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There is no exact definition of the Monte Carlo meth-
ods. In the course Monte Carlo Method means nu-
meric method of a solution of a mathematical prob-
lem using a modeling of random variables and sta-
tistical estimation of their parameters. Thus, we are
talking

• numerical method, and not analytical;

• can resolve not only probabilistic/statistical prob-
lems.

The “official” year of birth is 1949:

Metropolis N., Ulam S.M. The Monte Caro method.
J. Amer. Assoc., 44, 247, 335-341, 1949
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[RC, p62] “The major classes of numerical problems
that arise in statistical inference are optimization prob-
lems and integration problems. Numerous examples
show that it is not always possible to analytically com-
pute the estimators associated with a given paradigm
(maximum likelihood, Bayes, method of moment, ext.).”
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[RC, p62] “The possibility of producing an almost
infinite number of random variables distributed ac-
cording to a given distribution gives us access to the
use of frequentist and asymptotic results much more
easily than in the usual inferential settings, where the
sample size is most often fixed. One can therefore
apply probabilistic results such as the LLN or CLT,
since they allow assessment of the convergence of
simulation methods (which is equivalent to the de-
terministic bounds used by numerical approaches).”
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Classical Monte Carlo integration.

The generic problem is about the representation of an integral∫
F (x)dx =

∫
h(x)f(x)dx =: E

(
h(X)

)
as the expectation of some function h(·) of a r.v. X with density
f(·). The principle of the Monte Carlo method for approximating∫

h(x)f(x)dx =: E
(
h(X)

)
is to generate a sample (X1, . . . , Xn) from the density f and
propose as an approximation

mn =
1

n

n∑
i=1

h(xi),

which converges almost surely to E
(
h(X)

)
by the Strong LLN.
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Classical Monte Carlo integration.

The following questions arise.

• how to choose a ”good” r.v. X;

• how to simulate values of r.v. X;

• convergence, when to stop.
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Let X be a real-valued random variable, and let X1, X2, . . . be
an infinite sequence of independent and identically distributed
copies of X. Let Xn := 1

n
(X1 + . . . Xn) be the empirical average

of this sequence. Law of Large Numbers (LLN) is known in two
form, weak and strong:

Weak LLN.

If the first moment of X is finite, i.e. E(|X|) < ∞, then Xn

converges in probability to E(X):

lim
n→∞

P
(
|Xn − E(X)| ≥ ε

)
= 0, for every ε > 0.

Strong LLN.

If the first moment of X is finite, i.e. E(|X|) < ∞, then Xn

converges almost surely to E(X):

P
(
lim
n→∞

Xn = E(X)
)
= 1.
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Classical Monte Carlo integration. By the Strong
LLN the integral approximation

mn =
1

n

n∑
i=1

h(xi) → E
(
h(X)

)
, a.s.

If there exists the second moment, by CLT, for large
n

mn − E
(
h(X)

)√
Var

(
h(X)

)
n

≈ N(0,1),

This leads to the confidence bounds on the approxi-
mation of E

(
h(X)

)
.
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Classical Monte Carlo integration.

Indeed, let m := E(X), and v := Var(X) (further we
omit h)

lim
n→∞

P
(∣∣∣1

n

n∑
i=1

(Xi −m)
∣∣∣ < x

√
v

n

)
= 2Φ(x)− 1.

thus for n large

P
(
|mn −m| < x

√
v

n

)
≈ 2Φ(x)− 1.

Given 1− α/2 = Φ(x) we find quantile z1−α/2 and

P
(
|mn −m| < z1−α/2

√
v

n

)
≈ 1− α.
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Classical Monte Carlo integration.

[As. p70] “Being the same dimension as the expec-
tation m, the standard deviation

√
v is the natural

measure of precision rather then the variance v. The
rate n−1/2 is intrinsic for virtually any Monte Carlo ex-
periment as the optimal rate which can be achieved.
In fact, there are quite a few situations in which one
get slower rates such as O(n−(1/2−ε)) with ε > 0, e.g.,
in gradient estimation via finite differences (VII.1), or
variance estimation via time series methods (IV.3).
In view of these remarks, one often refers to O(n−1/2)
as the canonical Monte Carlo convergence rate.

There are, however, a few isolated examples (but just
a few!) in which O(n−1/2) can in fact be improved
to supercanonical (faster) rates; see V.7.4 for exam-
ples.”
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Classical Monte Carlo integration.

Example ([As,p.70], see also [RC] Example 3.4). As
an illustration of the slow convergence rate of the
Monte Carlo method, consider the estimation of π =
3.1415... via the estimator Z := 4 · 1(U2

1 + U2
2 < 1),

where U1, U2 ∼ U [0,1] are independent r.v.s. Here
1(U2

1 + U2
2 < 1) ∼ B(π/4), and m = E(Z) = π, v =

Var(Z) = 42π
4
(1− π

4
) ∼= 2.70. Thus, to get the leading

3 in π correct w.p. 95% we need

|mn −m| ≤ 0.5 = z0.975

√
v

n
= 1.96

√
2.70

n

thus n ∼= 1.9622.7
0.52

∼= 41, whereas for the next 1 we need

n = 1.9622.7
0.052

∼= 4,150, for the 4, n = 1.9622.7
0.0052

∼= 415,000,
and so on.
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Classical Monte Carlo integration.

If there exists a third central moment β3 = E(X −
m)3 < ∞, the rate convergence in CLT can be im-
proved:∣∣∣P(Sn −mn > σ

√
nx)−

1√
2π

∫ ∞

x

e−u2/2du
∣∣∣ ≤ c0β3

v3/2
√
n

where c0 is an absolute constant such that 1/
√
π ≤

c0 < 0.9051.
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Classical Monte Carlo integration.

Sometimes the probable error of a method, rn is used:

rn = z0.75

√
v

n
= 0.6745

√
v

n
.

The name “probable” is because

P{|mn −m| < rn} ∼= 1/2 ∼= P{|mn −m| > rn},
i.e. the fluctuations greater then rn and fluctuation
less then rn are equiprobable. In practice rn is used
to estimate an order of an error.
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Classical Monte Carlo integration. Errors.

[As.p71-72] In many computational settings, one wishes
to calculate the solution to a desired level of accuracy.
Two accuracy criteria are commonly used:

�absolute accuracy: compute the quantity m to an
accuracy ε

|mn −m| < ε;

�relative accuracy: compute the quantity m to an
accuracy ε|m|

|mn −m| < ε|m|.
The confidence interval suggests, in principle, what
one should do to achieve such accuracies.
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Classical MC integration. Production runs.

[As.p71-72] The confidence interval suggests, in prin-
ciple, what one should do to achieve such accuracies.

n ≈
z21−α/2v

ε2
n ≈

z21−α/2v

ε2|m|2

As in the setting of confidence intervals, these run-
length determination rules (i.e., rules for selecting n)
cannot be implemented directly, since they rely on
problem-dependent parameters such as v and m that
are unknown.
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Classical MC integration. Production runs.

[As.p.72] As a consequence, the standard means of
implementing this idea involves first generating a small
number of trial runs (say 50) to estimate v and m2

by v̂trial and m̂2
trial. One then determines the number

n of so-called production runs from either

n ≈
z21−α/2v̂trial

ε2
or n ≈

z21−α/2v̂trial

ε2m̂2
trial

,

depending on whether absolute or relative precision is
desired.
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Classical MC integration. Error without “v̂”.

Suppose v < ∞. There is a way to estimate an error
without calculation of v̂. Let n = kn1, where k ≥ 3
is integer and not large. Suppose that n1 is large
enough to apply the CLT. Calculate the averages

ζ1 =
1

n1

n1∑
i=1

Xi, ζ2 =
1

n1

n1∑
i=1

Xi+n1
, . . . , ζk =

1

n1

n1∑
i=1

Xi+n1(k−1).

If ζ1, . . . , ζk are i.i.d. with normal distribution with
mean m then

t =
√
k − 1

x̄−m

s
,where x̄ =

1

k

k∑
i=1

ζi, s2 =
1

k

k∑
i=1

(ζi−x̄)2,

has t-Student distribution with k − 1 degree of free-
dom.
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Classical MC integration. Error without “v̂”.

t =
√
k − 1

x̄−m

s
,where x̄ =

1

k

k∑
i=1

ζi, s2 =
1

k

k∑
i=1

(ζi−x̄)2,

in our case E(ζi) = m, x̄ = mn and s2 = 1
k

∑k
i=1(ζi −

mn)2. Thus

P
(
|mn −m| < x

√
s2/(k − 1)

)
∼= 2

∫ x

0
pStudentk−1 (y)dy

and

P
(
|mn −m| < tk−1,1−α

√
s2/(k − 1)

)
∼= 1− α.

The probable error of this method is

rn = tk−1,0.5

√
s2/(k − 1)
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Classical MC integration. Infinite variance.

Recommendation: do not use variables with infinite
variance!
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Classical MC integration. Partial integration. [S]

Monte Carlo error is proportional
√

Var(h(X))/n. We
cannot to improve

√
n, but we can try to decrease

Var(h(X)). Thus the aim is to find estimator with
lower variance.

The aim is to calculate m =
∫
G
h(x)f(x)dx, where

h ∈ L2(G; f). Suppose that there exists the function
g(x) which integral can be calculated explicitly

I =

∫
G

g(x)f(x)dx.
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Classical MC integration. Partial integration. [S]

Aim: m = h(x)f(x)dx, known: I =
∫
G
g(x)f(x)dx.

Again, Xi ∼ f(·) and consider two estimators

mn =
1

n

∑
i

h(Xi), m′
n =

1

n

∑
i

(
I + h(Xi)− g(Xi)

)
,

with E
(
h(X)

)
= E

(
I + h(X)− g(X)

)
= m,

Var
(
I + h(X)− g(X)

)
=

∫
G

(
h(x)− g(x)

)2
f(x)dx− (m− I)2.

If g is close enough to h such that∫
G

(
h(x)− g(x)

)2
f(x)dx ≤ ε,

then

Var
(
I + h(X)− g(X)

)
≤
∫
G

(
h(x)− g(x)

)2
f(x)dx ≤ ε.
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Classical MC integration. Partial integration. [S]

Example. Let h(x) = ex, g(x) = 1 + x. Estimate

the integral m =
∫ 1
0 exdx. Compare variance of two

estimators:

mn =
1

n

∑
i

eUi, and m′
n =

1

n

∑
i

(3
2
+ eUi − 1− Ui

)
.

Essentially we compare

Var(eU) and Var(eU − U).

Explicit calculations gives us:

Var(eU) =
(3− e)(e− 1)

2
∼= 0.2420

Var(eU − U) =
−6e2 +36e− 53

12
∼= 0.0436
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