (covered in this
chapter and Chapter 3), and (2) sets are used widely in formal theory and in the
presentation of some areas of statistics (e.g., probability theory is often devel-
oped using set theory). They provide us with a more specific method for doing
the type of categorization that political scientists are always doing. They also
provide us with a conceptual tool that is useful for developing other important
ideas. So a basic familiarity with sets is important for further study.

For example, game theory is concerned with determining what two or more
actors should choose to do, given their goals (expressed via their utility) and
their beliefs about the likelihood of different outcomes given the choices they
might make and their beliefs about the expected behavior of the other actor(s).
Sets play a central role in game theory. The choices available to each actor form
a set. The best responses of an actor to another actor’s behavior form a set. All
possible states of the world form a set. And so on.

Those of you who are unfamiliar with game theory will find this brief dis-
cussion less than illuminating, but do not be concerned. Our point is not to
explain sets of actions, best response sets, or information sets—each is covered
in game theory courses and texts—but rather to underscore why it is important
to have a functional grasp of elementary set theory if one wants to study formal
models. Finally, we note that Riker’s (1962) celebrated game theoretic model of
political coalition formation makes extensive use of set theory to develop what
he calls the size principle (see Appendix I, pp. 247–78, of his book). That is, of
course, but one of scores of examples we might have selected.11

1.3 OPERATORS

We now have formalizations of concepts (variables) and ways to order and group
these variables (sets), but as yet nothing to do with them. Operators, the topic
of this section, are active mathematical constructs that, as their name implies,
operate on sets and elements of sets. Some operators on variables have been
familiar since early childhood: addition (+), subtraction (−), multiplication
(∗ or × or · or just placing two variables adjacent to each other as in xy),

11Readers interested in surveys of formal models in political science that are targeted at
students might find Shepsle and Bonchek (1997) and Gelbach (2013) useful.
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and division (÷ or /). We assume you know how to perform these operations.
Exponentiation, or raising x to the power a (xa), is likely also familiar, as is
taking an nth root ( n

√
x), and perhaps finding a factorial (!) as well.

Other useful basic operators include summation (
∑
i xi), which dictates that

all the xi indexed by i should be added, and product (
∏
i xi), which dictates

that all the xi be multiplied. These operators are common in empirical work,
where each i corresponds to a data point (or observation). Here are a couple of
examples:

3∑
i=1

xi = x1 + x2 + x3,

and
3∏
i=1

xi = x1 × x2 × x3.

Because they are just shorthand ways of writing multiple sums or products,
each of these operators obeys all the rules of addition and multiplication that
we lay out in the next chapter. So, for example,

∑n
i=1 x

2
i does not generally equal

(
∑n
i=1 xi)

2
for the same reason that (22+32) = 13 does not equal (2+3)2 = 25.12

Other operators and their properties will be introduced as needed throughout
the book. We present a collection of notation below in section 1.6 of this chapter.

You may be less familiar with operators on sets, though they are no less
fundamental. We consider six here: differences, complements, intersections,
unions, partitions, and Cartesian products. The difference between two sets
A and B, denoted A\B (read “A difference B”), is the set containing all the
elements of A that are not also in B: x ∈ A\B if x ∈ A but x /∈ B. This set
comes up a great deal in game theory when one is trying to exclude individual
players or strategies from consideration. The complement of a set, denoted
A′ or Ac, is the set that contains the elements that are not contained in A:
x ∈ Ac if x is not an element of A.13 Continuing the example from above, the
complement of the set of registered voters is the set of all people who are not
registered voters.

Venn diagrams can be used to depict set relationships. Figure 1.1 illustrates
the concepts of set difference and set complement. The shaded part of the left
diagram is the set Registered Voters \ Registered Democrats, which is read
“Registered Voters difference Registered Democrats.” Or, in other words, all
registered voters who are not registered Democrats. The shaded part of the
right diagram illustrates the set Registered Votersc, which is “the complement

12Summations and products can also be repeated; this is known as a double (or triple,
etc.) summation or product. If xij is indexed by i and j, then we could write

∑
i

∑
j xij

or
∏
i

∏
j xij . Multiple summations may be useful, for example, when employing discrete

distributions in more than one dimension, or when considering more than one random variable
in game theory.

13One can also think of the complement of a set A as the difference between the universal
set and A.



PRELIMINARIES

MooSieBookPUP June 5, 2013 6x9

11

of Registered Voters.” Or, in other words, people who are not registered voters,
since the universal set in this case is the set of All People. Both diagrams
illustrate the concept of a subset: the set Registered Voters is a (proper) subset
of the set All People, and the set Registered Democrats is a (proper) subset
of the set Registered Voters. And both diagrams illustrate another concept:
the sets Registered Voters and Registered Votersc are collectively exhaustive, in
that together they constitute the set All People, which is the universal set in
this case. In general, a group of sets is collectively exhaustive if together the
sets constitute the universal set.14

Figure 1.1: Set Difference and Complement

The intersection of two sets A and B, denoted A∩B (read “A intersection
B”), is the set of elements common to both sets. In other words, x ∈ A ∩ B if
x ∈ A and x ∈ B. Thus, if set A consists of elected Democrats in the state of
Florida and set B consists of legislators in the Florida House of Representatives,
then the intersection of A and B is the set containing all Democratic House
members in Florida.

The union of two sets is written A∪B (read “A union B”) and is the set of
all elements contained in either set. In other words, x ∈ A∪B if x ∈ A or x ∈ B.
Note that any x in both sets is also in their union. Continuing the example from
above, the union of A and B is the set composed of all elected Democrats in
Florida and all House members in Florida. Figure 1.2 shows the intersection of
the sets House Members and Elected Democrats in the shaded part on the left,
and their union in the shaded part on the right. The diagram on the left also
illustrates the concept of mutually exclusive sets. Mutually exclusive sets are
sets with an intersection equal to the empty set, i.e., sets with no elements in
their intersection. In the diagram on the left, the two unshaded portions of the
sets House Members and Elected Democrats are mutually exclusive sets. In fact,
any two sets are mutually exclusive once their intersection has been removed,
since they then must have an intersection that is empty.

A partition is a bit more complex: it is the collection of subsets whose union
forms the set. The more elements a set has, the greater the number of partitions

14Strictly speaking, their union must equal the universal set. We discuss unions next.
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Figure 1.2: Set Intersection and Union

one can create. Let’s consider the following example, the set of candidates for
the 2004 US presidential election who received national press coverage:15 A =
{Bush,Kerry,Nader}. We can partition A into three subsets: {Bush}, {Kerry},
{Nader}; or we can partition it into two subsets: {Bush,Nader}, {Kerry}; or
{Kerry,Nader}, {Bush}; or {Bush,Kerry}, {Nader}. Finally, the set itself is a
partition: {Bush,Kerry,Nader}.

A Cartesian product is more complex still. Consider two sets A and B, and
let a ∈ A and b ∈ B. Then the Cartesian product A × B is the set consisting
of all possible ordered pairs (a, b), where a ∈ A and b ∈ B. For example, if
A = {Female, Male} and B = {Income over $50k, Income under $50k}, then
the Cartesian product is the set of cardinality four consisting of all possible
ordered pairs: A × B = {(Female, Income over $50k), (Female, Income under
$50k), (Male, Income over $50k), (Male, Income under $50k)}. Note that the
type of element (ordered pairs) in the product is different from the elements
of the constituent sets. Cartesian products are commonly used to form larger
spaces from smaller constituents, and appear commonly in both statistics and
game theory. We can extend the concept of ordered pairs to ordered n-tuples
in this manner, and each element in the n-tuple represents a dimension. So x
is one-dimensional, (x, y) is two-dimensional, (x, y, z) is three-dimensional, and
so on. Common examples of such usage would be R3 = R × R × R, which is
three-dimensional space, and S = S1 × S2 × . . .× Sn, which is a strategy space
formed from the individual strategy spaces of each of the n players in a game.

1.3.1 Why Should I Care?

Operators on variables are essential; without them we could not even add two
numbers. Operators on sets are equally essential, as they allow us to manipulate
sets and form spaces that better capture our theories, including complex inter-

15In August 2004 Project Vote Smart listed over ninety candidates for president of the
United States, but working with the full set would be unwieldy, so we restrict attention to
the subset of candidates who received national press coverage (http://www.vote-smart.org/
election_president_party.php?party_name=All).

http://www.vote-smart.org/election_president_party.php?party_name=All
http://www.vote-smart.org/election_president_party.php?party_name=All
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actions. They are also necessary for properly specifying functions of all sorts,
as we shall see in Chapter 3.

1.4 RELATIONS

Now we have variables, conceptually informed groups of variables, and ways to
manipulate them via operators, but we still lack ways to compare concepts and
discern relationships between them. This is where relations enter. A mathemat-
ical relation allows one to compare constants, variables, or expressions of these
(or, if you prefer, concepts). Binary relations (i.e., the relation between two
constants/variables/expressions or concepts) are easiest to consider, so we will
restrict the discussion to the two variable case, but the idea can be generalized
to an n-ary relation. Similarly, we can define orders on sets, but these admit
many possibilities and are less commonly observed in political science, so we
will eschew this topic as well.

A binary relation can be represented as an ordered pair. So, if a ∈ A is
greater than b ∈ A, we can write the relation as (a, b). When constants or
variables are drawn from the integers or real numbers, though, we have more
familiar notation. Integers and real numbers have natural associated orders:
three is greater than two is greater than one, and so on. When one is certain
of the value of a concept, as one is with a constant, then we can write 3 > 2,
1 < 4, and 2.5 = 2.5. The symbols >, <, and = form the familiar relations of
arithmetic. When one is less sure of the values of a concept, as one is with a
variable, then we also have the relations ≥ and ≤, as in x ≥ z. Algebra, reviewed
in the next chapter, deals with the manipulation of these sorts of relations.

The concept of relations is more general than these orders, however. A rela-
tion exists between two sets (or concepts) when knowing one element provides
information about the other element. So, for example, in networks the relation
could be “linked,” while in game theory it might be “like as well as.” We will
explore this latter idea more in Chapter 3. While relations can be specified
quite generally,16 typically we will only be concerned with a few types of rela-
tion. Inequalities are one, and preference relations, discussed in Chapter 3, are
another. The most common relation we’ll use, though, is a function, which is
the topic of Chapter 3. In this context we want to know the mapping between
sets A and B. In other words, we want to know how the function transforms
an element of A into an element of B. In this case we call A the domain and
B the range. Relations (and so functions) can have various properties, some of
which we discuss in Chapter 3.

16A relation is a mathematical object that takes as input two sets A and B (called its
domain in this context) and returns a subset of A×B (called its graph in this context).
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1.4.1 Why Should I Care?

Relations are important because they help us describe the mapping of values
across concepts. Relations such as “greater than” and “equal to” are critical to
descriptive claims about the world as well as to making theoretical claims. Fur-
ther, functions—a specific type of relation—are very common in both theoretical
and empirical work in political science.

1.5 LEVEL OF MEASUREMENT

We now have most of the building blocks we need to describe relationships
between concepts. These in turn allow us to distinguish among different levels
of measurement: nominal, ordinal, interval, and ratio. Note that though
levels of measurement tend to be associated with variables, they are equally
applicable and important to conceptualization.17 We briefly discuss each level
of measurement in turn.

1.5.1 Differences of Kind

In some theories all we require of our concepts is that they distinguish one type
from another. That is, some concepts are about differences of kind, but not
differences of degree. Concepts that identify different types but do not order
them on any scale are nominal, and they require only nominal level measurement
of their indicators.18

Nominal level measurement does not establish mathematical relation-
ships among the values. In other words, it does not make sense to assert that a
case with a nominal value of 3 is greater than one with a nominal value of 1, or
that two cases with a nominal value of 2 are equal. The symbols <, ≤, =, ≥,
and > have no meaning for variables measured at the nominal level. Gender is
a good example of a nominal level variable. When entering data for a measure
of gender into a computer a researcher might assign the values of 0 and 1 (or
1 and 2) to female and male, respectively. But she might also have assigned
the values −64 and 3, 241. Or she might have assigned the values 1 and 0 (or
2 and 1) to female and male, respectively. The point is that higher values do
not convey any meaning: the numerical values are placeholders that indicate a
difference, but the numerical values do not tell us anything meaningful.

1.5.2 Differences of Degree

At other times we are interested in differences of degree. Whether one case has
more, is stronger, etc., is important to us as we define concepts and then think

17Students interested in an extended discussion will find Cohen and Nagel (1934, pp. 223–
44) useful.

18The four levels of measurement—nominal, ordinal, interval, and ratio—were proposed by
Stevens (1946).
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about ways to measure those concepts. In such cases, nominal level concepts
and measures are inadequate for they do not imply mathematical relationships
among the values.

Ordinal level measurement, on the other hand, does imply mathematical
relationships among the values. More specifically, the symbols <, ≤, =, ≥, and
> have meaning for ordinal level concepts (variables). However, the distance
between any two values does not measure a constant quantity across the values
the variable might take. For example, a voting scholar might be interested in
people’s self-placement on an ideological scale. He might put together a survey
that includes a question asking people to mark themselves as far left, moderate
left, middle of the road, moderate right, far right. Such a concept makes “greater
than,” “less than,” and “equal to” distinctions. For example, we can say that
moderate left is further to the left on the scale than middle of the road. And
when we assign numerical values we do not have the same freedom as with a
nominal measure. That is, once we have assigned two values, we are constrained
on others. For example, if we assign “middle of the road” the value 3 and “far
left” the value 1, then we must assign “moderate left” a value greater than 1
and less than 3. If this were a nominal level variable, then we would not be so
constrained and could assign any value we wish. But ordinal variables must use
numerical values that retain the order of the concept’s values because the order
matters in the sense that it conveys meaning. So concepts with an ordinal level
of measurement have ordered values that indicate “more than” and “less than.”

The next level of measurement is interval. This requires that the distance
between values be constant over the range of values. This property is important
because it makes addition and subtraction meaningful. One cannot meaningfully
add or subtract variables with nominal or ordinal values because the operation
does not make sense. To see that this is so, consider that we can assign any
values to a binary nominal variable: 0, 1; 1, 2; or −64 and 3, 241. We cannot
meaningfully add or subtract the values of such a variable because the values
do not have meaning as numerical values. Ordinal measures, on the other hand,
have meaning up to “greater than” and “less than” operations, but they also
cannot be added or subtracted. If one considers the example above, we might
assign the numerical values 1, 2, 3, 4, and 5 to the ideology scale, or we might
assign the numerical values −3, 2, 7, 44, and 1,324. Any set of numerical values
that retains the order of the concept’s values is valid. The distances in the
first numerical value set are constant (they are each one unit apart), but the
distances in the second set vary. As such, and because both sets of values are
valid, the addition and subtraction of ordinal measures do not have meaning.

Interval level measures, on the other hand, have meaningful distances
between values: the intervals between numbers are constant across the range
of values. Put differently, a change of ±x on the scale is the same distance
regardless of where one is on the scale.

Interval levels measures may be discrete or continuous. Discrete variables
with interval level measurement are integers (or natural numbers). For example,
a common survey item is the feeling thermometer, which asks respondents to
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identify the strength of their feelings toward a politician on a scale of 0 to
100, where 0 represents extremely cold and 100 represents extremely hot (e.g.,
Cain, 1978; Abramowitz, 1980). Most researchers submit that the respondent
recognizes that a shift of +10 points is the same anywhere on the scale.19 That
is, the distance from 0 to 5 is equivalent to the distance from 26 to 31, from 47
to 52, from 83 to 88, etc. To the extent that this is so, the measure is interval.
One can meaningfully add and subtract interval level measures.

Ratio level variables are interval level variables that have a meaningful
zero value. The feeling thermometer variable has a zero value, but it does
not represent the absence of feeling. Instead, it represents a very strong feeling:
intense dislike. So zero is not a meaningful point on the scale. As such, while we
can conduct meaningful addition and subtraction operations with such variables,
we cannot conduct meaningful multiplication and division operations.

The label “ratio level” comes from the fact that the same ratio at two points
on the scale conveys the same meaning. This is not terribly intuitive, so let us
explain. On an interval level scale any distance x between two points has the
same meaning, regardless of where we are on the scale. Ratio level measurement
also has this property, but it has a constant ratio property that interval level
measurement lacks: the ratio of two points on the scale conveys the same mean-
ing regardless of where one is on the scale. A good example of a ratio level scale
is a public budget. Imagine that a municipal government spends four times as
much on public safety as it does on public health. This is a ratio of 4:1.20 Thus,
if the city spends $4.8 million on public safety, it must spend $1.2 million on
public health. Similarly, if it spends $2 million on public safety, it must spend
$0.5 million on public health. Ratios can only convey meaning (i.e., measure a
constant ratio) when the scale over which they are measured has a 0 value that
indicates the absence (i.e., none of) whatever is being measured.

To return to the feeling thermometer example, if the value 0 represents intense
negative affect (i.e., dislike), 50 indicates an absence of affect (i.e., indifference),
and 100 represents intense positive affect, then 0 is not an absence of affect.
Thus, it is an interval level scale, not a ratio level scale, and we cannot conclude
that the first member of two pairs of respondents with scores of 20 and 10, and
50 and 25, respectively, each have twice as much affect for a candidate as the
second member of each pair. However, we could rescale the feeling thermometer
to make it centered on zero, perhaps assigning the value of −50 to intense
negative affect, 0 to the absence of affect (or indifference), and 50 to intense
positive affect. Doing so would transform the level of measurement from interval
to ratio.21

19Note that the respondents’ (implicit) beliefs about the scale of the item are important in
survey research.

20We discuss ratios in more detail in the first section of Chapter 2. You may want to skip
ahead to there if you are unfamiliar with ratios.

21You may be thinking that this is a trivial transformation that is not consequential, but
this is not the case. To see why, try the following. Arbitrarily select a ratio—perhaps 3:1—and
select two pairs of points on the transformed feeling thermometer (the one with the proper
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There are lots of examples of discrete ratio level variables in political science.
Political scientists are often interested in the number of events that occur, and an
event count has a meaningful constant distance between values and a meaningful
zero point. Thus, they are ratio variables. Examples of event counts that
have been used in political science include the number of seats a party holds
in parliament, the number of vetoes issued by an executive, the number of
unanimous decisions by a court, and the number of wars in which a country has
participated.

Thus far we have restricted our attention to discrete variables. Continuous
variables have an interval or ratio level of measurement, depending on whether
the value 0 represents the absence of the concept. The vast majority of (empiri-
cal) concepts that political scientists have either created or borrowed from other
disciplines are discrete, but some examples of continuous measures of interest
to political scientists are income and GDP.22

You have likely noticed that each level of measurement subsumes the levels
below it. That is, ordinal level measurement is also nominal, and an inter-
val measure has ordinal and nominal properties. This suggests that whenever
we have a concept at a high level of measurement we can reconceptualize and
remeasure it at a lower level of measurement should we have cause to do so.

Some people mistakenly view the hierarchy of the levels of measurement as
a means to judge the heuristic value of concepts. This is an error. Concepts
can be evaluated on their clarity (vague concepts have little heuristic value),
and one can make normative judgments about concepts (e.g., freedom, peace,
order), but all sufficiently clear concepts are merely inputs to specific theories,
and theories, not their concepts, should be judged. A proper discussion of this
issue is beyond the scope of this book, but it is important to recognize that
a nominal conceptualization may yield insights that a ratio conceptualization
would miss and vice versa. Put differently, it would be an error to judge the
levels of measurement as an ordinal scale with respect to their value to causal
theory: it is nominal.

1.5.3 Why Should I Care?

Recognizing whether one is thinking about differences of kind (nominal) or de-
gree (ordinal, interval, or ratio) is critical. If one is thinking about differences of
degree, then how precise are those differences? Without a firm grasp on levels
of measurement one cannot be precise about one’s concepts, much less one’s
measures of one’s concepts.

ratio scale where −50 is intense dislike, 0 is indifference, and 50 is strong positive affect) that
have that ratio. Now transform the scale to the actual feeling thermometer (the one with the
range from 0 to 100). Recalculate the ratios. They are different, right? The two scales do
not produce the same ratio levels, and that means that one of them preserves ratios and the
other does not. The one with the meaningful zero is the only scale that produces meaningful
ratios. For a more detailed explanation, see Stevens (1946).

22If one rounds either to dollars, thousands of dollars, etc., then the values are integers (or
natural numbers) and the measure is discrete.
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1.6 NOTATION

Here we list, and in some cases briefly describe, common notation. This section
is one you will likely refer to from time to time, but not everything might be clear
now. Also, as a reference section it is heavier on the math and lighter on the
intuition. It is important to read it once now, but if you find yourself unclear on
some notation later, please refer back to this section. To make reference easier,
we begin with the summary Table 1.2.

Operators take many forms, and are commonly used. We have already
discussed some: +, −, ×, /, xn, n

√
x,
∑

,
∏

, !. Some of these have multiple
ways to represent them, others mean multiple things depending on context. For
example, there are several ways to represent multiplication: a×b×c = a∗b∗c =
a · b · c = abc. Of course, as we have seen, × can also mean a Cartesian product
when applied to sets. Both / and ÷ mean divide; the mod operator, written
8 mod 3, means divide the first number by the second, and report the remainder:
8 mod 3 = 2.

One can also use the product operator,
∏

, to represent the product of a, b,
and c:

∏c
a.

One reads that as the product of a through c.

More typically, the product operator is used by indexing a variable (this is

accomplished by adding a subscript: xi) and writing:
∏l
i=k xi.

One reads that as the product of xi over the range from i = k through
i = l.

When the product operator is used in an equation that is set apart from the
text, it looks like this:

l∏
i=k

xi = xk × . . .× xl.

The “. . .” here signals the reader to assume all interim values are included in
the product. When used at the end of a list, e.g., 1, 2, 3, . . ., “. . .” signifies that
the list (or product or sum) goes on indefinitely. In these cases you may also see
∞ as an end to the sequence instead, e.g., 1, 2, 3, . . . ,∞; ∞ is the symbol for
infinity. In other words, . . . means continue the progression until told to stop.

The summation operator,
∑

, can be used to represent the addition of several
numbers. For example, if we want to add together all members of a set indexed
by i, then we can write:

∑
i. One reads that as the sum over i. You will also see

summation represented over a range of values, say from value k through value
l:
∑l
i=k xi.

One reads that as the sum of xi over the range from i = k through
i = l.
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Table 1.2: Summary of Symbols and Notation

Symbol Meaning
+ Addition
− Subtraction

∗ or × or · Multiplication
/ or ÷ Division
± Plus or minus
xn Exponentiation (“to the nth power”)
n
√
x Radical or nth root

! Factorial
∞ Infinity∑l
i=k xi Sum of xi from index i = k to i = l∏l
i=k xi Product of xi from index i = k to i = l
. . . Continued progression
d
dx Total derivative with respect to x
∂
∂x Partial derivative with respect to x∫
dx Integral over x
∪ Set union
∩ Set intersection
× Cartesian product of sets
\ Set difference
Ac Complement of set A
∅ Empty (or null) set
∈ Set membership
/∈ Not member of set

| or : or 3 Such that
⊂ Proper subset
⊆ Subset
< Less than
≤ Less than or equal to
= Equal to
> Greater than
≥ Greater than or equal to
6= Not equal to
≡ Equivalent to or Defined as

f() or f(·) Function
{ } Delimiter for discrete set
( ) Delimiter for open set
[ ] Delimiter for closed set
∀ For all (or for every or for each)
∃ There exists
⇒ Implies
⇔ If and only if

¬C or ∼ C Negation (not C)
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Set apart from the text in an equation, the summation operator looks like this:

l∑
i=k

xi = xk + . . .+ xl.

The exponential operator, xn (read “x to the nth power,” or “x-squared”
when n = 2 and “x-cubed” when n = 3), represents the power to which we raise
the variable, x. The root operator, n

√
x (read “the nth root of x,” or “the square

root of x” when n = 2 or “the cube root of x” when n = 3), represents the root
of x.

Factorial notation is used to indicate the product of a specific sequence of
numbers. Thus, n! = n×(n−1)×(n−2) . . .×2×1. So 5! = 5×4×3×2×1 = 120,
and 10! = 10× 9× . . . 3× 2× 1 = 3, 628, 800. This notation is especially useful
for calculating probabilities.

You may not be familiar with some of the operators used in calculus. The
derivative of x with respect to t is represented by the operator dx

dt . The operator
∂ indicates the partial derivative, and

∫
indicates the integral. These will be

the focus of Parts II and V of this book.
Though it’s not an operator, one more symbol is useful to mention here: ±.

Read as “plus or minus,” this symbol implies that one cannot be sure of the
sign of what comes next. For example,

√
4 = ±2, because squaring either 2 or

−2 would produce 4.
Sets, as we have seen, have a good deal of associated notation. There are the

set operators ∩, ∪, ×, and \, plus the complement of A (Ac or A′). There are
also the empty set ∅, set membership ∈, set nonmembership /∈, proper subset ⊂,
and subset ⊆. To these we add | , : , or 3, which are each read as “such that.”
These are typically used in the definition of a set. For example, we define the
set A = {x ∈ B|x ≤ 3}, read as “the set of all x in B such that x is less than or
equal to 3.” In other words, the | indicates the condition that defines the set.
It serves the same purpose in conditional probabilities (P (A|B)), as we will see
in Part III of the book. Sets also make use of delimiters, described below.

Relations include <, ≤, =, ≥, >. They also include 6=, which means “not
equal to,” and ≡, which means “exactly equivalent to” or, often, “defined as.”
Relations between variables or constants typically have a left-hand side, to the
left of the relation symbol, and a right-hand side, to the right of the relation
symbol. These are often abbreviated as LHS and RHS, respectively. Functions
are typically written as f() or f(·), both of which imply that f is a function of
one or more variables and constants. The “·” here is a placeholder for a variable
or constant; do not confuse it with its occasional use as a multiplication symbol,
which occurs only when there are things to multiply.

Delimiters are used to indicate groups. Sometimes the groups are used to
identify the order of the operations that are to be performed: (x + x2)(x − z).
One performs the operations inside the innermost parentheses first and then
moves outward. Square braces and parentheses are also used to identify closed
and open sets, respectively. The open set (x1, xn) excludes the endpoint values
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Table 1.3: Greek Letters

Upper- Lower- Upper- Lower-
case case English case case English
A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta Υ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega

x1 and xn, whereas the closed set [x1, xn] includes the endpoint values x1 and
xn. Curly braces are used to denote set definitions, as above, or discrete sets:
{x1, x2, . . . , xn}. Parentheses are also often used for ordered pairs or n-tuples,
as we have seen; for example, (2, 3, 1). They are also often used in vectors,
which have a similar meaning. Both parentheses and square braces are used
interchangeably to indicate the boundaries of matrices. We will discuss both
vectors and matrices in Part IV of the book.

Proofs, the topic of the next section, have their own notation, which may
pop up in other sections as well. The symbol ∀ means “for all,” so ∀x ∈ A
means the associated statement applies for all x in the set A. The symbol ∃
means “there exists,” typically used in the context of ∃ some x ∈ A such that
x < 3. The symbol ⇒ is read as “implies” and is used as C ⇒ D, which means
that whenever statement C is true, D is too. One can also use the reverse,
C ⇐ D, which means that C is true if D is true. The symbol ⇔ means that
both implications are true and is read as “if and only if,” so C ⇔ D means
that C is true if D is true, and only if D is true. In other words, C and D are
equivalent statements. The symbol ¬ denotes negation, so ¬C means statement
C is not true. You will also sometimes see ∼ C used to mean C is not true.

People sometimes use Greek letters to represent variables, particularly in
formal theory; they are often used to represent constants (aka parameters) in
statistical analysis. Table 1.3 lists the Greek alphabet. If you have never en-
countered the Greek alphabet you may want to make a copy of this page, cut
out the table, and tape it to the wall where you study for this and other courses
that use math. Or just save it to your preferred portable electronic device.

1.6.1 Why Should I Care?

Notation that you cannot read is a serious stumbling block to understanding!
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1.7 PROOFS, OR HOW DO WE KNOW THIS?

As we progress through this book, we will offer up a great many pieces of
information as fact, often without explaining how we knew they were true. As
noted in the preface to this book, we do this in order to focus on intuition
rather than mathematical formalism. However, it is certainly fair to wonder—
more than fair, really—how one comes to these conclusions. The answer, as we
discuss briefly here, is that they have been proven to be true.

How does this work? Mathematics is not an empirical science; there are
no experiments, and no data except insofar as experience shapes the thought
of mathematicians. Rather, the progress of math begins with axioms and as-
sumptions, which are stated up front with clarity and taken to be true.23 One
then conjectures a proposition, which is just a statement that is thought to
be true given the assumptions made. From these assumptions, along with any
previously proved theorems, one deductively proves, or disproves, the propo-
sition. A proven proposition is often referred to as a theorem, unless it is
of little interest in and of itself and is intended to be used only as a stepping
stone, in which case it is called a lemma. A corollary is a type of proposi-
tion that follows directly from the proof of another proposition and does not
require further proof. You will see assumptions and propositions commonly in
pure and applied game theory, and lemmas, theorems, and corollaries somewhat
less commonly. Propositions, though deductively derived, are often empirically
testable given appropriate measures for the variables used in the proposition. In
other words, a proposition might state that y is increasing in x1 and decreasing
in x2. To test this empirically, one needs measures for y, x1, and x2. In some
scientific fields it is common to distinguish propositions from hypotheses, with
the former referring to statements of expected relationships among concepts and
the latter referring to expected relationships among variables. In such contexts
propositions are more general statements than hypotheses. At present, these
distinctions are not widely used among political scientists.

It is not difficult to make assumptions, though learning to specify them clearly
and to identify the implicit assumptions you may be making takes practice. Nor
is it difficult to state propositions that may be true, though similar caveats apply.
The tricky part is in proving the proposition. There is no one way to prove all
propositions, though the nature of the proposition can suggest the appropriate
alternative. We will consider a few commonly observed methods here, but this
is far from a complete accounting.

We begin by considering four statements: A,B,C,D. A statement can be
anything, e.g., A could be x < 3 or “all red marbles are in the left urn” or
“democracies are characterized primarily by elections.” Let’s assume that A
and B are assumptions. We take them to be true at the start of our proof and

23Political scientists rarely specify axioms, which tend to be more significant and wide-
ranging assumptions than what are called simply assumptions. The following discussion uses
terms as they are commonly observed in political science, which may elide mathematical
nuance.
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will not deduce them in any way from other statements. Of course, if they are
not empirically true, then our conclusions may very well be incorrect empirically,
but, as you can guess by the repeated use of the word “empirically,” this is an
empirical question and not a mathematical one. Let’s further assume that C
is an interim statement—that is, a deduced statement that is not our intended
conclusion—and that D is that conclusion. Thus our goal is to derive D from
A and B. This is the general goal of mathematical proofs.

More precisely, in this case we are seeking to show that A and B ⇒ D (A and
B imply D). This is a sufficiency statement: A and B are sufficient to produce
D. We also can call this an if statement: D is true if A and B are true. This
is not the only possible implication we could have written (implications are just
a type of mathematical statement). We could instead have stated that A and
B ⇐ D (A and B are implied by D). This is a statement of necessity: A and
B are necessary to produce D, since every time D is true, so are A and B. We
can also call this an only if statement: D is true only if A and B are. Take
a moment to think about the difference between these two ideas, as it is fairly
central to understanding theory in political science, and it is not always obvious
how different the statements are.

Ready? There is also a third common implication we could have written, a
necessary and sufficient statement: A and B ⇔ D. This is also called an if
and only if statement, as D is true if and only if A and B are true. In other
words, A and B are entirely equivalent logically to D, and one can replace one
statement with the other at will. This is one way one uses existing theorems
to help in new proofs, by replacing statements with other statements proven to
be equivalent. (One can also use if or only if propositions on their own in new
proofs.)

In addition to using existing theorems, pretty much any mathematical pro-
cedure accepted as true can be used in a proof. We’ll cover many in this book,
but the most basic of these may be the tools of formal logic, which has much
in common with set theory. Negation of a statement is much the same as the
complement of a set. For example, you cannot be both true and not true, nor
can you be both in and outside a set. You can also take the equivalent of a
union and an intersection of sets for statements; these are called disjunction
and conjunction, or, in symbols, or (∨) and and (∧), respectively. Note that
the and symbol looks like the intersection symbol. This is not accidental—and
means that both statements are true, which is like being in both sets, which
is like the intersection of the sets. Likewise, or means that at least one state-
ment is true, which is like being in either set, which is like the union between
the sets. Let’s call a compound statement anything that takes any two simpler
statements, such as A and B, and combines them with a logical operator, such
as ¬,∨, or ∧. We can therefore write the implication we’re trying to prove as
A ∧B ⇒ D.

De Morgan’s laws prove handy for manipulating both sets and logical state-
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ments.24 We’ll present these in terms of logical statements, but they are true
for sets as well after altering the notation. The best way to remember them is
that the negation of a compound statement using and or or is the compound
statement in which the and is switched for or, or vice versa, and each of the
simpler statements is negated. So, for example, ¬(A ∧ B) is (¬A) ∨ (¬B) and
¬(A ∨ B) is (¬A) ∧ (¬B). In words, if both statements aren’t true, then at
least one of them must be false. Similarly, if it’s not the case that at least one
statement is true, then both statements are false.

We can use logic to obtain several important variants of our implications
that might be useful. A negated implication just negates all the statements
that are part of the implication. So the negation of our implication becomes
¬(A∧B)⇒ ¬D, which by De Morgan’s law is (¬A)∨ (¬B)⇒ ¬D. Even when
the statement is true, the negation might not be. Having two democracies may
mean you’re at peace (for the sake of this argument), but letting at least one of
them not be a democracy does not automatically imply war.

The converse of an implication switches a necessary statement to a sufficient
one, or vice versa. Thus the converse of A and B ⇒ D is A and B ⇐ D or
D ⇒ A and B. As noted above, just because an implication is true does not
mean the converse is true—something may be necessary without being sufficient.
However, negating the converse, called taking the contrapositive, does always
yield a true statement. The contrapositive of our implication is (¬A)∨(¬B)⇐
¬D, or, as it’s more typically written, ¬D ⇒ (¬A) ∨ (¬B). If a pair (dyad) of
democracies never experiences war, then having a war (the opposite of peace)
means that at least one of the pair is not a democracy.

Okay, back to our proof. Proofs are sometimes classed into broad groups
of direct and indirect proofs. Direct proofs use deduction to string together
series of true statements, starting with the assumptions and ending with the
conclusion. In addition to the construction of a string of arguments, direct proofs
commonly observed in formal theory include proof by exhaustion, construction,
and induction. Let us see briefly how these work, starting with a general
deductive proof.

Let A be the statement that x ∈ Z is even, and B be the statement that
y ∈ Z is even, and D, which we’re trying to prove, be the statement that the
product xy is even. Well, if x and y are even (our assumptions), then they
can be written as x = 2r and y = 2s for some r, s ∈ Z. (Here we’ve used the
definition of even.) In this case, we can write xy = (2r)(2s) = 4rs, which is our
new statement C. Since 4rs = 2(2rs), xy is even (again using the definition of
even), thus proving D. Now we know that the product of any two even integers
is also even, and we could use this knowledge in further, more complex proofs.

Proof by exhaustion is similar, save that you also break up the problem into
exhaustive cases and prove that your statement is true for each case. This comes
up often in game theory as there will be different regions of the parameter space
that may behave differently and admit different solutions. (The parameter space

24See http://en.wikipedia.org/wiki/De_Morgan_laws.

http://en.wikipedia.org/wiki/De_Morgan_laws
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is the space, in the sense of a set with a measure, spanned by the parameters.
We will discuss this concept more in Part III of the book.)

Proof by construction is similarly straightforward, and can be useful when
trying to show something like existence: if you can construct an example of
something, then it exists.

Proof by induction is a bit different and merits its own example. It is
generally useful when you would like to prove something about a sequence (we
cover sequences in Chapter 4) or a sequence of statements. It consists of three
parts. First, one proves the base case, which in this example is the first element
in the sequence. Second, one assumes that the statement is true for some n
(the inductive hypothesis). Third, one proves that the statement is true for
n + 1 as well (the inductive step). Thus, since the base case is true and one
can always go one further in the sequence and have the statements remain
true, the entire sequence of statements is true.25 Let’s see how this works with

an example: show that
∑n
i=1 i = n(n+1)

2 . We basically need to show this is
true for each n, but since they occur in sequence, we’ll use induction rather
than exhaustion (which wouldn’t be appropriate, given that the sequence is
infinite anyway). First we try the base case, which is for n = 1. We can

check this:
∑1
i=1 i = 1 = 1(2)

2 = 1(1+1)
2 . So the base case is true. Now we

assume, somewhat counterintuitively, the statement that we’re trying to prove:∑n
i=1 i = n(n+1)

2 . Finally, we show it remains true for n + 1, so we need to

prove that
∑n+1
i=1 i = (n+1((n+1)+1)

2 , where we’ve replaced n in the right-hand
side of the statement we’re trying to prove with n + 1. The sum in the left-
hand side of this is

∑n
i=1 i + (n + 1), where we’ve just split the sum into two

pieces. The first piece equals n(n+1)
2 by step two in our proof. So now we have

n(n+1)
2 + (n + 1) = n(n+1)

2 + 2(n+1)
2 = n(n+1)+2(n+1)

2 = (n+1)(n+2)
2 . This is just

what we needed to show, so the n + 1 inductive step is true, and we’ve proved
the statement.

Indirect proofs, in contrast, tend to show that something must be true
because all other possibilities are not. Proof by counterexample and proof
by contradiction both fall into this category. Counterexamples are straight-
forward. If the statement is that A ∧B ⇒ D and A and B are both true, then
a single counterexample of ¬D is sufficient to disprove the proposition. Proof
by contradiction has a similar intent, but instead of finding a counterexample
one starts by assuming the statement one is trying to prove is actually false,
and then showing that this implies a contradiction. This proves the proposition
because if it cannot be false, then it must be true. Although it may seem coun-
terintuitive, proof by contradiction is perhaps the most common type of proof,
and is usually worth trying first. Proving the contrapositive, since it indirectly

25Though this method of proof is called mathematical induction, it’s important to note
that it is a deductive method of theory building, not an inductive one. That is, it involves
making assumptions and deducing conclusions from these, not stating conclusions derived
from a series of statements that may only be probabilistically linked to the conclusion, as in
inductive reasoning.
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also proves the statement, as they are equivalent, is sometimes also considered
an indirect proof, though it seems pretty direct to us.

1.8 EXERCISES

1.8.1 Constants and Variables and Levels of Measurement

1. Identify whether each of the following is a constant or a variable:

a) Party identification of delegates at a political convention.

b) War participation of the Great Powers.

c) Voting record of members of Congress relative to the stated position
of the president.

d) Revolutions in France, Russia, China, Iran, and Nicaragua.

e) An individual voter’s vote choice in the 1992 presidential election.

f) An individual voter’s vote choice in the 1960–1992 presidential elec-
tions.

g) Vote choice in the 1992 presidential election.

2. Identify whether each of the following is a variable or a value of a variable:

a) The Tonkin Gulf Crisis.

b) Party identification.

c) Middle income.

d) Exports as a percentage of GDP.

e) Republican.

f) Female.

g) Veto.

h) Ethnic fractionalization.

i) International crisis.

3. Identify whether each of the following indicators is measured at a nominal,
ordinal, interval, or ratio level. Note also whether each is a discrete or a
continuous measure:

a) Highest level of education as (1) some high school, (2) high school
graduate, (3) some college, (4) college graduate, (5) postgraduate.

b) Annual income.

c) State welfare expenditures, measured in millions of dollars.

d) Vote choice among Bush, Clinton, and Perot.

e) Absence or presence of a militarized interstate dispute.

f) Military personnel, measured in 1,000s of persons.

g) The number of wars in which countries have participated.
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1.8.2 Sets, Operators, and Proofs

4. As a brief illustration of one use of set theory, consider the following ques-
tion: given three parties in a legislature with a supermajority rule required
to pass a bill, what is the likely outcome of a given session? We can use set
theory and some rational choice assumptions to get a pretty good handle
on that question. Assume that no party has enough seats to pass the bill
by itself and that all three parties prefer some outcome other than the
status quo. For concreteness, let’s define two dimensions over which to
define policy: guns (i.e., defense spending) and butter (i.e., health, educa-
tion, and welfare spending). We can now create a two-dimensional space
where spending on guns is plotted on the vertical axis and spending on
butter is plotted on the horizontal axis. Take out a sheet of paper and
draw this. Let the axes range from 0% of the budget, marked where the
axes intersect, to 100% of the budget, marked as the maximum value on
each axis. Connect the two maximum values with a straight line. You now
have a triangle, and the legislature cannot go outside the triangle: the line
you just drew represents spending the entire budget on some mix of guns
and butter. Let’s assume that the legislators want to spend some money
on non-guns and non-butter, and thus both parties’ most preferred com-
bination of guns and butters is somewhere inside the budget constraint.
Pick some point inside the budget constraint and mark it as the status
quo. Now select a most preferred combination for each party and mark
each as Party 1, Party 2, and Party 3. Finally, pick a fifth point and label
it a bill. Make a conjecture on whether the bill will pass or whether the
status quo will be sustained. (For now this is just a conjecture, but we’ll
return to this in the exercises to Chapter 3, so save your answer.)

5. Let A = {1, 5, 10} and B = {1, 2, . . . , 10}.

a) Is A ⊂ B, B ⊂ A, both, or neither?

b) What is A ∪B?

c) What is A ∩B?

d) Partition B into two sets, A and everything else. Call everything else
C. What is C?

e) What is A ∪ C?

f) What is A ∩ C?

6. Write an element of the Cartesian product [0, 1]× (1, 2).

7. Prove that
√

2 is an irrational number. That is, show that it cannot be
written as the ratio of two integers, p and q.

8. Prove that the sum of any two even numbers is even, the sum of any
two odd numbers is even, and the sum of any odd number with any even
number is odd.
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Algebra Review

Of all the chapters in this book, this is the one most safely skipped. Most of
this chapter is taken up by a review of arithmetic and algebra, which should be
familiar to most readers. If you feel comfortable with this material, skip it. If
it is only vaguely familiar, don’t. The third section briefly discusses the utility
of computational aids for performing calculations and checking work.

2.1 BASIC PROPERTIES OF ARITHMETIC

There are several properties of arithmetic that one uses when simplifying equa-
tions. These arise from the real numbers or integers for which the variables
stand. In other words, because the variables we use in political science gener-
ally take values in R or Z, these five properties generally apply. This will be true
nearly throughout the book; however, in Part IV we will see that matrix vari-
ables can fail to commute under multiplication, for example, and do not always
possess multiplicative inverses. But for variables that stand for real numbers or
integers, these properties will always hold. Most of these are expressed in terms
of addition and multiplication, but the first three properties apply to subtraction
and division, respectively, as well, except for division by zero.

The associative properties state that (a+b)+c = a+(b+c) and (a×b)×c =
a × (b × c). In words, the properties indicate that the grouping of terms does
not affect the outcome of the operation.

The commutative properties state that a + b = b + a and a × b = b × a.
In words, the properties claim that the order of addition and multiplication is
irrelevant.

The distributive property states that a(b + c) = ab + ac. In words, the
property says that multiplication distributes over addition (and subtraction).

The identity properties state that there exists a zero such that x+ 0 = x
and that there exists a one such that x×1 = x. In other words, there exist values
that leave x unchanged under addition and multiplication (and subtraction and
division, respectively, as well).

The inverse property states that there exists a −x such that (−x) +x = 0.
In other words, there exist values that when added to any x produce the identity
under addition. We might also consider an inverse under multiplication, x−1,
such that (x−1) × x = 1. The existence of this inverse is a property of the
real numbers (and the rational numbers), but not the integers, so one must
be careful. For example, if x = 2, then x−1 = 0.5 in the real numbers, but
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no integer multiplied by two equals one. Whether or not an inverse exists will
depend, therefore, on the set of values the variable can take.

It is useful to recall at this stage that division by zero is undefined. The
expression x/0 = ∞ is true for any x 6= 0, but is completely undefined for
x = 0. Other useful facts include that x = 1x = x1 = 1x1, and that x0 = 1.
Recall also that multiplication by a variable with a negative value changes the
sign of the product: −1 × x = −x. The product of two terms with negative
signs is positive: (−x) · (−y) = xy.

2.1.1 Order of Operations

The order of operations is also important and can trip people up. In arithmetic
and algebra the order of operations is parentheses, exponents, multiplication,
division, addition, subtraction. A common mnemonic device people use to mem-
orize order of operations is PEMDAS, or Please Excuse My Dear Aunt Sally.

2.1.2 Ratios, Proportions, and Percentages

Ratios, proportions, and percentages sometimes give people trouble, so let’s
briefly review those. The ratio of two quantities is one divided by the other x

y
is the ratio of x to y. Ratios are also written as x : y. Keep in mind that one can
only take the ratio of two variables measured at a ratio level of measurement
(i.e., there is a constant scale between values, and a meaningful zero). Though
a ratio may be negative, we typically consider ratio variables that range from

0 to ∞. To get this, we take the absolute value of the ratio, denoted
∣∣∣xy ∣∣∣. All

this does is turn any negative number positive. As an example, international
relations scholars are often interested in the ratio of military power between two
countries (e.g., Organski and Kugler, 1981).

The proportion of two variables, on the other hand, is the amount one vari-

able represents of the sum of itself and a second variable:
∣∣∣ x
x+y

∣∣∣. A proportion

ranges from a minimum of 0 to a maximum of 1. Students of budgetary politics
are often interested in the proportion of expenditures that is spent in a given
category (e.g., health and welfare, pork barrel politics, defense spending; see
Ames, 1990).

The percentage one variable represents of a total is the proportion repre-
sented over the range from 0 to 100. In other words, the percentage is a linear

transformation of the proportion
∣∣∣ x
x+y

∣∣∣× 100%. Many people find a percentage

representation more intuitive than a proportion representation, but they provide
the same information.

You will also encounter the percentage change in a variable, which is cal-

culated as (xt+1−xt)
xt

, where the subscript t indicates the first observation and
the subscript t+ 1 indicates the second observation. For instance, according to
the Center for Defense Information’s Almanac, the United States spent $75.4
billion for military personnel wages in 2001 and an estimated $80.3 billion in
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2002. The expenditures in 2002 represented a 6.5% increase over 2001 expendi-

tures: (80.3−75.4)
75.4 ' 6.5%. Note that the percentage change can range from −∞

to ∞.

2.1.3 Why Should I Care?

You care about these properties because you need to know them to follow along.
People who use mathematics to communicate their ideas, whether in formal the-
ory or statistics, assume that you can do the operations allowed by these prop-
erties. They often “skip steps” when writing down manipulations and expect
you to do them in your head. If you cannot do them, you will get lost.

2.2 ALGEBRA REVIEW

This section reviews the most common algebraic manipulations you will en-
counter. Most of you will be familiar with these; the trick is trying to minimize
errors, which are easy to make. We note some common errors to avoid.

2.2.1 Fractions

Many students find fractions the most frustrating part of algebra. People gen-
erally find whole numbers more intuitive than fractions, and that makes calcu-
lations with fractions more difficult to perform. As such, whenever possible it is
best to convert fractions to whole numbers. Recall that the number on the top
of a fraction is the numerator and the number on the bottom of a fraction is
the denominator

Numerator

Denominator
.

Thus, one can convert to a whole number whenever the denominator divides
evenly into the numerator.

Many people find mixed numbers such as 23
4 even more frustrating. To

convert these mixed numbers to fractions, follow these two steps. First, multiply
the denominator of the fraction by the whole number (i.e., multiply 4×2, which
equals 8). Second, take this product and add it to the numerator and place that
sum over the original denominator (add 8 to 3, which equals 11, and place that
over 4 for the final fraction 11

4 ). These two quantities are equivalent.
Two common algebraic manipulations relating to fractions that often trouble

students are cancellations and adding fractions.

2.2.1.1 Cancellations

The reason we want to reduce fractions is to make them easier to use (if the
fraction can be converted to a whole number, this is ideal). For example, 10x

2
can be reduced to 5x. One that you might encounter in game theory could look
like this: 7+3x

2x .
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One of the most common mistakes made is to cancel the xs and simplify 7+3x
2x

to 10
2 , and then simplify this quantity to 5. However, 7+3x 6= 10x, so 7+3x

2x 6= 5.
In this example 7+3x

2x can be simplified to 7
2x + 3x

2x . The fraction 7
2x is in its

simplest form. The fraction 3x
2x can be simplified to 3

2 , as long as x 6= 0.1

Therefore, 7+3x
2x = 7

2x + 3
2 .

2.2.1.2 Adding Fractions

Adding or subtracting fractions can be a bit frustrating as they do not follow the
same rules as whole numbers. More specifically, you can only add the numerators
of two or more fractions when the denominators of each fraction are the same
(i.e., you cannot add fractions with different denominators). You can add 4

β + α
β ,

which equals 4+α
β . When two fractions have different denominators, such as

β
4 + α

2 , one must transform one or both of the denominators to make addition
possible: the numerators of all fractions can be added once their denominators
are made equal.

To pursue the above example, β
4 + α

2 , if we multiply α
2 by 2

2 (which equals
one; you can always multiply by things equal to one, or add things equal to zero
because of the identity property), it becomes 2α

4 . Since the two fractions now
have the same denominator, we can add their numerators:2 β

4 + 2α
4 = 2α+β

4 .
Unlike addition, multiplication does not require a common base, and one

does multiply both numerator and denominator: 2
3 ×

1
4 = 2

12 = 1
6 .

Another common mistake people make when adding fractions is to assume
that all aspects of fractions follow the same rules of addition. For example, they
assert that 1

∆+Θ is equal to 1
∆ + 1

Θ . It is not. To see why this is so, let’s add real
numbers to the expression. If we substitute 2 for ∆ and 1 for Θ and sum the
denominator, we get 1

2+1 , which is equal to 1
3 . If we split the fraction improperly,

including the numerator over both parts of the denominator as above, we will
conclude that 1

2+1 = 1
2 + 1

1 , which equals 1 1
2 , or 1.5,3 not 1

3 .

2.2.2 Factoring

Factoring involves rearranging the terms in an equation to make further ma-
nipulation possible or to reveal something of interest. The goal is to make the
expression simpler. One uses the properties described above rather extensively
when factoring.

A standard algebraic manipulation involves combining like terms in an ex-
pression. For example, to simplify δ + δ2 + 4δ − 6δ2 + 18δ3, we combine all like
terms. In this case we combine all the δ terms that have the same exponent,
which gives us 18δ3 − 5δ2 + 5δ.

1Remember, anything divided by itself is one, and anything multiplied by one equals itself.
2Note that we do not take the sum of the denominators. One only adds the numerators.
3If you have forgotten how to convert fractions into decimals, the solution is to do the

division implied by the fraction (you can use a calculator if you wish): 1
2

= 0.5.
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Another standard factoring manipulation involves separating a common term
from unlike ones. We first establish what we want to pull out of the equation,
then apply the distributive property of multiplication in reverse. For example,
we might want to pull x out of the following: 3x + 4x2 = x(3 + 4x). Another
example is 6x2 − 12x+ 2x3 = 2x(3x− 6 + x2).

A more complex example is 12y3 − 12 + y4 − y.
We can factor 12 out of the first two terms in the expression and y out of the

next two terms.
The expression is then 12(y3 − 1) + y(y3 − 1), which can be regrouped as

(12 + y)(y3 − 1).

2.2.2.1 Factoring Quadratic Polynomials

Quadratic polynomials are composed of a constant and a variable that is both
squared and raised to the power of one: x2−2x+3, or 7−12x+6x2.4 Quadratic
polynomials can be factored into the product of two terms: (x±?)×(x±?), where
you need to determine whether the sign is + or −, and then replace the question
marks with the proper values.

Hopefully, it is apparent that one can multiply many products of two sums or
two differences to get a quadratic polynomial; this is the reverse of factoring.5

2.2.2.2 Factoring and Fractions

We can also reduce fractions by factoring. Consider the fraction x2−1
x−1 . We can

factor the numerator x2 − 1 = (x+ 1)(x− 1). We can thus rewrite the fraction
as follows

x2 − 1

x− 1
=

(x+ 1)(x− 1)

x− 1
.

The term x−1 is in both the numerator and the denominator and thus (as long

as x 6= 1) cancels out, leaving x+ 1. Thus, x
2−1
x−1 = x+ 1 for x 6= 1.

This factoring need not be accomplished in one step. Consider the expression

3λ4 + 3λ3 − 6λ2

6λ2 + 12λ
.

First, we can factor out the common factor from both the numerator and
denominator. All of the terms in the numerator are multiples of 3λ2 and both
of the terms in the denominator are multiples of 6λ. This yields

4Another way of putting this is that a quadratic polynomial is a second-order polynomial
in a single variable x. We discuss polynomial functions in the next chapter. Finally, given
that the Latin prefix quadri is associated with four, you may be wondering why quadratic is
used to describe equations with a term raised to the power of two. The reason is that the
Latin term quadratum means “square.” So an equation with a variable that is squared is a
quadratic equation (Weisstein, N.d.).

5Note that this is true of some, but not all, products of two sums or two differences.
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3λ2(λ2 + λ− 2)

6λ(λ+ 2)
.

Next, we factor the quadratic polynomial in the numerator to get

3λ2(λ+ 2)(λ− 1)

6λ(λ+ 2)
.

Then we factor out like terms. Both the numerator and denominator have
λ+ 2, so (as long as λ 6= −2) they cancel out, leaving

3λ2(λ− 1)

6λ
.

Finally, 3λ can be canceled (as long as λ 6= 0) from both the numerator and
the denominator, leaving the expression in its simplest form

λ(λ− 1)

2
.

2.2.3 Expansion: The FOIL Method

Sometimes we need to simplify a complex expression. At other times we need
to expand a simple expression. Here is a pop quiz:

Does (δ + γ)2 = δ2 + γ2?
The answer: no.
Why? The expression (δ + γ)2 = (δ + γ)(δ + γ). This can then be expanded

using the FOIL method. The expanded expression is δ2 + 2δγ + γ2.
The FOIL method can be used to expand the product of two sums or differ-

ences. FOIL stands for first, outer, inner, last, and represents the products one
must calculate.

F: Multiply the first terms: (2π + 7)(4 + 3π) = 2π × 4 = 8π.

O: Multiply the outer terms: (2π + 7)(4 + 3π) = 2π × 3π = 6π2.

I: Multiply the inner terms: (2π + 7)(4 + 3π) = 4× 7 = 28.

L: Multiply the last terms: (2π + 7)(4 + 3π) = 7× 3π = 21π.

Add terms to get 8π + 6π2 + 28 + 21π.

Finally, group like terms to get 6π2 + 29π + 28.

To test yourself, factor the final expression and show it yields the simplified
expression with which we started. This is one way to check your work for any
careless mistakes.
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2.2.4 Solving Equations

Solving an equation involves isolating a variable on one side (by convention, the
left side of the equals sign) and all other variables and constants on the other
side. One does so by performing the same calculations on both sides of the
equation such that one ends up isolating the variable of interest. This often
takes multiple steps and there is almost always more than one way to arrive at
the solution. As an example, the equation y = 2x is already solved for y. If we
want to solve that equation for x, we need to do some algebra. Start with

y = 2x.

Divide both sides of the equation by 2, yielding

y
2 = x.

Rewrite the equation:

x = y
2 .

Note that we can go about this in a more convoluted fashion:

y = 2x.

Divide both sides by x, yielding

y
x = 2.

Divide both sides by y:

1
x = 2

y .

Multiply both sides by x:

1 = x( 2
y ).

Multiply both sides by y
2 :

y
2 = x.

Now rewrite:

x = y
2 .

That is hardly efficient, but the good news is that we ended up at the same
place, though we would have had to be careful that neither x nor y was equal
to zero when dividing by them. We also got some practice in manipulating an
equation. Here are a few useful techniques for those rusty in their algebra.

1. Focus on the variable of interest. Work on isolating the variable you
care about, and don’t worry so much about what this does to the rest of
the equation.
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2. Combine all like terms. Simplifying equations is easiest when you sort
out all the noise and add together like terms.

3. Check your answer. Substitute the value that you obtain into the
original equation to make sure that your answer is correct and that you
didn’t make a careless mistake.

4. Make use of identities. Remember a
b×

b
a = 1 and a−a = 0. That means

you can multiply by the first and add the second at all times, whenever
convenient, without changing the equation.

5. Operate on both sides in the same manner. Adding the same num-
ber to each side or multiplying each side by the same number won’t change
the equation.

2.2.4.1 Solving Quadratics

Solving quadratic polynomials requires learning how to complete the square
and/or knowing the quadratic equation.

Completing the Square
Many quadratic equations that you will face can be solved relatively easily

by completing the square. The basic intuition for solving these is to isolate
the variable and its square and then add a value to each side of the equation to
“complete the square.”

To see what we are trying to accomplish, it helps to begin with a simple
example. Sometimes we are presented with a quadratic equation that factors
into a squared term, i.e., (x − n)2 ± c, where c is some constant. Consider the
quadratic x2−6x+5. We can factor this into (x−3)2−4 (use the FOIL method
to verify). We can then rewrite this equation as (x− 3)2 = 4. Finally, by taking
the square root of both sides we, can solve for x:

(x− 3)2 = 4⇒
x− 3 = ±2⇒
x = 5 or x = 1.

Note that this quadratic equation will have two solutions in the real numbers,
or zero, but not one.6 In other words, the cardinality of the solution set for
a quadratic equation will be zero or two. An example of a quadratic equation
with no real solutions (i.e., no solutions in the real numbers) is x2 + 1 = 0.7

Solving a quadratic by factoring it into a squared term ± a constant and
then taking the square root is quick, but most quadratics cannot be factored in
integers so easily. However, we can transform any quadratic using the follow-
ing steps to “complete the square” (i.e., transform it into a squared term ± a
constant) and then solve for x by taking the square roots.

6Quadratic equations with real coefficients will always have two solutions in complex num-
bers; if these solutions are complex they will come in pairs, i.e., a± bi.

7The solutions of this equation are ±i.
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1. Start with a quadratic in your variable of interest (we’ll say it’s x) and
move the constant to the right-hand side. Divide through by the coefficient
on x2. So if you have 2x2 − 4x− 2 = 0, you get x2 − 2x = 1.

2. Divide the coefficient on x by 2 and then square it. Add that value to
both sides of the equation. So now you have x2 − 2x+ 1 = 1 + 1.

3. Factor the left-hand side into a “(x ± some term) squared” form and
simplify the right-hand side. So now you have (x− 1)2 = 2.

4. Take the square root of both sides (remember that when you take the
square root of a number, the solution is always ±, because the square of
a negative number is a positive number). So now you have x− 1 = ±

√
2.

5. Solve for x. So the solutions are x = 1 +
√

2 and x = 1−
√

2.8

Let’s work another example. Consider the quadratic

x2 + 8x+ 6 = 0.

The first thing you might try is factoring to see if it yields the “(x ± some term)
squared” form. This quadratic does not, so we turn to completing the square.
The first step is to isolate the squared term and variable by subtracting 6 from
each side (note the coefficient on x2 is already 1):

x2 + 8x = −6.

Next we need to add the square of half of the value in front of x to both sides.
The value in front of x is 8, so we divide 8 by 2 and then square the result
42 = 16. Thus, to complete the square we need to add 16 to each side:

x2 + 8x+ 16 = 10.

We then perform step 3 and factor the left-hand side of the equation:

(x+ 4)2 = 10.

We now need to take the square root of each side, which gives us

x+ 4 = ±
√

10.

Now we can solve for x by subtracting 4 from each side. Our final answer is

x = −4 +
√

10 and x = −4−
√

10.

8Irrational solutions such as 1±
√

2 will also always come in pairs.
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The Quadratic Formula and Equation
Completing the square is one method for solving a quadratic equation, but it

is not the only one, and you will sometimes encounter equations that are rather
complicated to solve by completing the square. For example, if you are faced
with x2 +

√
15x − 1 = 0, you will not want to calculate half of

√
15, and then

square it, add it to both sides, and try to factor the result. Instead, you will
want to turn to the quadratic equation and formula.9

During your high school algebra courses you were probably required to mem-
orize the quadratic equation and formula. The general form of a quadratic
equation is10

ax2 + bx+ c = 0.

The general solutions to this equation are

x =
−b±

√
b2 − 4ac

2a
.

These solutions are called the quadratic formula. The formula can be derived
from the equation by completing the square (we ask you to do this below, in
an exercise). When we obtain values for x, we call these values the roots of the
equation. For our purposes, this formula is used when completing the square is
made difficult by fractions, decimals, or large numbers. We refer to a and b as
the coefficients and c as the constant.

What are the roots of the quadratic equation

1.4x2 + 3.7x+ 1.1 = 0?

To find the solutions, we first list the values for a, b, and c:

a = 1.4, b = 3.7, c = 1.1.

Then we plug the values for a, b, and c into the quadratic formula:

x =
−3.7±

√
3.72 − 4× 1.4× 1.1

2.8
.

Using a calculator to solve, we find that x = −.341 or x = −2.301.
These problems can be cumbersome because it is somewhat more difficult

to check them. Two pieces of advice, though, can help you minimize mistakes.
First, make sure to follow order of operations (PEMDAS, remember?). Second,
you can go online and use a quadratic equation solver and plug in the values for
a, b, and c to verify the accuracy of your computations. We discuss this further
in Section 3.

9It is possible to use either method—completing the square or the quadratic equation and
formula—to solve a quadratic equation. But one is more likely to make errors using the latter
than the former, and so many people find completing the square preferable as long as they
are not faced with an unusual (e.g., radical) value in front of the x term.

10The equation is true when a 6= 0. When a = 0 and b 6= 0, it is a simple linear equation
with solution x = − c

b
. If both a and b are zero, the equation is false unless c = 0 as well.
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2.2.5 Inequalities

To solve inequalities, we have to discuss a few extra properties.
First, all pairs of real numbers have exactly one of the following relations:

x = y, x > y, or x < y.
Adding any number to each side of these relations will not change them;

this includes the inequalities. That is, inequalities have the same addition and
subtraction properties as equalities such that if x > y, then x + a > y + a and
x− a > y − a.

The properties for multiplication and division for inequalities are a bit dif-
ferent than for equalities. For multiplication, if a is positive and x > y, then
ax > ay. If a is negative and x > y, then ax < ay. For division, if a is positive
and x > y, then x

a >
y
a . If a is negative and x > y, then x

a <
y
a . Multiplying or

dividing an inequality by zero is not allowed.
To summarize, this means that you flip the < or > sign when multiplying or

dividing by a negative.
Example: Solve for y: −4y > 2x + 12. First, we want to isolate y by itself

on the left side of the equation. We divide both sides by −4, which gives us
y < −x2 − 3. Dividing by a −4 flips the > sign to <. If we do not know the
value of x, then we can leave it in this form.

2.2.6 Review: Avoiding Common Errors

We have included a list of some common mistakes people make when solving
equations as a sort of help file for when you are struggling to find the right
answer. Below this list, we’ve included some websites you may go to for extra
examples or help.

That said, please remember that the World Wide Web is dynamic, and the
links below will become dated. We found them using search engines, and you
will be able to do the same.

Sign errors: Sign errors are probably the most common mistakes. Most people
think of this (−) sign as a negative sign. This is part of the problem.
Tackling math as if it were a foreign language is the best way to approach
learning the fundamentals of mathematics. This sign (−) is best thought
of as “the opposite of,” or, in other words, “the additive inverse.” (Recall
that every integer and real number has an additive inverse that, when
added to the number, produces zero.) When reading an equation such as
−x + y = 7, you should say in your head, “the opposite of x added to y
is 7.” The reason for thinking of this sign as “the opposite of” is twofold.
First, it can help you find mistakes in your work. Second, it will help you
deal with situations such as −x = 7. You will easily interpret this as the
opposite of x equals 7, so x must be the additive inverse of 7, which is
−7.11

11If this is a bit confusing, remember that the number line has 0 in the middle, positive



ALGEBRA REVIEW

MooSieBookPUP June 5, 2013 6x9

39

Only changing one side or term in an equation: Think of an equation
as a scale or seesaw. Whatever you do to one side you must do to the
other.12 An equation must be in equilibrium. If you divide one side by 12,
you must divide the other by 12. In addition, you must divide all terms
on both sides by 12.

Not distributing: Always distribute across addition (and subtraction). If you
have an expression such as 4x(2 + 6y + 3t), many people simply multiply
4x by 2. Each term inside a parentheses must be multiplied by what is
outside the parentheses. The correct expression is 8x+ 24xy + 12xt.

Distributing with radicals and exponents: Radicals and exponents have
different rules, which we discuss in depth in the next chapter. They do
not follow the same rules as multiplication and addition. For example,√

9 + 16 is not the same as
√

9 +
√

16. Also, as discussed above, (α+ β)2

is not the same as α2 + β2.

You can find other lists of common errors at several websites. For example,
Eric Schecter maintains a page of the most common math errors by undergradu-
ates (http://atlas.math.vanderbilt.edu/~schectex/commerrs/). See
Schecter’s page for entries on “multiplying by a negative one and other sign
errors,” “loss of invisible parentheses,” “everything is additive,” and “every-
thing is commutative.”

Other common algebra mistakes include canceling terms instead of factors,
misunderstanding fractions, and misunderstanding negative and fractional com-
ponents. See http://tutorial.math.lamar.edu/pdf/algebra_Cheat_Sheet

.pdf.
Beyond this, some of you may be interested in more practice, especially with

algebra. One of the authors finds Huettenmueller (2010) a useful resource, but
there are a number of other self-teaching guides. You can also find a number of
useful resources available on the Web. We recommend http://www.purplemath

.com/, http://mathworld.wolfram.com/, and http://math.com/. Wikipedia
(http://en.wikipedia.org/) also has many good entries for mathematical
concepts, though many of these can substantially be found elsewhere.

For more information on set theory, see Peter Suber’s “A Crash Course in the
Mathematics of Infinite Sets” (http://www.earlham.edu/~peters/writing/
infapp.htm). Oregon State’s “Field Guide to Functions” (http://oregonstate
.edu/instruct/mth251/cq/FieldGuide/) is a good guide to functions (the
topic of the next chapter). R.H.B. Exell’s page on relations is also useful for

integers falling to the right of 0 and negative integers falling to the left. Any number has an
opposite on the number line that is equidistant from zero. So the opposite of 8 is −8 and the
opposite of −9 is 9. Thinking of negatives in these terms will also help you deal with absolute
values.

12Of course, as noted above, adding zero to one side or multiplying one side by one is
acceptable, as these are identities and leave the value of the expression unchanged. This may
be may be useful when working with fractions.

http://atlas.math.vanderbilt.edu/~schectex/commerrs
http://tutorial.math.lamar.edu/pdf/algebra_Cheat_Sheet.pdf
http://tutorial.math.lamar.edu/pdf/algebra_Cheat_Sheet.pdf
http://www.purplemath.com
http://www.purplemath.com
http://mathworld.wolfram.com
http://math.com
http://en.wikipedia.org
http://www.earlham.edu/~peters/writing/infapp.htm
http://www.earlham.edu/~peters/writing/infapp.htm
http://oregonstate.edu/instruct/mth251/cq/FieldGuide
http://oregonstate.edu/instruct/mth251/cq/FieldGuide
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a more detailed introduction (http://www.jgsee.kmutt.ac.th/exell/Logic/
Logic42.htm).

2.2.7 Why Should I Care?

algebra is the set of rules one uses to manipulate equations that have variables
in place of numerical values, whereas arithmetic is the set of rules we use to
manipulate equations made of numerical values. arithmetic is thus essential for
making specific calculations, but algebra is needed if we want to study general
concepts. You care about algebra for the same reason you care about arithmetic:
people use it to communicate their ideas precisely, and they often assume you
can do algebraic operations in your head. To follow along, then, you need to
do the algebra. This is true in both the study of statistics and the study of
formal theory. If you do not master this basic algebra, you will get lost. Solving
equations and simplifying inequalities in order to find the range of solutions also
proves highly useful in both game theory and statistics. Indeed, as we explain
in Chapter 12, which introduces vector algebra and matrix algebra, the algebra
covered here (which is called scalar algebra) is a foundation for both vector and
matrix algebra.

2.3 COMPUTATIONAL AIDS

Throughout this book we assume that you will be performing all mathematical
manipulations by hand, or at most using a (simple) calculator. We believe this
is pedagogically important: one needs to be able to do the relevant calculations
oneself in order to understand them; if one doesn’t understand them, then one
doesn’t really know what one is saying; and if one doesn’t know what one is
saying, there is very little point to formalizing one’s concepts with mathematics
at all. So this book is intended to lead you through doing the calculations
yourself. That said, it is often helpful to have access to computational aids
for arithmetic, algebra, and the later topics in this book. One reason simply
is as a check for your work. We all make mistakes, and it is nice to have a
second pair of eyes, so to speak, to check one’s work. A second reason is to
increase speed once one is sure of one’s understanding. As the techniques of
math become more familiar to you, the boundary of your skills will expand,
and you will want to devote more of your time to the harder stuff rather than
simple Algebraic manipulation. Computational aids can help with this. Finally,
a third reason is to help with the writeup. Some aids allow output in formats
that may be easily converted to word processors or typographical languages such
as LATEX (http://www.latex-project.org/).

There are many computational aids out there. Some are freeware, meaning
you can download them from the Internet, or use them in your browser directly,
with no further obligation. Some examples of these include Eigenmath (http:
//eigenmath.sourceforge.net/) and Maxima (http://maxima.sourceforge
.net/), along with the website http://www.wolframalpha.com/, which allows

http://www.jgsee.kmutt.ac.th/exell/Logic/Logic42.htm
http://www.jgsee.kmutt.ac.th/exell/Logic/Logic42.htm
http://www.latex-project.org
http://eigenmath.sourceforge.net
http://eigenmath.sourceforge.net
http://maxima.sourceforge.net
http://maxima.sourceforge.net
http://www.wolframalpha.com
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you to input expressions directly into your browser. There are also some use-
ful tools at http://www.math.com/students/tools.html, including a function
plotter. LATEXis a free typographical language that is very good at typesetting
math; we wrote this book using it, and thus were able to deliver it typeset to
Princeton University Press, retaining greater control over its “look and feel”
and reducing production costs. Various options exist to make LATEXmore user-
friendly, e.g., LyX (http://www.lyx.org/).

Other tools are potentially more powerful, but they are also more expensive.
However, they can have more functionality in some areas. If you are located
at a university with access to them, they can be worthwhile to try. Math-
ematica (http://www.wolfram.com/mathematica/) and Maple (http://www.
maplesoft.com/products/maple/) work well with symbolic math, and Mat-
lab (http://www.mathworks.com/products/matlab/) is well suited to matrix
algebra.

2.4 EXERCISES

2.4.1 Arithmetic Rules

Complete the following equations:

1. x1 = .

2. −a× (−b)2 = .

3.
∑4
i=1 xi = .

4.
∏9
m=6 xm = .

5. 4! = .

6. z4 = .

7. 2
√

9 = .

8. 3
√

27 = .

9.
(

3(2−4)
2+3

)3

= .

2.4.2 Ratios, Proportions, Percentages

10. Represent the following as a ratio, a proportion, and a percentage:

a) Latinos relative to all others: African American 98,642; Asian 62,346;
Caucasian 436,756; Latino 105,342; Other 32,654.

b) Independent registered voters relative to Republicans: Democrat 432;
Independent 221; Republican 312.

http://www.math.com/students/tools.html
http://www.lyx.org
http://www.wolfram.com/mathematica
http://www.maplesoft.com/products/maple
http://www.maplesoft.com/products/maple
http://www.mathworks.com/products/matlab
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c) Republican relative to Democrat from no. 2.

11. If the Latino population shrunk to 100,322 in no. 1 above, what would be
the percentage change in the Latino population?

12. If the other populations remained constant, what would be the percentage
change in the proportion of Latinos to all others?

13. If voter turnout in the United States in 1996 was 56% and in 2000 it was
62%, what was the percentage change in turnout from 1996 to 2000?

14. Express these two quantities as a simplified ratio: 18 and 12.

2.4.3 Algebra Practice

15. Simplify into one term the following expressions:

a) xz + yz.

b) mn+ ln− pn.

c) z × y × x− 2× y × x.

d) (z + x)× y × 1
z .

16. Simplify this expression as much as possible: 2x2+20x+50
2x2−50 .

17. Simplify this expression: 5+17x+4x+7
42x .

18. Add these fractions: 2g+13
3g + 4g−5

4g .

19. Factor: −7θ2 + 21θ − 14.

20. FOIL: (2x− 3)(5x+ 7).

21. Factor: q2 − 10q + 9.

22. Factor and reduce: β−α
α2−β2 .

23. Solve: 15δ + 45− 6δ = 36.

24. Solve: .30Ω + .05 = .25.

25. Solve: 11 = (y + 1)2 + (6y − 12y) 7
2y .

26. Solve: −4x2 + 64 = 8x− 32.

27. Complete the square and solve for x: x2 + 14x− 14 = 0.

28. Complete the square and solve for y: 1
3y

2 + 2
3y − 16 = 0.

29. Solve using the quadratic formula: 2x2 + 5x− 7.
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30. Derive the quadratic formula by completing the square for the equation
ax2 + bx+ c = 0.

31. Solve: −δ > δ+4
7 ,
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Functions, Relations, and Utility

Hagle (1995, p. 7) opines that “functions are valuable to social scientists because
most relationships can be modelled in the form of a function.” We would add
that functions are valuable for those political scientists who want to make specific
theoretical claims and/or use statistics to test the implications of theories of
politics. In other words, functions are valuable because they are explicit: they
make very specific arguments about relationships. In addition, functions play a
key role in developing statistical models.

What is a function? Functions may be defined in several ways, each developed
more fully below. To get us started, functions provide a specific description of
the association or relationship between two (or among several) concepts (in
theoretical work) or variables (in empirical work). In other words, a function
describes the relationship between ordered pairs (or n-tuples) arising from sets
under special conditions (specified below).

That said, some students can come away from an introduction to relations
and functions with a misguided notion that the key to developing sound the-
ory is to master a wide array of functions and then see which one applies to a
given theoretical or statistical problem. One might characterize this as a “tool-
box” approach to political science, where different functions are hammers and
wrenches to be tried here and there until one finds one that works. Perhaps
such an approach would yield insight, but we are not sanguine: one’s thinking
about politics is unlikely to be usefully informed simply by mastery of different
functional forms. Instead, a general working knowledge of functions can be used
to sharpen one’s thinking and bring greater specificity to one’s theories of poli-
tics. In particular, learning to be able to translate verbal conjectures into graphs
and/or equations that represent those conjectures is a valuable skill to develop.
That skill is essential for anyone who wants to do formal modeling. Finally, such
a working knowledge is critical to mastering the material in statistics courses
and will help one select appropriate statistical models for hypothesis testing.

The first section discusses functions in general and elaborates on some of
their properties. The second illustrates various functions of one variable; most
of these can be readily generalized to multiple variables. The third section cov-
ers properties of relations in the milieu in which they are most typically seen in
political science—individual preferences—and introduces the utility representa-
tion that underlies all of game theory. This serves as another example of the
use of functions in political science (an empirical example appears at the end of
the second section) and provides us with an opportunity to mention correspon-
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dences briefly as well. Readers with stronger math backgrounds should be able
to skim the first two sections, but may not have seen the material in the third
before.

3.1 FUNCTIONS

Recall from Chapter 1 that relations allow one to compare variables and expres-
sions (or concepts). This is a general idea, but some relations are considerably
more specific about the comparison. In particular, any relation that has a unique
value in its range (we’ll call these y values) for each value in its domain (we’ll
call these x values) is a function. Put differently, all functions are relations, but
only some relations are functions. Another way to put this is that functions
are subsets of relations. That said, political scientists do not often distinguish
between relations and functions, and the term “function” is often used loosely to
cover both relations and functions. Alternatively, you may encounter relations
described as “set functions” and functions (as defined here) described as “point
functions.” More precisely, a relation that assigns one element of the range to
each element of the domain is a function, while one that assigns a subset of
the range to each element of the domain is a correspondence. We will focus
largely on functions here, as they are the most commonly used by political sci-
entists. However, correspondences are commonly used in game theory, and we
discuss them briefly in Section 4.

More formally, a function maps the values measuring one characteristic of an
object onto values measuring another characteristic of the object. Stated in set
theoretic terms, a function is a relation such that (1) for all x in A, there exists
a y such that (x, y) is an ordered pair in the function, and (2) if (x, y) and (x, z)
are in the function, then (y = z). In other words, if the value x is mapped to
the value y by a function, and the value x is also mapped to the value z by the
same function, then it follows that y and z are the same value. If y 6= z, then it
is not a function but a correspondence.

Note that some equations with which you are familiar from middle school
and high school math are either functions or correspondences. We review some
examples below.

One can use both equations and graphs to describe functions. If you can
develop an ability to translate your verbal conjectures into functions, you will
have sharper, more explicit conjectures. Thus, developing the ability to work
comfortably with both equations and their graphs will prove very valuable for
developing your own theories about politics.
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3.1.1 Equations

The linear equation y = a + bx is the best-known and most frequently used
function in political science.1 We discuss it below. Here we want to remind you
of the manner in which functions can be represented using equations. One often
encounters equations of the form x2 + y2 = 1 or y

x = 3. We can use the rules
covered previously to isolate y on the left-hand side (LHS),2 yielding y2 = 1−x2

and y = 3x. It turns out that the first of these equations is not a function while
the second is, and we demonstrate that below where we introduce graphs.

You will hopefully recall the notation y = f(x), which is read “y is a function
of x.” This is implicit notation that simply states that values of x are associated
with singular values of y. Here we call x the argument of the function. But we
do not know what the specific function is, so if we were given the values of x we
could not produce the values of y. An explicit function describes the mapping
of values in the domain to values in the range. For example, if we were given the
explicit function y = 3x, then we could map the values of y for any given set of
x values. In empirical work we typically refer to the x here as the independent
or exogenous variable and the y as the dependent or endogenous variable, as it
depends on and is affected by x.

3.1.2 Graphs

As noted above, we can graph relations and functions. If we plot the values of a
set (or concept or variable) on the horizontal axis and the values of another set
that shares ordered pairs with the first set on the vertical axis, then we can plot
the intersection of each pair’s values with a point in the space defined by the
axes. Such a graph is known as a Cartesian, or xy, graph and is quite common.
You will recall such graphs from arithmetic and algebra courses. The horizontal
axis is also referred to as the x-axis (or domain) and the vertical axis is also
known as the y-axis (or range).

The graph of the relation x2 + y2 = 1 forms a circle through the values 1, −1
on both axes, as depicted in Figure 3.1.3 Note that this is not a function: all
values in the domain (x) produce two different values in the range (y). If this
were not true, it would not form a circle. If you do not find this apparent, select
a value of x and plot the value for y in Figure 3.1.

Now consider the equation y = 3x, shown in Figure 3.2. The graph of this
equation is a straight line moving through the origin and up to the right. No
matter what x values we plug into the equation we get a unique value of y.
As such, the equation is a function. Note that we can make use of a graph to
determine whether an equation is or is not a function: if we can draw a vertical

1It may surprise you that though it is often referred to as a linear function, the linear
equation is not a linear function, as strictly defined in mathematics. We discuss this below.

2Subtract x2 from both sides in the first case and multiply both sides by x in the second.
3Because it makes a circle with a one-unit radius, it is known as the unit circle.
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Figure 3.1: Graph of the Unit Circle

line at any point on the graph that intersects the curve at more than one point,
then the equation is not a function.

3.1.3 Some Properties of Functions

As we go on, several properties of functions will be important. We cover inverse
and identity functions, monotonic functions, and functions in more than one
dimension, saving continuity for Chapter 4 and function maxima and minima,
along with concave and convex functions, for Part II of the book. To begin,
we expand our notation for a function slightly. We define the function f as
f(x) : A → B. This is often read as “f maps A into B.” You’ve already seen
the first part, which just means that the variable x is an input to the function
f(x), which spits out some value. Sometimes we assign this value to a variable
y, as in y = f(x), and sometimes we just leave it as f(x), where it is understood
that the function f(x) may itself be a variable or a constant. For example,
f(x) = 3x is a variable, whereas f(x) = 3 is a constant.

The A and the B in the function’s definition are new, but not conceptually.
A here is the domain of the function, that is, the set of elements over which
the function is defined. In other words, we draw our values of x from this set,
and the function needs to produce a value for each element of x in this set. The
most common domain political scientists use is the real numbers, R, but there
are numerous other domains you will see. B is known as the codomain, and
it specifies the set from which values of f(x) may be drawn. Depending on A
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Figure 3.2: Graph of y = 3x

and f , though, not all the values in B may be reached. The set of all values
actually reached by running each x ∈ A through f is known as the image, or
range, and it is necessarily a subset of B.

This may be confusing, so let’s consider an example. Let f(x) = x. This
function maps x to itself, and so does really nothing.4 If A = R, then B = R,
and the codomain and the range (or image) are exactly the same, since every
real number is just mapped to itself. Now instead keep B = R, indicating that
the function f is real-valued, but let A = (0, 1), or the set of all real numbers
between zero and one, exclusive. In this case the image (or range) is just (0, 1),
which is the only part of B reached by the function, given the domain A.

One can chain multiple functions; this is called function composition. This
is written either as g ◦ f(x) or g(f(x)) and is read as “g composed with f” or
more commonly g of f of x. If we have f(x)A → B and g(x) : B → C, then
the full definition is g ◦ f(x) : A → C. Composition of functions is associative
(f ◦ (g ◦ h) = (f ◦ g) ◦ h), but not always commutative (f ◦ g does not always
equal g ◦ f). One takes a function composition in stages: first one computes
f(x) for each x to get a set of y, and then one takes g(y) for each of these y. For
more than two functions that are composed, first plug each x into the innermost
function, then plug the output of this into the next innermost function, and so
on until you’ve finished with all the functions. For example, if f(x) = 2x and
g(x) = x3, then g ◦ f(x) = (2x)3 = 8x3, whereas f ◦ g(x) = 2(x3) = 2x3.

4This function is called the identity function, and we return to it below.
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Table 3.1: Identity and Inverse Function Terms

Term Meaning
Identity function Elements in domain are mapped

to identical elements in codomain
Inverse function Function that when composed with original

function returns identity function
Surjective (onto) Every value in codomain

produced by value in domain
Injective (one-to-one) Each value in range comes

from only one value in domain
Bijective (invertible) Both surjective and injective;

function has an inverse

3.1.3.1 Identity and Inverse Functions

Why does this all matter? To answer that, we need a couple more definitions
as we need to introduce identity and inverse functions, as well as some other
terms. Table 3.1 summarizes those terms.

A function is surjective or onto if every value in the codomain is produced by
some value in the domain.5 Our first example was surjective, because every point
in R was reached by some point in the domain (the same point, in the example).
The second was not surjective, as nothing outside (0, 1) in the codomain was
reached.

A function is injective or one-to-one if each value in the range comes from
only one value in the domain.6 We already knew that each x ∈ A produced only
one f(x); otherwise it wouldn’t be a function. This tells us that this property
goes both ways: each y ∈ f(x) comes from only one x ∈ A. Both of our
examples for the identity function are injective; the function is just a straight
line. In contrast, f(x) = x2 would not be injective on the same domain as,
for example, y = 4 is the result of plugging both x = 2 and x = −2 into the
function (it would be injective if we confined ourselves to real numbers no less
than zero, though).

If a function is both injective and surjective (one-to-one and onto), then it
is bijective. A bijective function is invertible, and so has an inverse. This
inverse is the payoff of our definitions, as it allows us to take a y and reverse
our function to retrieve the original x. How do we do this? First we (re)define
an identity function: f(x) = x, f(x) : A → A, where we have made the
domain and codomain identical, as we saw in our earlier example. This function
merely returns what is put into it and is just like multiplying each element in
our domain by one (or adding zero to each element), hence the use of the word
identity.

5Formally, it is surjective if ∀b ∈ B, ∃a ∈ A 3 f(a) = b (for all b in B there exists an a in
A such that the function of a is b).

6Formally, ∀a, c ∈ A, ∀b ∈ B, if f(a) = b and f(c) = b, then a = c.



50

MooSieBookPUP June 5, 2013 6x9

CHAPTER 3

The inverse function is the function that when composed with the original
function returns the identity function. That is, it undoes whatever the function
does, leaving you with the original variable again. The inverse is f−1(x) :
B → A, and remember to be very careful not to confuse it with (f(x))−1 =

1
f(x) . Thus, in symbols, the inverse is defined as the function f−1(x) such that

f−1 ◦ f(x) = x, or just f−1(f(x)) = x. The inverse does commute with its
opposite f(f−1(x)) = f−1(f(x)). For example, if f(x) = 2x + 3, a bijective
mapping, then its inverse is f−1(x) = x−3

2 . We can check this both ways:

f−1(f(x)) = (2x+3)−3
2 = 2x

2 = x and f(f−1(x)) = 2
(
x−3

2

)
+ 3 = x− 3 + 3 = x.

3.1.3.2 Monotonic Functions

Some functions increase over some subset of their domains as x increases within
this subset. Others decrease over the same subset, and the rest increase over
some x and decrease over others, depending on the value of x. If a function
never decreases and increases for at least one value of x on some set C ⊆ A, it
is an increasing function of x on C, while if it never increases and decreases
for at least one value of x on some set C ⊆ A, it is a decreasing function of
x on C. If a function increases always as x increases within C it is a strictly
increasing function on C; if it decreases always as x increases within C it is a
strictly decreasing function on C. Strictly increasing and strictly decreasing
functions are injective. We sometimes call a function that does not decrease (but
may or may not increase ever) a weakly increasing function, and a function
that does not increase (but may or may not decrease ever) a weakly decreasing
function.

You will sometimes encounter the term monotonic function in statements
such as “y increases monotonically as a function of x.” Monotonicity is the
characteristic of order preservation—it preserves the order of elements from the
domain in the range. A monotonic function is one in which the explained variable
either raises or retains its value as the explanatory variable(s) rises. Thus it is
an increasing function across its entire domain. A strictly monotonic function is
strictly increasing over its entire domain. Table 3.2 summarizes these concepts.

We provide several examples of monotonic functions in the next section. All
affine and linear functions with positive coefficients on x are strictly monotonic,
as are exponential functions, logarithms, cubic equations, etc. Ordered sets can
also be monotonic or strictly monotonic. An example of two ordered sets with a
monotonic, but not a strictly monotonic, relationship is {1, 2, 3, 4, 5}, {10, 23, 23,
46, 89}. Monotonic functions have many nice properties that will become ap-
parent as you study both statistics and game theory.

3.1.3.3 Functions in More Than One Variable, and Interaction (Product)
Terms

Thus far we have (primarily) simplified things by focusing on the idea that y was
a function of one variable. Unfortunately, few (if any!) political relationships
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Table 3.2: Monotonic Function Terms

Term Meaning
Increasing Function increases on subset of domain
Decreasing Function decreases on subset of domain
Strictly increasing Function always increases

on subset of domain
Strictly decreasing Function always decreases

on subset of domain
Weakly increasing Function does not decrease

on subset of domain
Weakly decreasing Function does not increase

on subset of domain
(Strict) monotonicity Order preservation;

function (strictly) increasing over domain

are so simple that they can be described usefully as a function of one variable.
As such, we need to be able to use functions of two or more variables, such as
y = f(x1, x2, x3) or z = f(x, y).

Graphs of the function of one variable are straightforward, and graphs of
the function of two variables are feasible (though many of us begin to struggle
once we have to start thinking in three dimensions). Consider two variables
multiplied by one another, also known as a product term. Product terms are a
commonly used nonlinear function. Consider the plot of y = 3xz, in Figure 3.3,
and observe that it produces a plane with a changing slope rather than a plane
with a constant slope.

Another way of saying the same thing is that the relationship of x on y
is different (stronger or weaker) depending on the value of z. Further, the
strength of the impact of z on y also depends on the value of x. That is what
is meant by interaction: x and z interact with one another to produce y. You
will learn in your statistics course how to properly specify statistical models to
test interaction hypotheses.7

As another example, consider the three-dimensional plot of the linear function
y = 3x+ z, depicted in Figure 3.4.

Graphs of the function of three or more variables, however, become terribly
complex and generally are not used, though there are some exceptions. Instead
of using graphs, analysis of multiple variable functions focuses on equations.

Luckily, the specification of equations in more than one variable is not much
more complicated than that in one variable. You’ve already seen some of the
notation, e.g., f(x, y). The rest just accounts for the more complex domain

7We note here that one would not want to estimate the model y = α+ β(xz) + e because
doing so would produce a biased estimate of β. Rather, one would want to include the variables
x and z in the model as well (Blalock Jr., 1965; Friedrich, 1982; Braumoeller, 2004; Brambor,
Clark, and Golder, 2006). This will be discussed in your statistics courses.
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Figure 3.3: Graph of y = 3xz

that is present when there is more than one variable. If there are n variables,
denoted x1 through xn, and the set from which each variable is drawn is called
A1 through An, respectively, then the domain of the function is the Cartesian
product A1×A2×. . .×An. The formal definition of the function is f(x1, . . . , xn) :
A1 × . . . × An → B. To get any value of f you just plug in the values of all
the input variables. Most of the concepts discussed above are either directly
applicable or have analogues in the multidimensional case, though there is more
complexity involved. For example, properties such as continuity can be defined
for each input variable independently. We save discussion of the properties
of multi-dimensional functions most relevant to us until Part V of the book,
however.

3.1.4 Why Should I Care?

A basic understanding of functions is critical to any political scientist who wants
to be able to make specific causal conjectures. Making specific causal conjectures
is useful because it increases one’s ability to evaluate whether relevant evidence
is at odds with one’s theory (i.e., improves hypothesis testing; Popper, 1959, pp.
121–23) and it facilitates communication with other scholars (Cohen and Nagel,
1934, pp. 117–20). Vagueness is antithetical to science, and stating hypotheses
as functions helps one eliminate vagueness. Further, statistical inference is a
powerful tool for hypothesis testing, and functions are one of the building blocks
on which statistics is constructed. Finally, game theory makes extensive use of
functional forms to represent preferences and payoffs, as we’ll see in Section
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Figure 3.4: Graph of y = 3x+ z

3 of this chapter. For these reasons, the properties of functions we discuss in
this section are fundamental, as they have substantive meaning in the settings
in which we are using the functions. Monotonocity in one’s preferences, for
example, means that someone always prefers more to less. This is very different
from having what is known as an ideal point, in which case moving away from
the ideal in either direction is not preferred.

3.2 EXAMPLES OF FUNCTIONS OF ONE VARIABLE

Political scientists are generally interested in the relationships among multiple
variables. Nevertheless, in this section we begin with associations where y is a
function of one x. These functions extend readily to more than one variable, as
noted above.

3.2.1 The Linear Equation (Affine Function)

You encountered the additive linear equation back in algebra classes: y = a+bx.
Technically, this is an affine function, though it is frequently referred to as
a linear function. We discuss the technical distinction between the two below.
For now, let’s review some basics.

In the equation y = a + bx, a and b are constants.8 The constant a is the

8Recall that in this equation, y is a function of only one variable, x. Therefore a and b
cannot be variables and must be constants.
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intercept, or in terms of the graph, where the function crosses the vertical (y)
axis (i.e., the value of y when x = 0). The constant b is the slope of the line, or
the amount that y changes given a one-unit increase in x. That is, a one-unit
increase in x produces a 1b-unit increase in y, a three-unit increase in x produces
a 3b-unit increase in y, etc.

One might conjecture that the probability that an eligible voter casts a ballot
in a US presidential election is a linear function of education.9 Let pv represent
the probability of voting and ed represent education level: pv = a+b(ed). In this
function a represents the likelihood that someone without any formal education
turns out to vote, and b indicates the impact of education on the probability of
voting. Shaffer (1981, p. 82) estimates a model somewhat like this, and we can
borrow his findings for illustrative purposes, yielding pv = 1.215 + 0.134 × ed.
The intercept of 1.215 makes little sense,10 but we ignore that for this example.
Shaffer’s education measure has four categories: 0–8 years of education, 9–11
years, 12 years, and more than 12 years. A slope (i.e., b) of 0.134 suggests that
as we move from one category to another (e.g., from 0–8 years to 9–11 years, or
from 12 years to more than 12 years), the probability that someone votes rises
by 0.134. So if this linear model and its results are accurate, the typical adult
with a college education has roughly a 0.4 greater probability of voting in a US
presidential election than the typical adult without any high school education.11

The linear equation states that the size of the impact of x on y is constant
across all values of x. For example, in the above example the impact of x on
y is roughly 0.13. Since the relationship is linear, that means that a shift from
0–8 years of education to 9–11 years of education increases the probability of
voting in a national election by ∼.13, and a shift from 9–11 years to 12 years also
produces an increase of ∼.13, as do shifts from 12 years of education to more
than 12 years of education. Nonlinear functions, which we discuss in the third
subsection, specify that the size of the impact of x on y varies across values of
x.

9We recognize that people are very unlikely to posit such a claim. We offer it not as a
reasonable conjecture but simply as an illustration.

10A value of 1.2 is nonsense because the intercept represents the probability of voting when
a person has had zero education. Since probabilities by definition have a range from zero
to one, any probability above one is nonsense. This is but one reason that this may be an
unrealistic example. In your statistics courses you will learn a number of reasons why this
estimate is nonsense.

11You will learn how to do these sorts of calculations in your statistics courses. For those
who want a brief description, you need to calculate two values and then determine the distance
between them. More specifically, multiply the slope (0.134) by the first value in the compari-
son, someone with no high school education: 1×0.134 = 0.134. Now multiply the slope by the
second value in the comparison, someone with a college education: 4× 0.134 = 0.536. Finally,
take the difference of these two probabilities of voting (i.e., subtract the probability that a
citizen without a high school education votes from the probability that a college educated
citizen votes) to get 0.536− 0.134 = 0.402 ∼ 0.4.
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3.2.2 Linear Functions

Mathematicians make distinctions that few political scientists employ. We re-
view them for the purpose of helping you avoid confusion when you read “math-
ematically correct” presentations. In particular, we distinguish between affine
functions (discussed above), linear equations, and linear functions (discussed
here). As suggested above, a linear equation is an equation that contains only
terms of order x1 and x0 = 1.12 In other words, only x and 1, multiplied by
constants, may appear on the right-hand side (RHS) of a linear equation. This
means that the RHS of a linear equation is an affine function. Linear functions
are not affine functions; e.g., they do not permit a translation (the x0 term).

The formal definition of a linear function is any function with the following
properties:

• Additivity (aka superposition): f(x1 + x2) = f(x1) + f(x2),

• Scaling (aka homogeneity): f(ax) = af(x) for all a.

Additivity states that the impact of a sum of variables is equivalent to the sum
of the impacts of those variables. The scaling property, on the other hand, states
that the size of the input is proportional to the size of the output.

Let’s begin by comparing the linear function y = βx with the affine function
y = α+βx along these criteria. The additivity property states that f(x1 +x2) =
f(x1)+f(x2). So we substitute the RHS of each y = . . . equation for the parts in
the parentheses (i.e., f(·)) and see if that statement is true. If it is, the property
is met. We begin with the linear function y = f(x) = βx. To determine whether
it meets the additivity property, we need to replace x with x1 + x2, following
the additivity property equation above, and determine whether the equality is
true:

f(x1 + x2) = β(x1 + x2) = βx1 + βx2,

βx1 + βx2 = f(x1) + f(x2).

As one can see, the equality is true. Now we’ll try the linear equation (or affine
function), under the assumption that α 6= 0: y = f(x) = α + βx. Again, we
replace x with x1 and x2, in accord with the additive property equation, and
see whether the equality is true:

f(x1 + x2) = α+ β(x1 + x2) = α+ βx1 + βx2,

f(x1) + f(x2) = (βx1 + α) + (βx2 + α),

α+ βx1 + βx2 6= 2α+ βx1 + βx2.

It is not true; the RHS and LHS differ by α. So the linear equation (or affine
function) does not have the additive property, but the linear function does.

12Order refers to the highest exponent in the polynomial.
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Now let’s consider the scaling property, which states that f(ax) = af(x).
Let’s begin with the linear function y = f(x) = βx:

f(ax) = β(ax) = aβx,

aβx = af(x).

So, the linear function satisfies the scaling property. What about the linear
equation (i.e., affine function)?

f(ax) = α+ (β(ax)) = α+ aβx,

af(x) = aα+ aβx,

α+ aβx 6= aα+ aβx.

This property doesn’t hold either because α 6= aα. Again, the linear function
satisfies the property, but the affine function (linear equation) does not.

The only difference between the two functions is the constant, α. Recall that
α represents the value where the function crosses the vertical (y) axis. If it
crosses at zero, then the two functions are equivalent. Thus, a linear function
must cross the vertical axis at the origin (i.e., where x and y have a value of
zero). You might recall that ratio level measurement requires a meaningful
zero value, whereas interval level measurement does not, and that division and
multiplication operations are valid on ratio level measures but not on interval
level measures. Linear transformations require preservation of the order of the
variables, the scale, and the zero, and only linear functions meet such criteria.
Affine transformations preserve order and scale, but not the placement of zero.

Above we noted that political (and other social) scientists frequently refer
to the linear equation y = α + βx as a linear function. Technically, this is
inaccurate, but it is a rather fine mathematical point. The linear equation does
produce a line, and a linear transformation with the affine function preserves
order and scale, with the exception of the intercept. And that is all most political
scientists are typically trying to indicate when they talk about linear functions
and linear transformations. That said, there are some applications (e.g., time
series analysis) where the proper definition of a linear function is important,
and we raise the discussion here so as not to later confuse those who go on to
study those issues in more detail.

3.2.3 Nonlinear Functions: Exponents, Logarithms, and Radicals

Technically speaking, nonlinear functions are all those that do not meet the
two properties we just discussed. Practically speaking, nonlinear functions are
all those that are neither linear nor affine: those functions that describe (the
graph of) a curve that is not a line. For example, y = cos(x), in Figure 3.5, is
a nonlinear function. Functions with exponent terms, including quadratics and
other polynomials, are the most commonly used nonlinear functions in political
science. Logarithms are another commonly used class of nonlinear functions,
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as are roots (or radicals). We briefly introduce the relationship among these
functions and then turn our attention to graphing these functions and using
them in algebra.

Figure 3.5: Graph of y = cos(x)

Exponents, logarithms, and roots are related: one can transform any one such
function into a representation of one of the others. In fact, in high school you
may have focused on doing that. More specifically, when two of the following
variables in the equation bn = x are known, one can solve for the unknown using

• Exponents to solve for x,

• Logarithms to solve for n,

• Radicals to solve for b.

That said, we will not focus on the relationship among the functions as political
scientists do not frequently make use of those relationships.13 Instead, we in-
troduce each function and its notation, discuss their graphs, and then describe
algebraic manipulations.

3.2.3.1 Exponents and the Exponential Function

As notation, exponents (aka power functions) are a shorthand for expressing
the multiplication of a number by itself: x3 = x×x×x. More generally, xn = x×

13Those interested in studying this might find the following Wikipedia entries use-
ful: http://en.wikipedia.org/wiki/Logarithm, http://en.wikipedia.org/wiki/Radical_

(mathematics)#Mathematics, http://en.wikipedia.org/wiki/Exponential_function.

http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Radical_(mathematics)#Mathematics
http://en.wikipedia.org/wiki/Radical_(mathematics)#Mathematics
http://en.wikipedia.org/wiki/Exponential_function
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x×x . . . x (n times). This is all familiar, but you may be less familiar with other

exponential notation: x−n = 1
xn , x

1
n = n

√
x. In words, x to a negative power

represents the fraction “1 divided by xn” and x raised to a fraction represents
a root of x, where the root is determined by the value in the denominator
of the exponent. Perhaps an easier way to remember this is that a negative
exponent indicates that one divides (rather than multiplies) the term by that
many factors. Similarly, a fractional exponent indicates that one takes the nth

root rather than multiplying the term n times. Mixed exponents work similarly.
So x

2
3 =

3
√
x2 and x

−3
2 = 1

2√
x3

. Finally, x0 = 1.14

Nonlinear functions with exponents are of interest to political scientists when
we suspect that a variable x has an impact on y, but that the strength of the
impact is different for different values of x. The best way to see this is to look
at the graphs of some functions with exponents.

Figure 3.6: Graph of y = x

Consider the graphs of the functions y = x and y = x2, in Figures 3.6 and
3.7. The linear function produces a line with a constant slope: if we calculate
the change in y due to a one-unit change in x, it does not matter what point on
the x-axis we select; the change in y is the same.15 However, the slope of the
curve for y = x2 is not constant: the impact of x on y changes as we move along
the x-axis (i.e., consider different values of x). To be more concrete, a one-unit

14This holds for all x 6= 0, but people often treat 00 = 1 as if it were true when they are
simplifying equations.

15Another way to make this point is to observe that linear functions meet the scaling
property.
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increase from 0 to 1 produces a one-unit increase in y, but a one-unit increase
from 2 to 3 produces a five-unit increase in y, and a one-unit increase from 5 to
6 produces an 11-unit increase in y. Thus, the impact of x on y increases over
the range of x.

Figure 3.7: Graph of y = x2

This has important implications for developing theory. If reflection, deduc-
tion, or inspiration leads one to conjecture that a causal relationship between
two concepts is constant over the range of values for the causal concept, then a
linear or affine relation represents that conjecture. However, if one suspects that
the strength of the relationship varies across the values of the causal concept,
then a nonlinear relation is needed. As we discuss below, exponential terms play
an important role in quadratic and other polynomial functions.

We covered some of these above, but below is a list of the algebraic rules that
govern the manipulation of exponents.

Multiplication: to calculate the product of two terms with the same base
one takes the sum of the two exponents:

xm × xn = xm+n.

To see that this is so, set m = 3 and n = 4 and write it out:

x3 × x4 = (x · x · x)× (x · x · x · x) = x · x · x · x · x · x · x = x7.

This works when m and n are positive, negative, or zero. When the bases are
different, you can simplify the expression only when the exponents are the same.
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In this case, multiplication is distributive:

xm × zm = (xz)m.

To see why, set n = 2, and note that x2×z2 = x·x·z ·z = (x·z)×(x·z) = (xz)2.16

Last, when both the base and the exponent are different, you cannot simplify
to a single term. Thus, e.g.,

xm × zn 6= (xz)m+n.

Assume that m = 2 and n = 3, and write the expressions out to see that this is
so:

x2 × z3 = (x× x)× (z × z · z) = z((x× z)× (x× z)) 6= (xz)5.

One cannot combine the terms fully.17 To return to the point made above, if
we assume that m = n = 3, then when we write it out we get:

x3 × z3 = (x · x · x)× (z · z · z) = (x · z)× (x · z)× (x · z) = (xz)3.

To determine the power of a power, one multiplies the exponents. For
example,

(xm)n = xmn.

To see that this is so, let’s assign m = 2 and n = 3, and write out:

(x2)3 = x2 × x2 × x2 = x · x · x · x · x · x = x6.

Division: to calculate the quotient of two terms with the same base and
different powers, one takes the difference of the exponents:

xm

xn
= xm−n.

To see why this is so, recall that

1

xn
= x−n.

We can therefore write out:

xm

xn
= xmx−n = xm−n.

16Note that this assumes that multiplication is commutative; hence this will not hold for
matrix multiplication, as we’ll see in Part IV of the book.

17If this illustration is not clear to you, then assign values to x and z (say, 2 and 3) and
work it out. It will become clear that one can take the product when the exponents are equal
and the bases are different, but one cannot take the product when both the exponents and
bases are different. Note that we can simplify to a degree: x2 × z3 = (xz)2z, but this is not
usually helpful.
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We can assign the values m = 2 and n = 3 and verify

x2

x3
=

x · x
x · x · x

=
1

x

and
x2

x3
= x2x−3 = x−1 =

1

x
.

When the bases are different, one can simplify only if the exponents are the
same. When the exponents are the same, one raises the fraction to that power:

xm

zm
=
(x
z

)m
.

Put differently, like multiplication, division is distributive when the bases are
different and the exponents are the same.18

Recall that x0 = 1. We can now demonstrate this by observing that xn

xn = 1.

Observe that xn

xn = xn−n = x0. Since anything divided by itself equals one, it
follows that x0 = 1 (except when x = 0).

This covers xa, but what about ax? This is called an exponential. The one
most commonly used sets a = e, where e is the base of the natural logarithm,
or e ≈ 2.7183 (to four decimal places). This is the exponential function,
written as y = exp(x) or y = ex.19 We discuss the base of the natural logarithm,
and its relation to the exponential function, below; in Figure 3.8 we graph the
exponential function.

3.2.3.2 Quadratic Functions

Quadratic functions are nonlinear functions that describe a parabola. More
specifically, if y is a quadratic function of x, then y = α + β1x + β2x

2. In
other words, quadratic functions describe a relationship where a variable (y) is
a function of the sum of another variable (x) and its square (x2).20

18In fact, other than having to remember not to divide by zero, multiplication and division
have basically the same properties. The same is true for addition and subtraction. Thus one
need remember only the properties of multiplication and addition.

19Both notations are common, and they are equivalent expressions.
20It is worth observing that many political scientists refer to a quadratic function as linear.

For example, in a regression course you may encounter the claim that y = α+ β1x+ β2x2 + e
is a linear model. That is true: it is a linear model. When discussing regression models people
frequently distinguish between models that are linear in parameters from those that are linear
in variables. A regression model that contains a quadratic function (e.g., y = α+β1x+β2x2+e)
is linear in parameters but nonlinear in variables. Put differently, if we plot the relationship
between x and y, the plot will be nonlinear: it is not linear in variables. But the parameters
of the quadratic function have the properties of an affine function (to see this, set z = x2 and
rewrite the linear model as y = α+ β1x+ β2z), and if we assume that α = 0, then they have
the properties of a linear function. Returning to models, the model y = α+ β1x1 + β2x2 + e
is linear in parameters and variables (as long as we assume that x1 and x2 are not nonlinear
transformations of one another (e.g., x1 6= xn2 )).
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Figure 3.8: Graph of y = ex

Note that since y is a function of only one variable, x, we can graph the
function in two dimensions. If we set β2 < 0, then we get a curve shaped like
an inverse U (i.e., a concave parabola) as depicted in Figure 3.9. Switching the
sign of β2 produces a U-shaped curve (i.e., a convex parabola).

What sort of theoretical expectations might one want to sharpen by stating
them as a quadratic relationship? Speaking generally, a quadratic function is
quite useful for depicting relationships where we think the impact of an indepen-
dent variable is positive (negative) for low values of the independent variable,
flat for middle-range values, and negative (positive) for high values. Put differ-
ently, when one thinks that there is some (often unknown) threshold at which
the relationship between two concepts (variables) switches (i.e., from positive to
negative or from negative to positive), one might consider whether the quadratic
can represent our conjecture.

For example, many scholars have hypothesized that rebellion will be low in
countries that exert little to no government coercion and in countries that ex-
hibit high levels of government coercion. Where will one find rebellion? This
conjecture suggests that it will be highest among those countries that engage in
mid-range levels of coercion (e.g., Muller and Seligson, 1987). If we let r repre-
sent rebellion and c represent coercion, then this conjecture can be represented
as follows: r = α+ β1c− β2c

2.
Another example is the conjecture that the extent to which governments

are transparent (i.e., noncorrupt) varies nonlinearly with the level of political
competition. More specifically, over the range from authoritarian to democratic
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Figure 3.9: Graph of y = 6 + 8x− 2x2

polities, transparency (e.g., the absence of bribery) is relatively common at both
endpoints and least common in mixed polities that have a mix of autocratic
and democratic institutions (e.g., Montinola and Jackman, 2002). If we allow
t to stand for transparency and p for polity type, then we can represent that
conjecture with the following quadratic equation: t = α+ β1p+ β2p

2.
Finally, note that if we invert the concept we are trying to explain (i.e., flip

the scaling of the dependent variable), we can represent the argument by flipping
the signs on the quadratic (x2) term. Thus, if we reconceptualize rebellion as
quiescence, q, then we can write q = α + β1c + β2c

2, and if we reconceptualize
transparency as corruption, k, then we can write k = α+ β1p− β2p

2.

3.2.3.3 Higher-Order Polynomial Functions

Polynomial functions have the following general form: y = α + β1x + β2x
2 +

. . .+βnx
n, where n is an integer less than infinity. So both linear and quadratic

functions are polynomials. Higher-order polynomials are those possessing pow-
ers of x greater than the reference. In this case, we are referring to the presence
of cubed and higher terms. Like quadratics, higher-order polynomials are non-
linear: they describe curves, such as the cubic polynomial in Figure 3.10. More
specifically, one can use them to explicitly represent the expectation that there
are two or more thresholds over which the relationship between two concepts
(variables) changes.

With the exception of the quadratic, polynomial functions are not very com-
mon in political science, though Mukherjee (2003) and Carter and Signorino
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Figure 3.10: Graph of Cubic Polynomial

(2010) are exceptions. Mukherjee studies the relationship between the size
of the majority party and central government expenditures in parliamentary
democracies. A majority party is one that has at least 50% of the seats in the
legislature and thus can govern without having to form a coalition with other
parties. The basic underlying idea is that there are two different thresholds at
work between the number of seats the majority party holds in the legislature
and the size of government spending. First, as the number of seats held by the
majority party rises from a bare majority (i.e., 51% of the legislature), spending
declines, because it takes more and more legislators to defect and bring down
the government.

Yet, while Mukherjee expects an initial negative relationship as the size of
the majority party increases above a bare majority, he expects the relationship
to quickly become positive (perhaps at around 56% of the legislative seats). Ex-
penditures rise because the party has greater electoral safety and thus can take
greater risks of alienating other parties’ constituents by more greatly rewarding
its own constituents. Yet he does not argue that this incentive to spend more
remains as party size grows beyond the supermajority threshold (roughly 67%
of the seats).

Instead, Mukherjee expects the relationship between majority party size
and government expenditures to again turn negative (above the supermajority
threshold) because the size of the population that the majority can tax without
suffering electorally shrinks. That is, as majority party size rises beyond the
supermajority threshold, the number of constituents that support other parties
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grows sufficiently small that it becomes increasingly difficult to write legislation
that transfers income from those people to one’s own constituents. He uses a
cubic polynomial, GovExp = α− β1(SizeMajParty) + β2(SizeMajParty)2 −
β3(SizeMajParty)3, to represent his verbal argument, and the results of his
empirical analysis are consistent with his conjecture.

Carter and Signorino (2010) propose the use of a cubic polynomial to model
time dependence in binary pooled cross-sectional time series data. Though it
sounds complex, it is a fairly straightforward proposal. One takes the measure
of time in one’s data (perhaps the year) and, like Mukherjee, includes the three-
termed polynomial in the regression equation. They show that if the dependent
variable can take only two values (e.g., absence or presence of war) and the
researcher has both cross-sectional data (e.g., all the countries in the world)
measured over time (e.g., 1816–2005), then the cubic polynomial of time will
control for what is called “temporal dependence” in the regression model.

More generally, then, polynomial functions are appealing because one can use
them to make specific claims about threshold effects. That is, when theorizing
leads one to expect that the relationship between two variables changes across
the values of one of the variables, then a polynomial function might help one
make a more specific (and more easily testable and falsifiable) claim.

3.2.3.4 Logarithms

Logarithms can be understood as the inverses of exponents (and vice versa).
They can be used to transform an exponential function to a linear one, or a
linear function to a nonlinear one in which the impact of one variable on another
declines as the first variable rises in value. The logarithm (or log) tells you how
many times to multiply its base a in order to get x, where a is a positive real
number not equal to 1. If we denote the log with base a by loga x, then we
have aloga x = x and loga a

x = x. Similarly, we can see that if loga x = b, then
aloga x = ab, since the exponents are the same, and thus x = ab. This lets us
transition between logs and exponents readily.

Logs can be written in any base, though the most common are base 10 and the
natural log. The base for the natural log is the e ≈ 2.7183 from the exponential
function. The concept of the base of a number is abstract and often confuses
students. This owes in part to the commonality of the base 10 system in our
lives. It is, after all, how we write numbers: we use 0 through 9, and at 10, 100,
1,000, and so on, we add a digit. You may also be familiar with binary from
living in an age of computers, however. In binary one uses only 0 and 1, and
at 2, 4, 8, and further powers of 2, one adds a digit. The base of a log is just
an extension of this idea. We won’t go into why e is one of the most common
bases of logs used, though you are free to explore that topic on your own, of
course. Rather, we’ll just note that the natural log is usually identified with the
notation ln, and log base 10 is generally denoted log, though some people use
log to denote the natural logarithm. Throughout this book ln indicates natural
log and log denotes log base 10.
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Figure 3.11: Graph of y = ln(x)

Let’s look at graphs of y = ln(x) and y = log(x) in Figures 3.11 and 3.12.
Note that the impact of x on y diminishes as x increases, but it never becomes
zero, and it never becomes negative. Theoretically, the log functions are very
appealing precisely because of this property.21 If you suspect, for example, that
education increases the probability of voting in national elections, but that each
additional year of education has a smaller impact on the probability of voting
than the preceding year’s, then the log functions are good candidates to represent
that conjecture. Why? If pv is “probability of voting” and ed is “years of
education,” then pv = α+βed specifies a linear relationship where an additional
year of education has the same impact on the probability of voting regardless
of how many years of education one has had. By contrast, pv = α + βed2

represents the claim that the impact of education on the probability of voting
rises the more educated one becomes. Neither of these functional forms captures
the verbal conjecture. But if we take the log of an integer variable such as “years
of education,” we transform the relationship between pv and ed from a linear one
to a nonlinear one where the impact of an additional year of education declines
the more educated one becomes: pv = α+ β(ln(ed)).

There are several algebraic rules for logs that are important to know.22 First,

21This is called concavity, and we will discuss it more in Part II of this book.
22The following holds for logarithms of any base, not just the natural log.
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Figure 3.12: Graph of y = log(x)

note that the log is not defined for numbers less than or equal to zero.23 Further,
ln(1) = 0 (i.e., ln(x) = 0 when x = 1), and ln(x) < 0 when 0 < x < 1.

Second, the log of a product is equal to the sum of the logs of each term, and
the log of a ratio (or fraction) is the difference of the logs of each term:

ln(x1 · x2) = ln(x1) + ln(x2), for x1, x2 > 0

and

ln
x1

x2
= ln(x1)− ln(x2), for x1, x2 > 0.

Note that addition and subtraction of logs do not distribute:

ln(x1 + x2) 6= ln(x1) + ln(x2) , for x1, x2 > 0,

and

ln(x1 − x2) 6= ln(x1)− ln(x2), for x1, x2 > 0.

These equations cannot be simplified further. Thus, if one takes the log of
both sides of the equation y = α + β1x1 + β2x2, the solution is not log y =
logα+ log β1 + log x1 + log β2 + log x2 but log y = log(α+ β1x1 + β2x2).

23This follows from the identity aloga x = x. Assume a > 0, and that x ≤ 0. Let loga x = b.
Then we have ab ≤ 0 for a > 0, which is impossible, implying that b is undefined. Thus the
log is defined only for x > 0. Other properties can also be derived from this identity and the
rules on exponents we stated earlier.
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Third, the log of a variable raised to a power is equal to the product of the
exponent value and the log of the variable:

ln(xb) = b ln(x), for x > 0.

Finally, as x > 0 approaches 0 (so x is small), the log of 1+x is approximately
equal to x:24

ln(1 + x) ≈ x, for x > 0 and x ≈ 0.

Political scientists generally use log functions to represent conjectures that
anticipate a declining impact of some x over some y as x increases in value. For
example, Powell (1981) studies the impact of electoral party systems on mass
violence (as well as other forms of system performance). In the study, he controls
for both the population size and per capita gross national product (GNP). The
basic ideas are that (1) countries with larger populations will produce more
riots and deaths from civil strife and (2) those with greater economic output per
person will produce fewer riots and deaths from political violence. But Powell
(and most social scientists) do not expect these relationships to be linear: an
increase in population from 1,000,000 people to 2,000,000 people will have a
greater impact on riots and deaths than will an increase in population from
100,000,000 to 101,000,000. Similarly, an increase from $500 to $1,500 GNP per
capita is expected to have a greater impact on the number of deaths and riots a
country will typically experience than an increase from $18,000 to $19,000 GNP
per capita. That is, Powell hypothesizes that the positive and negative effects of
population and economic output, respectively, on civil strife will decline as the
value of population and economic output rises.25 We can thus write Powell’s
expectations as: CS = X + ln(P ) − ln(G), where CS represents civil strife,
X represents the party system variables that Powell considers, and P and G
represent the control variables population and per capita GNP, respectively.26

While a log function is only one of many one could use to convert those verbal
claims to a specific mathematical statement, it is a common function that has
often performed well in statistical tests.

Wallerstein (1989) provides another example. He explores the determinants
of cross-national difference in labor unionization rates. One of the variables
Wallerstein expects to have an effect is the size of the potential union mem-
bership (i.e., labor force). If we let U indicate unionization rate, L the size of
the labor force, and X the other variables that he considers, we can represent
his expectation as U = ln(L) + X.27 Why expect a nonlinear log relationship?
Wallerstein explains that “using the log of the potential membership implies
that the percentage increase, rather than the absolute increase, matters for

24This follows from a Taylor expansion of the log. We discuss this in Part II of this book.
25In other words, the marginal effect of these variables is decreasing. We discuss marginal

effects at length in Part II of this book.
26Readers familiar with regression analysis in statistics might expect a representation like

this: CS = α+ β1X + β2 ln(P )− β3 ln(G) + ε.
27Using a regression representation, the argument is U = α+ β1 ln(L) + β2X + ε.
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union density” (p. 490). This argument stems from the equation for the differ-
ence in logs. If ∆ ln(L) = ln(Lt) − ln(Lt−1) is the change in the natural log of

the labor force variable, L, then ∆ ln(L) = ln(Lt)
ln(Lt−1) . This is a ratio rather than

a difference in different values of the labor force.
The two most common usages of the log function are (1) to model the non-

linear expectation that the size of the effect of one variable on another declines
as the second variable rises in value and (2) to model the expectation that the
relative increase of a variable over time has a linear impact on another variable.

3.2.3.5 Radicals (or Roots)

Roots (sometimes called radicals) are those numbers represented by the radical
symbol: n

√
. They are (almost) the inverse functions of x raised to the power n:

n
√
xn = x = ( n

√
x)n as long as n is odd or x ≥= 0.28 Functions with radicals are

nonlinear: y = n
√
x. Some roots are integers: 2

√
9 = 3. However, most are not:

2
√

3 ≈ 1.732050808. Figure 3.13 graphs the function for n = 3 over the range
x = [1, 4].

Figure 3.13: Graph of y = x
1
3

As noted above, radicals can also be expressed as fractional exponents:
√
x =

x
1
2 . We can express this more generally by observing that n

√
xp = ( n

√
x)p = x

p
n .

When n = 2, we typically do not write the 2 in
√
xp.

28Even roots (i.e., n is even) are undefined for negative values of x in the real numbers.
They are defined in the complex number system using the definition of the imaginary number
i, where i = 2

√
−1.
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Although roots do not play a large role in political science, one encounters
them from time to time. For example, Gelman, Katz, and Bafumi (2004) ex-
plore a common assumption in the literature on the fairness (with respect to
representation) of weighted voting systems such as the US Senate, where people
living in states with smaller populations (e.g., Maine) have a greater influence
on the votes cast in the Senate than people living in states with larger popula-
tions (e.g., Illinois). The conventional assumption is that all votes are equally
likely (i.e., that voting is random), and a common indicator used to measure
the “voting power” of an individual citizen is the Banzhaf index: 1√

N
. Gelman,

et al. argue that this index “(and, more generally, the square-root rule) overes-
timates the probability of close elections in large jurisdictions” (p. 657). As an
alternative indicator they recommend the fraction 1

N .
To do algebra with roots one needs to memorize the following rules.
Addition and Subtraction

One cannot in general add or subtract two radicals. So:

n
√
x+ n
√
x 6= n

√
x+ x for n > 1.

For example,
√

2 +
√

2 = 2
√

2 > 2 =
√

4 =
√

2 + 2.
Note that one cannot sum the roots, either:

n
√
x+ n
√
x 6= n+n

√
x+ x for n > 1.

Observe that
√

9 +
√

9 = 3 + 3 = 6 6= 4
√

18 because 64 6= 18.
This is also so when the variables and roots are different, e.g.,

a
√
x+ b
√
y 6= a+b

√
x+ y for a, b > 1.

To see this, note that 2
√

9 + 3
√

8 = 3 + 2 = 5 6= 5
√

17 because 55 6= 17.
The only exception is when one side would be zero, either because at least

one of x or y is zero or because we are using subtraction and x = y.
Multiplication and Division

One can determine the product of two radicals only when they have the same
order. In such a case, multiply the two variables (radicands) and collect the
product under the root:

n
√
x× n
√
z = n

√
xz for n > 1.

But, e.g.,
a
√
x× b
√
z 6= ab

√
xz for a 6= b, a, b > 1.

To see that this is so, observe that
√

25×
√

9 = 5× 3 = 15 =
√

225 =
√

25× 9
because 152 = 225. However,

√
25× 3
√

8 = 5×2 = 10 6= 6
√

200 because 106 6= 200.
Finding the quotient of two radicals is similar; one can simplify the quotient

of two radicals only when their order is the same:

n
√
x

n
√
z

= n

√
x

z
for n > 1.
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But, e.g.,
a
√
x

b
√
z
6= a+b

√
x

z
for a 6= b, a, b > 1.

3.2.3.6 Other Functions

Of course, this small array of functions is not the entirety of those used in
political science. One commonly used is the absolute value, which we denote
by |x|. In a single dimension it just means “remove the sign on the value.”

More formally, it can be represented as |x| =
√
x2 in one dimension, where we

take only the positive root, or |x| =
√
x2

1 + x2
2 + . . .+ x2

n in n dimensions, with
x = (x1, x2, . . . , xn). The absolute value is often used when one wants to keep the
function positive (or negative with −|x|) over the entire range of x, or when one
is interested in the distance between two points, which is |a−b|. Less commonly
observed functions are rational functions (the ratio of two polynomials) and
trigonometric functions (e.g., sine, cosine, tangent).29

Thus far all the functions we’ve defined have been the same over the entire
domain. In other words, f(x) = x2 doesn’t change with the value of x. But we
can also define functions piecewise, by which we mean simply “in pieces.” These
are useful, for example, when we expect an external intervention to alter the
behavior of the relevant actors in a theory. There is nothing fancy to representing
this sort of thing; we just write something like f(x) = −(x − 2)2 if x ≤ 2 and
f(x) = ln(x− 2) if x > 2. This function states that below one’s ideal point of 2,
the function slopes downward at a faster rate than it slopes upward above one’s
ideal point.30 One need only be careful to define the function across the entire
domain, without missing some region. Piecewise functions are often expressed
in the format

f(x) =

{
−(x− 2)2 : x ≤ 2,

ln(x− 2) : x > 2.

3.2.3.7 Why Should I Care?

One encounters nonlinear functions both in formal theory and in statistics, as the
examples sprinkled throughout this subsection demonstrate. We have already
discussed the theoretical value of nonlinear functions: they provide us with
a language to make very explicit statements about expected causal relations.
And it turns out that exponential and log functions are useful for modeling
and for transforming variables with highly skewed distributions, and that has
both theoretical and statistical value, though this won’t be very clear until we
discuss distributions. Along these lines, the most used probability distribution,
the normal distribution, is an exponential function composed with a quadratic.

29The trigonometric functions are rarely used in political science, but they can be important
in situations in which they are used. Consequently, we include them in several of this book’s
discussions for reference but do not advise the first-time reader to worry about them.

30If this is not clear, draw the function. This is generally useful advice.
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3.2.4 Why Should I Care?

Linear and nonlinear functions are nothing more than specific claims about the
relationships among several variables, and thus can be very useful for making
specific causal claims. Multivariate functions are especially useful as few political
scientists suspect that much of politics can be usefully explained with bivariate
hypotheses (i.e., conjectures that say only one concept is responsible for variation
in another concept).

Having said that, let us briefly explain how one can move from verbal conjec-
tures to writing down more specific functions. We will work with the probability
of voting in a national election as an example. Suppose one suspects that the
probability that a registered voter will cast a ballot will increase in response to
(1) an individual’s education level, (2) partisan identification, (3) income, (4)
age, and (5) the closeness of the race.

Conceptualize education as a discrete count of the number of years of formal
education, partisan identification as a distinction between those who identify
with one of the two major parties and those who do not (we will assume this
is a US election), income as continuous, age as a discrete count of years, and
the closeness of the race as the gap between the Democratic and Republican
candidates. We can represent the conjecture that the probability of voting is a
function of each of these variables with the implicit function pv = f(ed, p, i, a, c),
where pv represents the probability of voting, ed represents education, p repre-
sents partisan identification, i represents income, a represents age, and c rep-
resents closeness. This equation is called the implicit functional form because
it is not specific: we do not know whether the variables have positive, nega-
tive, linear, monotonic, or nonlinear effects on pv. All the implicit function tells
us is that they may have some effect. Hypotheses based on implicit functions
are always more difficult to falsify than explicit ones that spell out the specific
functional forms.

We might conjecture more strongly that the probability of casting a ballot is
an affine function of each of these variables. That conjecture can be captured
by the following function: pv = α+β1ed+β2p+β3i+β4a+β5c, where α is the
intercept (i.e., the expected value of pv when all of the explanatory variables
have a value of 0) and the βi parameters represent the strength of the impact
that each explanatory variable has on voting probability.

Alternatively, we might conjecture that voting probability has a linear re-
lation with some variables and a nonlinear relation with others. For example,
one might argue that the impact of education is greatest at low levels (i.e., the
difference between a fourth-grade and an eighth-grade education has a larger
impact on voting probability than the difference between an eighth-grade and
a twelfth-grade education, and the difference between completing a high school
degree and completing a college degree has an even smaller impact). In ad-
dition, one might contend that greater levels of income have an even greater
effect on voting probability. The following equation represents those conjec-
tures: pv = α+ β1 ln(ed) + β2p+ β3i

2 + β4a+ β5c.
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The arguments presented in the preceding paragraphs are similar but distinct.
By writing out an explicit functional form to represent the verbal arguments, one
makes it very clear how the arguments are distinct (and how they are similar).
Drawing graphs can often help one decide whether a given expected relationship
comports with one’s assumptions, intuition, or verbal argument. A functional
representation of conjectures in equation form also makes very clear how one
can be wrong—if statistical analysis shows that the parameters do not have
the expected signs, for example—and that is another virtue of writing out the
functional representation of a verbal argument.

Finally, one might conjecture an interactive relationship among some of the
independent variables and probability of voting. There are many such possibili-
ties, but, for example, one could believe that the higher one’s level of education,
the more the closeness of the race matters, as one will pay more attention to the
media’s reporting on the race. If this were true, we might expect a relationship
like pv = α+β1ed+β2p+β3i+β4a+β5c+β6(ed ·c). Or one might suspect that
the relationship between each explanatory variable and the explained variable
grows with the value of the explanatory variable, and that the strength of each
relationship is conditional on the values of the other explanatory variables.31

One can represent such an argument as follows pv = α · edβ1 · pβ2 · iβ3 · aβ4 · cβ5 .
We can take advantage of the relationship between exponents and logs to rewrite
that as ln pv = ln(α) +β1 ln(ed) +β2(ln p) +β3 ln(i) +β4 ln(a) +β5 ln(c).32 Such
a transformation is useful because while we cannot use common statistical rou-
tines to estimate the β parameters in the first representation, we can do so in
the second representation. And while arguments that produce such a functional
form are not usually observed in political science, they are in economics. It
might be the case that few, if any, political processes are composed of concepts
with such nonlinear, interactive relationships, but it might also be the case that
few political scientists have explored those possibilities.

One can draw another illustration of the use of functions from game theory.
In Chapter 1 we made reference to sets composing an actor’s set of action.
One can also create a set of strategic responses to all possible actions and all
possible states of the world: a strategy set or strategy space. A strategy is a
complete plan for playing a game (i.e., the choice an actor would make at each
decision point the actor faces). So a strategy for player 2 might look like this:
“if player 1 does x, then player 2 chooses a; if player 1 does y, then player 2
chooses b; etc.” Strategies are functions (or correspondences): they map the
relationship between the choices of the other players and the choices one makes
at each opportunity. Strategies are sometimes represented as pairs of ordered
sets rather than graphs or equations, but they are functions (or correspondences)
nonetheless. Individual preferences in game theory also often take the form of

31We do not have a story to explain why such a conjecture is reasonable—it likely is not a
reasonable conjecture. We offer it merely for illustrative purposes.

32If you found that too quick, observe that the first task is to take the log of all variables
on both sides of the equation. The second step is to recall that ln(edb) = b ln ed.
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functions, called utility functions. We provide an extended discussion of this
example in the next section.

To reiterate the key point, one should develop a working familiarity with
functional forms because they help one clarify the conjectures one is making.
More specific causal claims are stronger because they are easier to falsify. De-
bates among scholars are also sharpened when there is greater clarity about the
claims being advanced by the various factions. In short, good science becomes
easier as clarity improves, and functions are a very basic and useful tool for
adding clarity to one’s conjectures.

3.3 PREFERENCE RELATIONS AND UTILITY FUNCTIONS

Game theory is a tool for understanding strategic interactions between political
actors and developing theories about political behavior and the effect of institu-
tions. The preferences of individual actors are foundational to game theory, as
one cannot understand how one responds to incentives and others’ actions with-
out understanding what one actually wants. Typically, individual preferences
are represented by functions, and the properties of these functions mirror the
structure of one’s preferences in the same manner that the form of the function
described at the end of the last section matches one’s theoretical expectations
about the probability that one votes. In this section, we go into some detail as
to why this is so, and how it all works, as an extended example of the usefulness
of functions in political science. Before getting to functions, though, we need to
return to relations.

3.3.1 Preference Relations

People frequently use a capital R to represent a relation, as follows: aRb, which
is read “a is related to b.” When applied to preferences, aRb is read “a is at
least as good as b.” If a and b were real numbers, this would translate to a ≥ b;
we return to this comparison below. There are also other analogues: aPb is
“a is strictly preferred to b,”33 or a > b if both are numbers, and aIb is “I
am indifferent between a and b,”34 or a = b if both are numbers. The study
of these preference relations underlies decision theory, which, along with social
choice theory, the study of group decision making, is often taught in parallel
with or as a precursor to game theory. Many results from social choice theory
are quite well known in political science. Black’s median voter theorem, Arrow’s
(1950) impossibility theorem, and McKelvey’s (1976) chaos theorem are notable
examples you will likely be exposed to in other classes.

Our interest here is not in social choice heory, however, but rather in how to
represent preferences with functions. To that end, we skip to a few important

33Formally, aPb if aRb but not bRa.
34Formally, aIb if aRb and also bRa.
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propertiest that we often like preferences to have.35 These are completeness,
transitivity, symmetry, and reflexivity.

Completeness states that for any a and b, either aRb or bRa. In other
words, all elements can be ordered pairwise, and there is no pair of elements for
which one has no opinion. This is weaker than it may sound, as “no opinion”
is distinct from indifference, which is allowed. What completeness disallows is
the ability of someone to be unsure if she prefers a to b, b to a, or is indifferent
between the two. For example, imagine a situation where a bureaucrat could
(1) implement a new regulation (m), (2) implement the new regulation half-
heartedly (h), or (3) ignore the new regulation (g). If the set is complete with
respect to R, then one can have the preferences mRh, hRm, or both (mIh),
but not neither. In other words, one can’t say mPh and hPm simultaneously
depending on mood, which is a formal way of denoting a lack of fixed opinion.
Both the integers and the real numbers are complete relative to the normal
ordering you are familiar with, given by the relations >,≥,=,≤, <. One never
can be unsure whether 3 < 5, for instance.

Transitivity states that if a is at least as good as b, and b is at least as good as
c, then a is at least as good as c: if aRb and bRc, then aRc. The >, ≥, <, ≤, and
= relations are all transitive relations (e.g., if a < b and b < c, then a < c) when
applied to the integers or real numbers. To consider a political example, return
to the set of implementation options for the bureaucrat: {m,h, g}. If she prefers
ignoring the new regulation to implementing it half-heartedly, and also prefers
implementing it half-heartedly to implementing it, then for her preferences to
exhibit a transitive relation she would need to prefer ignoring it to implementing
it.

Symmetry states that if aRb, then bRa for all a and b. In the realm of
preference orderings, this implies complete indifference: everything is at least as
good as everything else. The equality relation, =, is the only symmetric relation
of >,≥,=,≤, and < in the integers or real numbers: if a = b, then b = a.36

Symmetric preference orderings are less common in the study of politics, though
they do allow for a quite precise definition of the concept of “apathy,” which
otherwise might admit multiple interpretations. For instance, if our bureaucrat
were indifferent between all three implementation options, then she would hold
symmetric preferences. In this scenario, she would not only not care which
option were chosen, but she would also be unlikely to put forth effort to affect
the choice, assuming effort were at all costly.

Some people find reflexivity a bit of a brain bender. A relation on a set
A is reflexive if for all a ∈ A, aRa is true. To illustrate, let’s try the relations
>, ≥, and =, and determine whether each is reflexive on the integers or real

35We state these in terms of preference relations, not more generally, as that is the only
context in which we will have occasion to use them in this book. Note that these are nor-
matively desirable properties, not properties observed to be true empirically. In fact, people
violate these on a regular basis!

36While a ≥ b and b ≥ a might both be true (if a and b are equal), a ≥ b does not imply
b ≥ a for all a and b.
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numbers. To check the relation >, we replace the R in aRa with > and see
if it is true: a ≯ a, so “greater than” is not a reflexive relation. However,
a ≥ a and a = a are both true, so “greater than or equal to” and “equal
to” are reflexive relations. Now let’s try a political science example. For our
bureaucrat’s preferences to exhibit reflexive order, each preference must be at
least as good as itself: ignoring the new regulation must be at least as good as
ignoring the new regulation, implementing the new regulation must be at least
as good as implementing the new regulation, etc. We suspect you will agree
that it would be odd indeed if someone’s preferences were not reflexive.

3.3.2 Utility Functions

Complete and transitive individual preference is a fundamental assumption of
rational choice theory and standard game theory, and is commonly assumed
in the formal literature. It is true that people routinely violate this assump-
tion in their everyday lives. However, the assumption buys us something very
important—the ability to represent preferences with functions that take on real
and integer values. To see why, let’s return to the previous definitions. Integers
and the real numbers are complete and transitive for all the usual ordering re-
lations. Thus, if we want to represent our “at least as good as” relation with
numbers, this relation had better have the same properties. With this assump-
tion on individual (not group!) preference, we can translate the relation R on
any set A to a function u on the same set. This u is called a utility function
and assigns a value, typically a real number, to each element in A. So, for ex-
ample, for a bureaucrat whose preferences are ordered mRhRg, we could assign
u(m) = 3, u(h) = 2, and u(g) = 1.

This technique begins to pay dividends when the set of things one has a
preference over is large, or infinite. For instance, while one could laboriously
elaborate on preferences over dollar values of money (100R99R98R . . .), it’s far
easier to define a utility function, u(x) = x, that represents those preferences.
Varying the utility function alters what preferences are represented, in the same
manner that varying the empirical model represents different theoretical ideas.
A linear utility like u(x) = ax for budgetary outlays, for example, would mean
that each additional dollar is just as valued as the previous one. A quadratic
utility like u(x) = ax2, in contrast, would mean that each additional dollar
is valued more than the one before it, an unlikely assumption in many cases
(though see Niskanen, 1975, p. 619). In fact, for money, researchers typically
assume that u(x) = ln(x), so that there are decreasing returns to increasing a
bureaucratic budget.

This makes sense in the context of a single agency’s preferences, but what
about a Congress trying to distribute money over multiple agencies? Each
congressperson might have some ideal budget number for each agency, with
increases and decreases from that number being viewed negatively. In that
case, we can use what is known as a quadratic loss function, u(x) = −(x− z)2.
If you graph this function, you will see it is a parabola that peaks at x = z, which
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is the point of highest utility, also known as an ideal point. This form of utility
function is very common when modeling voting behavior (e.g., McCubbins, Noll,
and Weingast, 1987).

3.3.3 Best Response Correspondences

Let’s return to the example of the bureaucrat, but now assume there are two
decision makers. One, Christine, has preferences mPhPg. She prefers to do
it right, but also wants it done. The other, Bob, is lazy and has preferences
gPhIm. He’d rather do nothing, but if it has to be done, he doesn’t care which
way it happens. Let’s also assume that, for some unknown reason, the decision
is made by asking Christine and Bob to write their choices on a piece of paper.
If both agree, then that option wins. If only one writes m, then h happens. In
this (odd) scenario, Christine will always write m. This is a dominant strategy
for her, because it can secure her second-best option and possibly achieve her
first-best option. Bob, on the other hand, is in a pickle. He can’t get his best
option given Christine’s optimal action, and he is indifferent between h and m.
Thus anything he does has the same outcome to him. His best response to
Christine is any of the three options.

We can represent Christine’s best response as a function. Let S = {m,h, g},
which is known as a player’s strategy space. Then we can write the function
BC(·) = m for Christine, which means that her best option is to choose m
regardless of what Bob does. To elaborate, BC(m) = BC(h) = BC(g) = m.
BC here is called Christine’s best response function. It takes as input Bob’s
strategies and returns the optimal action for Christine to take. It is a function
because Christine has only one best response to each of Bob’s actions.

Now consider Bob’s best response to Christine’s play of m. We can’t represent
this best response as a function, as it would have to return three values—m,
h, or g—when presented with Christine’s m. Instead, we can write Bob’s best
response correspondence. Formally, Bob’s decisions are governed by the
correspondence BB(m) = {m,h, g}. In words, this means that Bob responds
optimally to Christine’s choice of m by choosing any of his options. We write
such correspondences as BB(sC) : SC →→ SB where we have added subscripts
for each player’s name, and Si and si are the strategy space and strategy choice
for player i. Though we will not deal with correspondences much in this book,
they will come up in your game theory classes.

3.3.4 Why Should I Care?

Whether or not they are your cup of tea, formal theories of political science are
prevalent in the field and often referenced in empirical work to justify hypothe-
ses. Being able to read them and understand their underlying assumptions are
important skills. Further, formalizing theories can help sharpen your thinking.
Finally, in the same manner that different utility functions represent different
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preferences, one can choose different underlying properties on preferences if one
does not like, for instance, rational choice assumptions.

3.4 EXERCISES

1. For each pair of ordered sets, state whether it represents a function or a
correspondence:

a) {5, -2, 7}, {0, 9, -8}
b) {3, 1, 2, 6, -10}, {5, 7, 1, 4, 9}
c) {3, 7, -4, 12, 7}, {8, -12, 15, -2, 17}

2. Simplify h(x) = g(f(x)), where f(x) = x2 + 2 and g(x) =
√
x− 4.

3. Simplify h(x) = f(g(x)) with the same f and g. Is it the same as your
previous answer?

4. Find the inverse function of f(x) = 5x− 2.

5. Simplify x−2 × x3.

6. Simplify (b · b · b)× c−3.

7. Simplify ((qr)γ)δ.

8. Simplify
√
x× 5
√
x.

9. Simplify into one term ln(3x)− 2ln(x+ 2).

10. Visit the “Graphing Linear Functions” page at the Analyze Math website
http://www.analyzemath.com/Graphing/GraphingLinearFunction.ht

ml. Read the examples and solve the two “matched problems.”

11. Visit the Analyze Math website’s “Slope Intercept Form of a Line” page at
http://www.analyzemath.com/Slope_Intercept_Line/Slope_Inter

cept_Line.html. Print a copy of the page and then click on the Click
to Start Here button to start the tutorial applet. Do numbers 2 through
8. What does this tutorial show?

12. Visit the “Quadratic Function(General Form)” page at Analyze Math:
http://www.analyzemath.com/quadraticg/quadraticg.htm. Click on
the Click Here to Start button and adjust parameters a, b, and c. What
happens to the graph as you increase or decrease a? Note the changes
when you increase b and c as well. Is there a value to which you can set
one of the parameters to make the quadratic function a linear function?

http://www.analyzemath.com/Graphing/GraphingLinearFunction.html
http://www.analyzemath.com/Graphing/GraphingLinearFunction.html
http://www.analyzemath.com/Slope_Intercept_Line/Slope_Intercept_Line.html
http://www.analyzemath.com/Slope_Intercept_Line/Slope_Intercept_Line.html
http://www.analyzemath.com/quadraticg/quadraticg.htm
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13. Visit the “Graphs of Basic Functions” page at the Analyze Math site
(http://www.analyzemath.com/Graph-Basic-Functions/Graph-Basic
-Functions.html). Click on the Click Here to Start button and plot
the graph of each function. After plotting each once, click the Y-Zoom
Out button several times and plot each of the graphs again.

14. Visit “Polynomial Functional Graphs” at http://id.mind.net/~zona/

mmts/functionInstitute/polynomialFunctions/graphs/polynomial

FunctionGraphs.html. Plot polynomial functions of different orders, then
adjust the parameters and observe how the graph changes in response to
different values (use the Simple Data Grapher from the Math link on the
main page). Write down a verbal conjecture about politics that you think
might be captured by a specific polynomial function. Be sure to explain
your thinking. Write down the function and print a copy of its graph.

15. Rewrite the following by taking the log of both sides. Is he result a linear
(affine) function?

y = α+ xβ1

1 + β2x2 + β3x3.

16. Rewrite the following by taking the log of both sides. Is the result a linear
(affine) function?

y = α× xβ1

1 × x
β2

2 × x
β3

3 .

17. Rewrite the following by taking the log of both sides. Is the result a linear
(affine) function?

y = α× xβ1

1 ×
x
β2
2

x
β3
3

.

18. Is this problem done correctly? Yes or no.
Take the log of both sides of the following equation:
y = xβ1 − xn2 + x2

3.

19. Visit “The Universe Within” page on the website of Florida State Univer-
sity’s magnet lab: http://micro.magnet.fsu.edu/primer/java/scienc
eopticsu/powersof10/. It is a visual display of the concept of scale—
viewing the same object from different scales of measurement—as it begins
with a view from 10+23 meters away and moves to 10−16 meters away.
Besides being a cool visual, this page offers a graphic illustration of ex-
ponentiation.37 Note especially what happens when the exponent shifts
from positive to negative values.38 If that does not make sense to you,
review the discussion of exponents, specifically the arithmetic rules.

37We have purposely used political rather than physical examples throughout, but could
not resist this one.

38Once it has run you may want to click on the Increase button to go back through it as it
moves fairly quickly.

http://www.analyzemath.com/Graph-Basic-Functions/Graph-Basic-Functions.html
http://www.analyzemath.com/Graph-Basic-Functions/Graph-Basic-Functions.html
http://id.mind.net/~zona/mmts/functionInstitute/polynomialFunctions/graphs/polynomialFunctionGraphs.html
http://id.mind.net/~zona/mmts/functionInstitute/polynomialFunctions/graphs/polynomialFunctionGraphs.html
http://id.mind.net/~zona/mmts/functionInstitute/polynomialFunctions/graphs/polynomialFunctionGraphs.html
http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10
http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10
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20. The graduate studies committee has asked the graduate students to pro-
vide the faculty with a list of three nominees to represent the students on
the committee. After much discussion, three nominees are put forward,
and you are asked to rank them, with the rank representing preference
(i.e., 1 is most preferred, 2 is second best, and 3 is the third-best choice).
The nominees are Beta, a seventh-year student who recently defended his
prospectus; Gamma, a second-year student who is very bright but tends to
dominate seminar discussion; and Alpha, a fourth-year year student who
is preparing for her exams and is widely viewed as level-headed and real-
istic. Provide your pairwise preference rankings of each candidate. Check
to see whether your rankings are transitive. If you have been assigned
this problem for class, bring your ordering to class so that the class can
determine whether it is transitive at the aggregate level under pairwise
majority rule.

21. Recall the first question of Section 8.2 in Chapter 1. There we asked you
to pick ideal spending points for three parties, as well as a status quo and a
bill, and conjecture about whether or not it would pass. Now we want you
to go further. Write a utility function for each party that is largest at that
party’s ideal point. How does that function decrease with distance from
the ideal point? Try to draw a curve around each ideal point that gives
the same utility to the corresponding party for every point on the curve.
These are called indifferences curves, as the party is indifferent between
all points on the curve. Draw these for all parties and see whether you
can answer your earlier conjecture.

22. Propose and justify a quadratic utility function as representing the pref-
erences of some political actor over something.


