Geometria Analítica

Operações com vetores

Prof. Dr. Lucas Barboza Sarno da Silva

Operações com vetores

- Multiplicação por um escalar
- Adição
- Diferença

Multiplicação por um escalar

Sejam α um número real e \vec{v} um vetor.

- (a) Se $\alpha = 0$ ou $\vec{v} = \vec{0}$, então $\alpha \vec{v} = \vec{0}$.
- (b) Se $\alpha \neq 0$ e $\vec{v} \neq \vec{0}$, o vetor $\alpha \vec{v}$ caracteriza-se por:
 - $\alpha \vec{v} / / \vec{v}$;
 - $\alpha \vec{v}$ e \vec{v} são de mesmo sentido se $\alpha > 0$, e de sentido contrário se $\alpha < 0$;
 - $||\alpha \vec{v}|| = |\alpha| ||\vec{v}||$.

Propriedades da multiplicação por um número real

Se \vec{u} e \vec{v} são vetores quaisquer e a e b números reais, temos:

I)
$$a(b\vec{v}) = (ab)\vec{v}$$

(associativa)

II)
$$(a+b)\vec{v} = a\vec{v} + b\vec{v}$$

(distributiva em relação à adição

de escalares)

III)
$$a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$$

(distributiva em relação à adição

de vetores)

$$IV) \quad 1\vec{v} = \vec{v}$$

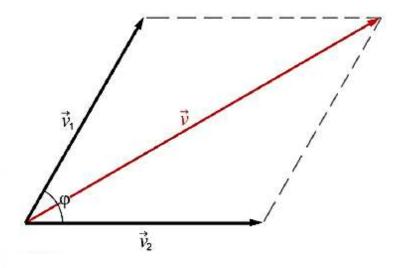
(identidade)

Soma de vetores

Sejam \vec{v}_1 e \vec{v}_2 dois vetores. A soma desses vetores é um terceiro vetor, o vetor resultante \vec{v} :

$$\vec{v} = \vec{v}_1 + \vec{v}_2$$

Para determinarmos o módulo, a direção e o sentido desse vetor resultante, utilizamos a regra do paralelogramo. Primeiramente, desenhamos o paralelogramo definido a partir dos vetores \vec{v}_1 e \vec{v}_2 .



Propriedades da adição

I) Comutativa:
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

II) Associativa:
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

III) Existe um só vetor nulo $\vec{0}$ tal que para todo o vetor \vec{v} se tem:

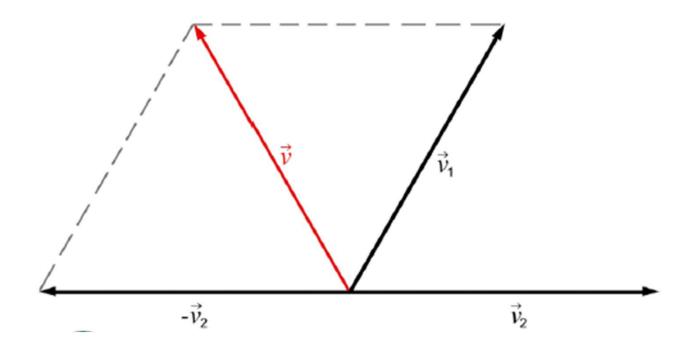
$$\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$$

IV) Qualquer que seja o vetor \vec{v} , existe um só vetor $-\vec{v}$ (vetor oposto de \vec{v}) tal que

$$\vec{v} + (-\vec{v}) = -\vec{v} + \vec{v} = \vec{0}$$

Diferença de vetores

Consideremos os vetores \vec{v}_1 e \vec{v}_2 . A subtração de vetores resulta em um terceiro vetor \vec{v} chamado diferença, cujas propriedades são inferidas a partir da soma dos vetores \vec{v}_1 e $(-\vec{v}_2)$.



Extensão para muitos vetores

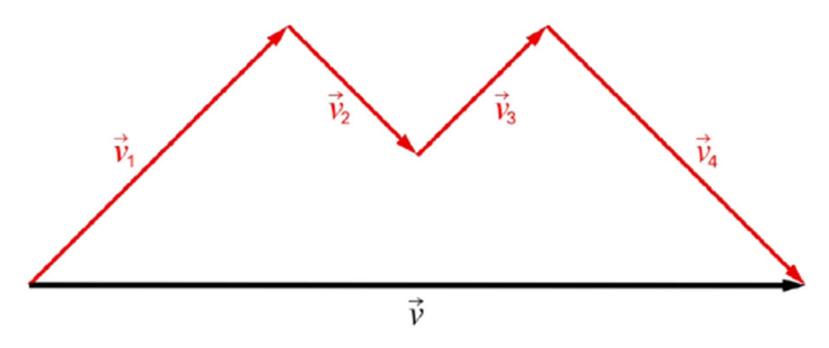


Figura 1.8: Posicionando-se os vetores, um em seguida ao outro, o vetor soma é aquele que fecha o polígono

Exercícios

1) Dados os vetores \overrightarrow{u} e \overrightarrow{v} da figura, mostrar, num gráfico, um representante do vetor:

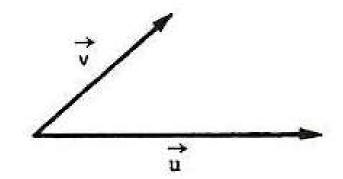
$$a) \overrightarrow{u} - \overrightarrow{v}$$

$$b) \vec{v} - \vec{u}$$

c)
$$\overrightarrow{v} - 2\overrightarrow{u}$$

d) $2\overrightarrow{u} - 3\overrightarrow{v}$

$$d) 2u - 3v$$



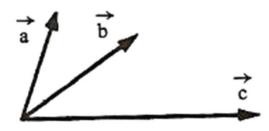
2) Dados os vetores \overrightarrow{a} , \overrightarrow{b} e \overrightarrow{c} , como na figura, apresentar um representante de cada um dos vetores:

a)
$$\overrightarrow{4a} - 2\overrightarrow{b} - \overrightarrow{c}$$

b) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$
c) $2\overrightarrow{b} - (\overrightarrow{a} + \overrightarrow{c})$

b)
$$\vec{a} + \vec{b} + \vec{c}$$

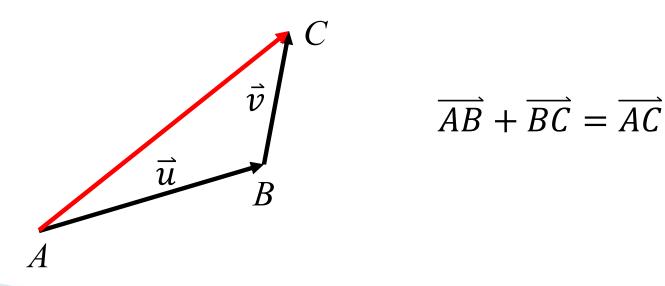
c)
$$2\vec{b} - (\vec{a} + \vec{c})$$



Soma de vetores (definição)

Dados \vec{u} e \vec{v} , sejam (A,B) um representante qualquer de \vec{u} e (B,C) o representante de \vec{v} que tem origem B. O vetor soma de \vec{u} com \vec{v} , indicado por $\vec{u} + \vec{v}$, é o vetor que tem (A,C) por representante:

$$\vec{u} + \vec{v} = \overrightarrow{AC}$$



Exercícios

- Prove que $\overrightarrow{BC} \overrightarrow{BA} = \overrightarrow{AC}$.
- Prove as seguintes leis do cancelamento da adição de vetores:

$$\vec{u} + \vec{x} = \vec{u} + \vec{y} \rightarrow \vec{x} = \vec{y}$$

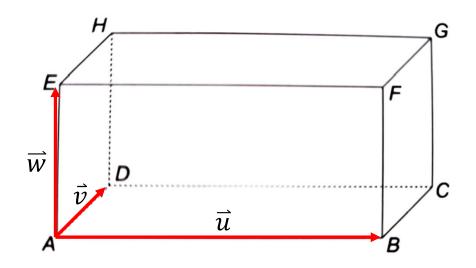
• Prove:

a)
$$\vec{x} + \vec{a} = \vec{b} \leftrightarrow \vec{x} = \vec{b} - \vec{a}$$

b)
$$\vec{u} = \vec{v} \leftrightarrow \vec{u} - \vec{v} = \vec{0}$$

• Prove que $\vec{u} + \vec{z} = \vec{u} \rightarrow \vec{z} = \vec{0}$ e que $\vec{u} + \vec{z} = \vec{0} \rightarrow \vec{z} = -\vec{u}$. Essas propriedades asseguram a unicidade do elemento neutro e a do elemento oposto.

• Na figura representa-se um paralelepípedo ABCDEFGH. Sendo $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AD}$ e $\overrightarrow{w} = \overrightarrow{AE}$, exprima \overrightarrow{AG} e \overrightarrow{EC} em função de \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} .



Multiplicação por um escalar

- Prove que, se $\alpha \neq 0$, então $\alpha \vec{v} = \vec{w} \rightarrow \vec{v} = \frac{\vec{w}}{\alpha}$.
- Prove que $\vec{a} = 2\vec{b} + \vec{c} \rightarrow \vec{b} = \frac{(\vec{a} \vec{c})}{2}$.

Regras dos sinais

Quaisquer que sejam o escalar α e o vetor \vec{v} , valem as igualdades:

a)
$$(-\alpha)\vec{v} = -(\alpha\vec{v})$$

b)
$$\alpha(-\vec{v}) = -(\alpha \vec{v})$$

c)
$$(-\alpha)(-\vec{v}) = \alpha \vec{v}$$

Vetores paralelos

- Dois vetores não-nulos \vec{u} e \vec{v} são paralelos se, e somente se, existe um escalar λ tal que $\vec{u} = \lambda \vec{v}$, consequentemente, $\lambda \neq 0$ e $\vec{v} = \frac{\vec{u}}{\lambda}$.
- Se \vec{u} e \vec{v} não são paralelos, então $\alpha \vec{u} + \beta \vec{v} = \vec{0} \rightarrow \alpha = \beta = 0$.

Exercícios

- Sejam $B \in C$ dois pontos distintos e M o ponto médio de BC. Prove que se A é um ponto qualquer, então $\overline{AB} + \overline{AC} = 2\overline{AM}$.
- Prove que o segmento que une os pontos médios de dois lados de um triângulo é paralelo ao terceiro e tem a metade da sua medida.
- Prove que o segmento que une os pontos médios dos lados não-paralelos de um trapézio é paralelo às bases, e sua medida é a metade da soma das medidas das bases.