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APRESENTAÇÃO

Este texto apresenta uma resenha autocrítica sobre a obra de pesquisa do Prof. Dr. Gus-
tavo Roque da Silva Assi, docente do Departamento de Engenharia Naval e Oceânica da
Escola Politécnica da Universidade de São Paulo (EPUSP), desenvolvida principalmente
nos últimos 10 anos, no tema de supressão das vibrações induzidas pelo escoamento (VIE)
em corpos rombudos.

O material aqui reunido é fruto de um esforço coletivo de muitos alunos de graduação,
pós-graduação e pesquisadores que trabalharam sob nossa orientação no grupo de pesquisa
na USP. O texto está dividido em três partes:

(Parte I) Inicialmente, apresentamos rapidamente a motivação tecnológica que nos
aproximou deste tópico de estudos, a saber, a tecnologia de exploração offshore em águas
profundas e ultraprofundas. Em seguida, oferecemos uma breve explicação de quatro
fenômenos que governam a física dos problemas deste assunto: geração e desprendimento
de vórtices, vibração induzida por vórtices (VIV), vibração induzida pela esteira (WIV)
e galloping.

Os dois capítulos seguintes resumem os principais resultados obtidos no desenvolvi-
mento de supressores de VIE de corpos rombudos. A maioria deles foi fruto de inves-
tigação experimental em escala reduzida, sendo esta uma temática que permeia todo o
texto. Os supressores discutidos são agrupados quanto à natureza do princípio físico de
supressão em supressores bidimensionais e tridimensionais. Nossa intenção não foi sermos
exaustivos na descrição ou comparação dos resultados, mas mostrar ao leitor como esta
linha de pesquisa se desenvolveu naturalmente ao longo da última década, de modo que
a compreensão dos fenômenos levou ao desenvolvimento de outros supressores, a assim
sucessivamente.

(Parte II) Tão importante quanto os resultados do desenvolvimento de supressores
foram os equipamentos, técnicas e métodos experimentais desenvolvidos ao longo destes
anos. Este patrimônio permitiu e permitirá o desenvolvimento de muitas outras áreas de
pesquisa experimental que não estão relatadas aqui. Em um primeiro capítulo destacamos
os canais recirculantes como as principais ferramentas utilizadas nos experimentos, além
do desenvolvimento de bases elásticas. Aproveitamos a oportunidade para registrar nesta
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resenha a nossa opinião sobre três aspectos muito importantes que foram elaborados
pela experiência paralelamente ao avanço técnico do pesquisador, a saber: difusão do
conhecimento, ensino de engenharia e filosofia da tecnologia.

(Parte III) Na terceira e última parte, que reúne a obra literária propriamente dita,
anexamos os 22 artigos completos publicados pelo autor em periódicos internacionais
relacionados com o tema desta resenha. Não anexamos artigos publicados em anais de
conferência por brevidade e por entender que o conteúdo deles está mais bem consolidado
nas publicações de periódicos especializados. Esta coletânea representa a síntese do esforço
de pesquisa reconhecido pela comunidade científica.



PARTE I

RESENHA CRÍTICA DA OBRA
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1 INTRODUÇÃO

“Quando você transforma seu hobby em
trabalho, tem tempo para um novo hobby.”

-- Egbert Schuurman (1937-)

Vibração induzida pelo escoamento (VIE) é um dos problemas mais instigantes que une
a dinâmica dos fluidos à dinâmica das estruturas no campo que chamamos de interação
fluido-estrutura. É um problema tão rico em fenômenos fluidoelásticos que facilmente
desperta o interesse e a curiosidade de pesquisadores atraídos apenas pelo prazer em
estudá-lo (neste grupo nos incluímos). Porém, o desafio das VIE vai além da curiosidade
científica e se apresenta em diversas aplicações na engenharia, da oscilação do tabuleiro
de grandes pontes estaiadas às pequenas instabilidades na válvula tricúspide de corações
artificiais.

Mas foi no contexto da exploração oceânica que as VIE se tornaram um tópico de
pesquisa e desenvolvimento na indústria e na academia brasileiras. A descoberta de óleo
e gás nas águas profundas da costa do Brasil (década de 1970), seguida pela descoberta
dos reservatório do pré-sal em águas ultraprofundas (década de 2000) alavancou o campo
de desenvolvimento científico e tecnológico de nosso país, desafiando a indústria brasileira
ao patamar de líder mundial em exploração nestas condições.

Desde o início das explorações offshore, e muito mais agora com a maturidade dos
campos do pré-sal, o problema das VIE sempre esteve presente. Seja nas linhas de an-
coragem, nos cabos umbilicais, nas longas tubulações de produção ou nas colunas de
perfuração, os sistemas submarinos são compostos por diversas estruturas esbeltas e de
geometria rombuda sujeitas à correnteza e outras intempéries marinhas. A figura 1 ilustra
a variedade de sistemas oceânicos flutuantes com seus inúmeros risers, linhas e tendões
submersos.

Destaque deve ser dado aos risers de produção, longas tubulações de aço (ou mesmo
tubos flexíveis com várias camadas poliméricas e malhas estruturais de reforço) instala-
das para levar óleo, gás e água do poço de produção no leito marinho para a plataforma
flutuante na superfície. Pois um campo de exploração offshore é repleto de dezenas de
risers com diferentes funções e restrições. Estas estruturas esbeltas e muito longas se
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Figura 1: Tipos de plataformas de petróleo onde se verifica a presença de elementos
cilíndricos, como cabos e dutos, sob a ação da corrente marítima (Assi, 2009).

1946 S.H. Kwon et al. / Ocean Engineering 29 (2002) 1945–1958

commercially. Fig. 1 adopted from Blevins (1990), features add-on devices for the
suppression of vortex-induced vibration in cylinders. The add-on devices suppress
the vortex-induced vibration by disrupting the formation of two-dimensional vor-
tex sheets.
The ribboned cylinder is another device proposed by researchers. Ribbons are

attached to the surface of the cylinder to reduce drag. Most of such proposed rib-
boned cylinders have the ribbons attached to one side of the cylinder, like the one
shown in Fig. 1.
As a result, when the direction of flow changes, the attached ribbons cannot prop-

erly perform their roles.
This study proposes a drag reduction device that uses three ribbons attached 120

degrees apart to the vertical pipe. The ribbons can be self-adjusted to the flow coming
from any direction. Experiments were conducted to investigate the effects of ribbon
length, and the direction of flows on various uniform velocities. The experiments
were conducted in a circulating water channel. Direct measurements of drag were
made by a resistance dynamometer. Flow visualizations were conducted using the
laser sheet beams. Laser Doppler Velocimetry (LDV) was used to measure the velo-
city field in the wake.
The experimental results indicate that a ribboned cylinder can be an effective

vortex suppression device when the length of its ribbons is adjusted even when the
direction of the mean current in the operating zone is not known in advance. This
type of vortex suppression device has many other advantages over typical helical

Fig. 1. Vortex suppression devices (Blevins, 1990).

Fig. 8.1: Add-on devices for VIV suppression of cylinders. Top row: splitter plate, ribbons,

guiding vane, spoiler plates. Bottom row: helical strakes, perforated shroud, axial slats,

streamlined fairing. Reproduced from Blevins (1990).

interaction between shear layers. Splitter plates, guiding vanes and base-bleed are

common examples.

A few of the suppressors mentioned above are illustrated in Fig. 8.1. Some

may be very e�ective in inhibiting vortex shedding from a static cylinder, or even

reducing the fluctuating forces acting on a structure that vibrates a little. But

if high-amplitude vibrations appear the displacement of the cylinder will interfere

with the vortex shedding phenomenon (as we have seen to occur during the VIV

synchronisation range) and the device might lose its e�ectiveness completely.

A widely used method for suppressing VIV of long slender bodies of circular

cross section is the attachment of helical strakes. Developed originally in the wind

engineering field, strakes su�er from two major problems: the first being that they

increase drag and the second that, for a given strake height, their e�ectiveness

reduces with decreases in m⇤�. Whereas a strake height of 10% of cylinder diameter

is usually su�cient to suppress VIV in air at least double this amount is often

required in water, and this increase in height is accompanied by a corresponding

further increase in drag.

For a fixed cylinder it is known that if regular vortex shedding is eliminated, say

by the use of a long splitter plate, then drag is reduced. Hence in theory an e�ective

VIV suppression device should be able to reduce drag rather than increase it. This

177

Figura 2: Exemplos de supressores de VIE. Reproduzido de Blevins (1990).

comportam como linhas flexíveis, desafiando pesquisadores que enxergam o problema do
ponto de vista da integridade estrutural (Pesce, 1997; Martins, 2000). Como o próprio
nome indica, as vibrações destas estruturas são induzidas pelo escoamento externo ao
gerar carregamento cíclico ao redor destes corpos elásticos e de geometria rombuda. As-
sim, o problema requer ainda outro olhar nesta interface da interação fluido-estrutura,
justamente sob a perspectiva do escoamento (Meneghini, 2002).

Esta linha de pesquisa enquadra-se neste contexto, alinhada à segunda perspectiva, a
do escoamento. Por princípio, uma maneira de mitigar as vibrações é alterar o comporta-
mento do escoamento de modo a reduzir (ou eliminar) a fonte da excitação. Dispositivos
supressores de VIE podem ser instalados nestes corpos com esta finalidade, tomando di-
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versas formas como os exemplos ilustrado na figura 2. Portanto, nosso objetivo é duplo:
desenvolver supressores que tenham aplicação na indústria offshore; e, ao mesmo tempo,
revelar a beleza e a complexidade dos mecanismos físicos por detrás destes fenômenos
fluidoelásticos que tanto nos fascinam.

1.1 Desenvolvimento científico e tecnológico

O nosso envolvimento com o desenvolvimento de supressores de VIE começou através de
um projeto tecnológico solicitado pela BP (British Petroleum – operadora britânica do
setor de energia) enquanto estávamos no programa de doutorado em Engenharia Aero-
náutica no Imperial College London. A empresa manifestou o interesse de investigar o
comportamento dinâmico de fairings e outros supressores desta família de sistemas pivo-
tantes (ou free-to-rotate), já que pouco se conhecia do comportamento dinâmico destes
sistemas.

Nossos estudos com modelos em escala reduzida em condições controladas de labo-
ratório permitiram a identificação dos principais parâmetros que governam a dinâmica
de sistemas desta natureza, abrindo caminho para uma longa jornada de investigação e
desenvolvimento de novas geometrias de supressores pivotantes. Este esforço de pesquisa
resultou na publicação de uma série de artigos científicos, com forte aplicação tecnológica,
explicando os fundamentos e os mecanismos físicos do comportamento destes sistemas.
Tais artigos, que serão citados ao longo deste texto, atraíram a atenção tanto dos ope-
radores quanto dos fabricantes de supressores da indústria offshore, além da comunidade
científica que estuda o tema.

A pesquisa continuou e se expandiu com nosso retorno à Universidade de São Paulo
em 2010, agora como docente do Departamento de Engenharia Naval e Oceânica da
Escola Politécnica. No ano de 2011 fomos contemplados com um financiamento regular
da FAPESP (2011/00205-6), permitindo a construção de uma bancada de testes, além
de um novo canal recirculante para experimentos com escoamentos a baixo número de
Reynolds (apresentado no capítulo 6).

Estudamos uma série de supressores dessa família de sistemas pivotantes (livres para
rotacionar), com foco na otimização geométrica para mitigação de vibrações e redução
de arrasto. Esta série de supressores envolvia sistemas com placas planas, posiciona-
das de diversas formas à jusante de um cilindro. As placas, solidárias umas às outras,
podiam rotacionar livremente ao redor do cilindro, sem que houvesse rigidez torcional
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restringindo seu movimento. O atrito rotacional – parâmetro cuja importância foi identi-
ficada nos primeiros estudos fundamentais ainda em Londres – sempre foi mantido o mais
baixo possível. Os testes com supressores compostos por placas planas variaram entre
configurações com placas paralelas, oblíquas e conjuntos com três ou mais placas associ-
adas. Os resultados mostraram que algumas configurações apresentavam instabilidades
fluidoelásticas, enquanto outras mitigavam as vibrações com eficiente redução de arrasto.

As técnicas de visualização do escoamento e medição de campos de velocidades foram
extremamente úteis para a compreensão dos mecanismos envolvidos. Desde o início desta
linha de pesquisa, percebemos que compreender a topologia do escoamento separado in-
teragindo com o cilindro e o supressor na região da esteira próxima era fundamental para
se entender o mecanismo físico em ação. Desenvolvemos técnicas de PIV (particle-image

velocimetry) que nos permitiram obter informações detalhadas dos campos de velocidade
e vorticidade ao redor das pequenas estruturas dos supressores, revelando a complexa inte-
ração do escoamento turbulento com a dinâmica dos supressores. Também desenvolvemos
técnicas de visualização de escoamento com tintura fluorescente e, principalmente, com
emissão de bolhas de hidrogênio por eletrólise da água, que permitiram a identificação
das estruturas dominantes no escoamento separado, tanto no plano bidimensional quanto
no espaço tridimensional ao longo do comprimento do cilindro.

Vale destacar que as técnicas citadas acima foram aprimoradas ao longo da última
década e renderam imagens e vídeos de valor científico e pedagógico. Diversos alunos
orientados foram instruídos nestas técnicas e muito do material produzido foi utilizado
nas aulas do curso de pós-graduação de Interação Fluido-Estrutura, além de cursos de
graduação. Animações e vídeos publicados e disponibilizados na internet tiveram excelente
repercussão e são utilizados por diversos centros de pesquisa do mundo para instrução de
seus pesquisadores. Com satisfação, continuamos recebendo mensagens de agradecimento
pela disseminação desse material.

A investigação evoluiu naturalmente para outras famílias de supressores, algumas não
convencionais, sempre mantendo nosso foco na busca pelos mecanismos físicos por detrás
dos fenômenos. Realizamos experimentos com strakes helicoidais de geometrias variadas,
malhas permeáveis e cilindros ondulados (além de outros que não entraram no recorte
final deste texto). O principal método investigativo continuou sendo o experimento com
modelos em escala reduzida montados em bases elásticas em um canal de água recirculante,
apesar de que simulações numéricas do escoamento também tiveram papel significativo
na elucidação dos fenômenos.
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SUPRESSORES BIDIMENSIONAIS SUPRESSORES TRIDIMENSIONAIS

SISTEMAS PIVOTANTES

PLACA PLANA

PLACAS INCLINADAS

PLACAS PARALELAS

PLACAS OBLÍQUAS

CILINDRINHOS DE CONTROLE 
ROTATIVOS

FAIRINGS

STRAKES HELICOIDAIS

STRAKES CONVENCIONAIS

STRAKES NÃO CONVENCIONAIS

MALHAS PERMEÁVEIS

CILINDRO ONDULADO E ELÍPTICO

“VENTILATED TROUSERS”

OUTRAS MALHAS

Figura 3: Classificação dos supressores de VIE apresentados neste texto quanto à natureza
do mecanismo de supressão.

Podemos classificar os supressores de vibrações induzidas pelo escoamento (VIE) em
corpos rombudos em duas categorias relacionadas à natureza do mecanismo de supressão:
supressores bidimensionais (apresentados no capítulo 3), e supressores tridimensionais (no
capítulo 4). A figura 3 apresenta um diagrama agrupando os supressores discutidos neste
texto.

Para antecipar uma conclusão alcançada ao longo de muitos experimentos com su-
pressores bidimensionais e tridimensionais, entendemos que a supressão de VIV com con-
siderável redução de arrasto dificilmente será alcançada por supressores tridimensionais.
Para manter as estruturas do escoamento úteis para a atenuação da emissão de vórtices
e consequente redução de VIV, os supressores tridimensionais requerem aletas ou outros
apêndices que elevam a carga de arrasto. Acreditamos que a melhor eficiência em su-
pressão de VIV e redução de arrasto esteja na categoria dos supressores bidimensionais,
aqueles que atuam na origem do mecanismo de formação dos vórtices, impedindo a inte-
ração das camadas cisalhantes. Os próximos capítulos apresentarão os resultados que dão
suporte a esta conclusão geral.

1.2 Objetivos desta linha de pesquisa

Apesar de este texto apresentar os avanços de uma linha de pesquisa genuinamente tec-
nológica, com forte aplicação para problemas reais da engenharia oceânica, sempre foi do
nosso interesse manter viva a investigação científica dos fenômenos. Em outras palavras,
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mantivemos um interesse pessoal em estudar os fenômenos físicos por detrás das repostas
dinâmicas dos sistemas investigados, sempre em busca de explicações que elucidassem a
natureza e o comportamento dos mecanismos identificados.

É premissa deste estudo a ideia de que o conhecimento científico fundamental au-
xilia no desenvolvimento tecnológico. Portanto, este texto se dedica, especialmente, ao
destaque dos mecanismos físicos investigados ao longo desta linha de pesquisa. Assim,
seus objetivos gerais sobre os princípios físicos da supressão de vibrações induzidas pelo
escoamento em corpos rombudos se resumem em:

1. Desenvolver metodologia experimental para a realização de experimentos com mo-
delos em escala reduzida em condições controladas em laboratório.

2. Aplicar técnicas de medição para caracterizar os mecanismos físicos por detrás dos
fenômenos fluidoelásticos.

3. Identificar os parâmetros que governam a dinâmica dos sistemas a fim de promover
estudos de otimização.

4. Desenvolver estudos exploratórios com famílias de supressores não convencionais.

5. Aplicar métodos de simulação numérica do escoamento para elucidar os fenômenos
hidrodinâmicos associados.

6. Sintetizar e sistematizar o conhecimento adquirido para subsidiar ferramentas de
desenvolvimento tecnológico e projeto de sistemas reais.

7. Fornecer informação adequada para subsidiar o desenvolvimento de modelos analí-
ticos e fenomenológicos.

8. Oferecer resultados que sirvam de paradigma para simulações numéricas do escoa-
mento em interação fluido-estrutura.

Antes de destacarmos os principais resultados obtidos da investigação dos supressores,
apresentaremos brevemente os principais conceitos dos fenômenos fluidoelásticos mais
relevantes para este texto.
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2 FENÔMENOS DE INTERAÇÃO
FLUIDO-ESTRUTURA

“Aprender é ensinar para alguém aquilo que
você ainda não sabe.”

-- Anatol Roshko (1923-2017)

2.1 Geração e desprendimento de vórtices

Quando um corpo rombudo (um cilindro, no nosso caso) está exposto a um escoamento
transversal incidente, verificamos a formação de uma esteira de vórtices alternados que
se desprendem do corpo e são convectados à jusante pelo escoamento. Há um misto de
beleza e complexidade neste processo que nos fascina desde o primeiro contato com o
fenômeno por volta de 2001.

As camadas limites que se desenvolvem à medida que o escoamento externo percorre
o perímetro do cilindro são separadas pelo efeito do gradiente adverso de pressão. Neste
momento, a partir dos pontos de separação localizados nos dois lados do cilindro, as ca-
madas ricas de vorticidade se tornam camadas cisalhantes livres, concentrando circulação
na região de base do corpo. É nesta região, próximo da face traseira do cilindro, que tem
início a interação cíclica das camadas cisalhantes numa verdadeira “dança” governada pelo
ritmo de emissão de vórtices.

Gerrard (1966) descreveu este mecanismo de emissão e desprendimento de vórtices,
destacando o processo de comunicação entre as camadas cisalhantes que resulta na bela
esteira de vórtices de von Kármán. A visualização do escoamento através de bolhas de
hidrogênio iluminadas com laser ao redor de um cilindro estático sob o escoamento de
água (figura 4) nos permite contemplar esta rica interação na região da esteira próxima.

Uma excelente revisão do mecanismo de formação e emissão de vórtices na esteira
de cilindros oscilando foi compilada por Bearman (1984). Recomendamos este artigo ao
leitor interessado. No momento, basta saber que qualquer corpo rombudo imerso em um
escoamento desenvolverá uma esteira de vórtices com frequência característica em função
do seu diâmetro e da velocidade do escoamento incidente.
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Figura 4: Visualização do escoamento na região da esteira próxima de um cilindro através
da emissão de bolhas de hidrogênio iluminadas com laser.

2.2 Vibração induzida por vórtices (VIV)

Se o corpo cilíndrico em questão for elástico, poderá responder à excitação do escoamento
cíclico desenvolvendo um fenômeno fluidoelástico chamado vibrações induzidas por vór-
tices (VIV). Tome por exemplo o cilindro ilustrado na figura 5, que pode se deslocar
apenas em um grau de liberdade na direção transversal ao escoamento incidente. A ca-
racterística da estrutura elástica pode ser representada nesta seção bidimensional através
de parâmetros de massa (m), rigidez (k) e amortecimento (c).

Sabemos que um vórtice coerente é uma região de baixa pressão no escoamento por
conta da rotação do fluido. A emissão alternada de vórtices gera flutuações cíclicas no
campo de pressão ao redor do cilindro, governadas pelo ritmo da esteira, excitando o ci-
lindro com carregamentos flutuantes de arrasto e sustentação, representados pelos vetores
ortogonais Fx e Fy, respectivamente, na figura 5.

Se a frequência de emissão de vórtices coincidir com a frequência natural da estrutura,
o sistema dinâmico entra em ressonância e o cilindro desenvolve vibrações com amplitude
considerável de deslocamento. A esteira de vórtices governa a excitação do cilindro, inje-
tando energia no sistema, que será dissipada pelo amortecimento da estrutura. Entretanto,
à medida que o corpo oscila, ele também controla a formação da sua própria esteira. Por
isso dizemos que VIV é um fenômeno fluidoelástico autocontrolado, com amplitude de
oscilação governada por um ciclo limite, atingindo deslocamento máximo da ordem de 1
diâmetro na direção transversal.

Esta é a gênese das vibrações induzidas por vórtices (vortex-induced vibrations, em
inglês). Porém, a caraterística mais peculiar deste fenômeno está no fato da ressonância
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Fig. 2.4: Harmonic oscillator model representing an elastically mounted cylinder. The pressure

field in the background is adapted from Drescher (1956).

2.2 Vortex-induced vibration of a single cylinder

Vortex-induced vibration is a type of FIV that has its origin in the cyclic loads

generated by vortices around a blu� body. Several authors have produced

comprehensive reviews about the VIV mechanism of a single cylinder (Sarpkaya,

1979; Bearman, 1984; Parkinson, 1989; Blevins, 1990; Zdravkovich, 1997). In this

section we introduce the phenomenological aspects that will be useful when studying

FIV mechanisms on a pair of cylinders.

In the same way that an asymmetric pressure distribution generates drag in the

streamwise direction, an asymmetry of the pressure field in relation to the other

orthogonal plane of the cylinder generates a fluid-dynamic lift force in the cross-flow

direction. Once the symmetry in the wake is broken (very early in the Re scale) the

cyclic mechanism of vortex shedding changes the pressure field around the body.

Within one shedding cycle the cylinder will experience a change in the direction of

lift as vortices are formed and released.

Fig. 2.4 shows a schematic representation of the pressure field around a cylinder

for the instant when a vortex is being formed at the upper side of the body. Arrows

pointing outwards from the cylinder wall represent relative suction. By integrating

the pressure field around the circumference a resultant force F is obtained, which

can be projected into a drag component Fx and a lift component Fy in relation to

the x and y axes. During the cycle of vortex shedding Fy and Fx will fluctuate

26

Figura 5: Esquema de um cilindro com um grau de liberdade sujeito a VIV. Reproduzido
de Assi (2009).

Figura 6: Resposta dinâmica típica de VIV para um cilindro com um grau de liberdade
transversal. Reproduzido de Assi (2009).
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cylindrical structures. Long drilling risers also suffer wake-interference from other structures attached to floating
platforms. As the ocean current changes its direction through the sea depth it becomes practically impossible to avoid
flexible structures from falling in the wakes of each other. This results in the probability of pipes developing severe WIV
and increases the risk of damage due to structural fatigue as well as clashing.
Attempts to understand flow-induced vibration with flow interference are found in the literature. Blevins (1990)

explains how a cylinder free to respond in two degrees of freedom (2-dof) can be excited into wake flutter when it is
placed downstream of a fixed cylinder but laterally displaced from the centreline of the wake (the so called staggered
arrangement). He shows how the mean velocity profile can input energy into the system as the cylinder oscillates in an
elliptical orbit. When the gap between the cylinder is in the order of a few diameters Zdravkovich (1977) proposes
another mechanism, called gap-flow-switching, which is able to excite cylinders in close proximity. If the separation
between the cylinders is smaller than a critical value – which varies with turbulence and Reynolds number (Zdravkovich
and Pridden, 1977) – the shear layers from the first cylinder may reattach on the second body and a vortex wake may
not develop in the gap. However, in the present work we are particularly interested in studying a type of WIV that is
different from the two mechanisms described above. We will focus on WIV that occurs when a pair of circular cylinders
is initially aligned with the direction of the flow (Fig. 1) with enough space between them for a vortex wake to develop in
the gap. In this arrangement the vortices from the front cylinder impinging on the second cylinder play a significant role
in causing the rear cylinder to vibrate.
Most of the related works found in the literature present data for the response of flexible cylinders in various tandem

and staggered configurations (King and Johns, 1976; Laneville and Brika, 1999). Bokaian and Geoola (1984), Hover
and Triantafyllou (2001) and Assi et al. (2006), on the other hand, present studies of the cross-flow response of a flexibly
mounted, rigid downstream cylinder in a tandem arrangement. While Bokaian and Geoola (1984) relate the dependency
of WIV on structural parameters such as mass and damping, very few works investigate the fluid mechanism causing the
excitation. A better understanding of the physical mechanism behind WIV has emerged from our recent study of
tandem cylinders (Assi et al., 2010; Assi, 2009); the main findings being that the excitation of the downstream body is
sustained by the unsteady force fluctuations caused by the vortices shed from the upstream body interacting with the
shedding from the downstream one.
We believe that only with a clear phenomenological understanding of the nature of the excitation will be possible to

start the development of suppressors that effectively reduce WIV. In this context, we present an experimental study that
is aimed at developing more efficient suppressors for cylinders in tandem arrangements under flow interference.

1.1. Suppression of VIV with control plates

A widely used method for suppressing VIV of long slender bodies of circular cross-section is the attachment of helical
strakes. Developed originally in the wind engineering field, strakes suffer from two major problems: the first being that they
increase drag and the second that, for a given strake height, their effectiveness reduces with decrease in the response
parameter m!z (where m* is the ratio of structural mass to the mass of displaced fluid and z is the structural damping
expressed as a fraction of critical damping). Whereas a strake height of 10% of cylinder diameter is usually sufficient to
suppress VIV in air, at least double this amount is often required in water, and this increase in height is accompanied by a
corresponding further increase in drag. For a fixed cylinder it is known that if regular vortex shedding is eliminated, say by

Fig. 1. Representation of two circular cylinders aligned in the flow direction (tandem arrangement). Upstream cylinder is fixed and the
downstream one is free to oscillate in the cross-flow direction (y-axis).

G.R.S. Assi et al. / Journal of Fluids and Structures 26 (2010) 1045–10571046

Figura 7: Arranjo de dois cilindros alinhados com o escoamento incidente. Reproduzido
de Assi et al. (2010a).

entre os dois osciladores (esteira e cilindro elástico) deste sistema autocontrolado acontecer
numa faixa de velocidades do escoamento e não apenas quando as duas frequências são
idênticas. Esta é a “alma não linear” de VIV e acontece porque a esteira e o movimento
do cilindro controlam um ao outro durante uma faixa de sincronização (chamada faixa de
lock-in, em inglês).

A resposta típica de um cilindro sob VIV com um grau de liberdade transversal pode
ser expressa em termos da amplitude de deslocamento (ŷ/D) e frequência de vibração
(f/f0) em função do parâmetro de velocidade reduzida (U/Df0), conforme ilustrado na
figura 6. Williamson e Govardhan (2004) apresentaram uma excelente revisão do fenô-
meno de VIV que merece ser estudada pelo leitor interessado (leitura obrigatória para os
pesquisadores que se iniciam neste tema).

2.3 Vibração induzida pela esteira (WIV)

Quando mais de um corpo rombudo está imerso no escoamento, a interferência hidro-
dinâmica entre suas esteiras produz fenômenos fluidoelásticos mais complexos que VIV.
Tome, por exemplo, o arranjo simples de dois cilindros alinhados com a direção do escoa-
mento incidente e separados entre si de alguns diâmetros, como ilustrado na figura 7. O
segundo cilindro, elástico, pode se movimentar apenas na direção transversal, enquanto
o primeiro cilindro está fixo. Porquanto a esteira de vórtices plenamente desenvolvida e
proveniente do cilindro à montante interfere com a dinâmica do cilindro à jusante, fazendo
com que este responda com vibrações induzidas pela esteira (WIV, do inglês wake-induced

vibration).
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Fig. 6.6: Time series of lift on the downstream cylinder of a static pair in staggered arrangement

x0/D = 4.0 and y0/D = 1.0. The dot-dashed line represents Cy = �0.65. Re = 19200.

Fig. 6.7: Instantaneous vorticity contours and velocity field (coloured by velocity magnitude)

obtained with PIV around a pair of static cylinder in staggered arrangement. x0/D = 4.0,

y0/D = 1.0, Re = 19200. Please refer to Fig. 6.6.
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Figure 15. (a, b) Instantaneous vorticity contours and (a′, b′) velocity field (velocity magnitude
increases from dark to light grey) obtained with PIV around a pair of static cylinder in staggered
arrangement. x0/D = 4.0, y0/D = 1.0, Re = 19 200. (See figure 14.)
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Figure 16. Sketch of vortex–structure interaction that (a) enhances or (b) diminishes Cy on
the downstream cylinder at x0/D = 4.0 and y0/D = 1.0. (See figures 14 and 15.)
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Figura 8: Mecanismo de excitação de WIV produzido pela da interação dos vórtices na
esteira, explicado a apartir de campos de velocidade e vorticidade. Reproduzido de Assi
et al. (2010b).
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Figure 7. WIV response of the downstream cylinder at various x0/D separations.

In order to develop a clearer understanding of the WIV excitation mechanism, we
will focus our attention on a single separation of x0/D = 4.0, as will be discussed in
detail in the following sections.

4.1. WIV of the downstream cylinder at x0/D = 4.0

A separation of x0/D = 4.0 was chosen for various reasons: (i) it was beyond the
critical separation where a bistable reattachment of the shear layers may occur and
vortex shedding was observed to be present in the gap for all flow speeds; (ii) it gives
a WIV response that is qualitatively consistent with that for larger separations; (iii)
the displacements and magnitudes of fluid forces were comparatively large and can
be measured to a good accuracy; (iv) it was sufficiently small to allow the wakes of
both cylinders to be measured simultaneously using PIV.

Figure 8(a) plots the displacement versus reduced velocity. ŷ/D is the harmonic
amplitude of displacement discussed above and gives a good measure of the average
amplitude of vibration for many cycles of oscillation. However, ŷ/D does not provide a
good estimate of the maximum amplitude that the cylinder might reach if displacement
varies from cycle to cycle. By considering individual peaks of oscillation, it was
possible to estimate a maximum and a minimum peak amplitude taking an average
of the 10 % highest and lowest peaks of the whole series, yielding [ŷ/D]max and
[ŷ/D]min, respectively. Therefore, we can say that for a certain reduced velocity, the
cylinder oscillates on average with ŷ/D, but reaches the maximum and minimum
limits given by the other curves. This provides considerable new information about
the response since it shows that ŷ/D is not only building up with reduced velocity,
but also the deviation from the average amplitude, i.e. the irregularity of the envelope,
is increasing.

Figure 8(b) shows that f increases above f0 but does not reach the line for St = 0.2.
The PSD contours reveal that for any other frequencies present in the spectrum, the
levels are much smaller than the dominant branch that is evident across the reduced-
velocity range. That is to say, there is no significant trace of a frequency branch
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Figura 9: Resposta de WIV para o cilindro à jusante de um par alinhado em função da
separação longitudinal de centro a centro (x0/D). Reproduzido de Assi et al. (2010b).

O mecanismo de excitação e transferência de energia do escoamento para a estrutura
é mais complexo do que aquele explicado como a causa de VIV. Obviamente, o segundo
cilindro produz sua própria esteira de vórtices, mas ele também sofrerá o efeito de uma
esteira já desenvolvida que se origina do corpo à montante. Na verdade, o efeito da es-
teira à montante domina sobre a excitação causada pela própria esteira do corpo. Como
exemplificado na figura 8, cujos campos de velocidade e vorticidade foram obtidos com
PIV, a interação do segundo cilindro com os vórtices já existentes causa impulsos que
transferem energia ao sistema à medida que este atravessa a região da esteira. Como
resultado, o segundo cilindro não desenvolve uma resposta dinâmica com vibrações eleva-
das em uma faixa de ressonância, mas responde com vibrações não ressonantes de grande
amplitude que perduram por uma ampla faixa de velocidades reduzidas, como pode ser
visto na figura 9. Obviamente, a amplitude das oscilações transversais depende da sepa-
ração longitudinal entre os corpos, relacionada com a intensidade dos vórtices que geram
os impulsos de WIV.

Durante o projeto de pesquisa de doutorado, desenvolvido no Imperial College London
sob a supervisão do Prof. Peter Bearman, nos dedicamos à compreensão e modelagem
deste fenômeno de vibrações induzida pelo escoamento dominado pelo efeito de interferên-
cia da esteira. Na época, cunhamos o termo wake-induced vibration para diferenciá-lo dos
outros mecanismos como VIV e galloping, o que foi bem aceito pela comunidade científica.
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Talvez este estudo sistemático de WIV tenha sido a contribuição científica mais signifi-
cativa da nossa carreira até agora, cristalizada em dois artigos publicados no Journal of
Fluid Mechanics (Assi et al., 2010b, 2013). Neles descrevemos o mecanismo de excitação e
propomos um modelo não estacionário para a reposta de WIV de dois cilindros alinhados
com o escoamento.

Como se pode imaginar, as WIV impõem um desafio maior para o desenvolvimento
de supressores de vibrações induzidas pelo escoamento em corpos rombudos. Ao invés
de lidar apenas com a própria geração de vórtices, o sistema supressor também terá que
mitigar a excitação proveniente da esteira à montante.

2.4 Galloping

O último fenômeno fluidoelástico relevante para a compreensão deste texto é o galloping.
(Não nos agrada a tradução “galope” no português, por isso manteremos o termo em
inglês.) Diferentemente de VIV e WIV, galloping se caracteriza por uma instabilidade
hidrodinâmica relacionada à geometria do corpo e às condições dinâmicas do oscilador
estrutural. Por exemplo, considere um corpo elástico qualquer imerso em um escoamento
e livre para se movimentar em apenas um grau de liberdade na direção transversal ao
escoamento incidente. Dependendo da geometria do corpo e da sua velocidade de oscila-
ção, pode acontecer de o escoamento gerar força de sustentação em fase com a velocidade
do corpo. Ocorrendo, o sistema dinâmico pode ser compreendido como tendo “amorteci-
mento negativo”, tal que o escoamento transfere energia para o corpo durante o ciclo de
vibração. Repare que este não é um fenômeno ressonante nem requer a formação de uma
esteira de vórtices, mas se inicia e se sustenta exclusivamente a partir da instabilidade
hidrodinâmica da estrutura.

Como resposta, galloping pode produzir oscilações cuja amplitude de deslocamento
cresce indefinidamente com o aumento da velocidade do escoamento incidente. Isto pode
ter efeitos muito prejudiciais à estrutura, com dano por fadiga estrutural. Por princípio,
galloping não pode ocorrer em corpos axissimétricos, já que a geometria circular de um
cilindro não produz força de sustentação em fase com a velocidade do corpo. Mas, como
alguns dos supressores de VIV de cilindros que veremos adiante alteram a geometria
externa do corpo rombudo, é necessário avaliar se, ao invés de suprimir vibrações, tais
supressores podem excitar oscilações ainda mais danosas por galloping. Esta será uma
preocupação especial com a família de supressores bidimensionais.
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Por outro lado, se o objetivo não for mitigar vibrações, mas amplificar o movimento do
corpo, o fenômeno de galloping (assim como WIV) pode se mostrar promissor, por exem-
plo, por sua aplicação em sistemas de geração de energia. Apesar de muito interessante,
este aspecto não será abordado neste texto, que se restringirá ao estudo da supressão das
vibrações. Ao leitor interessado, recomendamos o livro de Blevins (1990) para uma boa
revisão sobre galloping e outros fenômenos de vibração induzida pelo escoamento.



25

3 SUPRESSORES BIDIMENSIONAIS

“Scientists study the world as it is. Engineers
create the world that has never been.”

-- Theodore von Kármán (1881-1963)

A tentativa mais elementar de se suprimir VIV de um cilindro está na eliminação da
interação entre as camadas cisalhantes que dão origem aos vórtices na esteira. Impedir que
as camadas cisalhantes livres se desenvolvam em vórtices coerentes seria “cortar o mal pela
raiz”. Supressores capazes deste feito atuariam eliminando o mecanismo bidimensional
descrito por Gerrard (1966), portanto dizemos que supressores desta natureza atuariam
na bidimensionalidade do escoamento. Apesar do termo “na bidimensionalidade” não ser
correto ou elegante, ele resume bem o que queremos expressar para o leitor que tenha
algum conhecimento sobre bi e tridimensionalidade de escoamentos.

Por bidimensionais qualificamos supressores que atuam no processo fundamental de
interação entre as camadas cisalhantes livres na esteira próxima, atrasando a formação
de vórtices. Podemos dizer que este processo de emissão e desprendimento de vórti-
ces (Gerrard, 1966) é essencialmente um processo bidimensional em se tratando de um
corpo cilíndrico de comprimento consideravelmente maior que seu diâmetro. As cama-
das cisalhantes emitidas dos lados opostos do cilindro interagem no plano, alimentando
e fortalecendo fluxo de circulação injetada na esteira próxima e estabelecendo o ritmo de
emissão de vórtices. A figura 4 ilustra bem este processo.

3.1 Supressores de VIV de placas pivotantes

Como a direção do escoamento incidente pode variar em relação ao cilindro, os supressores
que pretendem atuar na mitigação de VIV devem ser omnidirecionais, isto é, funcionar
qualquer que seja a direção do escoamento. No nosso exemplo de motivação, a variação
da direção do escoamento se dá pela alteração da corrente marinha em relação ao riser,
podendo variar inclusive ao longo da profundidade. Se a ideia for instalar algum apêndice
externo ao cilindro que impeça a interação das camadas cisalhantes, este dispositivo deve
estar pronto para rotacionar ao redor do cilindro acompanhando a variação do escoamento
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Figura 10: Campos de velocidade e vorticidade ao redor de um cilindro com placa plana
pivotante. Reproduzido de Assi et al. (2009)

incidente. Daí surge a necessidade de se desenvolver supressores pivotantes. Alguns deles
serão descritos nas seções que se seguem, iniciando com as geometrias mais elementares e
aumentando em complexidade e eficiência.

3.1.1 Placa plana

A inserção de uma placa plana na linha central da esteira, conhecida na literatura como
splitter plate, impede a comunicação destas camadas cisalhantes, atrasando a formação
e o desprendimento dos vórtices à jusante. Os supressores desta família (placas com
comprimentos distintos) atuam exatamente desta forma, interferindo com a comunicação
das camadas cisalhantes e alterando a região de formação de vórtices próxima da região
de base do cilindro. A figura 10 apresenta os campos de velocidade e vorticidade obtidos
com PIV do escoamento ao redor de um cilindro com placa plana pivotante. Nas imagens,
verifica-se que a placa impede que a camada cisalhante de um lado interaja com a camada
do outro, eliminando a formação de vórtices próxima do cilindro.

Contudo, neste mecanismo, algumas geometrias são mais eficientes que outras em
mitigar a formação de vórtices alternados e reduzir o arrasto no corpo. Placas de diferentes
comprimentos também podem permitir que o conjunto formado pelo corpo e o supressor
apresente instabilidades fluidoelásticas. A eficiência da supressão bem como a estabilidade
do supressor estão diretamente associadas ao comprimento da placa e à sua liberdade para
rotacionar livremente ao redor do cilindro.

Numa série de experimentos com modelos montados em base elástica com dois graus
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de liberdade (Assi et al., 2009) verificamos que o atrito rotacional entre o supressor e o
cilindro era um parâmetro fundamental para a dinâmica do sistema. Havendo pouco atrito
rotacional, a placa plana não encontra uma posição de equilíbrio, mas oscila de um lado
para o outro da esteira, amplificando a vibração do cilindro. Havendo muito atrito, a placa
não consegue rotacionar livremente e trava numa posição ao redor do cilindro, induzindo
instabilidades fluidoelásticas do tipo galloping. Este resultado foi surpreendente e deixou
claro como o amortecimento rotacional, vindo do atrito entre o supressor e o cilindro,
governa a estabilidade do sistema. A figura 10 também revela que a posição de equilíbrio
da placa plana não é alinhada com o escoamento incidente, mas pende para um dos lados
até que a camada cisalhante separada do cilindro se recole na extremidade da placa.

Analisando a reposta dinâmica de um cilindro equipado com supressor pivotante de
placa plana, verificamos que supressores desta natureza têm grande eficácia na supressão
de VIV com redução do arrasto médio. Percebemos que a compreensão destes mecanismos
fundamentais, ainda que em condições idealizadas de laboratório, é fundamental para o
desenvolvimento de supressores mais eficientes e não vulneráveis aos problemas de insta-
bilidade fluidoelásticas. Contudo, como será discutido adiante, um supressor com uma
única placa plana gera uma indesejável força de sustentação para o lado em que a placa
se deflete. Este efeito ocorre para supressores longos e curtos, com variações dependendo
do comprimento e arranjo geométrico do supressor.

3.1.2 Fairings

Fairings são supressores pivotantes projetados com a intenção de “afilar” a geometria do
corpo rombudo numa tentativa de manter o escoamento aderido ao longo da sua superfície.
No extremo, o fairing ideal transformaria a geometria de um cilindro em um fólio de
corda longa. Contudo, restrições de fabricação e nas condições de operação não permitem
que os fairings sejam demasiadamente longos. Assim surgiram os fairings curtos, com
comprimento da ordem do diâmetro do cilindro, também instalados de maneira a se
orientarem livremente com a direção do escoamento incidente (Allen e Henning, 1995).
Porém, fairings curtos não cumprem seu papel de “afilar” o escoamento ao redor do corpo,
mas convivem com grandes porções de bolhas de recirculação e escoamento separado. Não
são, portanto, “fairings” no sentido estrito do termo, mas apenas dispositivos que de fato
interferem na interação entre as camadas cisalhantes após o escoamento ter se separado.

Através de experimentos com modelos reduzidos (Assi et al., 2009), demonstramos que
fairings curtos funcionam pelo mesmo mecanismo que as placas planas. Verificamos que
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Figura 11: Supressores pivotantes curtos (placa plana e fairing) e sua interação com as
camadas cisalhantes livres quando na posição de equilíbrio. Reproduzido de Assi et al.
(2014b).

não há diferença qualitativa entre o comportamento de um fairing e uma placa plana de
dimensões semelhantes e que, em alguns casos, as placas planas podem ser mais eficientes
em relação ao arrasto gerado, além de serem de mais simples construção.

De modo semelhante, os fairings e as placas planas apresentaram a mesma tendência
à instabilidade dependendo do atrito rotacional presente nos sistemas. Ou seja, os fairings

também requerem um mínimo de atrito rotacional para se estabilizarem. De igual modo,
se um fairing travar ao redor do cilindro, também induzirá galloping assim como a placa
plana. A figura 11 ilustra a dinâmica da esteira ao redor de um fairing curto e de uma
placa plana travados ao redor do cilindro durante uma resposta de galloping.

Por fim, um comportamento interessante e contraintuitivo descoberto durante esta
campanha experimental está relacionado com a posição estável encontrada pelo supres-
sor pivotante em relação ao escoamento incidente. Inicialmente imaginava-se que tanto
uma placa plana quanto um fairing se alinhassem com a direção do escoamento incidente,
ocupando a posição central na esteira e mantendo o escoamento simétrico. Contudo, ve-
rificamos que sistemas desta natureza se estabilizam numa posição de equilíbrio inclinada
em relação ao escoamento, pendendo aleatoriamente para um dos lados do cilindro e bus-
cando a região onde a camada cisalhante separada do cilindro se recole na extremidade da
placa. A posição estável depende do comprimento da placa ou do fairing. Nesta posição
há supressão de VIV. Mas, como consequência, o escoamento assimétrico produz uma
força de sustentação que aponta para o lado do cilindro em que a placa se estabilizou.

Após a comprovação experimental deste comportamento, recebemos depoimentos de
operadores de campo relatando observações de que seus fairings de fato não se alinhavam
com o escoamento, mas pendiam para um dos lados do riser. Tal comportamento nos levou
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Figura 12: Família de supressores pivotantes: (a) placa plana, (b) placas inclinadas, (c)
placas paralelas, (d) placas paralelas com espaçamento. Reproduzido de Assi et al. (2009).

a investigar arranjos de supressores que mantivessem a simetria do escoamento e ainda
encontrassem posição estável para promover a supressão da vibração. Assim chegamos
nos supressores pivotantes com duas placas inclinadas e paralelas, apresentados a seguir.

3.1.3 Placas inclinadas

Adicionamos uma segunda placa plana, oposta à primeira em relação à linha de centro da
esteira, com a intenção de se eliminar a força de sustentação permanente que se origina
quando uma única placa plana quebra a simetria do escoamento, pendendo e estabilizando-
se em um dos lados do cilindro. Assim, conforme ilustrado na figura 12, passamos do
modelo com uma single splitter plate para o modelo com double splitter plates. O ângulo
entre as duas placas foi ajustado de modo que ambas estivessem próximas da posição
estável identificada pelo sistema no experimento anterior. As duas placas eram solidárias,
livres para se moverem em conjunto ao redor do cilindro mantendo o ângulo de 40 graus
entre elas.

Como resultado, o sistema permaneceu estável e suprimiu completamente VIV. A
simetria do escoamento foi recuperada e a força de sustentação média foi eliminada. Con-
sequentemente, a força de arrasto média também foi reduzida em relação ao sistema com
uma única placa plana. Este supressor com duas placas inclinadas também apresentou
um comportamento dinâmico que dependia do atrito rotacional. Novamente, havendo
pouco atrito, o conjunto de placas não encontrava posição estável capaz de suprimir VIV,
mas induzia o conjunto a entrar em instabilidade fluidoelástica de grande amplitude.

Através de visualização do escoamento, verificamos que havia separação e recircula-
ção do escoamento numa bolha entre o cilindro e o lado externo das placas inclinadas.
Certamente esta recirculação resultava em perda de energia cinética, contribuindo para a
força de arrasto no sistema.
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3.1.4 Placas paralelas

Assim, demos mais um passo na evolução do arranjo alterando a inclinação das double

splitter plates para criar duas placas paralelas (parallel plates) que se alinhavam com
o escoamento incidente no diâmetro do cilindro (figura 12). De fato, verificamos uma
redução considerável no arrasto médio sobre o sistema, uma vez que a bolha de recirculação
foi eliminada e o escoamento fluía aderido ao cilindro e ao longo das placas paralelas. O
conjunto mostrou-se estável e capaz de suprimir VIV com grande eficiência. Novamente,
foi necessário fornecer atrito mínimo para que o sistema encontrasse posição estável, mas
sem travar a rotação evitando o surgimento de galloping. Este foi o supressor de placas
planas pivotante de maior eficiência tanto em mitigação de VIV quanto em redução de
arrasto.

Mais uma vez as visualizações do escoamento e medições com PIV mostraram que a
região de base do cilindro (região à jusante do cilindro localizada entre as placas paralelas)
se caracterizava por uma região de escoamento estagnado. Este fenômeno contribui para
o arrasto de pressão, oriundo da diferença de pressão entre a frente e a base de um corpo
rombudo. Numa tentativa de reduzir este efeito, partimos para uma nova configuração
de placas paralelas, agora com um espaçamento entre o bordo frontal das placas e a
parede do cilindro, resultando nas parallel plates with gap da figura 12 e com variação de
comprimento (figura 13).

A intenção desta modificação era que o escoamento incidente injetasse quantidade de
movimento na região de base pelo espaço aberto na lateral do cilindro. Este fluxo entre as
placas, ainda confinado e controlado pela presença delas, diminuiria a diferença de pressão,
reduzindo o arrasto total. Contudo, o que se verificou foi a criação de um sistema mais
instável, com grande dificuldade de se manter alinhado com o escoamento incidente e
suprimir VIV. De fato, houve redução do arrasto, mas a perda de estabilidade foi um
ponto negativo em se tratando de supressores pivotantes. Talvez esta modificação tenha
valor para reduzir o arrasto de corpos rombudos fixos em que a direção do escoamento
não varie (por exemplo, no suporte cilíndrico do trem de pouso de uma aeronave).

Para tentar estabilizar este último tipo de supressor pivotante, ainda em busca de um
sistema com menor geração de arrasto, investigamos variações nos parâmetros geométri-
cos das duas placas, produzindo placas oblíquas com espaçamento lateral da parede do
cilindro.
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Figura 13: Variações geométricas de comprimento (L), separação (G) e ângulo (↵) dos
supressores de placas oblíquas. Reproduzido de Assi et al. (2014c).

3.1.5 Placas oblíquas

A figura 13 apresenta geometrias de supressores pivotantes formados por placas oblíquas
empregados nos testes realizados por Assi et al. (2014c). Verificamos que o sistema pode
apresentar instabilidades dependendo dos parâmetros geométricos de comprimento (L),
separação (G) e ângulo de ataque das placas (↵). Contudo, se estas relações geométri-
cas forem ajustadas adequadamente, o sistema suprime VIV com excelente eficiência na
redução de arrasto em relação a um cilindro liso.

Variações desta família de supressores de placas oblíquas podem envolver a adição de
mais placas com a intenção de se controlar o escoamento separado e reduzir a intensidade
dos vórtices gerados na esteira. Este efeito foi verificado nas simulações numéricas exem-
plificadas na figura 14, onde se verifica uma atenuação na esteira de vórtices à jusante
dos corpos cilíndricos. De fato, a separação das placas da parede do cilindro permite
que parte do escoamento incidente alimente a região de base do cilindro (entre as placas)
com quantidade de movimento. Entretanto, outras regiões de escoamento separado apa-
recem ao redor das oblíquas, aumentando a largura da esteira e intensidade dos vórtices,
especialmente para ângulos ↵ grandes.
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Figura 14: Campos de velocidade e vorticidade ao redor de supressores de placas oblíquas
obtidos de simulações numéricas do escoamento. Reproduzido de Assi et al. (2014c).
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O projeto conceitual de supressores desta natureza não é trivial. No limite, uma cas-
cata de placas e aletas cada vez menores seria necessária para controlar todo o escoamento
separado ao redor de cada elemento do conjunto. Como resultado, a geometria convergiria
para aquela de um corpo afilado, próxima da geometria de um fólio.

3.2 Supressores de WIV de placas pivotantes

Como vimos anteriormente, variações geométricas de placas planas podem constituir su-
pressores pivotantes com grande eficácia na mitigação de VIV (vortex-induced vibration) e
boa eficiência na redução de arrasto. Contudo, muitos sistemas dinâmicos, como os risers

de produção offshore, não operam isoladamente, mas são instalados em conjunto com ou-
tras estruturas adjacentes. Como destacado no capítulo 2, a interferência hidrodinâmica
entre corpos rombudos imersos no mesmo escoamento pode causar vibrações induzidas
pela esteira, denominadas WIV (wake-induced vibration).

A presença de uma esteira de vórtices desenvolvida de outro corpo rombudo à mon-
tante pode reduzir a eficiência dos supressores instalados num segundo corpo à jusante,
especialmente quando os dois corpos estão alinhados com a direção do escoamento. Em
se tratando de supressores pivotantes, que dependem de uma posição de equilíbrio estável
para mitigar a formação dos vórtices, WIV se apresenta como um problema ainda maior:
os vórtices vindos da esteira à montante podem facilmente desestabilizar o supressor,
induzindo vibrações de grande amplitude no cilindro à jusante.

Os campos de velocidade e vorticidade obtidos por PIV e apresentados na figura 15
mostram que a placa plana pivotante está vulnerável às perturbações produzidas pelos
vórtices vindos da esteira à montante. Por conta das flutuações de pressão na esteira, a
placa não se estabiliza e não consegue suprimir a resposta de WIV do segundo cilindro.
O supressor de placas paralelas tem melhor desempenho, já que não requer uma posição
de equilíbrio deslocada para mitigar a formação dos vórtices, mas, mesmo assim pode
apresentar instabilidades de acordo com as condições do escoamento.

Para verificar a eficácia de supressores pivotantes de placas planas em mitigar WIV,
realizamos experimentos com modelos em escala reduzida com agrupamentos de cilindros
equipados com supressores de placas planas e paralelas (o mais simples e o mais eficiente
dos supressores mencionados anteriormente). A figura 16 apresenta as três configurações
investigadas em que ora o cilindro à montante, ora o cilindro à jusante ou ambos estavam
equipados com supressores de placas paralelas.
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experience an amplification or reduction of the steady lift force. A positive energy transfer from the flow to the structure
may occur if the deflection of the splitter plate is able to alter the resultant force so that a favourable phase lag exists
between the displacement of the cylinder and lift.
Both unsteady and quasi-steady explanations given above could produce enough excitation to sustain the vibrations.

All that is required is that the relative motion between the f-t-r plate and the cylinder favours the WIV mechanism. This
was certainly the case in our experiments, as the response curve shows, since a f-t-r splitter plate developed flapping
motion under vortex interaction with the upstream wake. We suggest that devices requiring an asymmetric stable
deflection position will not be effective in suppressing WIV. The parallel plates are successful because they do not
depend in a deflected position to interact with the shear layers nor do they generate a destabilising lift force.

6. Conclusion

At the outset, parallel plates or any other device from this family of suppressors needs to be omni-directional in order
to be employed in practical offshore application. Hence f-t-r plates were considered as project requirement. In the case
of single splitter plates, this led to the discovery that a deflection angle was necessary for effective VIV suppression,

Fig. 8. Instantaneous vorticity contours (a) and velocity vectors (b) for a f-t-r splitter plate under WIV at U/Df0=6.0. PIV
measurements at Re=4500; x0/D=4.0. (c) Sketch of possible competition between components of lift generated by wake interaction
with a f-t-r splitter plate under WIV.

G.R.S. Assi et al. / Journal of Fluids and Structures 26 (2010) 1045–1057 1055

Figura 15: Instabilidade da placa plana pivotante instalada no cilindro à jusante de um
par sob WIV. Campos de vorticidade e velocidade obtidos com PIV. Reproduzido de Assi
et al. (2010a).
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oscillate. We observed that the presence of the downstream cylinder at x0/D=4.0 did not interfere with the response of
the upstream cylinder, i.e., when the second cylinder was positioned downstream of the cylinder mounted with the
suppressor the latter remained motionless in a stable condition confirming the effectiveness of the suppressor in that
configuration. This was important to validate our hypothesis that an upstream cylinder fitted with f-t-r parallel plates
would behave as a static cylinder due to the effectiveness of the suppressor, at least for x0=DZ4:0. This being true, we
could replace the upstream cylinder by a fixed cylinder fitted with fixed parallel plates and concentrate our attention on
the response of the downstream cylinder.

4.2. WIV response of the downstream cylinder

Results are presented in Fig. 6. The first set shows the response for a plain downstream cylinder when the upstream
cylinder is fitted with fixed plates (Config. I in Fig. 5). We know that WIV is related to the unsteady vortices from the
upstream cylinder and we believe the amplitude of vibration is directly related to the dynamics of the vortices that are
able to form in the gap between the cylinders (Assi, 2009). We also know that the parallel plates work by delaying the
interaction between the two shear layers, thus delaying the formation of vortices and weakening the wake in the gap
(Assi et al., 2009). (The fact that the drag on a single cylinder fitted with parallel plates is less than the drag on a plain
fixed cylinder indicates that the wake being generated is weaker.) Therefore, since the plates do not suppress the
formation of vortices from the first cylinder, but weaken them, the amplitude of vibration of the downstream cylinder is
expected to be less than that observed for a pair of plain cylinders under WIV. This is exactly what we see in Fig. 6. If
the upstream cylinder is the only one fitted with parallel plates (Config. I) the downstream cylinder still experiences
WIV, although with a reduced amplitude level.
Now, in Config. II (Fig. 5) the cylinder fitted with f-t-r plates is positioned downstream of a plain static cylinder and Fig. 6

presents a remarkable result. The WIV of the downstream cylinder was suppressed to levels around 10% of a diameter, the
same level of residual vibration measured for a single cylinder under VIV for reduced velocities after the synchronisation
region. This amplitude of vibration is considered to be low and we could say that the parallel plates have successfully
suppressed vibration to an acceptable level. We know that the upstream cylinder in Config. II is shedding vortices in a similar
way to an isolated cylinder (Assi et al., 2010); and hence, the wake coming from the upstream cylinder will be similar to that
found between two plain cylinders in a tandem arrangement. Therefore the parallel plates must be acting not only on the
vortex shedding mechanism of the downstream cylinder, but also on the vortex-structure interaction this body encounters
with the approaching flow. As a result, the vigorous type of WIV is suppressed.
The mass and damping parameters of the system play an important role and may reduce WIV for certain critical

values (Bokaian and Geoola, 1984; Zdravkovich and Medeiros, 1991). One might suggest that the presence of two long

Fig. 5. Configurations of downstream and upstream cylinders fitted with f-t-r parallel plates. Centre-to-centre separation is x0/D=4.0.
Cylinders marked with a cross are not free to oscillate.

G.R.S. Assi et al. / Journal of Fluids and Structures 26 (2010) 1045–1057 1051

Figura 16: Agrupamentos de cilindros alinhados com o escoamento e equipados com placas
paralelas pivotantes. Reproduzido de Assi et al. (2010a).

Concluímos que a esteira do cilindro à montante tem efeito de fato sobre a eficiência
do supressor instalado no cilindro à jusante. As respostas dinâmicas indicaram ser fun-
damental que o cilindro à jusante, aquele imerso na esteira desenvolvida, esteja equipado
com o supressor. Houve queda na eficiência de supressão, mas, oferecido atrito rotacional
favorável à estabilização do supressor pivotante, o sistema foi capaz de suprimir WIV.
Como esperado, verificou-se melhor desempenho do conjunto quando os dois cilindros
estavam equipados com supressores de placas paralelas.

3.3 Galloping de placas planas

Outro fenômeno fluidoelástico interessante observado ao longo de vários experimentos
com supressores pivotantes foi o desenvolvimento de instabilidades de galloping (Assi e
Bearman, 2015). Como destacado no capítulo 2, galloping clássico pode acontecer com
corpos rombudos não axissimétricos quando as condições dinâmicas do movimento e do
escoamento produzem força de excitação com a característica de amortecimento negativo,
em outras palavras, força em fase com a velocidade do corpo.

Quando um supressor pivotante, uma placa plana, por exemplo, tem atrito rotacional
excessivo ou se trava ao redor do cilindro, sua posição em relação escoamento incidente
pode produzir condições favoráveis ao galloping. Observamos este fenômeno acontecendo
com diversos dos supressores pivotantes mencionados acima, mesmo nos mais simples for-
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Figura 17: Variações de placas planas: (a) curta, (b) longa, (c) com rasgos; e sua interação
com as camadas cisalhantes durante galloping. Reproduzido de Assi e Bearman (2015).

mados por placas planas (splitter plates). Realizamos, então, uma campanha de experi-
mentos com cilindros equipados com placas planas não pivotantes (travadas) e alinhadas
com a direção do escoamento incidente. Variamos o comprimento e a porosidade das
placas com a finalidade de permitir alguma interação hidrodinâmica entre as camadas
cisalhantes, como visto na figura 17. Também realizamos experimentos semelhantes com
fairings curtos travados ao redor do cilindro. Como resultado, verificamos que todos os
sistemas não pivotantes, tanto placas planas quanto fairings, desenvolveram instabilidade
de galloping com grandes amplitudes de vibração.

A figura 18 (topo) apresenta os campos de velocidade e vorticidade característicos da
resposta de galloping de um cilindro com as diversas placas planas travadas, evidenciando
o recolamento do escoamento separado no supressor causando a força de sustentação em
fase com a velocidade transversal do corpo. Detalhes do campo de vorticidade obtidos
para um cilindro com fairing também indicam o mesmo comportamento para um supressor
curto. Enquanto a resposta de galloping pode ser benéfica se a intenção for a concepção de
um sistema para a extração de energia, ela certamente não é quando se pretende reduzir
vibrações induzidas pelo escoamento em sistemas offshore.
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(a)

(b)

Figura 18: (a) Campo de vorticidades para galloping de placas planas. (b) Evolução
temporal da esteira durante galloping de placa plana. Reproduzido de Assi e Bearman
(2015).
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3.4 Supressores de cilindrinhos de controle rotativos

Outra família distinta de supressores que atuam na bidimensionalidade do mecanismo
físico da formação e desprendimento de vórtices é formada por cilindrinhos rotativos que
interferem com o escoamento nas regiões próximas à parede do cilindro principal. É sabido
que a injeção de quantidade de movimento angular na camada limite atrasa a separação do
escoamento por aumentar sua resistência ao gradiente adverso de pressão. Esta técnica,
denominada moving surface boundary layer control, foi originalmente desenvolvida para
aplicações em corpos afilados, instalando-se pequenos elementos rotativos embutidos na
superfície de asas e perfis aerodinâmicos (ver referências em Modi, 1997; Korkischko e
Meneghini, 2012).

O controle do escoamento separado em corpos rombudos é mais complexo que em
corpos afilados devido ao efeito do elevado gradiente adverso de pressão sobre a camada
limite e regiões de recirculação. Experimentos e simulações numéricas com cilindros de-
monstraram que a atuação de cilindrinhos rotativos em regiões especificas ao redor do
corpo rombudo pode evitar a separação ou até mesmo favorecer o recolamento do esco-
amento já separado. Supressores deste tipo requerem energia para que os cilindrinhos
rotativos operem. Consequentemente, são sistemas ativos que não encontram aplicação
na supressão de vibrações induzidas pelo escoamento em pequenas estruturas ou em cor-
pos flexíveis, com os risers. Por outro lado, sistemas desta natureza podem encontrar
aplicação para a supressão de vibrações do tipo VIM (vortex-induced motion) em grandes
sistemas flutuantes, como plataformas do tipo spar ou monocoluna (figura 1). Grandes
sistemas offshore deste tipo têm energia a bordo para fornecer rotação aos cilindrinhos
ativos.

Novamente, nossa investigação desta família de supressores se iniciou com estudos
fundamentais com modelos em escala reduzida e simulações numéricas do escoamento
com a finalidade de se compreender os mecanismos hidrodinâmicos e fluidoelásticas que
governam o fenômeno. Iniciamos com um cilindro equipado com agrupamentos de ci-
lindrinhos de controle igualmente distribuídos ao redor. Os parâmetros da investigação
envolviam variações geométricas do sistema, considerando o número de cilindrinhos de
controle, seu diâmetro, sua separação da parede do cilindro principal, além da velocidade
de rotação destes atuadores. A figura 19 ilustra uma das configurações com 8 cilindrinhos
de controle rotativos posicionados ao redor do cilindro maior.

Os experimentos foram realizados no canal de água recirculante com o conjunto mon-
tado em base elástica com um grau de liberdade. As configurações em que os cilindros de
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Fig. 1. Geometrical parameters for the main cylinder with eight control cylinders (figure not drawn to scale).

Fig. 2. Cross view of the experimental setup: elastic rig mounted on the test section.

2. Experimental setup

Experiments have been carried out in the CirculatingWater Channel of NDF (Fluids and Dynamics Research Group) at the
University of São Paulo, Brazil. The water channel has an open test section (0.7 m⇥ 0.9 m⇥ 7.5 m) and good quality flow
can be achieved up to 1 m/s with turbulence intensity of less than 3%.

A rigid section of a smooth circular cylinder was made of an acrylic tube of external diameter D = 100 mm. Two sets
of 8 control cylinders with diameter d were made of acrylic rods and supported by rings attached to the ends of the main
cylinder. Their distribution about the main cylinder is presented in Fig. 1, in which the arrow indicates the direction of the
incoming flow with velocity U . The axes of the control cylinders were parallel to the axis of the main cylinder, spanning the
whole length of the model (immersed length of 700 mm). The diameter of the control cylinders was varied in two steps of
d/D = 0.06 and 0.08, while the gap measured between the wall of the control cylinders and the wall of the main cylinder
was set to G/D = 0.1 in this study (based on the best results obtained by Silva-Ortega and Assi (2017)).

The top of the control cylinders was connected to a pulley system driven by an electric servo motor. All eight cylinders
rotated at the same speed ratioUc/U , whereUc is the tangential velocity on thewall of the control cylinders. As seen in Fig. 1,
control cylinders at the top (starboard) rotated in the clockwise direction, while cylinders at the bottom (port) rotated in the
opposite direction.

Models weremounted on a load cell attached to a sliding frame supported by air bearings, as shown in Fig. 2. A pair of coil
springs provided the restoration force to the system, which was free to oscillate only in the cross-flow direction. An optical
sensor measured the displacement (y) of the cylinder, providing that structural mass and damping were kept to aminimum.
The product between themass ratio (m⇤, calculated as the ratio between the total oscillating mass and themass of displaced
water) and the damping ratio (⇣ , measured as a percentage of the critical damping) wasm⇤⇣ = 0.066. The natural frequency
of the system (f0) as well as the damping ratio were determined during decay tests performed in air.

The only flow variable changed during the course of the experiments was the flow velocity, which altered the Reynolds
number between 5000 and 50,000 (Re = UD/⌫, where ⌫ is the kinematic viscosity of water) and the reduced velocity

Figura 19: Cilindro equipado com supressor de 8 cilindrinhos rotativos ao redor. Repro-
duzido de Silva-Ortega e Assi (2017a).M. Silva-Ortega, G.R.S. Assi / Journal of Fluids and Structures 74 (2017) 401–412 405

Fig. 3. Peak amplitude of response varying Uc/U at UR = 4.2 and Re = 10,500.

3.2. 2nd series: VIV response for Uc/U = 2 , 2.5 and 3

A preliminary experiment with a bare cylinder (without surrounding control cylinders) has been performed to validade
the setup and generate the reference data for comparison. Fig. 4 shows the reference case obtained for reduced velocities
up to 20. The results of VIV amplitude of displacement, frequency of oscillation, mean drag coefficient and fluctuating lift
coefficient obtained for the bare cylinder are in good agreement with other experimental results collected by Williamson
and Govardhan (2004), Norberg (2003) and Assi et al. (2013), who also employed the same apparatus. The reference results
for a cylinder with 8 non-rotating control cylinders (Uc/U = 0) have been extracted from Silva-Ortega and Assi (2017).

Fig. 4 shows the amplitude of displacement (ŷ/D), frequency of oscillation (f /f0), mean drag coefficient (CD) and RMS
of lift coefficient (ĈL) for the case with d/D = 0.08 with varying Uc/U versus reduced velocity. The response curve for the
bare cylinder is in clear contrast with the curves of the rotating cylinders (Fig. 4(a)). In general, all rotation speeds managed
to reduce the amplitude of VIV in the initial, upper and lower branches (as defined by Williamson and Govardhan (2004)).
At UR = 4.2, the peak responses match those presented in Fig. 3. (Please note that the data points do not cover the whole
range of UR up to 20. Since the actual rotation speed (Uc) of the control cylinders was increasing wth UR, the motor reached
it maximum rotation speed limiting the experiment to UR ⇡ 12.)

The case with Uc/U = 2.5 presented the lowest response for the widest range of UR, but the other two neighboring cases
also showed similar responses. The striking result, however, came out when the responses were compared with that for 8
non-rotating cylinders: A cylinder surrounded by 8 non-rotating cylinders (Uc/U = 0) appeared to offer considerably better
suppression than the cases with rotating cylinders. For the whole range of UR, the case with non-rotating cylinders rarely
passed ŷ/D = 0.1, while the rotating cylinders reached ŷ/D ⇡ 0.25 during the synchronization range. The non-rotating
wake-control cylinders appear to be more efficient in suppressing VIV, at least for this set of parameters.

The frequency of response presented in Fig. 4(b) clearly shows that the bare cylinder and the cylinder with rotating
cylinders all follow the expected behavior for VIV. The data points representing the dominant f /f0 follow closely the
St = 0.2 line (the inclined line representing the typical Strouhal number for a circular cylinder). The dominant frequency
for Uc/U = 0, on the other hand, shows that the system only oscillated at very low frequencies, associated with slow drifts
at small displacements.

As a consequence of the VIV suppression, CD presented in Fig. 4(c) shows considerably low values for the case with
Uc/U = 0. When the control cylinders are rotating, mean drag is increased above the value found for the bare cylinder,
considerably higher than the mean drag for the case with non-rotating cylinders. Fig. 4(d) also reveals that the rotating
cylinders generate more lift driving the excitation, when compared with the results for the non-rotating cylinders.

The same experiment was repeated for smaller control cylinders with d/D = 0.06, as seen in Fig. 5. Again, the cases with
rotating cylinders showed a considerable reduction of response when compared with that of the bare cylinder. Maximum
response for the case with Uc/U = 2.5 reached ŷ/⇡ 0.25 during the synchronization range. The frequency response, as well
as the curves of CD and ĈL, show a similar behavior.

The unexpected response now appeared for the case with non-rotating control cylinders. Instead of suppressing VIV for
the whole range of UR, the case with slightly smaller control cylinders (d/D = 0.06) presented a peak response of ŷ/D ⇡ 0.5
at the resonance. This is worse than the displacement measured for the cases with rotating cylinders. In fact, it appears that
the VIVmechanism could not be suppressed as before, but only restricted to a shorter range ofUR. Fig. 5(b) shows a dominant
frequency signature over the Strouhal line, indicating that the fundamentalmechanisms are not different fromVIV. In spite of
reducing the peak amplitude of vibration, the rotating cylinders still presented CD higher than that of non-rotating cylinders
for the whole UR range; for most of the time it was also higher than that of a bare cylinder.

Figura 20: Resposta dinâmica de VIV suprimido com cilindrinhos rotativos. Reproduzido
de Silva-Ortega e Assi (2017b).

controle não estavam rotacionando serviram de referência para a análise dos resultados.
Destaca-se que apenas a presença dos cilindrinhos estáticos ao redor do cilindro principal
foi suficiente para provocar alterações significativas no carregamento hidrodinâmico e na
resposta dinâmica de VIV do sistema. Este efeito de interferência havia sido identificado
por Zdravkovich (1981), quando instalou uma série de interfering rods ao redor de ci-
lindros estáticos em túnel de vento. Na investigação de Silva-Ortega e Assi (2017b), o
principal parâmetro de controle foi a rotação do conjunto de cilindrinhos, cuja velocidade
tangencial era expressa em função da velocidade do escoamento incidente. Os melhores
resultados foram obtidos com o arranjo de 8 cilindrinhos de controle. Dependendo da
velocidade de rotação, o arrasto gerado no conjunto pôde ser reduzido para zero e, em
alguns casos, atingiu valores negativos (na forma de propulsão). Este efeito levantou a hi-
pótese de que a rotação dos cilindrinhos poderia ser utilizada para produzir força útil para
movimentar o sistema como, por exemplo, numa operação de posicionamento dinâmico
de uma plataforma oceânica.
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Fig. 8. Instantaneous vorticity contours (s�1): d/D = 0.05, G/D = 0.1 and Re = 100.
Source: Reproduced from Silva-Ortega et al. (2014a).

Fig. 9. Detail of the streamlines around the rotating control cylinders of Fig. 8(b). Flow is from left to right; colored by velocity magnitude (m/s). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Reproduced from Silva-Ortega et al. (2014a).

0.25 and 0.5, it might be better to stick to the non-rotating cylinders as far as drag is concerned. Now if vibration is to be
reduced at any drag cost, say to avoid fatigue damage or dynamic loads, then the rotating cylinders could be considered as
an option. In a floating offshore platform with a bluff-body hull (a mono-column or a spar platform, for example), it might
be desirable to mitigate vibration and the dynamic loads associated with it even if the mooring lines are to be loaded with
extra drag.

If the main cylinder were a static body, the rotation of the control cylinders could help to suppress the wake and reduce
loads due to vortex shedding, as shown by Silva-Ortega (2015). But rotating cylinders may not produce the expected result
of VIV suppression with drag reduction if the cylinder is free to respond to the flow (this is true for this range of Re). Again,
this is proof that if a device appears to reduce hydrodynamic loads on a static body it does not necessary mean that it will
make a good VIV suppressor, especially if the system presents lowmass and damping. It might be the case that for a system
with higherm⇤⇣ , a suppressor with 8 rotating cylinders could present a qualitatively different response.

Of course there are infinite possibilities to arrange and drive the rotating control cylinders around the main cylinder. The
present work was never intended to find an optimal solution to the problem, but simply to probe a finite parametric space.
For a serious optimization study this space is so vast that a robust optimization method must be considered to tackle the
problem, especially if each of the control cylinders had an independent Uc . So many possibilities make it a very exciting,
non-linear optimization problem for future investigations.

The most interesting question about the hydrodynamic mechanisms caused by the 8 control cylinders remains unan-
swered. Some light has been shed from numerical simulations of the flow performed by Silva-Ortega et al. (2014a). Fig. 8
compares the results of two-dimensional numerical simulations of the flow around static cylinders with 8 rotating control
cylinders with Uc/U = 0 and 1.5 at Re = 100. Even though Re was significantly lower, it was possible to notice that the
rotating control cylinders not only producedweaker vortices, but a narrowerwakewith an almost doubled vortex-formation
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this is proof that if a device appears to reduce hydrodynamic loads on a static body it does not necessary mean that it will
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Figura 21: Campo de vorticidade para um sistema com 8 cilindrinhos de controle rotativos
em função da velocidade de rotação. Reproduzido de Silva-Ortega e Assi (2017b).

Em se tratando da supressão de VIV, os cilindrinhos rotativos se mostraram uma
solução interessante, capaz de reduzir a amplitude de vibração com significativa redução
do arrasto no sistema, obviamente às custas do consumo de energia para sustentar os
elementos ativos em rotação. A figura 20 apresenta a redução na amplitude máxima
transversal ([ŷ/D]peak]) de VIV do sistema em função da rotação dos cilindrinhos de
controle (Uc/U) para um arranjo com 8 atuadores rotativos ao redor. Uma vantagem
deste sistema está na sua omnidirecionalidade, podendo atuar qualquer que seja a direção
do escoamento incidente, bastando-se alterar a rotação dos cilindrinhos.

Simulações numéricas do escoamento foram fundamentais para elucidar os comple-
xos mecanismos físicos presentes na escala da camada limite, na região da separação e
na maior escala da esteira próxima. A figura 21 apresenta o campo de vorticidade do
escoamento ao redor de um cilindro com 8 cilindrinhos de controle em duas condições de
rotação: parados e girando com velocidade tangencial 1,5 vezes maior que a velocidade do
escoamento incidente. No segundo caso, verifica-se uma atenuação da esteira de vórtices,
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ainda remanescente, à jusante do cilindro. Um detalhe do campo de velocidades próximo
dos cilindrinhos de controle ilustra a interação destes elementos com a camada limite do
cilindro principal.

As ilustrações dos campos de velocidade e vorticidade apresentadas na figura 22 evi-
denciam o efeito do aumento da rotação dos cilindrinhos de controle esteira. À medida
que a rotação aumenta, o supressor é capaz de eliminar a emissão de vórtices e estabilizar
a esteira do cilindro principal, quase recuperando uma condição que remete ao escoamento
potencial ao redor de um cilindro. Como consequência, há grande redução no arrasto.

Esta linha de pesquisa com cilindrinhos de controle rotativos está em pleno desen-
volvimento tanto na abordagem numérica quanto na experimental. Trabalhos atuais,
desenvolvidos por alunos orientados no grupo de pesquisa, se dedicam à otimização do
sistema através da rotação independente de cada cilindrinho, a fim de reduzir o consumo
de energia, mitigar VIV e gerar forças úteis para o controle do posicionamento dinâmico
do sistema. Esperamos que esta tecnologia possa ser aplicada no controle de grandes
sistemas oceânicos, cada vez mais demandados para a exploração offshore.

— — —

Outras famílias de supressores bidimensionais foram investigadas ao longo da última
década de pesquisa. Porém, escolhemos destacar neste texto aquelas que produziram
resultados mais interessantes do ponto de vista dos mecanismos físicos.
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Fig. 6. Instantaneous vorticity contours (left column) and corresponding streamlines (right column) of the flow around a cylinder with 8 rotating
control cylinders (Uc/U = 0 to 6). Coloured by vorticity and velocity magnitude, respectively.

we shall consider the absolute value of lift. Fig. 7(b) presents lift also divided in two terms: for the main cylinder alone
and for the absolute portion acting on the control cylinders (therefore |CL|).

20 G.R.S. Assi, R.M. Orselli and M. Silva-Ortega / Journal of Fluids and Structures 89 (2019) 13–24

Fig. 6. (continued).

As expected, the main cylinder alone presented CL ⇡ 0 due to the symmetry of the flow. (Any difference from zero
was due to not having an integer number of cycles while taking the average of the time series.) The control cylinders,
on the other hand, appeared to sum up a rather high value of |CL|, which increased continuously with Uc/U . The four
control cylinders on the top side of the main cylinder produced a net lift pushing upwards; the four control cylinders
on the bottom side produce a net lift of the same magnitude pushing downwards. For this reason, |CL| is presented in
Fig. 7(b) as referring to the mean value of the cylinders on each side of the main body. If both terms were to be added,
the net lift on the top side would cancel out the net lift on the bottom side, hence the total lift experienced by the whole
system would also be CL ⇡ 0, as seen in Fig. 7(b).

It was shown that the 8 wake-control cylinders were indeed experiencing a considerable amount of fluid forces, either
to generate negative drag or to generate lift pointing away from the centreline of the wake. A control strategy could take
advantage of this net lift by rotating only the control cylinders on one side of the body, for example, to produce lift to
maneuver the system. More advanced control strategies could consider the independent rotation of the control cylinders

Figura 22: Evolução do controle da esteira com 8 cilindrinhos rotativos em função da
velocidade de rotação. Reproduzido de Assi et al. (2019).
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4 SUPRESSORES TRIDIMENSIONAIS

“Life is tough... and then you graduate.”

-- Mike Slackenerny (PhD comics by Jorge Cham)

O fenômeno de formação e desprendimento de vórtices é rico em estruturas tridimensio-
nais no escoamento. Como detalhado na abrangente revisão de Williamson e Govardhan
(2004), a esteira já apresenta estruturas tridimensionais complexas para número de Rey-
nolds acima de 200 (baseado no diâmetro do cilindro). Todos os supressores apresentados
no capítulo 3 foram projetados para atenuar ou impedir o processo de comunicação entre
as camadas cisalhantes, que é predominantemente bidimensional (isto é, não depende da
posição ao longo da terceira dimensão que é o comprimento do cilindro). Contudo, uma
outra maneira de promover interferência na esteira de modo a mitigar a formação dos
vórtices é atuar justamente nas estruturas tridimensionais do escoamento.

A simulação numérica de Carmo et al. (2013), apresentada na figura 23, destaca a rica
interação entre tubos tridimensionais de vórtices ao redor de dois cilindros alinhados com
o escoamento incidente para Re = 400. A esteira de um cilindro isolado na mesma faixa
de número de Reynolds não é qualitativamente diferente. Portanto, projetar supressores
para VIV e WIV que se beneficiem dos efeitos tridimensionais da esteira para enfraque-
cer a correlação das forças hidrodinâmicas durante a emissão de vórtices pode produzir
resultados interessantes.

Com base neste princípio, investigamos três supressores que atuam na tridimensio-
nalidade do escoamento: strakes helicoidais, malhas permeáveis, e cilindros ondulados.
Recentemente iniciamos estudos com supressores biomiméticos, inspirados na geometria
tridimensional de cactos. Contudo, ainda não dispomos de resultados conclusivos para
acrescentá-los nesta resenha. A figura 24 ilustra alguns outros supressores tridimensionais,
todos baseados na modificação da geometria do cilindro ao longo do seu comprimento.
Dentre eles destacamos o strake helicoidal (a) e o cilindro ondulado (f). O grande desa-
fio no desenvolvimento de supressores desta natureza é produzir uma geometria passiva
que não perca sua eficiência quando o cilindro começa a oscilar. Normalmente, a osci-
lação transversal do corpo é capaz de aumentar a correlação do escoamento ao longo do
comprimento do cilindro o que, de certo modo, torna o escoamento mais bidimensional.
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cylinder. This weakening of the spanwise vortices seems to be the main responsible for the fact that the amplitudes
observed in the three-dimensional results are smaller than those observed in the two-dimensional results, for the same
Reynolds numbers. Besides that, it is interesting to highlight that the amplitude level obtained from the three-dimensional
calculations stays at roughly the same level, while experimental results for subcritical Reynolds numbers show growing
values with increasing Reynolds numbers (Assi, 2009). We suggest that this disparity of behaviours is due to fundamental
differences in the flow regimes. Once the wake is three-dimensional, an increase of Reynolds number causes two opposite
effects. The first is an increase of the vortex strength, due to an increase of the vorticity magnitude of the boundary layers
and consequently of the free shear layers. The second is the intensification of the three-dimensional character of the flow
and turbulence in the wake, which contributes for a faster diffusion of the spanwise vorticity. The work by Noca et al.
(1998) indicates that the second effect prevails over the first for Ret1500 and the first effect prevails over the second
for Re\1500. Since the forces on the downstream cylinder are directly linked to the strength of the vortices reaching
the body, it is expected that the amplitude will only grow if the strength of the vortices shed by the upstream cylinder
increases, i.e. if the Reynolds number is increased beyond the threshold Re! 1500.

As the structural parameters did not change from the two-dimensional simulations, we still expect that the amplitude
of response will be given by Eq. (6). In order to analyse the three-dimensional results using this equation, the spectra of the
downstream cylinder lift coefficient and displacement were plotted for a number of different Reynolds numbers in Fig. 12.
The graphs show that for all the cases the force is composed by diverse components, but the peaks at the shedding
frequency and its third harmonic are clearly dominant and more pronounced than in the two-dimensional results (Fig. 8).
It is important to note that the turbulent diffusion is higher in the three-dimensional simulations, because in these
calculations all the components of the Reynolds stresses, combining the three velocity components, are taken into account,
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Fig. 10. Downstream cylinder lift coefficient and displacement time series (a) and instantaneous vorticity contours at z=D¼ 7:5 (b); Re¼400, three-
dimensional simulations.

Fig. 11. Instantaneous iso-surfaces of spanwise vorticity (translucent surfaces) and streamwise vorticity (solid surfaces) for Re¼ 400, three-dimensional
simulation. Solid light grey and dark grey surfaces represent iso-surfaces of negative and positive ox , respectively.
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Figura 23: Estruturas tridimensionais no escoamento ao redor de dois cilindros alinhados.
Reproduzido de Carmo et al. (2013).
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Fig. 1. Cylinders with three-dimensional surfaces: (a) straight cylinder with helical strakes, (b) sinuous cylinder, (c) cylinder with bumps, (d) cylinder with
rings, (e) linear-wave cylinder, (f) sine-wave cylinder, (g) helical elliptic cylinder.

with smaller strakes. Helical strakes suffer from an intrinsic problem: while high blades are required to suppress VIV from
light structures, they increase drag considerably.

Some researchers have investigated 3D devices other than helical strakes as ameans to suppress VIV;we shall recall some
of these works in the next section. However, it is worth highlighting now that even though some 3D geometries reduced
drag by suppressing vortex shedding from fixed bodies, none has achieved the desired combination of VIV suppression with
drag reduction, at least not for systems with low mass and damping.

In the present paper we present an experimental investigation of a 3D cylinder shaped as a wavy elliptic cylinder in an
attempt to reduce VIV without incurring an unwanted drag penalty. This study will show that the wavy cylinder does not
eliminate VIV but it reveals interesting information about the physical mechanisms occurring during the fluid–structure
interaction of elastically-mounted 3D bluff bodies.

1.1. Suppression of vortex shedding of fixed cylinders

A relatively simple way to create a slender cylinder with a wavy geometry is by curving its axis in a sinuous path without
changing the cross section, as shown in Fig. 1(b). Owen et al. (2000) and Ahmed (2010), for example, have investigated the
flow past a sinuous cylinder of this type. Although this curved body does not have a straight axis, the behaviour of the flow
separating from the sinuous geometry shows hints of what will happen for 3D bluff bodies with straight axes and varying
cross sections.

Owen et al. (2000) performed visualization of the flow at Re = 100 that revealed the intricatewake structures developing
from sinusoidal separation lines. Three-dimensional vortex loops appeared correlated with the characteristic wavelength of
the geometry. A large periodic variation in the wake structure along the span produced wide wakes at troughs and narrow

Figura 24: Ilustração de diversas modificações tridimensionais no cilindro como tentativa
de suprimir VIE. Reproduzido de Assi e Bearman (2018).
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4.1 Strakes helicoidais

Strakes helicoidais são supressores antigos, com origem na indústria do vento, e ampla-
mente utilizados em sistemas oceânicos, apesar de gerarem elevada carga de arrasto. A
tecnologia ainda sofre com as dificuldades de fabricação, armazenamento e instalação.
Por exemplo, strakes empregados em risers de produção são normalmente confeccionados
como capas de polímero injetado que devem ser instaladas ao redor da tubulação durante
o processo de lançamento do riser no mar, ocupando grande área do convés e atrasando
a manobra de lançamento.

Apesar de serem utilizados há décadas, o desenvolvimento desta tecnologia foi bas-
tante empírico e houve pouco interesse na compreensão da hidrodinâmica dos strakes.
Apenas recentemente surgiram estudos detalhando as estruturas e mapeando a topolo-
gia do escoamento tridimensional ao redor destes supressores. Korkischko e Meneghini
(2011), por exemplo, apresentaram medições do campo tridimensional de velocidades ao
longo do comprimento de um cilindro com strakes helicoidais, evidenciando a riqueza e
complexidade do escoamento presente na esteira próxima.

4.1.1 Strakes convencionais

Strakes de fato têm alguma atuação na interação bidimensional entre as camadas cisalhan-
tes, mas seu efeito preponderante para a mitigação de VIV está na quebra da correlação
das forças hidrodinâmicas ao longo do comprimento do corpo. A geometria helicoidal das
aletas do strake fixam a separação do escoamento em linhas espirais que percorrem uma
helicoidal ao longo do corpo. As aletas devem ter altura considerável para fixar a linha
de separação em sua extremidade, consequentemente, gerando mais arrasto. Portanto,
trata-se de um supressor essencialmente tridimensional, como mostrado nas visualizações
do escoamento com bolhas de hidrogênio apresentadas na figura 25.

Quando o cilindro está fixo e não pode vibrar, os strakes fazem um bom papel e
podem manter a separação do escoamento ao longo da linha helicoidal sem induzir arrasto
desnecessário ao corpo. Chaminés rígidas e pesadas, por exemplo, pouco se deslocam
em resposta à excitação de vórtices causada pelo vento. Neste caso, strakes com aletas
baixas (da ordem de 1% do diâmetro) são suficientes para manter as linhas de separação e,
consequentemente, geram pouco arrasto. Por outro lado, para sistemas relativamente leves
e flexíveis, como risers imersos em água ou plataformas flutuantes do tipo spar (figura 1),
strakes com aletas altas (com altura de 10% a 20% do diâmetro) são necessários para
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(a) Bare cylinder.

(b) CS continuous helical strake.

Figure 11: Flow visualization with hydrogen bubbles for the bare cylinder (reference) and the continuous helical

strake. Re = 9.4 ⇥ 103.

flow visualizations with dye, bubbles and other tracers are often neglected over other expensive

techniques, such as volumetric PIV (particle-image velocimetry) for example. But sometimes

simple flow visualization is precisely what is needed to clarify our understanding on the behaviour

of three-dimensional vortical structures.

Figure 11a presents a longitudinal view of the wake of a bare cylinder illuminated with laser;

this will serve as a reference to evaluate the wake patterns in the wake of the various helical strakes.

The cylinder model can be seen behind the curtain of bubbles near the left edge of the images.

Reynolds number is 9.4 ⇥ 103 and the flow direction is from left to right. It is possible to see the

formation of vortices on one side of the model at two di↵erent moments in time, with a coherent

vortex tube parallel to the axis of the cylinder. The flow in the near wake is fairly organised and
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Figure 12: Detail of flow visualization with hydrogen bubbles for the continuous helical strake. Re = 9.4 ⇥ 103.

strong three-dimensionalities only appear after the vortex tube is shed and convected by the flow.

The vortex formation length for the bare cylinder was qualitatively estimated at approximately

1.6D, which is in good agreement with Norberg (1987); Unal and Rockwell (1988); Cicolin and

Assi (2017) for this Re range.

A similar visualization is presented in figure 11b for the near wake of the continuous helical

strake (CS). The most striking di↵erence compared to the wake of the bare cylinder is the absence of

a coherent vortex tube being formed close to the body (the vortex-formation length is considerably

increased). The near wake is more turbulent, dominated by small-scale three-dimensional vortices

that promote mixing of the separated shear layers near the body. A periodic flow structure is

observed along the span at a wavelength of P/3 (i.e. the pitch length divided by the number

of helices that make the strake). The continuous helical blades promote the separation of the

flow at fixed points around the body, also inducing momentum downward along the axis of the

cylinder (momentum is induced upwards on the other side of the body), disrupting the interaction

between the shear layers and consequent formation of vortices. The detailed visualization presented

in figure 12 clearly shows the separation line along the continuous blade. These observations are

supported by the measurements of Korkischko and Meneghini (2011b), who presented a volumetric

reconstruction of the near wake of a straked cylinder employing stereo PIV.

Now, figure 13 presents the near-wake visualization for the cylinder with serrated strakes. The

spanwise wavelength of P/3 is clearly identifiable for both both S30 and S45 models. But distinct

flow structures with a smaller scale related to the b1 dimension of the blade segment are clearly

seen. The vortex-formation length is increased beyond the reach of the laser plane, so no coherent
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Figura 25: Visualização do escoamento ao redor de um cilindro liso e um cilindro equipado
com strakes convencionais. Reproduzido de Assi et al. (2021).
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(a) CS (b) S30 (c) S45 (d) I30 (e) I45

Figure 1: Models of helical strakes: (a) CS continuous strake; (b) S30 serrated 30-strake; (c) S45 serrated 45-strake;

(d) I30 inverted 30-strake; (c) I45 inverted 45-strake.

30° 30°30°30°30°

45°

-30°
-45°

Figure 2: Orientation of blades (from left to right): CS, S30, S45, I30 and I45. The dashed line marks the pitch

orientation and the continuous line marks the orientation of the blade segment.

4

Figura 26: Variações geométricas nas aletas de strakes não convencionais. Reproduzido
de Assi et al. (2021).

manter os pontos de separação em configuração helicoidal ao longo do comprimento. Por
conta da altura excessiva, a interferência com o escoamento gera arrasto considerável na
estrutura.

Esta perda de eficiência para corpos com baixa razão de massa (razão entre a massa
da estrutura e a massa do volume de fluido deslocado) se dá por conta da recuperação
da correlação do carregamento ao longo do comprimento. Estruturas relativamente leves
respondem ao mínimo carregamento dos vórtices com oscilações transversais capazes de
correlacionar o padrão da esteira ao longo do comprimento a partir do movimento do
corpo. Em resumo, estruturas com baixa razão de massa requerem strakes com aletas
mais altas e que produzem mais arrasto por consequência; estruturas com razão de massa
elevada requerem strakes com aletas baixas, portanto mais eficientes quanto ao arrasto
gerado.

4.1.2 Strakes não convencionais

Como tem sido a tônica deste texto, defendemos que a compreensão dos mecanismos de
interação fluido-estrutura propiciam o avanço tecnológico e permitem a identificação de
parâmetros relevantes para a otimização destes sistemas. Recentemente, em um recente
estudo experimental, rico em visualizações do escoamento (Assi et al., 2021), apresentamos
resultados do desempenho de strakes não convencionais a partir de variações na geometria
das aletas. A quebra das aletas helicoidais em segmentos curtos e a introdução de leves
torções (variações do ângulo de ataque local) nestes segmentos (figura 26) modificam
consideravelmente a eficiência destes supressores em relação aos strakes convencionais.
As figuras 27 e 28 apresentam visualizações do escoamento com bolhas de hidrogênio
para as variações geométricas apresentadas na figura 26.
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(a) S30 serrated 30-strake.

(b) S45 serrated 45-strake.

Figure 14: Detail of flow visualization with hydrogen bubbles for continuous and serrated strakes. Re = 9.4 ⇥ 103.
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Figura 27: Visualização do escoamento ao redor de strakes não convencionais com aletas
seccionadas e torcidas. Reproduzido de Assi et al. (2021).

(a) I30 inverted 30-strake.

(b) I45 inverted 45-strake.

Figure 16: Detail of flow visualization with hydrogen bubbles for the inverted strakes. Re = 9.4 ⇥ 103.
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Figura 28: Visualização do escoamento ao redor de strakes não convencionais com aletas
seccionadas e invertidas. Reproduzido de Assi et al. (2021).
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Figura 29: Agrupamentos de cilindros com strakes. Reproduzido de Assi et al. (2010a).

Contudo, nossa principal contribuição neste tema talvez esteja na comprovação de
que o mecanismo de funcionamento dos strakes seja mais complexo do que imaginávamos.
De fato, a quebra de correlação causada pela fixação das linhas de separação ao longo do
comprimento foi verificada. Porém, verificou-se também fortes componentes de velocida-
des, transversal ao escoamento e na direção do eixo do cilindro, induzidas com direções
contrárias em lados opostos do cilindro. A região da esteira próxima também se mostrou
rica em escalas tridimensionais, mais complexas quanto mais segmentos apresentarem as
aletas seccionadas. Obviamente, há uma relação ótima entre os comprimentos de onda
dessas estruturas tridimensionais que favorecem a atenuação da esteira. Esta relação
ainda precisa ser investigada. Estudos desta natureza com modelos em escala reduzida
abrem caminho para o desenvolvimento de novas geometrias de strakes que podem ser
mais eficientes para suprimir vibrações induzidas pelo escoamento e reduzir arrasto.

Em outro estudo (Assi et al., 2010a), também conduzido com modelos em escala
reduzida, demonstramos como a eficiência de supressão de strakes convencionais se reduz
quando o cilindro em questão sofre interferência hidrodinâmica da esteira de outro corpo
rombudo posicionado à montante, como visto nos arranjos da figura 29. Como explicado
anteriormente, durante o fenômeno de WIV (wake-induced vibration) um cilindro responde
com vibrações não ressonantes à excitação proveniente da esteira de vórtices que se origina
em outro corpo posicionado à montante. Como os strakes atuam para mitigar a emissão
de vórtices do cilindro em que estão instalados, eles se tornam impotentes para suprimir
vibrações quando a excitação vem da esteira coerente de outro corpo rombudo, conforme
mostra o arranjo da figura 29f. Em outras palavras, strakes perdem drasticamente a
eficiência quando imersos nas esteiras de outros corpos, o que não é incomum quando
se tem agrupamentos de risers ou outros corpos rombudos alinhados com o escoamento
incidente.
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Figura 30: Detalhe de um modelo de cilindro equipado com ventilated trousers para testes
no canal recirculante. Reproduzido de Cicolin e Assi (2017b).

4.2 Malhas permeáveis

Uma ideia interessante surgiu no final da década de 2000, quando inventores experimen-
taram envolver o cilindro com uma malha permeável repleta de corpos tridimensionais
na forma de pequenos carreteis, chamados bobbins. A malha foi confeccionada com cabos
de nylon e os bobbins, fabricados de PVC. Este supressor omnidirecional, patenteado por
Brown (2010), foi chamado de ventilated trousers, aqui simplificado por VT, por aludir à
imagem de um cilindro vestido com um tecido perfurado.

4.2.1 Ventilated Trousers

Supressores de malha permeável apresentam vantagens consideráveis em comparação com
supressores de placas pivotantes ou strakes. Eles têm custo de fabricação mais baixo, po-
dem ser armazenados sem ocupar tanto espaço no convés da embarcação de lançamento
e são mais facilmente instalados e removidos durante a operação. Por não apresentarem
peças móveis ou mancais de rotação e por utilizarem componentes disponíveis no mer-
cado (como cabos de nylon, por exemplo), requerem baixa manutenção e têm vida útil
estendida.

A figura 30 ilustra a geometria de um modelo de VT instalado em um cilindro em
escala reduzida para testes no laboratório. De fato, a geometria de VT investigada apre-
sentou considerável redução na resposta dinâmica de VIV para sistemas com baixa razão
de massa e amortecimento, que caracteriza o cenário mais desafiador para a supressão.
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Figura 31: Visualização do escoamento ao redor de um cilindro liso (acima) e de um
cilindro equipado com VT (abaixo). Reproduzido de Cicolin e Assi (2017b).

Figura 32: Campos de vorticidade obtidos com PIV para (a) cilindro liso e (b) cilindro
com VT. Reproduzido de Cicolin e Assi (2017b).
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Figura 33: Outras configurações de malhas permeáveis. Reproduzido de Cicolin e Assi
(2017a).

Como apresentado nas imagens da figura 31, obtidas através da visualização do escoa-
mento com bolhas de hidrogênio iluminadas com laser, os bobbins presentes na malha são
capazes de produzir estruturas tridimensionais na região da esteira próxima, dificultando
a interação entre as camadas cisalhantes e atrasando a formação dos vórtices. Este efeito
foi claramente capturado com medições do campo de vorticidade por PIV, apresentadas
na figura 32, que indica um considerável aumento no comprimento de formação de vórtices
para o cilindro equipado com VT em relação àquele do cilindro liso.

4.2.2 Outras malhas

A fim de investigarmos o mecanismo físico através do qual o VT atua no escoamento,
produzimos uma série de supressores do tipo malha permeável com diferentes corpos ins-
talados na malha em substituição aos bobbins, conforme ilustrado na figura 33. Níveis
de supressão semelhantes àqueles do VT original foram obtidos pelos demais supresso-
res, indicando que, provavelmente, a perturbação tridimensional na esteira não era uma
exclusividade daquela geometria de bobbin patenteada como VT.

Por outro lado, os demais supressores não foram tão eficientes na redução de arrasto
quanto o VT original. De modo semelhante aos strakes, os supressores de malhas per-
meáveis tendem a aumentar o arrasto do sistema em relação ao arrasto de um cilindro
liso e estático. Imagens obtidas com PIV (figura 34) indicam que os demais supressores
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Figura 34: Campos de vorticidade obtidos com PIV para as malhas permeáveis apresen-
tadas na figura 33. Reproduzido de Cicolin e Assi (2017a).

estenderam o comprimento de formação de vórtices, mas nenhum teve um desempenho
tão eficiente quanto ao do VT.

Esta campanha experimental com modelos de supressores de malhas permeáveis abriu
caminho para o desenvolvimento de novas geometrias desta natureza. Assim como o es-
tudo com os strakes não convencionais, a perturbação tridimensional causada pelas malhas
permeáveis pode ser otimizada para produzir escalas do escoamento que contribuam para
a mitigação da formação de vórtices na esteira. A correta compreensão dos mecanismos
hidrodinâmicos contribui nesta direção.

4.3 Cilindro ondulado e elíptico

A última tentativa avaliada no desenvolvimento de supressores tridimensionais apresen-
tada nesta resenha está relacionada à alteração da geometria do próprio cilindro ao invés
da instalação de apêndices externos. Vimos que os strakes helicoidais dependem da ge-
ometria protuberante das aletas para produzir os efeitos tridimensionais na esteira que
reduzem a correlação das forças originárias dos vórtices. Contudo, as aletas geram grande
força de arrasto, a principal deficiência dos strakes. Com o objetivo de reduzir a força de
arrasto e ainda manter a quebra de correlação causada pelo efeito tridimensional, bus-
camos alterar a geometria externa do cilindro de maneira suave, produzindo um cilindro
ondulado de seção transversal elíptica (elliptical wavy cylinder) apresentado em Assi e
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Fig. 3. Wavy elliptic cylinder. The angle of attack ↵ represents a positive rotation around the z axis.

1.5. Objective

In the present study we investigate the flow structure of the near wake and the cross-flow response to vortex-induced
vibration of an elliptic wavy cylinder with low mass and damping. The present geometry, illustrated in Fig. 3, shows an
elliptical cross section with sinusoidal waviness in both x and y directions. In essence, the geometry is of the same nature as
the wavy cylinder with varying circular cross sections discussed above (Fig. 1(f)). Nevertheless, the elliptical cross-section
produces a geometry with more intense three-dimensional effects along the span.

The current investigation has been developed in the context of finding novel suppressors for the vortex-induced vibration
of slender bluff bodies with lowmass and damping. Because a successful result of VIV suppression was not achieved (as will
be seen in the discussion that follows), we left the data aside with no immediate interest inmaking it public. However, when
the study by Beem and Triantafyllou (2015) on the flow-induced vibration of seal whiskers was publishedwewere surprised
by the remarkable similarity between the surface geometries of the seal whisker and that of the elliptical wavy cylinder we
had tested years before. We then realized that the results that had been forgotten for a few years could have been useful
as a reference for the VIV response for Beem and Triantafyllou (2015), thus we brought it to light motivated by the topic of
bioinspired fluid mechanics.

2. Method

Experiments were performed in the Department of Aeronautics at Imperial College London, UK. Tests were carried out
in a free-surface water channel with a test section 0.6 m wide, 0.7 m deep and 8.0 m long. The side walls and bottom of
the section were made of glass, allowing a complete view of the models for flow visualization. Flow speed U approaching in
the x direction was continuously variable up to 0.6 m/s. The maximum free-stream turbulence intensity mapped across the
section was around 3% for the range of Reynolds number of the experiments. A cross-sectional diagram of the test section
showing the experimental apparatus is shown in Fig. 4.

An elliptic wavy cylinder was 3D-printed in ABS plastic; the external surface was smoothed and painted black to improve
contrast during flow visualizations. Fig. 5 presents the geometrical details of themodel. The nominal diameter of the cylinder
was D = 50 mm, defined as the average of the larger (60 mm) and the smaller (40 mm) diameters of the reference ellipse,
hence the sinusoidalwave heightwas 10mm, or 20% of the nominal diameter. Thewavelength (also called pitch)was P = 5D
and the maximum elliptical ratio of 1.5 occurred at the saddle plane (elongated in the x direction) and at the node plane
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Fig. 4. Cross view of the test section.

Fig. 5. Dimensions of the wavy cylinder. Flow is in the x direction. WL means water line.

(elongated in the y direction), marked by the dashed lines at station 0 and P/2 in Fig. 5. The three-dimensional sinusoidal
variation between the ellipses resulted in circular cross sections in between the saddles and the nodes at 1/4 and 3/4 of one
pitch. The submerged length of the cylinder was L = 13D and the geometric blockage ratio was 8.3%.

The rigid cylinderwas connected to a load cellmeasuring the total instantaneous lift and drag acting on the body. The load
cell was attached under an elastic rig supported by two long carbon-fibre tubes sliding through air bearings. The systemwas
free to respond to the flow excitation in the cross-flow (y) direction only; displacementsweremeasured by an optical sensor.
The mass ratio, calculated as the ratio between the total structural mass to the mass of displaced fluid, wasm⇤ = 2.6. A pair
of coil springs provided the stiffness of the system. The natural frequency of oscillation (f0) as well as structural damping
were determined during decay tests performed in air, hence not taking into account hydrodynamic effects. The structural
damping ratio was kept to a minimum value of ⇣ = 0.7%, calculated as a percentage of the critical damping during decay
tests performed in air. The resultant combined mass–damping parameter wasm⇤⇣ = 0.018.

Figura 35: Geometria do cilindro ondulado de seção elíptica. Reproduzido de Assi e
Bearman (2018).

Bearman (2018).

O cilindro circular foi envolto com uma capa formada por seções transversais elípti-
cas, cujos eixos maiores e menores se alternavam repetidamente nas direções ortogonais
ao longo do comprimento do cilindro. O resultado foi um cilindro ondulado nas duas
direções ortogonais ao eixo do cilindro, conforme ilustrado na figura 35. Outras tenta-
tivas de cilindros ondulados encontradas na literatura são apresentadas na figura 24. O
modelo foi então montado na base elástica e livre para responder à excitação de VIV na
direção transversal. Enquanto estava fixo, verificamos que o cilindro ondulado apresen-
tava considerável redução de arrasto e flutuação da força de sustentação. Mas, assim que
o sistema foi permitido oscilar transversalmente, a resposta dinâmica de VIV foi muito
similar àquela de um cilindro liso.

A partir de visualizações do escoamento com bolhas de hidrogênio e tintura fluores-
cente, foi possível constatar que as ondulações na geometria do cilindro de fato produziam
o efeito de alterar a linha de separação ao longo do comprimento e afilar a esteira formada
(ver figura 36a). Como resultado, o cilindro estático produzia menor carregamento de ar-
rasto e sustentação. Mas, assim que as primeiras e pequenas oscilações se iniciavam, as
suaves ondulações do cilindro não conseguiam fixar as linhas de separação, permitindo a
retomada da correlação da esteira ao longo do comprimento (figura 36b e c) e recuperando
VIV.

Mais tarde, alguns anos após a realização destes experimentos, tomamos conhecimento
de estudos interessantes que investigaram a hidrodinâmica de bigodes de focas (Beem e
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(a) (b) (c)

(d) (e)

Fig. 15. 3D wake patterns: (a) static wavy cylinder, (b) wavy cylinder at low ŷ/D, (c) wavy cylinder at high ŷ/D, (d) oscillating plain cylinder. (e) Sketch of
separation lines on a wavy cylinder.

vortex filaments recovered a degree of correlation that resembled that seen for the vortex filaments of an oscillating plain
cylinder, illustrated in Fig. 15(d) for comparison. Consequently, the wake structure became closely two dimensional, with
no sign of a characteristic wavelength appearing in the distribution of streamwise vortices.

As summarized in Fig. 15(e), it appeared that only a small lateral movement of the wavy cylinder was necessary for
the sinusoidal separation lines found on the fixed body to correlate along the span. The 3D flow structures induced by the
waviness of the surface were thus replaced by a coherent wake of almost parallel vortex filaments.

4.3. Sectional wake patterns for ↵ = 0�
and 45

�

What happened for a wavy cylinder at ↵ = 45� was not very different. As one can now imagine, if the lateral oscillation
is able to recorrelate the separation lines over the wavy surface, the variation of angle of attack should not be an obstacle.

Figura 36: Interpretação do comportamento da esteira de um cilindro ondulado. Repro-
duzido de Assi e Bearman (2018).

Triantafyllou, 2015; Rinehart et al., 2017). Fomos surpreendidos com a similaridade entre
a geometria externa do bigode da foca e o cilindro ondulado estudado. Para a foca, a
geometria ondulada favorece a sensibilidade para capturar flutuações de pressão na água,
favorecendo a caça submarina. O bigode produz menor arrasto quando estático e vibra
amplamente quando excitado por pequenas flutuações no escoamento.

— — —

Outras inspirações da natureza podem ser investigadas para o desenvolvimento de
supressores, atenuadores ou mesmo amplificadores de vibrações, dependendo da aplicação
na engenharia. No momento, temos desenvolvido estudo com geometrias inspiradas em
cactos e outras plantas esbeltas que evoluíram para resistir a condições extremas de vento.
É certo que seres vivos, tanto animais quanto plantas, desenvolveram estratégias eficientes
para suprimir ou utilizar as vibrações induzidas pelo escoamento. Parte da satisfação que
temos em estudar estes fenômenos vem da contemplação das soluções apresentadas na
natureza. Cabe a nós desvendá-las e transformá-las para o benefício da humanidade.
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5 CONCLUSÃO

“Si hortum in biblioteca habes, deerit nihil.”

-- Cicero (106-43 a.C.)

Esta resenha autocrítica teve o objetivo de apresentar o desenvolvimento da pesquisa de
supressores de vibrações induzidas pelo escoamento ao redor de corpos rombudos. Especial
ênfase foi dada à explicação dos fenômenos fluidoelásticos e elucidação dos mecanismos
físicos hidrodinâmicos por detrás destes fenômenos.

Concluímos que supressores bidimensionais, aqueles que atuam na raiz do mecanismo
de geração de vórtices, têm grande potencial para mitigação de VIE com considerável
redução do arrasto gerado na estrutura. Tomando-se o cuidado para que os supresso-
res pivotantes atuem dentro dos limites críticos de atrito rotacional, é possível garantir
que os sistemas sejam omnidirecionais e não causem instabilidades fluidodinâmicas mais
danosas. Novas geometrias de supressores curtos podem ser desenvolvidas com base no
conhecimento adquirido até aqui, agora com foco na otimização dos sistemas.

Sobre supressores tridimensionais, concluímos que dificilmente esta categoria atingirá
a combinação de supressão eficaz de VIE com redução de arrasto. Mesmo assim, supres-
sores tridimensionais continuam sendo uma solução interessante, especialmente quando o
reduzido custo de fabricação, instalação e manutenção justifica sua aplicação. Desde stra-

kes convencionais até novas geometrias tridimensionais inspiradas em soluções da natu-
reza, cremos que haja grande campo para a otimização destes dispositivos para aplicações
em problemas de engenharia.

Mais uma vez, além dos resultados de supressores específicos, entendemos que a prin-
cipal contribuição técnica desta linha de pesquisa esteja no desenvolvimento e amadureci-
mento de uma metodologia de investigação experimental e numérica capaz de elucidar os
mecanismos físicos que governam fenômenos fluidoelásticos. Este conhecimento alimen-
tará a investigação científica e tecnológica de diversas linhas de pesquisa correlatas.

Todas as imagens, discussões e conclusões foram retiradas de artigos científicos publi-
cados pelo autor e seus colaboradores em periódicos internacionais. Estes são anexados
a seguir na Parte III deste texto. Porém, vale ainda destacar algumas atividades técni-
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cas, científicas e acadêmicas pertinentes ao desenvolvimento deste tema de pesquisa e à
experiência adquirida pelo autor na última década.



PARTE II

ATIVIDADES CORRELATAS



59

6 EQUIPAMENTOS E MÉTODOS
EXPERIMENTAIS

“Eu gosto da vida também da cidade
E sei que existe a felicidade

Mas deve ser filha do interior”

-- Comp.: Goiá e Amir

6.1 Canal de Água Recirculante

Experimentos com modelos em escala reduzida capazes de reproduzir a riqueza dos fenô-
menos fluidoelásticos requerem equipamentos bem projetados e bem operados para repro-
duzir as condições ideais e controladas no laboratório. O principal equipamento utilizado
na grande maioria dos experimentos discutidos nos capítulos anteriores é o Canal de água
recirculante do Núcleo de Dinâmica e Fluidos da Escola Politécnica da Universidade de
São Paulo (NDF/EPUSP). Muitos pesquisadores e alunos de graduação e pós-graduação
passam pelo laboratório todos os anos, que atrai também o interesse de grupos internaci-
onais que gostariam de desenvolver lá seus experimentos.

O canal, ilustrado na figura 37, foi desenvolvido pelo autor no contexto do projeto te-
mático FAPESP (01/00054-6) Vibração Induzida por Emissão de Vórtices em Estruturas
Oceânicas, sob a coordenação geral do Prof. José Augusto P. Aranha, com a coordenação
temática do Prof. Clóvis A. Martins e do Prof. Julio R. Meneghini.

Vale registrar nossa profunda gratidão ao Prof. Meneghini, que não poupou esforços
para nos envolver nas atividades do projeto quando ainda em um programa de Iniciação
Científica. Foi o empenho e a confiança deste orientador que nos impulsionaram para a
carreira científica quando nos confiou a tarefa de projetar e construir o canal recirculante,
um dos principais equipamentos do projeto temático. Neste processo, participamos de um
estágio de pesquisa nos laboratórios do Department of Aeronautics do Imperial College
London que, além de consolidar nosso interesse pela carreira acadêmica, abriu as portas
para o doutorado no exterior.

O canal, cujo projeto conceitual foi inspirado no equipamento que tivemos a opor-
tunidade de utilizar por algumas semanas no Imperial College London, foi projetado e
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Figura 37: Canal de Água Recirculante do NDF USP. Reproduzido de Assi (2005); Assi
et al. (2005).

construído durante o nosso projeto de mestrado (Assi, 2005). O canal possui uma seção
de testes paralela de vidro (permitindo acesso ótico dos modelos por todas as direções)
com seção transversal de 700mm de largura por 700mm de profundidade e com 7,5m de
comprimento. O escoamento com perfil de velocidades plano pode alcançar velocidades
até 0,6m/s com intensidade de turbulência abaixo de 2%. Considerando experimentos de
interação fluido-estrutura com corpos cilíndricos de diâmetro médio entre 20mm e 100mm,
este canal recirculante permite experimentos tipicamente na faixa de número de Reynolds
moderados entre 103 e 104.

Este versátil equipamento foi inaugurado no final de 2004 e está em pleno funcio-
namento desde então, servindo para o desenvolvimento de diversos projetos de pesquisa
da equipe experimental do NDF e formação de diversos alunos e pesquisadores. Por ter
sido projetado para permitir a fácil utilização por parte dos usuários, o canal também
é frequentemente utilizado para atividades didáticas de graduação, projetos de iniciação
científica e projetos de conclusão de curso. Uma apresentação do projeto e construção do
canal pode ser encontrada em Assi (2005) e Assi et al. (2005).

Avaliamos que a construção deste canal tenha sido uma das nossas principais contri-
buições para o avanço do conhecimento no tema, por criar um equipamento compartilhado
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Figura 38: Canal recirculante de baixo número de Reynolds.

que reforça o trabalho em grupo e permite a realização de inúmeros outros estudos. Vale
ressaltar que nossos projetos nele desenvolvidos também serviram como referência para
comparação de muitas simulações numéricas do escoamento produzidas por outros auto-
res ao redor do mundo. Como frequentemente empregamos PIV, pesquisadores utilizam
os resultados das nossas medições de esteira para a validação de seus códigos numéricos,
especialmente para escoamentos em números de Reynolds moderados.

6.2 Canal Recirculante de Baixo Número de Reynolds

O segundo canal recirculante, também instalado no NDF/EPUSP, foi projetado para pre-
encher a lacuna do equipamento anterior, permitindo experimentos de interação fluido-
estrutura para números de Reynolds abaixo de 103. A figura 38 apresenta o canal cons-
truído em aço inoxidável. O equipamento foi financiado pelo projeto regular de pesquisa
da FAPESP (11/00205-6), cujo objetivo foi o desenvolvimento de supressores de vibrações
induzidas pelo escoamento.

O canal possui seção de testes aberta permitindo escoamento através de uma área
com 500mm de largura por 500mm de altura e 1.500mm de comprimento. As paredes e
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o fundo são de vidro, permitindo acesso óptico por todos os lados. O fluido de trabalho
pode ser uma mistura em qualquer proporção de água e glicerina, elevando a viscosidade
e diminuindo o número de Reynolds o quanto se queira. Impulsionado por uma bomba
centrífuga, o escoamento plano atinge velocidades entre 0,001m/s e 0,1m/s com baixa
intensidade de turbulência.

Este canal de baixo número de Reynolds é especialmente útil para investigações do
início das instabilidades fluidodinâmicas, como geração de vórtices, modos tridimensionais
na esteira e células de stall em perfis de asa. Os resultados nele produzidos também cha-
mam a atenção da comunidade de simulações numéricas, sempre em busca de paradigmas
experimentais para validação de seus códigos computacionais.

6.3 Bases elásticas

Se os canais recirculantes provêm o escoamento de qualidade, as bases elásticas são res-
ponsáveis por emular as condições dinâmicas da estrutura nas condições idealizadas do
laboratório. Obviamente é impossível manter a semelhança hidrodinâmica e estrutural
de um riser real quando o problema é reduzido à escala do laboratório. Assim, as bases
elásticas foram projetadas para criar as condições de inércia, rigidez e amortecimento ade-
quadas que representem o comportamento deste pequeno segmento da estrutura dentro
do escoamento de água.

Três conceitos de bases elásticas foram desenvolvidos para a maior parte dos ex-
perimentos discutidos neste texto: duas bases elásticas que permitem o movimento da
estrutura em apenas um grau de liberdade e uma terceira que permite movimentos em
dois graus de liberdade. O mesmo princípio construtivo foi utilizado nas três bases. Fo-
ram projetadas e confeccionadas da maneira mais leve possível, sempre com a opção de se
adicionar massa ao sistema para se aumentar o parâmetro de inércia do sistema. Também
foram construídas com o menor amortecimento estrutural possível, permitindo que amor-
tecimento extra fosse adicionado, se necessário. Por fim, a rigidez do sistema foi ajustada
através de conjuntos de molas externas ou através de lâminas flexoras.

A primeira base elástica construída foi inspirada em um projeto do Prof. André
Fujarra, hoje na Universidade Federal de Santa Catarina. É um projeto simples e elegante,
formado por duas lâminas flexoras de aço-mola, paralelas, que suportam o modelo de
cilindro. As lâminas permitem movimento na direção transversal e o deslocamento é
medido a partir de extensômetros instalados nas lâminas. O sistema é leve e tem baixo



63

Figura 39: Conceito de base elástica flexora. Reproduzido de Assi et al. (2006).
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Gustavo Roque da Silva Ássi  

Resumindo, a base elástica não é apenas o sistema oscilador, mas o próprio transdutor do 

sinal de deslocamento.  

 

Figura 3.19: Base fletora com um par de lâminas montada na seção de testes do Canal Circulante do 
Imperial College – London. 
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Figura 3.20: Exemplo de uma curva de calibração para base fletora. 

As bases fletoras foram calibradas em função do deslocamento transversal dos 

modelos, de modo que uma série de deslocamentos impostos conhecidos foi relacionada ao 

sinal de saída para cada configuração de massa. Os valores de deslocamento variaram até 

Figura 40: Base flexora (1 grau de liberdade) montada no canal do NDF/EPUSP. Repro-
duzido de Assi (2005)
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diameter D and U incident on the upstream cylinder). The models were mounted vertically and passed through the free
water surface down to almost the full depth of the section. The downstream cylinder was mounted such that there was a
2mm gap between the lower end of the cylinder and the glass floor of the test section. With a wet-length of 650mm
(total length below water level) the resulting aspect ratio of the model was 13.

2.1. Elastic rig and cylinder models

The upstream cylinder was rigidly attached to the structure of the channel preventing displacements in any direction,
while the downstream cylinder was fixed at its upper end to an elastic mounting. Fig. 2 shows a schematic
representation of the apparatus and helps in describing the operation of the system. The support system is firmly
installed on the channel structure and the sliding cylindrical guides are free to move in the transverse direction, defined
by the y-axis. A load cell connects the moving parts of the base to the top end of the model and is able to measure
instantaneous fluid forces acting on the cylinder in the cross-flow and streamwise directions.
A pair of coil springs connecting the moving base to the fixed supports provides the restoration force for the system,

setting the natural frequency of oscillation (f0). All the moving parts of the elastic base contribute to the effective mass,
resulting in a mass ratio of m*=2.0 defined as the ratio of the total oscillating mass to the mass of displaced fluid. An
optical positioning sensor was installed to measure the y-displacement of the cylinder without introducing extra friction
to damp the oscillations. Thus, the cylinder is free to oscillate only in the y-direction with a very low structural damping
z¼ 0:7% (calculated as the percentage of the critical damping obtained from free decay oscillations performed in air)
giving a value of the product of mass ratio and damping of only m"z¼ 0:014. Measurements were made using one set of
springs and the reduced velocity range covered was from 1.5 to 30, where reduced velocity (U/Df0) is defined using the
cylinder natural frequency f0 measured in air. As shown in Fig. 1, the cylinders are aligned one behind the other in the
direction of the flow (known as tandem arrangement) with a longitudinal separation, measured from the centre of one
model to the centre of the other, kept at x0/D=4.0.
Throughout the study, cylinder displacement amplitude (ŷ=D) was found by measuring the root-mean-square value

of response and multiplying by
ffiffiffi
2
p

. This is likely to give an underestimation of the maximum peak response but, since it
offers a good measure of the overall amplitude for many cycles of vibration, it appeared to be suitable for assessing the
general effectiveness of suppression devices. The same method has been successfully employed by Assi et al. (2006, 2009)
and others. The experimental set-up was validated by carrying out measurements of VIV for a single cylinder and the
results were found to be in very good agreement with other works in the literature. Further details about the facilities,
apparatus and validation can be found in Assi (2009).

2.2. Free-to-rotate parallel plates

The suppression device studied was inspired by the early work of Grimminger (1945) related to suppressing VIV of
submarine periscopes, and its application to a single cylinder has been studied by Assi et al. (2009). It consists of two

Fig. 2. Illustration of the test-section. The flow is moving perpendicular to the page plane and the cylinder is allowed to oscillate in the
transverse direction (y-axis).

G.R.S. Assi et al. / Journal of Fluids and Structures 26 (2010) 1045–10571048

Figura 41: Conceito da base elástica de mancais a ar comprimido (1 grau de liberdade).
Reproduzido de Assi (2009).

amortecimento, já que os únicos elementos móveis são as lâminas, que conferem também a
rigidez estrutural. O conceito é apresentado na figura 39 e a base pode ser vista instalada
no canal na figura 40.

Esta base foi utilizada nos experimentos de Assi (2005), também publicados em Assi
et al. (2006). Diversos alunos deram continuidade a este projeto, aprimorando a célula
para experimentos mais complexos. Contudo, uma limitação deste conceito está na pos-
sibilidade de movimento indesejado na direção do escoamento quando a força de arrasto
no modelo é alta e as lâminas apresentam flambagem estrutural.

A segunda base elástica foi a mais utilizada nos experimentos relatados nestes texto e
ainda é o equipamento mais demandado para experimentos de interação fluido-estrutura
no canal do NDF/EPUSP. Alguns protótipos foram construídos até que chegamos no pro-
jeto de uma base elástica formada por quatro mancais de deslizamento pressurizados com
ar comprimido. Dois longos tubos de fibra de carbono atravessam os mancais, flutuando
entre o filme de ar, conferindo à base baixo amortecimento estrutural devido ao atrito
quase nulo. Uma plataforma instalada entre os tubos suporta a célula de carga que, por
sua vez, suporta o modelo de cilindro dentro da água. Os elementos móveis são muito
leves e a rigidez do sistema é proveniente de duas molas helicoidais instaladas na plata-
forma central. O deslocamento do modelo é medido através de um sensor óptico para não
introduzir nenhum amortecimento no sistema. As figuras 41 e 42 ilustram o conceito e a
instalação da base no canal.
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Fig. 4.6: Photograph of the 1-dof rig mounted on top of the water channel. The cylinder is seen

submerged in water.

illuminated plane was visualised through the glass floor avoiding any interference

caused by the free surface. Flow visualisation was also carried out using the same

laser to illuminate fluorescent dye or hydrogen bubbles.

4.3.1 Structural mass, natural frequency and damping

As discussed in Chapter 2, the dynamic response of an FIV oscillator is extremely

sensitive to the structural characteristics of the system; therefore extra care was

taken to determine the precise value of natural frequency, mass and damping of the

structure.

A pair of steel coil springs was installed between the moving table and the rigid

supports in order to provide the structural restoration force of the oscillator. The

spring sti�ness (k) combined with the mass of all oscillating parts (m) results in

the undamped natural frequency of oscillation f0, already defined in Eq. 2.6. More

than one set of springs could be employed resulting in an array of possible natural

frequencies. However, most of the experiments were performed with one main pair
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Figura 42: Base elástica de mancais a ar comprimido (1 grau de liberdade) montada no
canal do Imperial College London. Reproduzido de Assi (2009).

Esta base resolveu o problema da anterior, apresentando alta rigidez na direção do
escoamento e ainda mantendo baixo amortecimento mesmo para elevados carregamentos
de arrasto. Ela foi construída pela excelente equipe técnica do Department of Aeronautics

do Imperial College. Após o término do doutorado, a base foi trazida para o Brasil e hoje
se encontra em operação no canal recirculante do NDF/EPUSP.

A terceira base permite movimentos dos cilindros em dois graus de liberdade, a saber,
longitudinal e transversal à direção do escoamento incidente. Ela foi projetada a partir
de um pêndulo longo, com uma haste de fibra de carbono presa ao teto do laboratório
através de uma junta universal de baixo atrito. A célula de carga que suporta o modelo
foi instalada na extremidade inferior da haste, onde também são presos dois pares de
molas helicoidais para ajustar a rigidez. A base também foi projetada da maneira mais
leve possível. Os deslocamentos nas duas direções são medidos com sensores ópticos para
não introduzir amortecimento espúrio.

Obviamente, neste tipo de base pendular, o movimento do cilindro não é perfeitamente
ortogonal à direção do escoamento, mas construindo-se uma haste de pêndulo suficien-
temente longa é possível minimizar o desvio do cilindro do prumo vertical. A figura 43
apresenta uma vista lateral do conceito, enquanto a figura 44 detalha sua instalação com
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Fig. 4.9: Schematic representation of the 2-dof rig holding the downstream cylinder. The free

stream flows in the x-axis direction.

80

Figura 43: Conceito de base elástica pendular (2 graus de liberdade). Reproduzido de
Assi (2009).
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Fig. 4.10: Photograph of the 2-dof rig. The cylinder is seen submerged in water. This photograph

does not show the final configuration of the 2-dof rig; the in-line springs are not mounted

on long wires yet.

mid-length of the model.

Two pairs of coil springs were installed in the x and y-axes allowing the setting

of di�erent natural frequencies in each direction. Therefore, we define two natural

frequencies f0y and f0x corresponding to the cross-flow and streamwise direction

for 2-dof experiments. Although the cylinder was initially aligned in the vertical

position, in flowing water the mean drag displaced the cylinder from its original

location. To counteract this e�ect, the in-line pair of springs was attached to a

frame that could be moved back and forth in the direction of the flow. For each

flow speed there was a position of the frame that maintained the mean position of

the cylinder in the vertical direction, balancing the drag force with a displacement

of the springs.

Using two pairs of springs perpendicular to each other resulted in nonlinear

spring constants in the transverse and in-line directions. Movement in the transverse

direction will cause a lateral spring deflection in the in-line direction and vice versa.
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Figura 44: Base elástica pendular (2 graus de liberdade) montada no Imperial College
London. Reproduzido de Assi (2009).

um cilindro imerso na água do canal do Imperial College.

— — —

Além dos equipamentos experimentais apresentados neste capítulo, desenvolvemos
e adaptamos uma série de outras técnicas e dispositivos aos experimentos de interação
fluido-estrutura ao longo dos anos. Muitas vezes a melhor solução não existe na prateleira
nem é, necessariamente, a mais cara de um catálogo. A experiência de um grupo de
pesquisa, passada de geração para geração de alunos orientados, é patrimônio importante
para o grupo de experimentalistas e deve ser valorizada. Conseguir planejar e realizar um
bom experimento traz tanta satisfação quanto analisar os dados coletados ou tirar uma
boa conclusão.
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7 ALÉM DA TÉCNICA

“Eu fui aquele que andou
Sessenta léguas num dia
Para ver se breganhava

Tristeza por alegria”

-- Comp.: Renato Teixeira

Por fim, apesar deste texto ter como foco uma linha de pesquisa claramente definida (a
supressão de vibrações induzidas pelo escoamento), entendemos que outras atividades de
cunho acadêmico e científico, que foram desenvolvidas em paralelo ao esforço de pesquisa,
também merecem destaque por terem apreço e papel central na experiência do autor.
Talvez, com o passar dos anos, este trabalho “além da técnica” produzirá mais frutos que
a própria “contribuição fluidoelástica” acima relatada.

7.1 Difusão do conhecimento

Um pesquisador pode ser um exímio técnico, excelente em seu trabalho de análise e síntese
no laboratório. Todavia, seu trabalho só estará concluído quando for propriamente co-
municado. Muitos menosprezam este aspecto de comunicação e difusão do conhecimento,
enquanto outros o reduzem ao simples acúmulo de artigos publicados em periódicos cien-
tíficos. Percebemos que há uma deficiência na habilidade de comunicação em boa parte
dos cientistas e acadêmicos. Nossos alunos, por tabela, também não são incentivados
ou treinados neste aspecto. Cada vez mais, num mundo de facilidades de comunicação,
estamos produzindo uma multidão de solitários que não têm a capacidade de articular
argumentos complexos, de ser assertiva sem ser inconveniente, de ouvir o contraponto
com respeito ou, simplesmente, de comunicar seu trabalho.

A difusão do conhecimento gerado nas universidades deve ser tarefa obrigatória, deve
ser considerada uma necessidade e não um apêndice, e tratada como parte fundamental de
qualquer carreira de pesquisa. Consequentemente, deve ser fomentada e praticada. Desde
o cultivo do hábito de seminários científicos, da participação em fóruns de áreas ortogonais
do conhecimento, do simples interesse pelos avanços da ciência, do domínio da língua
inglesa... tudo faz parte deste treinamento que alunos, professores e pesquisadores em
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geral devem desenvolver. Todavia, difusão do conhecimento não se resume ao oferecimento
das ferramentas, mas está relacionada à criação de uma cultura que, normalmente, leva
gerações para se estabelecer.

As ferramentas e os canais de comunicação refletem o presente momento, mudando
constantemente com o tempo. Há poucos anos nenhum cientista sonhava em ter seu
próprio canal de divulgação científica gratuitamente disponível para todo o planeta. Hoje,
qualquer garoto sabe “subir” um vídeo na internet e avaliar sua repercussão nas redes
sociais. Mesmo pessoas que “não tem muito o que dizer” tornaram-se formadoras de
opinião. Se quisermos que a ciência e a tecnologia brasileiras (que têm excelência em
muitas áreas) tenham impacto mundial positivo, devemos investir também na difusão do
conhecimento de maneira intencional e assertiva.

Finalmente, defendemos que o engajamento com a difusão do conhecimento seja um
papel a ser desempenhado e, portanto, incentivado e treinado, por alunos, docentes e a
própria universidade no campo institucional. A comunicação com a sociedade deve se
dar em vários níveis e com vários públicos. Difundir conhecimento apenas à comunidade
científica através de periódicos especializados é abordar apenas um deles. Precisamos ficar
atentos e preparados para comunicar adequadamente o impacto dos avanços da ciência
e da tecnologia para a sociedade na riqueza de sua variedade. Isto se faz necessário
especialmente em tempos de alarmismo, negacionismo, cientificismo ou tecnicismo.

7.2 Ensino de engenharia

O ensino de engenharia segue uma curva característica de amadurecimento. E engenheiro
é, por definição, um agente transformador do mundo natural. Seu objetivo é usar do
conhecimento adquirido e da técnica bem aplicada para conduzir mudanças que beneficiem
a humanidade nos seus mais diversos aspectos. Porém, isto não se aprende da noite para
o dia, mas requer esforço e engajamento intelectual.

No momento em que escrevo este texto passamos por uma transformação no ensino de
engenharia. Durante a pandemia de COVID-19 fomos forçados a nos adaptar e renovar
as ferramentas e métodos de ensino, interagindo com multidões de alunos através de
pequenas telas impessoais, porém invasivas. A concentração e a dedicação dos alunos
dessa geração imediatista está cada vez menor, provocando em todos uma insatisfação
com as antigas metodologias de ensino e aprendizagem. De fato, estamos vivenciando
uma transição no ensino.
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Temos nos preocupado com esse movimento. Muitas vezes, na estrutura universitária,
os alunos são a parte mais frágil por passarem apenas um período de cinco anos no curso
(docentes passam aqui a sua vida). Contudo, é na análise de gerações de alunos, que
entram e saem da Escola Politécnica, que temos observado este comportamento e refletido
sobre como estruturar cursos que despertem o interesse, evidenciem as potencialidades e
desenvolvam as virtudes de um bom engenheiro nos nossos tutorados.

Na nossa humilde opinião, três aspectos no ensino de engenharia merecem destaque no
momento em que vivemos: (i) tutoria próxima e relacional com alunos, (ii) aprendizado na
fronteira do conhecimento e (iii) visão ampla além da técnica. Permitam-nos desenvolver
rapidamente estas ideias.

(i) Temos o privilégio (e as dificuldades associadas, evidentemente) de sermos um
grupo relativamente pequeno no curso de graduação em Engenharia Naval na Escola Po-
litécnica da USP. Cerca de 12 docentes têm contato direto com 150 alunos em média
(do terceiro ao quinto ano) num determinado momento. Isto permite uma relação muito
próxima entre professores e alunos, fortalecida pela identidade que a Engenharia Naval
oferece. Defendo que precisamos aproveitar melhor este aspecto relacional, promovendo
trocas de experiencias além da sala de aula e aproximando a experiência do aluno da
experiência do professor. Por exemplo, através de projetos de iniciação científica, acom-
panhamento de grupos de extensão, tutoria individualizada, dentre outras atividades, é
possível que alunos e professores se tornem co-participantes do processo de aprendizagem
em um nível mais profundo que o da sala de aula. Novamente, num tempo de relacio-
namentos fragilizados, agravados pelo fenômeno das redes sociais, a relação de confiança
e credibilidade entre tutores e tutorados é benéfica para todos. Em resumo, defendemos
medidas que transformem docentes em mentores e alunos em aprendizes.

(ii) A Universidade de São Paulo é, reconhecidamente, a principal universidade de
pesquisa do Brasil. Cerca de 25% de todos os artigos científicos internacionais publicados
por brasileiros têm autores da USP. Fazer um curso nesta universidade e não ser bene-
ficiado por esta característica é um desperdício. Muitos dos nossos grupos de pesquisa
em engenharia são mundialmente reconhecidos por estarem atuando na fronteira do co-
nhecimento. Nosso desafio como docentes e pesquisadores é fazer com que o impacto do
laboratório e dos resultados de pesquisa cheguem na rotina de formação dos engenheiros.
Estamos convencidos de que alunos em contato com o desenvolvimento da engenharia na
fronteira do conhecimento mantêm o interesse e despertam mais cedo para o impacto que
sua carreira profissional eventualmente terá para o desenvolvimento tecnológico na nossa
sociedade. Precisamos garantir que o conhecimento de ponta produzido nos laboratórios
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permeie para todos os alunos que passam por esta universidade.

(iii) Enquanto educadores, devemos nos esforçar para que os futuros engenheiros se-
jam instruídos levando em conta os mais diversos aspectos envolvidos no processo do
desenvolvimento tecnológico. A engenharia (e antes a tecnologia) não é um ente monolí-
tico. Ensinar alunos a verificarem a viabilidade técnica e econômica de um projeto não
é o suficiente. Os alunos devem ser induzidos a refletir no impacto que a sua engenharia
produzirá além do seu bolso, da sua pessoa, da sua família e da sua empresa. É ne-
cessário estimular uma visão transformadora e ao mesmo tempo altruísta, que considere
os diferente aspectos da realidade em que vivemos mesmo num projeto de engenharia.
Em outras palavras, é preciso engajar-se intelectualmente com os alunos, provocando-os
e conduzindo-os numa jornada além da técnica. (Este terceiro ponto está diretamente
relacionado com o que discutiremos na próxima seção.)

— — —

Valores como transdisciplinaridade, internacionalização, customização do ensino, em-
preendedorismo, inovação, criatividade... são todos muito importantes e bem-vindos em
qualquer processo de aprendizagem de engenharia. Contudo, cremos que estes três aspec-
tos destacados anteriormente sejam prementes e estejam no cerne de uma boa atividade
de aprendizagem, seja no nível de graduação ou de pós-graduação, na engenharia dos dias
de hoje.

7.3 Filosofia da tecnologia

Nos últimos anos temos refletido mais proximamente sobre o papel da tecnologia no
desenvolvimento humano e social. Podemos afirmar que encontramos ferramental teórico
e inspiração prática acessível ao engenheiro que se disponha a este exercício. Permita-
nos apresentar-lhe o Prof. Egbert Schuurman, engenheiro e filósofo holandês, professor
emérito das universidades de Delft, Eidenhoven e Wageningen. Em julho de 2016 tivemos
o privilégio de sermos recebidos por ele em sua residência na vila de Breukelen. Na ocasião,
aproveitamos para conduzir uma entrevista, que hoje está disponível em nosso canal na
internet.

O Prof. Schuurman foi, até hoje, o mais longevo senador da Holanda, servindo no
parlamento por 28 anos (feito heróico para nossos padrões brasileiros, visto que senadores
na Holanda são servidores públicos no sentido estrito do termo: não recebem salários,
apartamentos ou benefícios extraordinários além de uma ajuda de custo). Schuurman,
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enquanto senador, manteve suas atividades normais como docente nas universidades em
que atuava e viajava de trem semanalmente para servir no parlamento em Haia.

Para Egbert Schuurman, “a causa-raiz dos principais problemas que ameaçam a cul-
tura ocidental é o tecnicismo, que pode ser entendido como o depósito da esperança
última na tecnologia. Como tal, o tecnicismo envolve a inclinação dos afetos para a
técnica, entregando-lhe lágrimas de súplica e exclamações de louvor, temor e maravilha-
mento. Portanto, trata-se de uma atitude religiosa para com a tecnologia. A fonte última
de significado, legisladora sobre todos os aspectos da vida, é atribuída à invenção e ao
uso de ferramentas capazes de moldar a realidade. Entendemos que o desenvolvimento da
boa tecnologia deva ser perseguido com responsabilidade moral e, portanto, o tecnicismo,
tão permeado na sociedade ocidental, deve ser confrontado.” A Filosofia da Tecnologia da
tradição reformacional holandesa, da qual Schuurman é um representante contemporâneo,
contribui nesta direção.

De certo modo, o contato com este admirado mestre enriqueceu nosso interesse pelo
campo da Filosofia da Tecnologia. Não é nosso objetivo aqui definir ou discorrer sobre o
tema, mas basta dizer que se trata de um ramo da Filosofia que reflete criticamente sobre
o papel da tecnologia, dos artefatos tecnológicos, dos usuários, do impacto na sociedade
e, em última instância, do agente tecnológico que provoca a transformação (no nosso
caso, o engenheiro). O trabalho do Prof Schuurman é inspirador. Sua abordagem sólida,
profunda e, ao mesmo tempo, prática da tecnologia promove uma reflexão genuína do
papel do engenheiro e, em especial, do professor de engenharia. Ao interessado no tema,
recomendamos o livro “Filosofia da Tecnologia, uma Introdução” (Verkek et al., 2018),
que traz muito do pensamento de Schuurman, e a sua obra prática “Fé, Esperança e
Tecnologia” (Schuurman, 2016), ambas recém lançadas no Brasil.

— — —

Temos reconhecido como nossa função na carreira docente não apenas a transmissão
de conhecimento técnico e teórico aos alunos de graduação e pós-graduação. Zelamos
por incentivar em nossos tutorados o desenvolvimento de virtudes intelectuais e sociais,
o compromisso com a excelência, e a reflexão crítica sobre nosso papel como agentes
de transformação tecnológica. Sinceramente, esperamos que nosso impacto nas futuras
gerações de engenheiros e pesquisadores não seja apenas no tema de supressão de vibrações
induzidas pelo escoamento, mas, principalmente, que frutifiquem neste último aspecto,
com o qual encerramos esta resenha.
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Abstract

This paper presents experimental results concerning flow-induced oscillations of circular cylinders arranged in
tandem. New measurements on the dynamic response oscillations of an isolated cylinder and flow interference of two
cylinders are shown. Preliminary flow visualization employing a PIV system is also shown. The models are mounted on
an elastic base fitted with flexor blades and instrumented with strain gauges. The base is fixed on the test-section of a
water channel facility. The flexor blades possess a low-damping characteristic (z ’ 0:00820:0109) and they are free to
oscillate only in the cross-flow direction. The Reynolds number of the experiments is from 3000 to 13 000, and reduced
velocities, based on natural frequency in still water, vary up to 12. The interference phenomenon on VIV is investigated
by conducting experiments in which the upstream cylinder is maintained fixed and the downstream one is mounted on
the elastic base. The results for an isolated cylinder are in accordance with other measurements found in the literature
for m! ’ 2 and 8. For the tandem arrangement and m! ’ 2, the trailing cylinder oscillation presents what previous
researchers have termed interference galloping behaviour for a centre-to-centre gap spacing ranging from 2D to 5:6D.
These initial results validate the experimental set-up and lead the way for future work, including tandem, staggered and
side-by-side arrangements with the two cylinders free to move.
r 2006 Elsevier Ltd. All rights reserved.

Keywords: Vortex-induced vibration; Flow interference; Vortex shedding

1. Introduction

Flow interference among groups of cylinders has been the subject of many studies in the past. The interference is
responsible for several changes in the characteristics of fluid loads when more than one body is placed in a fluid stream.
Investigations of the flow around pairs of cylinders can provide a better understanding of the vortex dynamics, pressure
distribution and fluid forces, in cases involving more complex arrangements.
This paper presents an experimental study of the flow interference between a pair of rigid cylinders, in tandem

configurations, with the rear cylinder elastically mounted and free to oscillate transversely to the flow. In addition, it
presents new measurements for an isolated rigid cylinder. In all cases the cylinders are allowed to oscillate only in the
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transverse direction. Dynamic response and forced oscillations of an isolated cylinder have been carefully studied
through the past years. Detailed information and accurate data are found in many reviews and recent studies: Bearman
(1984), Blevins (1990), Khalak and Williamson (1996, 1999), Krishnamoorthy et al. (2001), and Williamson and
Govardhan (2004) among others. Recently, new studies have been published focusing on understanding vortex-
suppressor devices, as presented by Bearman and Branković (2004) and Owen et al. (2001).
Many of the previous works regarding the flow around two circular cylinders identified various interference regimes

and were based primarily on flow visualization in experiments. Investigations such as those by Igarashi (1981),
Zdravkovich (1977, 1987) and Sumner et al. (2000) proposed classifications of these regimes. Quoting Zdravkovich,
‘‘when more than one bluff body is placed in a fluid flow, the resulting forces and vortex shedding pattern may be
completely different from those found on a single body at the same Reynolds number.’’ A variety of flow patterns,
characterized by the behaviour of the wake region, may be discerned as the centre-to-centre spacing between two
circular cylinders (gap S) is varied; see Fig. 1. The phenomenon has also been intensely analysed by numerical methods,
as seen in Meneghini et al. (2001), for instance.
Some results about flow interference between a pair of cylinders in tandem can also be found in the investigations by

King and Johns (1976), Bokaian and Geoola (1984), Brika and Laneville (1997, 1999), and Hover and Triantafyllou
(2001). All these papers present experimental results of a trailing rigid cylinder oscillating in the wake of an upstream
one. According to Bokaian and Geoola (1984), in the case of a fixed leading cylinder, both vortex-resonance and wake
galloping instability phenomena are relevant and can occur separately or combined, depending on the separation
distance. For 7pS=Dp8:5, Brika and Laneville (1999) observed that the downstream cylinder exhibited a combination
of galloping and vortex-induced vibration.
This paper presents new measurements of vortex-induced vibration of a single cylinder. The experiments are carried

out in order to validate the experimental set-up and data processing for future investigations. In addition, they
introduce the base results for comparisons with induced oscillations of a trailing rigid cylinder in a tandem
arrangement. A brief description of the apparatus and some remarks regarding future investigations complements the
material. Some preliminary PIV flow visualization techniques are shown for two fixed cylinders arranged in tandem.

2. Experimental set-up

Tests were conducted at the Hydrodynamics Laboratory of Imperial College (IC), London, and at the Fluid-
Dynamics Research Group Laboratory of the University of São Paulo (USP). The circulating water channel facility at
IC had a 0:60" 0:70" 8:00m test-section, and the facility at USP had a 0:70" 0:80" 7:50m test-section. Both could
operate at good quality and well-controlled flows up to 0:7m=s. Rigid cylinder models were made of aluminium tubes
with diameter D ¼ 32mm and wet-length L ¼ 560mm under the water level. Cylinders were vertically clamped by their
upper end at the bottom block of elastic supports (firmly fixed on the channel structure) and terminated at their lower
end with a 2:0mm gap on to the test-section floor. The open section channel facilities at IC and USP were equipped with
glass walls and a glass floor offering a complete view of the models. For tandem arrangements, the gap between the
cylinder centres varied through four different discrete displacements: S=D ¼ ð2:0; 3:0; 4:0; 5:0; 5:6Þ. Fig. 2 presents a
schematic cross-sectional view of the apparatus mounted on the channel structure.
Both cylinders were independently mounted under an individual elastic base free to oscillate transversely to the flow

direction, i.e., only in the cross-flow direction. For each flexible base system, the transverse degree of freedom could be
locked, so every model could or could not be free to move in cross-flow oscillations, resulting in different tandem
oscillating configurations. Both elastic systems were built with two parallel rigid aluminium blocks, coupled by a pair of
thin spring-steel blade flexors. These bases not only act as the cylinder support, but also provide the restoration system
response. This flexion-based arrangement was confirmed as a low-damping elastic system. In order to measure cylinder
displacements, four strain gauges were built in each pair of blades close to the highest bending region of the face. A
complete bridge was built up enabling a linear cylinder displacement signal to be acquired. A set of three base systems
was available for isolated cylinder experiments, while another two systems were prepared for tandem arrangement tests.
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Fig. 1. Configuration for the tandem arrangement.
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The different bases providing different mass ratios. Mass ratio and spring stiffness were the structural parameters that
were varied. Table 1 lists the oscillation parameters obtained for all those configurations. Models tested at Imperial
College are indicated by IC, and those models tested at the University of São Paulo are indicated by USP.
Decay tests in water were employed to obtain the natural oscillation frequency (f N ), while the structural damping

parameter (z) was obtained from decay test performed in air. Mass ratio (m!) is defined as m! ¼ 4M=rpD2L (where M
represents the total oscillating mass and r is the water density). The added mass has not been considered in this
definition. Fig. 3 details the elastic base and its spring blades (cross-flow direction is identified by the y-axis) and Fig. 4
shows the experimental apparatus installed in the channel test-section.

3. Results and discussion

The dynamic responses of the models are described in terms of reduced amplitude A=D versus reduced velocity Vr.
Some results found in the literature are shown for comparison. Amplitude peaks were calculated employing the Hilbert
transform, as described in Khalak and Williamson (1999). Reynolds number (calculated for a single cylinder with
diameter D and current velocity U) ranges from Re ¼ 3000 and 13 000 in all experiment cases. The reduced velocity
Vr ¼ f NU=D range extended to a maximum value of 12, hence covering the occurrence of several possible phenomena.

3.1. Single circular cylinder

The responses for an isolated cylinder, with three values of mass and damping parameters, are shown in Figs. 5,
Fig. 6, and Fig. 7. These three figures compare the present data to results found in the literature for the three different
conditions mentioned before: low mass, median mass, and high mass. They are employed as a baseline for comparisons
with the tandem arrangement cases. The following series presents the dynamic response of a single cylinder, free to
oscillate in the cross-flow direction, mounted on a low-damping elastic system. In Fig. 5, the nondimensional amplitude
of oscillation is presented versus the reduced velocity for m! ’ 1. The current speed was increased in order to obtain this
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Fig. 2. Cylinder and elastic base mounted on the channel test-section structure.

Table 1
Oscillation parameters for the bases tested

Base identification m! f N z m!z

Single cylinder (low mass IC) 0.96 1.56 0.008 0.008
Single cylinder (low mass USP) 0.90 1.17 0.0109 0.010
Single cylinder (median mass IC) 1.92 0.98 0.007 0.013
Single cylinder (high mass IC) 8.06 1.17 0.002 0.016
Pair: downstream cylinder (IC) 1.92 0.98 0.007 0.013
Pair: downstream cylinder (USP) 0.90 1.17 0.0109 0.010
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curve. Our maximum amplitude for the IC model is slightly below 1D and it occurs at a reduced velocity Vr ’ 6. The
maximum amplitude for the USP model is about 1:2D and it takes place at about the same reduced velocity. Our results
compare relatively well with those obtained by Branković (2004), in which the reduced velocity range was extended up
to 14. For this low mass parameter case, one can notice that oscillation starts at about Vr ’ 2:5 and is sustained up to
very high reduced velocity. Such behaviour is expected for very low mass parameter experiments and has already been
observed in other investigations. For the low mass parameter model in the IC experiment, the maximum reduced
velocity tested could not be increased beyond Vr ¼ 7 due to the low stiffness of the flexor blades. In order to increase
the in-line stiffness of the base, a third flexor blade has been added to the models tested at USP, which allowed higher
velocities to be tested. For this model, reduced velocities up to 12 have been tested.
Fig. 6 shows the response for m! ’ 2. In this case, we compare our results with those by Khalak and Williamson

(1999), and Hover and Triantafyllou (2001). Although the experimental apparatuses used were based on different
concepts, the mass and damping parameters are very similar and the observed responses are in close agreement. The
oscillations start at about Vr ’ 3:0 and are sustained up to Vr ¼ 12:0. The peak amplitude in the present investigation
is around 0:9D. Finally, in Fig. 7, the results for m! ’ 8 are shown and compared to those by Khalak and Williamson
(1999) and Fujarra (2002). The oscillation starts at about Vr ’ 3:5 and the peak amplitude observed in the present
results is around 1D.
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Fig. 4. Cylinder and elastic base mounted on the channel test-section structure.

Fig. 3. Detail of the elastic base at a flexing instant. W.L. represents the water line level and d the horizontal displacement of the
cylinder centre.
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Fig. 5. Variation of the reduced amplitude A=D versus reduced velocity Vr for an isolated cylinder with low mass ratio parameter.
Present work: ’, IC model, m! ¼ 0:96, ðm!zÞ ’ 0:008; &, USP model, m! ¼ 0:90, ðm!zÞ ’ 0:010; n, Branković (2004), m! ¼ 0:82,
ðm!zÞ ’ 0:0001.
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Fig. 6. Variation of the reduced amplitude A=D versus reduced velocity Vr for an isolated cylinder with the median mass ratio
parameter. Present work: ’, m! ’ 2, ðm!zÞ ’ 0:013; n, Khalak and Williamson (1999), m! ’ 2, ðm!zÞ ’ 0:014; ', Hover and
Triantafyllou (2001), m! ’ 3.
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Fig. 7. Variation of the reduced amplitude A=D versus reduced velocity Vr for an isolated cylinder with the highest mass ratio
parameter. Present work: ’, m! ’ 8, ðm!zÞ ¼ 0:016; n, Khalak and Williamson (1999), m! ’ 10, ðm!zÞ ’ 0:017; ', Fujarra (2002),
m! ’ 10, ðm!zÞ ’ 0:03.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S/D=4.75 Hover-Triantafyllou (2001): m*=3.0
S/D=3.0 Present work: m*=1.9

4.0
5.0
5.6

S/D=2.0 Present work: m*=0.9
3.0

A
/D

Vr

Fig. 8. Variation of the reduced amplitude versus A=D reduced velocity V r for the trailing cylinder of a pair in tandem arrangement.
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(2001), m! ’ 3.
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3.2. Two circular cylinders in tandem

Fig. 8 presents the dynamic results for flow interaction of a trailing rigid cylinder oscillating in the wake of a fixed
leading one. The downstream body is free to move only in the cross-flow direction. For this case, m! ’ 2 and
m!z ’ 0:013. The results are compared with those obtained by Hover and Triantafyllou (2001) with a cylinder with a
slightly higher mass parameter. The distance S=D is measured centre to centre. The results shown in Fig. 8 are for four
gaps: S=D ¼ 2:0, 3.0, 4.0, 5.0, and 5.6. For each gap the response is found to be a monotonically increasing curve
without an upper and lower branch typical of an oscillating single cylinder. This continuous increase in the response
with increasing reduced velocity is usually found in galloping like- oscillations. To verify this galloping behaviour,
higher reduced velocity tests are planned.
The oscillation starts at about Vr ¼ 2:5 and grows continuously. The peak amplitude in our experiment is about

1:4D, which is 50% higher than the maximum amplitude observed for the isolated cylinder case. This peak occurred for
the maximum reduced velocity that could be reached by the water channel, i.e., Vr ¼ 12. This peak amplitude of the
downstream cylinder is observed for a gap S=D ¼ 3. It is interesting to note that this increase in amplitude is not
observed in interference experiments carried out in air at a higher mass ratio, as reported by Brika and Laneville (1999).
Although they observed a continuous response curve, the amplitude reached a maximum similar to the case of an

ARTICLE IN PRESS

Fig. 10. Flow visualizations employing a PIV system, two cylinders in tandem, S=D ¼ 3:0, Re ¼ 7300, Vr ¼ 6, A=D ’ 0:9;
downstream cylinder at (a) uppermost position and (b) lowermost position.

Fig. 9. Flow visualizations employing a PIV system, two cylinders in tandem, S=D ¼ 3:0, Re ¼ 3200, Vr ¼ 2:6, A=D ’ 0:2;
downstream cylinder at (a) uppermost position and (b) lowermost position.
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isolated cylinder. As one can see in Fig. 8, the response of the downstream cylinder at Vr ¼ 12 decreases slowly with
increasing gap spacing. For S=D ¼ 5:6, the largest gap spacing tested, the influence of the upstream cylinder is still
pronounced.
Finally, flow visualizations of the USP model, employing a PIV system, are shown in Figs. 9 and 10. The case for a

gap S=D ¼ 3 is considered, and the vorticity contours are shown when the oscillating downstream cylinder is at its
uppermost and lowermost positions. Fig. 9 shows the results for Vr ¼ 2:6 and Fig. 10 the results for Vr ¼ 6:0. In the
first case, the maximum amplitude is slightly below 0:2D, and the flow visualization shows that the shear layers roll up
after the downstream body. Although the second body is oscillating with low amplitude, the cylinders almost behave as
a single body, and vortex shedding does not occur in the gap region. In the case for Vr ¼ 6:0, vortex shedding occurs in-
between the cylinders and the shedding is synchronized with the oscillation. The amplitude of oscillation, for this
reduced velocity, is about 0:9D. Fig. 10 clearly shows that when the cylinder is at its uppermost position, a
counterclockwise vortex shed from the upstream cylinder passes close to the lower half of the downstream cylinder. This
will create a low-pressure region which acts to pull the cylinder downwards. Whether similar behaviour is observed for
higher reduced velocities is still unknown. In the next phase of the current research, PIV images will be employed to
investigate such cases.
Despite the fact that the amplitude response curve is similar to galloping, new measurements and CFD calculations

suggest that the transverse forces on the downstream cylinder are due to vortex shedding and they are enhanced by
vortices coming from the upstream cylinder. Therefore, a better term to illustrate the observed behaviour would be
WIV, wake-interference vibrations, which describes the phenomenon responsible for these excitations and combines:
lock-in of shedding frequency from VIV and interference from the vortices shed from the upstream body.

4. Conclusions

The results for an isolated cylinder were found to be in accordance with other reported measurements for m! ’ 1, 2,
and 8. Consequently, the results are satisfactory to validate the experimental set-up. The decay tests performed in air
verified the low-damping behaviour of the base. For the tandem configuration (m! ’ 1 and 2), one can notice a
predominance of the galloping-like phenomenon for the gap range 3:0oS=Do5:6, since the amplitude curve does not
show a peak response, and increases continuously with increasing reduced velocity. Higher reduced velocity
experiments are planned to be carried out to confirm such behaviour. The peak amplitude observed for the downstream
cylinder was about 50% higher than the one observed for the isolated cylinder case. The experiments shown in this
paper are still preliminary and are part of an ongoing research project. Future investigations will include tandem,
staggered and side-by-side arrangements with the two cylinders free to move.
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Abstract

Measurements are presented of response and drag for a flexibly mounted circular cylinder with low mass and
damping. In one set of experiments it is free to respond in only the cross-flow direction and in a second it is free to
respond in two degrees of freedom. It is shown how vortex-induced vibration can be practically eliminated by using
free-to-rotate, two-dimensional control plates. Further it is shown that these devices achieve VIV suppression with drag
reduction. The device producing the largest drag reduction was found to have a drag coefficient equal to about 60% of
that for a plain, fixed cylinder over the Reynolds number range of the experiments, up to 30 000. The importance of
torsional resistance of the devices is discussed and it is shown that if it is too low large oscillations of the device and
cylinder will develop and if it is too high galloping is initiated.
r 2009 Elsevier Ltd. All rights reserved.

Keywords: VIV Suppression; Drag reduction; Two-dimensional control plates; Circular cylinder

1. Introduction

Vortex-induced vibrations (VIV) are a continuing problem in many branches of engineering and can be particularly
severe for the risers used in deepwater offshore oil operations. A widely used method for suppressing VIV of long
slender bodies of circular cross section is the attachment of helical strakes. Developed originally in the wind engineering
field, strakes suffer from two major problems: the first being that they increase drag and the second that, for a given
strake height, their effectiveness reduces with decreases in the response parameter m!z, where m! is the ratio of
structural mass to the mass of displaced fluid and z is the structural damping expressed as a fraction of critical damping.
Whereas a strake height of 10% of cylinder diameter is usually sufficient to suppress VIV in air at least double this
amount is often required in water, and this increase in height is accompanied by a corresponding further increase in
drag. For a fixed cylinder it is known that if regular vortex shedding is eliminated, say by the use of a long splitter plate,
then drag is reduced. Hence in theory an effective VIV suppression device should be able to reduce drag rather than
increase it. This idea underlies the work presented in this paper.
According to Bearman (1984) a simple analysis for a linear oscillator model of VIV assuming harmonic forcing and

harmonic response shows that response is inversely proportional to the product of m! and z. Hence the most rigorous

ARTICLE IN PRESS

www.elsevier.com/locate/jfs

0889-9746/$ - see front matter r 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jfluidstructs.2008.11.002

!Corresponding author.
E-mail address: g.assi05@imperial.ac.uk (G.R.S. Assi).

87



way to test the effectiveness of a VIV suppression device is to work at low mass and damping. In the experiments to be
described in this paper the parameter m!z was equal to or less than 0.014. Owen et al. (2001) describe a method for low
drag VIV suppression that had shown itself to be effective down to values of m!z of about 0.5. This is the attachment of
large scale bumps to induce three-dimensional separation and eliminate vortex shedding. However, later experiments at
lower values of m!z have shown a return of VIV with amplitudes similar to those of a plain cylinder. This behaviour has
been observed by the authors with even grosser forms of continuous surface, three dimensionality where regular vortex
shedding has been eliminated from the body when it is fixed but it returns when the cylinder is free to respond under
conditions of low mass and damping. From this experience it is concluded that sharp-edged separation from strakes,
with its accompanying high drag, is required to maintain three-dimensional separation and suppress VIV. Hence at
values of m!z typical for risers (less than 0.1) it seems that three-dimensional solutions are unlikely to provide the
required combination of VIV suppression and low drag.
There are a number of two-dimensional control devices to weaken vortex shedding and reduce drag, with the most

well known being the splitter plate. In this paper we describe the results of experiments to suppress VIV and reduce drag
using various configurations of two-dimensional control devices.

2. Experimental arrangement

2.1. Flow facility

The investigation was carried out in a recirculating water channel with a free surface and a test section 0:6m wide,
0:7m deep and 8:4m long. The flow speed, U, is continuously variable and flow with turbulence intensity less than 3%
can be obtained up to at least 0:6m=s. The circular cylinder model was constructed from 50mm diameter perspex tube,
giving a maximum Reynolds number of approximately 30 000, based on cylinder diameter D. With a wet-length of
650mm (total length below water level) the resulting aspect ratio of the model was 13. Various VIV suppression devices
were attached to the model and in the first set of experiments the cylinder was free to respond in only the transverse
direction. In the second set it was free to respond in both the transverse and in-line directions. In order to have a
reference to assess suppression effectiveness, experiments were also carried out on the cylinder without any devices,
referred to here as the plain cylinder.

2.2. One-degree-of-freedom rig

Models were mounted on two different rigs: the first was a one-degree-of-freedom (1-dof) elastic system that allowed
the cylinder to oscillate only in the transverse direction (Fig. 1(a)). Models were mounted on a very low damping, air
bearing support system spanning the width of the test section. The cylinder was mounted such that there was a 2mm
gap between the lower end of the cylinder and the glass floor of the test section. A pair of springs connecting the moving
base to the fixed supports provided the restoration force of the system, setting the natural frequency of oscillation in air
(f y0). An optical positioning sensor was installed to measure the y-displacement of the cylinder without introducing
extra friction to damp the oscillations. Thus, the cylinder is free to oscillate only in the y-direction with a very low
structural damping z ¼ 0:7%, calculated as the percentage of the critical damping obtained from free decay oscillations
performed in air.

2.3. Two-degree-of-freedom rig

The second rig, a two-degree-of-freedom (2-dof) system, allowed the cylinder to freely respond in both transverse and
in-line directions (Fig. 1(b)). The cylinder model was mounted at the lower end of a long carbon fibre tube which
formed the arm of a rigid pendulum. The top end of the arm was connected to a universal joint fixed at the ceiling of the
laboratory so that the cylinder model was free to oscillate in any direction in a pendulum motion. The distance between
the bottom of the cylinder and the pivoting point of the universal joint was 2800mm. Two independent optical sensors
were employed to measure displacements in the x- and y-directions. All displacement amplitudes presented for 2-dof
measurements are for a location at the mid-length of the model. It should be noted that for a displacement equal to 1
diameter the inclination angle of the cylinder was only just over 1# from the vertical axis.
Two pairs of springs were installed in the x- and y-axes to set the natural frequencies in both directions of motion

allowing different natural frequencies to be set for each direction. Although the cylinder was initially aligned in the
vertical position, in flowing water the mean drag displaces the cylinder from its original location. To counteract this

ARTICLE IN PRESS
G.R.S. Assi et al. / Journal of Fluids and Structures 25 (2009) 666–675 667

88



effect, the in-line pair of springs was attached to a frame that could be moved back and forth in the direction of the
flow. For each flow speed there was a position of the frame that maintained the mean position of the cylinder in the
vertical direction. By using two pairs of springs perpendicular to each other, the assembly has nonlinear spring
constants in the transverse and in-line directions. Movement in the transverse direction will cause a lateral
spring deflection in the in-line direction and vice versa. This nonlinearity is minimised by making the springs
as long as possible, hence the in-line springs were installed at the end of 4m-long wires, fixed at the extremities of the
frame.
It is known that during the cycle of vortex shedding from bluff bodies the fluctuation of drag has double the

frequency of the fluctuation of lift. Hence a particularly severe vibration might be expected to occur if the
hydrodynamic forces in both directions could be in resonance with both in-line and transverse natural frequencies at
the same time. For this reason, we set the in-line natural frequency (f x0) to be close to twice the transverse (f y0) by
adjusting the stiffness of both pairs of springs. The structural damping of the 2-dof rig was z ¼ 0:3%, approximately the
same for both principal directions of motion and lower than the one measured for the 1-dof rig.
In both rigs a load cell was attached between the cylinder and the support system to deduce the instantaneous and

time-averaged hydrodynamic forces on the cylinder model. In order to obtain the dynamic forces acting, the inertia
force (cylinder structural mass times acceleration) was subtracted from the forces recorded by the load cell. For the 1-
dof tests, the mass ratio (m!, defined as vibrating mass divided by the displaced mass of water) was adjusted by adding
extra mass to the cylinder so that all models fitted with the respective devices would present the same mass ratio of 2. On
the other hand, all the devices tested on the 2-dof rig were kept to the lowest possible m! and varied between 1.6 and 2.
Table 1 presents the structural parameters for all the arrangements of cylinder and suppression device tested.
A description of each device presented in Fig. 2 is given later.
For each rig, measurements were made using a fixed set of springs and the reduced velocity range covered was from

1:5 to 23 for 1-dof and 1:5 to 13 for 2-dof experiments, where reduced velocity (U=Df y0) is defined using the cylinder
natural frequency of oscillation in the transverse direction measured in air (f y0). This frequency is very close to the true
natural frequency that would be recorded in a vacuum. The only flow variable changed during the course of the
experiments was the flow velocity U, which, as for full-scale risers, alters both the reduced velocity and the Reynolds
number.
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Fig. 1. Experimental apparatus: (a) 1-dof rig and (b) 2-dof rig. Water flow in x-axis.
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Throughout the study, cylinder displacement amplitudes in both directions (Ax and Ay) were found by measuring the
root mean square value of response and multiplying by

ffiffiffi
2
p

. This is likely to give an underestimation of maximum
response but was judged to be perfectly acceptable for assessing the effectiveness of VIV suppression devices.
Displacements Ax and Ay are nondimensionalised by dividing by the plain cylinder diameter D.
In addition to response and force measurements, flow visualisation was carried out using laser-illuminated fluorescent

dye and hydrogen bubbles. Flow field measurements to obtain instantaneous spatial distributions of velocity and
vorticity were obtained using a digital PIV system.

3. Experimental results and discussion

3.1. Plain cylinder results

Initially experiments were conducted on a plain cylinder to help validate the apparatus and the experimental method.
Fig. 3(a) shows transverse amplitude versus reduced velocity for 1-dof and the form of the results is close to that found
by other investigators. Measurements of the time mean drag coefficients versus reduced velocity for a plain responding
cylinder and also a fixed cylinder are presented in Fig. 3(b).
In the same way, Figs. 7(a), (c) and (e) present transverse and in-line displacement amplitudes and drag coefficients

for a plain cylinder responding in 2-dof, complemented by the trajectories of motion shown in Fig. 9. The results are
repeated in other parts of Fig. 7 for comparison. These results were found to be in good agreement with those presented
by other researchers.

3.2. Response of suppressors in 1-dof

3.2.1. Fixed splitter plate
Splitter plates could be rigidly attached to the rear of the cylinder and tests were carried out with plates of length

(LSP) between 0:25D and 2D. The result in all cases was a very vigorous transverse galloping oscillation that, with
increasing reduced velocity, would apparently increase without limit. In this first experiment the maximum amplitude of
transverse oscillation was limited to 2D and this was reached at a reduced velocity of about 13 for a 1D-long splitter
plate (Fig. 3(a)). A similar galloping response was also observed for a 2-dof experiment, but these results are not
presented in this paper.
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Table 1
Structural properties and average drag coefficients with corresponding drag reduction relative to a fixed cylinder..

1-dof rig 2-dof rig

Model m! m!z m! m!z f x0=f y0 CD Drag reduction

’ Fixed cylinder – – – – – 1.03 Reference
$ Plain cylinder 2.0 0.014 1.6 0.0047 1.93 – –
B Single splitter plate 2.0 0.014 1.7 0.0051 1.89 0.88 14%
# Double splitter plates 2.0 0.014 1.8 0.0055 1.88 0.70 32%
n Parallel plates 2.0 0.014 1.9 0.0056 1.86 0.63 38%
. Parallel plates with gap 2.0 0.014 2.0 0.0060 1.88 0.69 33%

Fig. 2. Sketch of proposed control plates free to rotate abound the centre of a circular cylinder: single splitter plate (length varying
from 0:25D to 2D), double splitter plates, parallel plates (after Grimminger, 1945), parallel plates with 0:1D gap.
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Flow visualisation and PIV measurements were carried out to investigate the interaction between the wake
and the splitter plate. Fig. 4(a) presents the instantaneous velocity and vorticity fields for a reduced velocity of 6.
The data was acquired when the cylinder is crossing the centreline from left to right, therefore presenting maximum
transverse velocity _y. The vorticity contours show that the shear layer separated from the right-hand side of
the cylinder apparently reattaches at the tip of the fixed splitter plate. This interaction with the tip and the
proximity of the shear layer running along the splitter plate causes a region of lower pressure on the right-hand side of
the plate and cylinder. A transverse force develops in the same direction as the cylinder motion, energy is extracted
from the free stream and galloping oscillations are sustained in essentially the same way as for classical galloping of
square section cylinders. We also note from Fig. 4(a) that the shear layers are free to interact after the splitter plate
forming vortices further downstream. The behaviour described above is illustrated in Fig. 5(a) where the resultant
velocity approaching the cylinder is the vectorial addition of the free stream velocity U and the cylinder’s transverse
velocity _y. Since a device to be used in the ocean must have omni-directional effectiveness the next stage was to
pivot the splitter plate about the centre of the cylinder, leaving just a small gap between the plate and the cylinder
surface. As with all the free-to-rotate (f-t-r) devices described, the splitter plate was mounted on bearings at each end of
the cylinder.
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Fig. 4. Instantaneous velocity vectors and vorticity contours for fixed and f-t-r splitter plates at reduced velocity 6: (a) fixed splitter
plate under galloping oscillations and (b) free-to-rotate splitter plate suppressing vibrations.
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Fig. 3. Response of suppressors in 1-dof compared with a plain cylinder: (a) transverse amplitude versus reduced velocity and (b) drag
coefficient versus reduced velocity. Key: $, plain oscillating cylinder; ’, plain fixed cylinder; E, fixed splitter plate. Free to rotate
devices: B, single splitter plate; #, double splitter plate; n, parallel plates; ., parallel plates with 0:1D gap.
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3.2.2. The free-to-rotate splitter plate
Following the disappointing results with a fixed plate, it was hoped that a plate free to rotate might provide sufficient

hydrodynamic damping to suppress the galloping. However, when an f-t-r splitter plate was used there were found to be
two stable positions for the plate at roughly %20# to the free stream direction and the plate rapidly adopted one or other
of these positions when it was released. VIV was suppressed, throughout the range of reduced velocity investigated, and
drag reduced below that of a plain cylinder. Cimbala and Garg (1991) also observed this bi-stable behaviour for an f-t-r
cylinder fitted with a splitter plate. In their experiments the cylinder and the splitter plate were manufactured into one
solid body allowed to rotate around the axis of the cylinder. However, the pivoting axis of their system was rigidly
mounted on a wind tunnel section not allowing any flow-induced vibration. Our measurements of transverse response
for the 1D f-t-r splitter plate are shown in Fig. 3(a) and time mean drag coefficients are plotted in Fig. 3(b). Results for a
plain cylinder, fixed and free, are shown for comparison. The results for other devices are also shown in these figures
and they will be described later.
PIV measurements presented in Fig. 4(b) show that on the side to which the plate deflected the separating shear layer

from the cylinder appeared to attach to the tip of the plate and this had the effect of stabilising the near wake flow.
Vortex shedding was visible downstream but this did not feed back to cause vibrations.
An unwanted effect was that a steady transverse lift force developed on the cylinder. The splitter plate was free to

rotate so the force, caused by differing flow on the two sides of the combination of cylinder and splitter plate, must be
acting primarily on the cylinder rather than the plate. As shown in Fig. 5(b), the direction of the force was opposite to
that which occurs on an aerofoil with a deflected flap, and caused the cylinder to adopt a steady offset position to the
side to which the splitter plate deflected. It was this force which was responsible for the strong galloping response with
the fixed splitter plate explained earlier. As a cylinder with a fixed splitter plate aligned with the free stream plunges
downwards (Fig. 5(a)), say, the instantaneous flow direction is approximately the same as that shown in Fig. 5(b).

ARTICLE IN PRESS

Fig. 5. Diagram showing offset position of plate and direction of steady lift force: (a) fixed splitter plate under galloping oscillations
and (b) free-to-rotate splitter plate suppressing vibrations (therefore the cylinder is stationary at _y ¼ 0).
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All the results presented so far have been for an f-t-r plate having a length equal to the cylinder diameter. Further
tests were carried out with a series of f-t-r splitter plates with various lengths (LSP) in order to assess the effect of plate
length on VIV suppression effectiveness. The results showed that f-t-r splitter plates with lengths between 0:5 and 1:5 of
a cylinder diameter are all effective in suppressing VIV. Also they all had drag coefficients below the value for a plain
fixed circular cylinder. When f-t-r plates outside the range 0:5D to 1:5D were attached to the cylinder a transverse flow-
induced vibration returned. Cimbala and Garg (1991) found stable positions outside this range but this may have been
because their system was not allowed to respond to flow-induced excitation. A secondary effect might have been the
level of friction in their ball bearings (as discussed later in this paper).
The plates that successfully suppressed VIV adopted slightly different offset angles (d, defined in Fig. 2), depending

on plate length. These steady angles are plotted in Fig. 6(a) along with results from Cimbala and Garg (1991). It can be
seen that the longer the splitter plate the smaller the angle. The dashed line in the figure is the angle the plate would
adopt if it is assumed that the tip of the plate just intercepts a line leaving the shoulder of the cylinder and trailing back
in the flow direction. The data generally support the observation that the shear layer from the side of the cylinder to
which the splitter plate deflects just reattaches at its tip. Also shown in Fig. 6(b) is the variation of drag coefficient with
splitter plate length. These results suggest that a successful VIV suppression and drag reduction device using a f-t-r
splitter plate can be shorter than one cylinder diameter.

3.2.3. Pairs of plates
In order to try to eliminate the steady transverse force found for an f-t-r splitter plate, a pair of plates was introduced.

The plates were 1D long and set at %20# to the free stream direction. The angle between the plates was fixed but the pair
of plates was free to pivot about the centre of the cylinder. The configuration is shown as double splitter plates in Fig. 2.
As shown by the results plotted in Fig. 3, this configuration suppressed VIV and reduced drag below that of a plain

cylinder. It also eliminated the steady side force found with the single plate. With this arrangement the shear layers from
the cylinder stabilised and reattached to the tips of the plates. Downstream of the plates vortex shedding was observed
but this did not generate an excitation sufficient to cause any serious VIV. Maximum amplitudes recorded were around
5% of the cylinder diameter.
Further variations on the concept of double plates, some inspired by the early work of Grimminger (1945) related to

suppressing VIV of submarine periscopes, were also studied. These included plates parallel to the flow and trailing back
from the%90# points on the cylinder. In one case there was a very small gap between the plates and the cylinder (parallel
plates in Fig. 2) and in a second case the gap was set at 10% of the cylinder diameter (parallel plates with gap in Fig. 2).
The plates trailed back 1D from the back of the cylinder. In Grimminger’s experiments the plates were fixed since the
flow direction was known but in our work the plates were free to rotate. It was found that the plates with the very small
gap give the better performance. As shown in the plots in Fig. 3 of amplitude and drag coefficient against reduced
velocity, this configuration of plates provided excellent VIV suppression and a reduction in drag below the plain
cylinder value.

3.3. Response of suppressors in 2-dofs

It has been shown here that various arrangements of two-dimensional control plates are effective in suppressing
transverse VIV. However, is this achieved at the expense of larger in-line VIV amplitudes? To answer this question a set
of experiments was conducted in the 2-dof rig. Experiments were repeated with the various arrangements of plates and
the measured transverse (Ay) and in-line (Ax) amplitudes and drag coefficients (CD) are shown in Fig. 7 plotted against
reduced velocity. Results for the plain cylinder are also shown as well as a sample of the trajectories of motion (Fig. 9)
and these agree with those found by other investigators.
After confirming that all the devices would successfully suppress VIV in 1-dof oscillations, we mounted the same

models in the 2-dof rig. This produced further unexpected findings. Starting with the single splitter plate, we found out
that the plate was not able to stabilise in the expected %20# position, but oscillated severely from one side to the other
and the cylinder developed high amplitudes, both in-line and transverse. We observed that the splitter plate oscillated so
much that it almost reached the %90# positions. This behaviour was also observed for all the other devices. Figs. 7(a)
and (c) present the transverse and in-line amplitudes versus reduced velocity and show that all devices led to
considerable vibrations of the cylinder, in many cases greater than that for the plain cylinder. As one might expect,
almost all drag coefficients presented in Fig. 7(e) were increased above the ones for a plain cylinder. Apart from moving
from 1-dof to 2-dof, the only other change in the apparatus was to use lower friction bearings in the mounts for the
suppression devices. This prompted us to consider additional parameters that might be important in stabilising the
devices.
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3.3.1. Effects of torsional resistance and rotational inertia
Two additional parameters that may influence the effectiveness of the suppression devices are: the rotational inertia

of the plates and the torsional resistance resulting from friction in the bearings holding the plates. Experiments with
mass added to the splitter plate to increase its rotational inertia produced no obvious change in behaviour. However, we
noted that small increases in torsional friction were sufficient to suppress vibration. This finding prompted a study of
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the effect of torsional friction which we now knew would lead to severe oscillations if it was below some critical value
and presumably would result in galloping oscillations if it was too large.
A simple modification was made to the apparatus in order to control the torsional resistance (tf ), which was varied in

small increments between 0:009 and 0:055Nm per unit length of the cylinder with the lowest value being for just the
bearings. With a value higher than 0:055Nm=m the splitter plate did not move over the range of reduced velocity tested
and galloping returned. A nondimensional friction torque parameter is defined as t!f ¼ tf =rU2D2, which represents the
ratio of structural torsional resistance to a hydrodynamic torque. Use of this parameter provides a means of
determining the required torsional resistance for full-scale risers.
A set of 56 runs varying the reduced velocity was completed for the single splitter plate model of length 1D in order to

map the amplitude response for different values of tf . The displacement amplitude parameter Axy (defined as

Axy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
y

q
) was determined for each run and maps of the cases studied are shown in Fig. 8. The solid line gives

an indication of the effectiveness of suppression. For all points above the solid line Axy is less than 0:1D.
Fig. 8(b) presents the same stability map as shown in Fig. 8(a) but instead plots the nondimensional friction
torque parameter t!f on the vertical axis. The dashed line is for tf ¼ 0:025Nm=m, illustrating that any value
of torsional friction between this line and the upper threshold would be sufficient to suppress VIV with a single
splitter plate.
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Fig. 9 shows examples of trajectories of motion for a single splitter plate with two different torsional friction levels,
below and above the critical value, compared with the response of a plain cylinder. In the low-friction case
(tf ¼ 0:009Nm=m) the splitter plate was unstable and the trajectories show amplitudes higher than those for a plain
cylinder. However, when the friction level was set to 0:035Nm=m the trajectories are little more than small dots over
the whole range of reduced velocity.
We next wanted to verify that the other suppressors would also work if the torsional friction was set to a suitable

critical value. Because the critical value was unknown for each device, we arbitrarily chose the value tf ¼ 0:035Nm=m
from the single splitter plate map of Fig. 8(a), which is in a region where suppression is effective. All devices were set at
this torsional friction level and runs over a range of reduced velocity were performed. Figs. 7(b) and (d) show results that
should be compared with the low-friction case (tf ¼ 0:009Nm=m). Immediately we notice that the amplitude levels in
both directions of motion are very much less than those for the low-friction case. In fact, at this torsional friction level all
suppressors were effective in reducing VIV below 5% of cylinder diameter. Fig. 7(f) shows that all devices reduced drag
below that of a fixed cylinder for most of the range of reduced velocity and Table 1 shows that parallel plates achieved
the highest average drag reduction of 38% when compared with a plain fixed cylinder. The drag coefficient data given in
Table 1 for the plain cylinder and the cylinder fitted with suppression devices is an average over the range of flow velocity
used (that is one value of CD averaged between 3& 103oReo3& 104). Hence for each test case the Reynolds number
range is the same and for the freely mounted models the reduced velocity ranges are also the same.
It seems likely that different suppressors might have different stability boundaries for torsional resistance, but there is

clearly a range of tf within which VIV suppression would be achieved for the devices we studied. A further observation
is that the critical torsional friction required to stabilise the splitter plate in 2-dof motion is greater than that required
for 1-dof, presumably because in-line vibrations play some role.

4. Conclusions

Suppression of cross-flow and in-line VIV of a circular cylinder, with resulting drag coefficients less than that for a
fixed plain cylinder, has been achieved using two-dimensional control plates. This has been accomplished at values of
the combined mass and damping parameter up to 0:014. The maximum drag reduction occurs with parallel plates and is
about 38%. A free-to-rotate splitter plate was also found to suppress VIV but this configuration develops a mean
transverse force. This force can be eliminated by using a pair of splitter plates arranged so that the shear layers that
spring from the cylinder attach to the tips of the plates.
The level of torsional friction plays a fundamentally important role, needing to be high enough to hold the devices in

a stable position, while still allowing them to realign if the flow direction changes. Devices with torsional friction below
a critical value oscillate themselves as the cylinder vibrates, sometimes increasing the amplitude of cylinder oscillation
higher than that for a plain cylinder. All devices with torsional friction above the critical value appeared to suppress
VIV and reduce drag for 1-dof and 2-dof motions. However, if the torsional resistance is above a limiting threshold the
suppressors may not rotate and an undesired galloping response can be initiated.
With two-dimensional control plates proving to be effective VIV suppressors, future studies need to concentrate on

optimising the devices in respect of overall length and geometry. Also, more detailed parametric studies on the effects of
rotational inertia and torsional resistance should be carried out for each family of device.
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The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem
arrangement is investigated by experiments. A typical WIV response is characterized
by a build-up of amplitude persisting to high reduced velocities; this is different
from a typical vortex-induced vibration (VIV) response, which occurs in a limited
resonance range. We suggest that WIV of the downstream cylinder is excited by
the unsteady vortex–structure interactions between the body and the upstream wake.
Coherent vortices interfering with the downstream cylinder induce fluctuations in the
fluid force that are not synchronized with the motion. A favourable phase lag between
the displacement and the fluid force guarantees that a positive energy transfer from
the flow to the structure sustains the oscillations. If the unsteady vortices are removed
from the wake of the upstream body then WIV will not be excited. An experiment
performed in a steady shear flow turned out to be central to the understanding of the
origin of the fluid forces acting on the downstream cylinder.

Key words: flow–structure interactions, vortex flows, wakes/jets

1. Introduction
Great strides have been made in understanding the mechanisms involved in vortex-

induced vibration (VIV) of an isolated circular cylinder free to vibrate transverse
and/or in-line to a fluid flow. Progress has been reviewed by Sarpkaya (1979, 2004),
Bearman (1984), Parkinson (1989), Blevins (1990) and Williamson & Govardhan
(2004). With the development of offshore oil fields and the deployment of riser pipes,
much of the research related to cylinder response focused on conditions with low
mass ratio m∗ and damping ζ . Here, m∗ is the ratio of mass per unit length of
the structure, m, to fluid displaced, ρπD2/4, where ρ is fluid density, D is cylinder
diameter and ζ is structural damping expressed as a fraction of critical damping. This
research revealed a number of extremely interesting phenomena associated with VIV
of isolated cylinders.

However, there are many flow-induced vibration (FIV) problems that involve two
or more cylinders in configurations where the flow field of one cylinder influences
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366 G. R. S. Assi, P. W. Bearman and J. R. Meneghini

the flow on one or more other cylinders. One of the best-known examples of closely
spaced cylinder arrays that are susceptible to FIV is the crossflow heat exchanger.
Other examples include arrays of offshore riser pipes, closely spaced chimneys and
overhead conductor cables. If we now consider a cylinder array where the cylinders
have low mass and damping then, compared to an isolated cylinder, the possibilities
for response are greatly increased. In such a complex flow environment, one of the
greatest challenges is to understand the physical mechanisms responsible for FIV.

We have approached this problem from a fundamental perspective by just
considering two cylinders. An important advantage is that now the possible parameter
space is much reduced and hence it should be easier to focus on some of the basic
mechanisms responsible for FIV of cylinders in arrays. However, limiting the problem
to two cylinders can still involve a large number of variables, hence we have imposed
some further restrictions. The cylinders are of equal diameter, and when at rest, are
aligned one behind the other in a tandem arrangement. Only the rear cylinder is free
to respond and response is restricted to the direction transverse to the approaching
stream. Also, we consider the cylinder to be rigid but flexibly mounted. Applying
dimensional analysis to the primary variables, the response ŷ is then given by the
relation

ŷ

D
= f

✓
ρUD

µ
,

U

Df0
,
x0

D
, m∗, ζ

◆
, (1.1)

where U is free-stream velocity, µ is viscosity, f0 is the cylinder natural frequency and
x0 is the centre-to-centre spacing between the cylinders. It should be noted that f0

is the natural frequency in vacuo and U/Df0 is the reduced velocity. In practice, the
cylinder frequency is measured in air but this provides a very close approximation to
the natural frequency f0.

A considerable amount of work has been published relating to the flow about two
fixed cylinders in a tandem arrangement but substantially less has appeared on the
response of tandem cylinders. Bokaian & Geoola (1984) carried out experiments on
tandem cylinders, to be described in more detail later, where the front one was fixed
and the rear one was free to respond transverse to the flow. They observed that,
depending on the value of U/Df0, the response could be of the VIV type or it could
be similar to galloping. They refer to the latter regime, which commences at values of
reduced velocity beyond the peak response due to VIV, as wake-induced galloping.

Is this galloping similar to the classic kind described by den Hartog (1956) where a
fluid-dynamic instability occurs, related to the cross-sectional shape of the body, such
that motion of the body generates forces that increase the amplitude of vibration?
It cannot be because when the rear cylinder is displaced in the transverse direction
away from the line of centres, there is a hydrodynamic restoring force that is acting to
return the cylinder to its original position. This suggests stability of the rear cylinder
rather than instability. The restoring force was observed long before the work of
Bokaian & Geoola (1984) and prompted a number of researchers to develop theories
to seek its origin and to predict its magnitude. Price (1976) concluded that none of
the explanations that had been proposed were completely satisfactory.

Paidoussis & Price (1988) developed mathematical models to describe the response
of cylinders in closely spaced arrays and also simplified the problem by considering
only two cylinders. They concluded that there needed to be a time delay between
cylinder displacement and the transverse force to sustain wake-induced vibration
(WIV). However, they did not provide a detailed explanation of the physical
mechanism responsible for this delay beyond saying that there was likely to be a
lag between the cylinder moving and the wake adjusting. Hence, two outstanding

8B
B

9 
7

 
0

1
5

8B
B

 3
1

2
9

75
 

7
3

5 
.

B9B
CB

5
9

39
5

39
1

/
1

1B
C2

:5
3B

B
B8

5
,1

2
9

75
,

5
B5

C
5

1D
19

12
5

1B
8B

B
 3

1
2

9
75

 
7

3
5

B5
 

98



On the wake-induced vibration of tandem circular cylinders 367

x0

x

y

D m

k c

U

Position of
hot-film probes

y0

Figure 1. Arrangement of a pair of cylinders. The downstream cylinder is elastically mounted.
The static upstream cylinder may be removed during experiments with a single cylinder.
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Figure 2. Regimes of flow interference for static cylinders for different tandem separations.
Classification of interference regimes proposed by Igarashi (1981).

questions remain: what is the origin of the restoring force and what is the mechanism
driving the transverse oscillation of the downstream cylinder in the regime described
by Bokaian & Geoola (1984) as wake-induced galloping?

1.1. Flow interference around a pair of cylinders

An arrangement of a pair of cylinders is shown in figure 1, and our interest is
in the particular case where the line of centres is parallel to the free stream, i.e.
y0 = 0. The upstream cylinder is exposed to a free stream with velocity U , but the
downstream body is immersed in a disturbed-flow region created by the wake of
the upstream cylinder. The Reynolds number in this study is always based on the
velocity approaching the upstream body. Vortices shed from the first body will not
only pass by or impinge on the downstream cylinder, but will also interfere with
vortex shedding from the downstream cylinder. Hence, if the downstream cylinder is
mounted on an elastic base, the response of the body will be influenced by the wake
coming from the upstream body.

Early experiments with tandem static cylinders identified two main interference
regimes associated with the type of flow that develops in the gap between the
bodies. The gap flow is characterized by the presence of two unstable shear layers
that, depending on x0 and Re, may reattach to the downstream cylinder, to form
a region of recirculation, or roll up to initiate vortex shedding in the gap. Igarashi
(1981) presented a more detailed classification dividing the gap-flow behaviour into
six categories, as illustrated by ‘A’ to ‘F’ in figure 2. More recently, Sumner, Price &
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Paidoussis (2000) produced a detailed classification of interference regimes for various
configurations of staggered cylinders.

In this study, we are only concerned with the regime in which alternate vortex
shedding is present in the gap. The transition from ‘E’ to ‘F’ in figure 2 marks the
change to this type of flow. For a sufficiently large separation beyond a critical x0,
the shear layers start to roll up in the gap (pattern ‘E’), and finally, a regime is
reached in which a vortex street is formed behind the upstream cylinder (pattern ‘F’).
Zdravkovich (1977) comments that ‘the commencement of vortex shedding behind
the upstream cylinder strongly affects and synchronises the vortex shedding behind
the downstream one. Hence, both cylinders should be equally prone to flow-induced
vibrations due to vortex shedding.’ Other excitation mechanisms may occur for x0

below the critical value, but the mechanism we are calling WIV only occurs when a
developed wake is present in the gap.

The critical x0 appears to have some dependency on Reynolds number and
free-stream turbulence intensity. Ljungkrona, Norberg & Sunden (1991) performed
experiments around Re =2.0 × 104 and observed that the critical separation is in the
range x0/D = 3.0–3.5 for a low turbulence intensity of 0.1 %, while it decreases to
x0/D = 2.0–2.5 for turbulence intensities of 1.4 and 3.2 %. Both Ljungkrona et al.
(1991) and Zdravkovich (1986) suggested that this phenomenon may originate in
instabilities in the separated shear layers from the upstream cylinder. Ljungkrona
et al. (1991) also stated that the critical x0 ‘is high at very low Re, then decreases
and passes through a minimum at moderate Re, followed by a maximum at higher
Re and then it begins to decay with increasing Re’. They have found similarities
between this behaviour and the Re dependency of the vortex-formation length of
single cylinders reported by Norberg & Sunden (1987). Lin, Towfighi & Rockwell
(1995) and Norberg (1998) showed that it decreases with increases in Re in the range
Re = 103–105, resulting in vortices forming closer to the base of the cylinder. Lin,
Yang & Rockwell (2002) and Assi (2005) also showed evidence of this phenomenon
occurring with a pair of tandem cylinders.

Another less-pronounced variation in the critical x0 may be due to hysteretic
behaviour depending on whether cylinders are moved apart or brought closer together
during the experiment. Liu & Chen (2002) showed that this phenomenon occurs
for a pair of square cylinders in tandem and Zdravkovich (1977) suggested this
possibility may occur for circular cylinders. Additionally, numerical studies performed
by Jester & Kallinderis (2003) for Re = 103, Papaioannou et al. (2006) for Re =102–103

and Carmo, Meneghini & Sherwin (2010a ,b) for Re = 500 also provide a clear
demonstration of the hysteresis of both regimes in relation to Re and x0. All these
aforementioned factors may cause the critical separation to present considerable
variation.

The classification of flow interference regimes presented so far is for a pair of
tandem cylinders that are stationary. Chen (1986) observed that ‘When either or
both of the cylinders are elastic or vibrate, the flow field becomes significantly more
complicated because of the interaction of the fluid flow and the cylinder motion’. Assi
et al. (2006) showed that when the downstream cylinder is allowed to oscillate, the
interference between both bodies changes drastically depending on the amplitude of
oscillation and Reynolds number.

1.2. Wake-induced vibration of the downstream cylinder

King & Johns (1976) performed experiments in water (Re = 103 to 2 × 104) with two
flexible cylinders for separations in the range x0/D =0.25–6.0. They observed that for
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On the wake-induced vibration of tandem circular cylinders 369

x0/D =5.5, the upstream cylinder response showed a typical VIV pattern reaching
amplitudes around ŷ/D = 0.45 at the resonance peak, comparable to their tests with
a single cylinder at the same Re. On the other hand, the downstream cylinder also
started to build up oscillations together with the upstream one, but instead of the
oscillations disappearing after the synchronization range, they remained at roughly
the same level up to the highest reduced velocity tested. They classified the response
of the downstream cylinder as a type of buffeting, since it originated from the wake
interference coming from the upstream cylinder.

Brika & Laneville (1999) performed tests with a pair of long cylinders in a wind
tunnel in the range Re = 5000–27 000 with a flexible cylinder positioned from 7 to 25
diameters downstream of a rigid cylinder. They presented amplitude data for different
separations revealing that as x0 increases, the interference effect from the upstream
wake is reduced until the response resembles that of a single cylinder without any (or
with very little) interference. It is interesting to note that even between separations
16 and 25 they were still able to identify some change in the interference effect with
the second cylinder positioned so far downstream. Because their experiments were
performed in air, the mass ratio (m∗ = 821) was two orders of magnitude higher than
other experiments in water. Yet their damping parameter was extremely low, resulting
in a combined mass damping of only m∗ζ = 0.068.

Moving from fully flexible to flexibly mounted rigid cylinders, we refer to
experiments performed by Zdravkovich (1985) with two rigid cylinders free to
respond in 2 degrees of freedom (d.o.f.) mounted in a wind tunnel (Re = 1.5 × 104–
9.5 × 104, m∗ = 725 and ζ = 0.07). Due to a very high combined mass-damping
parameter ( m∗ζ = 50), Zdravkovich was only able to observe a build-up of oscillations
for x0/D = 4.0 at reduced velocities beyond U/Df0 = 50, asymptotically reaching a
maximum of ŷ/D = 1.7 at around a reduced velocity of 80. Zdravkovich & Medeiros
(1991) performed similar 2-d.o.f. tests in a wind tunnel varying m∗ζ between 6 and 200
(Re = 5 × 103–1.4×105). A similar asymptotic behaviour for crossflow vibrations was
observed for high reduced velocities. Their results revealed a strong dependency of
the response on m∗ζ and showed that very high values of mass damping are required
to inhibit WIV on the downstream cylinder. The maximum amplitude was obtained
at their highest reduced velocity of 120.

Moving a step further in the simplification of the problem, we find a few studies
for rigid cylinders responding only in 1-d.o.f. Bokaian & Geoola (1984) performed
experiments with two cylinders in tandem in a water channel (Re = 700–2000). The
upstream cylinder was fixed, while the downstream cylinder was elastically mounted
on air bearings and free to respond only in the crossflow direction. They varied centre-
to-centre separation in the range x0/D = 1.09–5.0 covering the interference regimes
with and without vortex shedding in the gap. Results for amplitude of response
versus reduced velocity (with fW being the natural frequency in still water) are
presented in figure 3(a) for three values of x0. A vigorous build-up of oscillations with
increasing flow speed was observed for all flow speeds greater than a critical threshold
velocity. Such a severe 1-d.o.f. vibration was observed to resemble the response due
to classical galloping of non-circular bodies and they referred to the phenomenon
as ‘wake-induced galloping’. Bokaian & Geoola (1984) concluded that depending on
x0, m∗ and ζ, the downstream cylinder ‘exhibited vortex-resonance, or galloping, or
a combined vortex-resonance and galloping, or a separated vortex-resonance and
galloping’ response.

In figure 3(a), two examples of these different responses are found, with
x0/D =1.5 presenting a vortex resonance that is followed by (or combined with)
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Figure 3. WIV response of the downstream cylinder. (a) Varying x0, m∗ = 8.4, ζ =0.013
and Re = 700–2000 (Bokaian & Geoola 1984). (b) !, x0/D = 4.75, m∗ = 3.0, ζ = 0.04
and Re = 3 × 104 (Hover & Triantafyllou 2001); ", x0/D = 4.0, m∗ = 1.9, ζ =0.007 and
Re = 3000–13 000 (Assi et al. 2006).

a ‘galloping response’, and x0/D = 2.0 and 3.0 presenting separated vortex-resonance
and ‘galloping’ regimes. Unfortunately, the form of the flow in the gap is not known;
however, from the classification of regimes proposed by Igarashi (1981) for static
cylinders, and shown in figure 2, it seems likely that for the smallest gaps vortex
shedding did not occur ahead of the downstream cylinder. Hence, it is not apparent
if the ‘galloping-type’ response found by Bokaian & Geoola (1984), for all the
separations shown in figure 3(a), is the WIV that we are studying. A mechanism of
gap-flow switching sustains vibrations of cylinders in close proximity, as described
by Zdravkovich (1974, 1988). It occurs for the first regime of flow interference when
the upstream shear layers reattach to the downstream cylinder and no vortex wake
is developed in the gap flow. Zdravkovich (1974) offers a convincing explanation for
the excitation of tandem cylinders in close proximity, but leaves open the question of
the mechanism when cylinders are farther apart.

A clearer example of WIV is shown in the work of Hover & Triantafyllou (2001)
who measured displacements and forces for rigid cylinders in a water-towing tank
at a constant Re =3 × 104. They used a closed-loop control system that forces the
oscillation of a cylinder in response to the fluid force measured on the cylinder. Using
this technique, they are able to control the key parameters: f0, m∗ and ζ . Their
constant Re results presented in figure 3(b) were obtained by keeping U constant
and varying f0. For their experiments, m∗ζ = 0.12, which is very close to the value
of m∗ζ = 0.11 obtained by Bokaian & Geoola (1984). The differences in the levels
of amplitude found in the two investigations is probably related to a difference
of one order of magnitude in Re, as discussed in Assi (2009). For a separation of
x0/D = 4.75, Hover & Triantafyllou (2001) observed one single branch of response that
builds up monotonically reaching amplitudes of [ŷ/D]max = 1.9 for reduced velocities
around 17.

More recently, Assi et al. (2006) performed 1-d.o.f. experiments with two rigid
cylinders in a recirculating water channel (Re = 3 × 103–1.3×104). Their measurements
of the transverse amplitude of the rear cylinder, also presented in figure 3(b), were
obtained at Re values close to those tested in the experiments carried out by Hover &
Triantafyllou (2001). However, Assi et al. (2006) employed a very low damping
elastic system resulting in m∗ζ = 0.013, which is one order of magnitude lower.
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On the wake-induced vibration of tandem circular cylinders 371

Nevertheless, both sets of results are in reasonably good agreement showing the
expected WIV branch of high-amplitude oscillation building up as reduced velocity is
increased. However, the results of Assi et al. (2006) also show a smooth hump around
U/Df0 = 6.0, indicating a VIV response.

1.3. The wake-induced vibration mechanism

A major difficulty in using quasi-steady arguments to explain the origin of WIV is
that when the rear cylinder of a tandem pair is displaced sideways, a force develops
that is acting to return the cylinder to its original position. The various theories about
how this force is generated have been well explained by Price (1976) and he concludes
that none can successfully predict the magnitude of the force.

Zdravkovich (1977) proposed that the displacement of the wake of the upstream
cylinder by the downstream one towards the wake centreline would induce a lift
force towards the centreline. Maekawa (1964) attributed the origin of the force to
a buoyancy effect. The static pressure is a minimum at the centreline of the wake;
hence, the pressure gradient across the wake generates a buoyancy force towards the
centreline. However, Best & Cook (1967) and Wardlaw & Watts (1974) showed, by
integrating the pressure field around the downstream cylinder, that only 30–50 % of
the total lift could be attributed to a buoyancy effect. Maekawa (1964) also suggested
that turbulence generated by the wake may affect the separation on the internal side
of the cylinder, changing the symmetry of the pressure field around the downstream
body. However, this phenomenon was not confirmed by experiments that examined
transition on the downstream cylinder.

Mair & Maull (1971) proposed that the side force was caused by an entrainment
of flow into the wake of the upstream cylinder generating an inclined free-stream
velocity approaching the downstream body. The lift force towards the centreline would
then be due to resolved drag, i.e. the component of inclined drag that contributes
in the crossflow direction of displacement. Using estimated flow inclination angles,
Price (1976) estimated that the lift force due to resolved drag is only 25 % of the
total lift-force measure on the cylinder. Rawlins, referenced in Price (1976), stated
that because of variations of velocity across the wake, the boundary layer on the
downstream cylinder feeds different amounts of vorticity into the associated shear
layers. He concluded that a circulation is built up around the cylinder until rates
at which vorticity is discharged into the two separated shear layers are equal. This
circulation would generate lift towards the centreline. Rawlins’ lift curves have the
same general shape as the lift profile measured experimentally, but do not obtain the
required magnitude, generating only 75 % of the lift measured at the position of
the maximum. Hence, following the detailed study by Price (1976) of the available
theories, it appears that there is no fully satisfactory explanation for the origin of the
transverse force acting on the rear cylinder of a cylinder pair.

It is clear that a simple quasi-steady theory will not be able to predict the fluid-
elastic instability of the downstream cylinder if it is only free to oscillate in 1-d.o.f.
Price (1984) improved a quasi-steady model by inserting a time delay between the
cylinder displacement and the fluid force. This phase lag was intended to account for
a possible flow retardation generated in the gap flow between the pair of cylinders;
however, the physical origin of this effect is unclear. Granger & Paidoussis (1996)
proposed yet another improvement of the quasi-steady theory employed by Price
(1984) with the aim of modelling the most relevant unsteady effects neglected by
the quasi-steady approach. In essence, their model, referred to as quasi-unsteady,
incorporates a memory effect into the same time-delay idea, ‘the physical origin
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372 G. R. S. Assi, P. W. Bearman and J. R. Meneghini

of which arises from the diffusion–convection process of the vorticity induced by
successive changes in the velocity of the body’.

Paidoussis, Mavriplis & Price (1984) employed potential-flow theory to investigate
fluid-elastic instability of an array of cylinders. Although they were not calculating
any viscous forces in their model itself, they had to include a phase-lag effect in
the fluid force in order to generate any oscillatory instability. Probably, the most
intuitive explanation for the existence of a phase lag on the fluid force was offered by
Paidoussis & Price (1988), who attributed this effect to a time delay associated with
the reorganization of the viscous wake flow as the cylinder is displaced. Paidoussis
et al. (1984) concluded that ‘if viscous effects are neglected altogether, then the only
form of instability possible is divergence, which is a static, non-oscillatory instability’.

Each improved quasi-steady model gave better agreement with experimental data
and they all include a phase lag between the cylinder displacement and the fluid force,
yet a precise explanation for the origin of this time delay has not been produced. In
this paper, we aim to study the mechanisms responsible for WIV of the downstream
cylinder of a tandem pair.

2. Experimental set-up
Experiments were performed in the Department of Aeronautics at Imperial College

London. Tests were carried out in a recirculating water channel with a free surface
and a test section 0.6 m wide, 0.7 m deep and 8.0 m long. The side walls and bottom
of the section were made of glass mounted on a steel frame, allowing a complete
view of the models for flow-visualization purposes. Flow speed was continuously
variable and an electromagnetic flow meter provided a reading of the instantaneous
flow rate, which was divided by the area of the test section yielding the value of
U . Free-stream turbulence intensity mapped across the section was (3.1 ± 0.7) % on
average. Bokaian & Geoola (1984) performed experiments with a pair of cylinders
in a water channel and found no significant difference in their WIV results for free-
stream turbulence intensity of 6.5 and 11.9 %. The actual flow quality proved to be
adequate to perform our FIV study. This was validated by good agreement between
our preliminary VIV results for an isolated cylinder and other experiments presented
in the literature (as will be shown later).

Two circular cylinders were made from a 50 mm diameter acrylic tube, giving a
maximum Re =30 000, based on cylinder diameter D. With a wetted length of 650 mm
(total length below water level), the resulting aspect ratio of the model was 13. The
cylinders were hollow and contained air in order to keep the mass low. It was judged
preferable not to install end plates on the cylinder in order not to increase the fluid
damping in the system. Instead, it was chosen to have the models terminating as close
as possible to the glass floor of the test section. One single cylinder occupies 8.3 % of
the total area of the test section. If one cylinder is oscillating behind the other, the
maximum projected area of both cylinders would result in a blockage ratio of 16.6 %
if it is displaced by more than 1D. Brankovic (2004) performed VIV tests on a single
cylinder in the same water channel with three ratios of blockage: 11.3, 13.6 and 17 %.
She concluded that although the maximum amplitude of oscillation decreased slightly
for higher blockage ratios, the results remained qualitatively the same, meaning that
the hydrodynamic mechanism did not change for the three cases studied.

The upstream cylinder was rigidly attached to the structure of the channel
preventing displacements in any direction, while the downstream cylinder was fixed
at its upper end to a 1-d.o.f. elastic mounting. The initial streamwise and crossflow
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Air bearings Springs

Load cell

Cylinder model

Water channel

y

z

65
0 

m
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Figure 4. Schematic representation of the 1-d.o.f. rig holding the downstream cylinder.
The free stream flows out of the page in the x-axis direction.

separations between cylinders (x0 and y0 in figure 1) could be varied by changing the
position of the upstream model, so that the downstream cylinder always oscillated
around the centreline of the test section. For most of the experiments performed in
this study, both cylinders were initially aligned with the free-stream direction (y0 = 0),
arranged in a tandem configuration. Figure 4 shows a schematic representation of the
1-d.o.f. rig on which the downstream cylinder was mounted. The models were aligned
in the vertical direction passing through the free-water surface and the downstream
cylinder was mounted such that there was a 2 mm gap between the lower end of
the cylinder and the glass floor of the test section. The support system was firmly
attached to the channel structure and sliding cylindrical guides were free to move
in the transverse direction defined as the y-axis. A pair of coil springs connecting
the moving base to the fixed supports provided the restoration force for the system.
A pair of sliding guides made out of a carbon fibre tube with a smooth finish ran
through air bearings at each side. The tubes were connected at mid-length by a light,
stiff platform machined out of a block of aluminium, to which the cylinder was firmly
attached.

It is known that the dynamic response of a cylinder is extremely sensitive to the
structural characteristics of the system; therefore, extra care was taken to determine
the precise value of natural frequency, mass and damping of the structure. The
spring stiffness (k) combined with the mass of all oscillating parts (m) resulted in a
natural frequency of oscillation of f0 = 0.30 Hz, determined by performing a series
of free decay tests in air. It was possible to vary reduced velocity to a maximum of
U/Df0 = 40 when U was increased up to 0.6 m s−1. The minimum flow speed in the
channel was U = 0.03 m s−1, resulting in the lower limit of U/Df0 = 2.0. All moving
parts of the elastic base contributed to the effective mass oscillating with the cylinder,
resulting in a mass ratio of m∗ =2.6 (calculated as the total mass divided by the mass
of displaced water). The air bearings proved to be an effective way to reduce damping
without compromising the stiffness of the structure, especially in resisting drag loads
for higher flow speeds. By carrying out free decay tests in air, it was also possible
to estimate the structural damping of the system resulting in ζ = 0.7 %, calculated
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374 G. R. S. Assi, P. W. Bearman and J. R. Meneghini

as a percentage of the critical damping. Therefore, the product m∗ζ = 0.018 for the
majority of the experiments.

A load cell was attached between the model and the platform to measure
instantaneous and time-averaged hydrodynamic forces acting on the cylinder. It
consisted of two independent load cells machined out of one block of a hard
aluminium alloy. The cells were perpendicular to each other in order to measure
components of the hydrodynamic force in the streamwise and crossflow directions
lift and drag, respectively. Each cell was individually calibrated up to 50 N with an
uncertainty of 1 % and no significant cross-talk between them was observed. Drag
could be measured directly by the load cell, since the cylinder was not allowed to
move in the x-axis. However, the crossflow component needed to be corrected in
order to remove the inertia force due to the moving mass of the cylinder.

An optical positioning sensor was installed to measure the y-displacement of the
cylinder without affecting the damping. Completing the instrumentation, a pair of
hot-film probes was employed to measure velocity fluctuations in the gap between the
cylinders and in the developed wake downstream of the second cylinder (see figure 1).
A Dantec particle-image velocimetry (PIV) system was used to map velocity fields. A
laser sheet entered the section through one of the side walls illuminating the flow at
the mid-height of the section. A digital camera was positioned underneath the channel
and the illuminated plane was visualized through the glass floor. Flow visualization
was also carried out using the same laser to illuminate fluorescent dye or hydrogen
bubbles. More details about the experimental set-up, flow quality, the design of the
load cell and operation of the 1-d.o.f. rig can be found in Assi (2009).

3. Analytical modelling and preliminary results
A preliminary experiment was performed with a single cylinder free to oscillate in

1-d.o.f. in a uniform flow to serve as validation of the experimental methodology.
The analytical modelling as well as the VIV results that follows will be useful when
understanding the WIV excitation mechanism.

Allowing for displacements only in 1-d.o.f., the equation of motion for an elastically
mounted body is expressed by

mÿ + cẏ + ky = 1
2ρU 2DL[Cy + Ĉy sin(2πf t + φ)], (3.1)

where y, ẏ and ÿ are, respectively, the displacement, velocity and acceleration of
the body and Cy(t) is the time-dependent fluid force coefficient in the crossflow
direction (lift). Following an analysis presented by Parkinson (1971) and others, the
displacement of a cylinder under VIV may be expressed by the harmonic response

y(t) = ŷ sin(2πf t), (3.2)

where ŷ and f represent the harmonic amplitude and frequency of oscillation,
respectively. For large-amplitude oscillation under a steady-state regime of VIV, the
fluid force and the body response oscillate at the same frequency f , which is usually
close to the natural frequency of the system. According to this ‘harmonic forcing
and harmonic motion’ assumption Cy can be expressed by a time-average term Cy

and a transient term modelled as a sine wave with amplitude Ĉy , frequency f and
phase delay between the transverse force and the motion of φ. In our single-cylinder
experiment, we expect Cy to be 0.

Throughout this study, cylinder-displacement amplitude (ŷ/D) was found by
measuring the root-mean-square value of response and multiplying by

√
2. Such
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Figure 5. VIV response of a single cylinder free to oscillate in the crossflow direction.
(a) Displacement (#, the present study; $, Khalak & Williamson (1997), m∗ = 2.4, ζ = 0.0059).
(b) Normalized PSD of frequency of oscillation. (c) Phase angle between lift and displacement.

a harmonic amplitude assumption is likely to underestimate the maximum response
but was judged to be acceptable for assessing the average amplitude of response for
many cycles of steady-state oscillations. An alternative method was to measure the
amplitude of individual peaks of displacement in order to estimate an average value,
but this was found to give very similar results to the harmonic amplitude mentioned
above, thus proving that a sinusoidal approximation for the response is indeed very
reasonable. The same procedure was employed to determine the magnitude of all
other fluctuating variables, such as Ĉy and Ĉx .

Figure 5 presents the response of the single cylinder under VIV. Since U is increased
in order to vary the reduced velocity, Re also varies along the reduced-velocity axis
and is plotted as a reference in a parallel axis. In the ŷ/D curve, it is possible
to identify the typical three branches of response for low m∗ζ systems discussed
by Williamson & Govardhan (2004) – initial, upper and lower branches – clearly
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defining a finite synchronization range. In the original curve presented by Khalak &
Williamson (1997), the reduced velocity was calculated by employing the natural
frequency measured in still water (U/DfW , in our notation); hence, their curve
plotted here has been offset in order to agree with our U/Df0 axis (considering an
added mass coefficient of Ca = 1.0). In the f/f0 graph, a variation from light to dark
grey represents dominant peaks in the normalized power spectral density (PSD) of
the frequency of oscillation (see Assi (2009) for more details).

As discussed by Williamson & Govardhan (2004), the total fluid force acting on
the cylinder can be divided into two components: a potential-force component CyP

,
given by the ideal flow inertia force, and a vortex-force component CyV

, due only
to the dynamics of the vorticity field around the body. By definition, CyP

is always
opposing the body’s acceleration and its magnitude is proportional to the product of
the displaced fluid mass and the acceleration of the body. On the other hand, CyV

essentially depends on the dynamic of vortices in the wake and may be expressed
in terms of another ĈyV

and phase angle φV in relation to the displacement of the
cylinder, resulting in

Ĉy sin(2πf t + φ) = ĈyP
sin(2πf t + 180◦) + ĈyV

sin(2πf t + φV ). (3.3)

This decomposition is useful when analysing the actual contribution the vortices in
the wake are having on the total force acting on the cylinder. The almost 180◦ phase
shift experienced by φ and φV , associated with the transition in the vortex-shedding
mode, is also clearly identified in figure 5(c). Khalak & Williamson (1999) verified
that changes in φ and φV are related to changes in the modes of vortex shedding.

A careful analysis of the time series will serve as reference for the discussion of
WIV results to come later. Time series of ŷ/D are plotted for different reduced
velocities in figure 6(a, c, e) (where T is the period of an average cycle). The first data
set (U/Df0 = 4.0) is collected from a point in the upper branch of VIV; the second
(U/Df0 = 5.7) is in the transition from the upper to the lower branch; and the third
(U/Df0 = 7.9) is in the lower branch. In the first and third series, it is possible to
note that the envelope of ŷ/D is more regular than during the transition between
branches.

The plots in figure 6(b, d, f ) compare several cycles of ŷ/D and Cy superimposed
in one figure, each representing around 20 % of the total number of acquired cycles
with displacement around the average ŷ/D. Again, it is evident that the deviation of
ŷ/D from the mean curve (thick line in black) is accentuated during the transition
between branches. Looking at Cy curves of figure 6, we observe that although the
magnitude of lift shows considerable variations, the phase angle between cycles is
reasonably constant in the upper and lower branches. Cy is clearly almost in phase
with ŷ in the upper branch and out of phase in the lower. However, the behaviour of
Cy for only a few cycles of oscillation is enough to show that a constant phase angle
is not observed during the transition from the upper to the lower branch. This is the
intermittence phenomenon described by Khalak & Williamson (1999), and it is clear
from the graph that both magnitude and phase of the lift are changing during the
transition between modes.

Ĉy was directly measured with the load cell, and ĈyP
and ĈyV

were calculated
as suggested by Williamson & Govardhan (2004). Force measurements and
decomposition were in good agreement with results presented by Khalak &
Williamson (1999), but are not presented here for brevity. In addition, PIV
measurements also found good agreement with their work in identifying the
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Figure 6. (a, c, e) Time series of displacement for around 50 cycles of oscillation. (b, d, f )
Superimposed plots of similar cycles. ŷ/D in dark grey and Cy in light grey with average cycle
in black.

appropriate vortex-shedding modes in the wake. These results can be found in Assi
(2009).

4. WIV of the downstream cylinder
We have investigated WIV responses for the downstream positioned at various

locations beyond the critical separation of x0/D = 2.5 and the results are presented in
figure 7. The upstream cylinder was stationary and only the downstream cylinder was
free to respond in 1-d.o.f. in the crossflow direction (y-axis). Fully developed vortices
were observed in the gap flow for all separations with x0/D > 2.5.

The response curves demonstrate that the overall amplitude of vibration in the WIV
regime decreases as the cylinders are moved farther apart. The smallest separation of
x0/D =4.0 presented the highest amplitudes of vibration with increasing amplitude
for higher reduced velocities. In contrast, for x0/D = 20.0, the response is drastically
reduced and, overall, more closely resembles that of VIV of a single cylinder. As
will be explained later, the WIV mechanism that excites high-amplitude vibrations
grows weaker as the cylinders are separated, until the interference is irrelevant and
the cylinder behaves like an isolated body.
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Figure 7. WIV response of the downstream cylinder at various x0/D separations.

In order to develop a clearer understanding of the WIV excitation mechanism, we
will focus our attention on a single separation of x0/D = 4.0, as will be discussed in
detail in the following sections.

4.1. WIV of the downstream cylinder at x0/D = 4.0

A separation of x0/D = 4.0 was chosen for various reasons: (i) it was beyond the
critical separation where a bistable reattachment of the shear layers may occur and
vortex shedding was observed to be present in the gap for all flow speeds; (ii) it gives
a WIV response that is qualitatively consistent with that for larger separations; (iii)
the displacements and magnitudes of fluid forces were comparatively large and can
be measured to a good accuracy; (iv) it was sufficiently small to allow the wakes of
both cylinders to be measured simultaneously using PIV.

Figure 8(a) plots the displacement versus reduced velocity. ŷ/D is the harmonic
amplitude of displacement discussed above and gives a good measure of the average
amplitude of vibration for many cycles of oscillation. However, ŷ/D does not provide a
good estimate of the maximum amplitude that the cylinder might reach if displacement
varies from cycle to cycle. By considering individual peaks of oscillation, it was
possible to estimate a maximum and a minimum peak amplitude taking an average
of the 10 % highest and lowest peaks of the whole series, yielding [ŷ/D]max and
[ŷ/D]min, respectively. Therefore, we can say that for a certain reduced velocity, the
cylinder oscillates on average with ŷ/D, but reaches the maximum and minimum
limits given by the other curves. This provides considerable new information about
the response since it shows that ŷ/D is not only building up with reduced velocity,
but also the deviation from the average amplitude, i.e. the irregularity of the envelope,
is increasing.

Figure 8(b) shows that f increases above f0 but does not reach the line for St = 0.2.
The PSD contours reveal that for any other frequencies present in the spectrum, the
levels are much smaller than the dominant branch that is evident across the reduced-
velocity range. That is to say, there is no significant trace of a frequency branch
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Figure 8. WIV response of the downstream cylinder at x0/D = 4.0. (a) Displacement;
(b) normalized PSD of frequency of oscillation.

associated with St = 0.2 beyond reduced velocity of 10, with only a hint appearing
between 5 and 10.

As shown in figure 6, the envelope of the single-cylinder VIV response is fairly
regular except during the transition between branches. This is generally not the case
for the WIV response, as illustrated in figure 9. We note that the envelope of response
is already irregular at U/Df0 = 4.6 and becomes more irregular for higher reduced
velocities. This is also revealed in the plots shown in figure 9(b, d, f ), which show the
cycles for the 20 % highest peaks.

By comparing the variation of Cy and ŷ/D in one cycle, it is possible to estimate
the phase between them and also the overall frequency content of the signals. For
U/Df0 = 4.6, very close to the VIV resonance region, we note that lift and displacement
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Figure 9. (a, c, e) Displacement signal for around 50 cycles of oscillation. (b, d, f ) Superimposed
plots of similar cycles; ŷ/D in dark grey and Cy in light grey with average cycle in black.

are almost in phase and there seems to be a single dominant frequency present in
Cy . However, moving to a slightly higher reduced velocity of 5.8, the behaviour of
lift changes considerably. Not only does a second frequency appear in the signal, but
also the magnitude and phase of Cy are more variable. Moving away from the VIV
influence towards the upper end of the reduced-velocity range, we note that a higher
frequency has appeared in Cy , although it is not noticeable in the displacement curves.

The upstream cylinder was not only fixed at all times in these experiments, but it was
also mounted on a load cell, allowing measurements of instantaneous lift. Analysing
the normalized PSD of the lift force on both cylinders, it is possible to identify
other branches of frequency in Cy . Figure 10(a, c) shows the normalized PSD of lift
measured on both cylinders. From figure 10(a) it is evident that the lift force acting
on the upstream cylinder is directly related to the vortex-shedding mechanism since
there is only one distinct frequency branch that follows very closely the St = 0.2 line.
It can also be concluded that the lift force on the upstream cylinder sees little effect
of the oscillation of the downstream one, since only a minor trace of the frequency
data presented in figure 8 is identified. On the other hand, figure 10(c) shows that
the lift force on the downstream cylinder has two clear branches bifurcating after the
VIV resonance region. The lower branch corresponds to the frequency of oscillation
captured in figure 8, but the higher branch is clearly associated with a vortex-shedding
frequency that follows the St =0.2 line.

Now, this vortex-shedding branch is predominant at lower reduced velocities,
probably related to the typical synchronization range of VIV, but diminishes beyond
U/Df0 = 15. The lower branch appears around a reduced velocity of 5 but only
becomes dominant beyond a reduced velocity of 10. Within the range U/Df0 = 10–
20, both branches appear with equivalent energy content determining the region where
both VIV and WIV are occurring together. In fact, looking again at the response
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Figure 10. Normalized PSD of (a, c) lift force and (b, d ) velocity fluctuation in the wake of
a static upstream and an oscillating downstream cylinder. (The normalization applied to all
PSD graphs does not allow comparison of energy magnitudes along the reduced-velocity axis,
but only over vertical slices for a fixed reduced velocity.)

curve in figure 8, it is quite apparent that three different regimes can be identified
by different slopes of the displacement curve: (i) a VIV resonance region around
U/Df0 = 5 (equivalent to the VIV upper branch); (ii) combined VIV (reminiscent of
a lower branch) and WIV regimes roughly in the range U/Df0 = 5–17; and (iii) a
pure WIV regime for U/Df0 > 17.

It is plausible to think that the VIV regime should involve synchronization of
vortex shedding from both cylinders. In order to investigate this, we measured
velocity fluctuations with hot-film probes, one downstream of each cylinder (see
figure 1). Figure 10(b, d ) presents the PSDs for both probes confirming that the
upstream cylinder is shedding vortices as a fixed, isolated cylinder with minimal
interference from the downstream one. On the other hand, no clear identification of
vortex shedding close to St =0.2 was observed for the downstream cylinder that is
oscillating. Of course, once the cylinder is vigorously moving ahead of a fixed probe,
it is very difficult to measure any fluctuations other than the component of flow
velocity that relates to the fluctuations associated with its movement. However, even
when this low-frequency branch was filtered out, no clear trace of vortex shedding was
identified. This does not mean that the downstream cylinder is not shedding vortices –
on the contrary, fully developed vortices were observed in PIV measurements, as will
be demonstrated later – it simply means that a hot-film probe positioned in the
near wake was not suitable to capture this phenomenon. Placing the probe further
downstream made it possible to observe combined velocity fluctuations from the
vortex shedding of both cylinders, but still it was not possible to distinguish a
shedding signal that could be directly associated with the downstream body.
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Ĉy
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Figure 11. (a) WIV phase angles calculated according to Williamson & Govardhan (2004)
and the Hilbert transform of the signals. (b) Decomposition of lift coefficient into potential
and vortex components calculated according to Williamson & Govardhan (2004).

In figure 11 we show the fluid force components acting on the downstream cylinder.
In order to estimate φ, φV , ĈyV

and ĈyP
, we have employed a ‘harmonic forcing and

harmonic motion’ hypothesis identical to that presented earlier for VIV of an isolated
cylinder, which means that the fluid force and the response have the same frequency
but delayed by a phase angle φ. In the pure VIV case, we know that fluctuations in
the fluid force come directly from the vortex-shedding mechanism; therefore, f = fs

in the synchronization range. However, in the WIV case we have seen that f is not
directly related to fs as it does not follow the St =0.2 line closely. Nevertheless, even
without knowing the origin of the fluid force, we can verify from figures 8 and 10
that the dominant component of Cy has the same frequency as the response. Hence,
the harmonic assumption might still throw some light on the phenomenon.

Figure 11(a) displays φ and φV versus reduced velocity showing that a phase shift
from almost 0◦ to 180◦ occurs at around the same reduced velocity as for typical
VIV; beyond the resonance peak, both φ and φV remain close to 180◦ until the
upper end of the reduced-velocity range. This plot also compares φ and φV calculated
by two different methods: the first solves φ and φV from the equations derived in
the harmonic analysis of Williamson & Govardhan (2004) (which also assumes lift
and response with a single dominant frequency), and the second averages the phase
angles from the instantaneous Hilbert transform for the whole series. If the force
and the response indeed present a single harmonic frequency – as they do for single-
cylinder VIV – both approaches are equivalent and the curves collapse. However,
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Figure 12. Three examples of WIV phase angles. (a, c, e) Instantaneous phase angle φ for
around 50 cycles of oscillation. (b, d, f ) Lissajous figures of Cy versus ŷ/D.

figure 11(a) shows that the harmonic hypothesis must be an over-simplification of the
WIV phenomenon. The actual phase angles calculated with the Hilbert transform of
the displacement and lift signals are at a lower level for the whole range of the WIV
excitation. This result reveals that the lag between displacement and lift is actually
less than the one predicted by a harmonic assumption.

Figure 11(b) shows the decomposition of the lift coefficient. For reduced velocities
up to the VIV resonance peak, the curves show behaviour very similar to that found
for single-cylinder VIV. But instead of Cy and CyV

reducing and tending to zero by
the end of the synchronization range, both rise from around a reduced velocity of
7 up to 17, marking the second regime of combined VIV (a possible lower branch)
and WIV. A clear WIV regime is identified in Cy and CyV

curves for U/Df0 > 17,
as mentioned above, and their values remain roughly at the same level as reduced
velocity is increased.

The instantaneous behaviour of φ or φV may be analysed by employing a Hilbert
analytical transform to the signal, as described in Hahn (1996) and employed by
Khalak & Williamson (1999) for VIV. Figure 12 presents the results for about
50 cycles of oscillation. φ remains very close to 0◦ for the whole time series at
U/Df0 = 4.6, resulting in a clean Lissajous figure in figure 12(b, d, f ). During the
transition at U/Df0 = 5.8, it appears that an intermittent phase shift is also present,
consistent with the data plotted in figure 9. When the regime reaches our highest
reduced velocity of U/Df0 = 31.2, the phase is predominantly close to φ = 180◦, but
it still varies more than for VIV of a single cylinder. The corresponding Lissajous
figure may suggest that a second dominant frequency may also be playing a role, in
agreement with the third case analysed in figure 9.

5. The wake-induced vibration excitation mechanism
In order to understand the fluid mechanics behind the WIV mechanism, we

investigated two aspects of the force acting on the downstream cylinder: firstly,
the origin of the restoring lift force occurring on static cylinders in staggered
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Figure 13. Contours for the downstream cylinder of a static pair at Re= 19 200: (a) steady
lift (Cy); (b) steady drag (Cx); (c) fluctuating lift (Ĉy); (d ) fluctuating drag (Ĉx); (e) frequency
of lift (f (Cy)/fs); (f ) frequency of drag (f (Cx)/fs).

arrangements; secondly, the origin of the phase lag between Cy and y that, combined
with the lift field, results in the WIV excitation.

5.1. Fluid force on static cylinders in staggered arrangement

Measurements were obtained by holding the upstream cylinder fixed and traversing
the downstream cylinder across 160 stations (each marked by a small cross in figure 13)
in and out of the wake-interference region. Results are presented in figure 13 in a
series of maps that are symmetrical about the centreline of the wake.

Figure 13(a) presents the steady lift acting on the downstream cylinder for different
regions of wake interference. A negative value of Cy indicates lift acting towards
the centreline. As expected, the first evident observation is that the steady-lift force
points in the direction of the centreline for all configurations investigated, which
is in agreement with Bokaian & Geoola (1984) and Zdravkovich (1977). The Cy

map reveals two regions of steady lift as large as −0.8. The first region, between
x0/D = 1.5 and 2.5, is associated with the gap-flow-switching mechanism described
by Zdravkovich (1977) and occurs in the first wake-interference regime. The second
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region occurs for larger lateral separations around y0/D =0.8; it begins around
x0/D =2.5–3.0 and develops a trend of maximum Cy (indicated by the dot-dashed
line) that will decrease in intensity as the second cylinder is moved farther downstream.
This second region is associated with the second interference regime, in which vortex
shedding takes place in the gap.

In the steady drag map presented in figure 13(b), positive contours of Cx denote
drag in the streamwise direction. Dotted lines represent contours of zero or negative
drag that occur when the cylinders are close enough for the gap flow to be enclosed
by the reattaching shear layers. For x0/D > 2.5, the tandem downstream cylinder only
experiences positive drag, indicating that a developed wake starts to be formed in the
gap.

If a quasi-steady assumption is to be used to understand WIV, then these maps of
time-average force coefficients should be adequate to provide the necessary gradients
of Cy and Cx to satisfy a classical-galloping-like model. However, by also analysing
the fluctuating components of the fluid force, it is possible to identify if and where
the unsteadiness of the flow is playing a significant role.

Figures 13(c) and 13(d ) present maps similar to those discussed above, but plot
contours of the fluctuating-force coefficients Ĉy and Ĉx (3.3). Both graphs reveal
regions of increased fluctuating lift and drag that only occur for x0/D > 2.5. A
contour of Ĉy > 1.0 appears for tandem arrangements but relatively high values of

Ĉy > 0.8 also appear for staggered locations around the wake-interference region. Ĉy

is reduced to levels below 0.4 for separations below the critical value. Interestingly,
the region of maximum Ĉx does not occur for tandem arrangements but only when
the downstream cylinder has an offset of about y0/D = 0.5. Ĉx = 0.4 is observed
for the second interference regime at x0/D =3.0 and a trend of higher fluctuating
drag is developed from this point, decreasing in intensity as x0 is increased.

The distribution of Ĉy and Ĉx across the wake gives support to the idea that
coherent vortices from the upstream cylinder contribute to the fluctuating component
of the fluid forces for separations of x0/D > 3.0. The magnitude of Ĉy is another
important factor. Taking the example of x0/D =4.0 and y0/D =1.0, we observe that
the magnitude of the fluctuating lift is greater than that of the steady lift, i.e. the
actual lift on the cylinder is Cy = −0.6 ± 0.8, probably even reaching an instantaneous
positive (outwards) value once in a few cycles.

We believe this to be strong evidence that the steady-lift force acting towards the
centreline, as well as the fluctuating component, originate in some way from the
unsteady interference of the vortex wake coming from the upstream cylinder with
the wake being formed from the downstream cylinder. If this is true, we expect to
find that the frequency of fluctuation of Cy and Cx is related to the frequency of
vortex shedding from upstream. Now, we know that the upstream cylinder is shedding
vortices at the same frequency as an isolated cylinder (see figure 10). Figures 13(e)
and 13(f ) show plots of the frequencies of Cy and Cx , respectively (normalized
by the equivalent fs for St =0.2). We observe that the dominant component of the
fluctuating forces is close to 1 once the second regime of interference is established. For
close separations, the frequency of Cy is distinctively lower than fs , revealing that a
developed wake is indeed not present in the gap. This result is in agreement with Alam
et al. (2003), who measured lift coefficients for both cylinders in tandem arrangements.

Our experimental results for the steady components are in good agreement with
other works found in the literature, including Zdravkovich (1977). We believe this is
the first time the magnitude and frequency of the fluctuating components of the lift
and drag forces have been presented for staggered arrangements of cylinders.
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t (s)
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Figure 14. Time series of lift on the downstream cylinder of a static pair in staggered
arrangement x0/D = 4.0 and y0/D = 1.0. Re = 19 200.

Now, a quasi-static analysis of WIV requires the downstream cylinder to extract
energy from the flow as it moves across the steady-force fields discussed above.
In other words, the excitation force acting on the body should not depend on its
movement or any unsteady interaction with the upstream wake, but only on the
relative position of the cylinder across the wake. This might be true for bodies with
very small transverse velocities ẏ, but certainly this is not the case observed in the
WIV response presented above. Even a quasi-steady hypothesis may be too much
of an over-simplification in this case. Based on data from figure 8, we can estimate
the maximum transverse speed the cylinder reaches as it crosses the centreline of the
wake for the maximum reduced velocity point. On average, ẏ is around 55 % of the
free-stream velocity U , but it can reach values up to 67 % for the most severe cycles.
With such vigorous crossflow movement, it is difficult to accept that the downstream
cylinder is not affecting or interacting with the wake coming from the upstream
body, making implausible any quasi-static or quasi-steady assumptions. Therefore, we
believe that a completely unsteady investigation of the force–displacement interaction
is required to understand how the WIV mechanism works.

5.1.1. Analysis of unsteady lift on fixed cylinders

Before investigating the instantaneous lift force acting on a moving downstream
cylinder, we shall consider the unsteady flow field that generates the steady and
fluctuating forces on a pair of static cylinders.

Figure 14 shows a short time series of Cy measured on a static downstream
cylinder at x0/D = 4.0 and y0/D = 1.0. The dot-dashed line represents a steady lift
of Cy = −0.65 estimated from figure 13. There are two data points, marked with
circles, representing the maximum and minimum Cy in this short time series for
which we will investigate the corresponding flow fields using PIV. Figure 15 shows
instantaneous vorticity contours and the corresponding velocity field for instant ‘a’ in
the trough, i.e. when Cy = −1.4, and for instant ‘b’ at the crest, where Cy = 0.32 and
acts outwards. Vortices identified with the symbols A and B were, respectively, shed
from the upstream and downstream cylinders; odd indices mean that vortices have
positive vorticity and were shed from the right-hand sides of the bodies, and even
indices mean the opposite. Vortices are identified at both instants; therefore, we can
follow the development of the wake from ‘a’ to ‘b’. A simplified sketch is presented in
figure 16.

The flow passing around the upstream cylinder generates and sheds vortices in
the gap. In figure 15, we see the instant when vortex A4 is being formed very
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(a)

A4

A2

B3

B4

B2A1

A3

A5

B5B4*

B3

A4

A3

A2+B4

(a′)

(b) (b′)

Figure 15. (a, b) Instantaneous vorticity contours and (a′, b′) velocity field (velocity magnitude
increases from dark to light grey) obtained with PIV around a pair of static cylinder in staggered
arrangement. x0/D = 4.0, y0/D = 1.0, Re = 19 200. (See figure 14.)

(a) (b)

A4 A5

A4

A3

A3

A2+B4
B3

B5B4*

A3

A2

A1

B4

B3

B2

Figure 16. Sketch of vortex–structure interaction that (a) enhances or (b) diminishes Cy on
the downstream cylinder at x0/D = 4.0 and y0/D = 1.0. (See figures 14 and 15.)
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close to the cylinder, inducing a high-speed flow that is shown with white vectors
in the velocity field. A fully developed vortex A3, which was formed half a cycle
before, is convected downstream and induces high-speed flow on the inner side of
the downstream cylinder. This high-speed flow accelerates the boundary-layer flow
running on that side, adding more circulation into the shear layer. Consequently,
vortex B4 forming from the downstream cylinder will have a higher circulation than
a typical vortex on a single-cylinder fully developed vortex A2, shed in the previous
cycle, passes around the downstream cylinder and induces a flow field that will hold
B4 closer to the downstream cylinder. We suggest that this combination of high-speed
flow induced on the inner side, increasing the strength of the vortex being formed,
and the flow holding this vortex closer to the downstream cylinder is responsible for
generating the high lift of Cy = −1.4 shown in figure 14. Of course, the interaction
between vortices from previous cycles is occurring in the wake downstream of the
second body – with vortices from both cylinders (A1 and B2) merging together
and moving in pairs – but what is happening around the downstream cylinder has
significantly more influence on the force being generated than the wake further
downstream.

Now, moving to instant ‘b’ in figure 15, we observe that vortices have been convected
further downstream and a new vortex A5 is being formed from the upstream cylinder.
Downstream of the second cylinder, we observe that A2 has merged with B4, forcing
B3 to be released and giving way to a new B4* that starts to roll up. A fully developed
A3 impinges and splits around the downstream cylinder with a portion A3* passing
by the inner side and the rest following around the outside of the cylinder. As A3*
and the new B4* interact, they induce a very high-speed flow across the wake that
forces the formation of B4* further inwards. On the other side, B5 is also forced
and rolls up closer to the downstream cylinder, contributing to generating a small lift
Cy =0.32 acting outwards.

Figure 16 highlights the main vortex–structure interactions occurring in the wake.
The effect of upstream vortices on the downstream cylinder is seen to be paramount
in both cases: (a) when A3 induces high-speed flow on the inner side and A2 displaces
the downstream wake outwards and (b) when A3 splits around the body and interacts
with B4 to generate high-speed flow inwards.

We observe that identical wake patterns are not repeatable, as vortices from both
cylinders may be forming at different rates and strengths. Nevertheless, we believe
this flow-field investigation offers a good illustration of the complex vortex dynamics
occurring in the wake associated with large lift fluctuations on the downstream
cylinder. We should expect to find even more complex dynamics when the downstream
cylinder is oscillating with high transverse velocities.

We saw that a strong and complex vortex–structure interaction is present, and
hence, must be involved in the excitation mechanism. We cannot guarantee a priori
that a quasi-steady assumption for the fluid forces (even if it accounts for hysteretic
effects) will represent the phenomenon with all its unsteadiness. Instead, we suggest
that a phase lag is generated as the unsteady wake is modified by the movement of
the downstream cylinder. Hence, we propose that a simple steady wake without the
unsteadiness of the vortices is not able to generate the necessary forces and phase
lag to excite WIV. In order to evaluate this hypothesis, we will proceed in two steps.
Firstly, we present an idealized experiment designed to reproduce a wake with a steady
shear-flow profile but without the unsteadiness of vortices. Then we will investigate
lift-force measurements paired with instantaneous flow fields to assess whether there
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U

Set of screens

x

y

Honeycomb
Water channel

PIV field of view
u–

Figure 17. Set-up of set of screen and honeycomb for the shear-flow experiment.

is a phase lag related to the vortex–structure interaction as the downstream cylinder
oscillates.

6. The effect of a steady shear flow
If a quasi-steady approach is to be used to predict WIV then the fluid forces on

the downstream cylinder will not depend on the unsteadiness of the wake but only
on the steady flow velocity profile. Therefore, if we could generate a wake with a
similar steady profile but without the unsteadiness of the vortices and immerse an
elastically mounted cylinder in this velocity field, we should expect to see a response
similar (at least qualitatively) to WIV. According to the quasi-steady approach, the
phase lag between lift and displacement would still have to be present in such a flow.
A qualitatively similar WIV response would be sound evidence that unsteady vortices
are not required to generate the phase lag and sustain vibrations.

6.1. Experimental set-up

A series of screens made of thin stainless-steel wire was cut in strips of different
widths. Then a combination of superimposed screens was positioned vertically in the
centre of the test section to produce a mean velocity profile. The set of screens was
fixed on an aluminium honeycomb to remove any crossflow components. The set-up
is illustrated in figure 17, where u represents the resultant shear-flow profile. The
flow field around a pair of cylinders under WIV was measured with PIV to serve as
reference. The velocity profile of the wake was averaged from a number of snapshots
(corresponding to more than 100 cycles of oscillation and many more cycles of vortex
shedding), resulting in the flow fields presented in figures 18(a) and 18(b). The process
was repeated for four Re within the range of the experiments, although only two are
plotted here for brevity. Two dashed circles mark the average amplitude of oscillation
of the cylinder.

When considering fluid forces acting on the downstream cylinder Price (1976) had
already noticed that the lift profile on the body depends ‘on its own characteristics in
the wake and not particularly on the wake characteristics’. He concluded that ‘the use
of wake parameters, measured without the presence of the [downstream] body when
attempting to assess the forces thereon, is an over-simplification of the situation as
far as lift is concerned, while appearing to work quite well for drag’. For this reason,
flow-field measurements were performed with the downstream cylinder in place and
oscillating in order to account for the interaction between the body and the upstream
wake.

With the cylinders removed, the set of screens was adjusted to generate the best
possible match to the profiles of the reference cases. Figures 18(c) and 18(d ) present
the steady profiles obtained downstream of the screens for two of the Re investigated.
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0.10

(m s–1)
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0.04

(a) (b)

(c) (d)
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0.25

Figure 18. Steady flow velocity field (a, b) around a pair of cylinders while the downstream
cylinder is oscillating under WIV, and (c, d ) generated by a set of screens (Re based on the
cylinder diameter). Contours of u coloured by velocity magnitude. (a, c) Re = 4800; (b, d )
Re = 19 200.

The dashed circle represents the position where the cylinder would be placed. The
streamwise velocity profile across the wake at x0/D =3.0, represented by an array
of vectors plotted across the wake in the gap, was extracted from the PIV flow
fields and used to validate the comparison. The result is plotted in figure 19 for
the four Re investigated. The average breadth of the wake and the minimum flow
speed on the centreline were the main wake parameters employed to calibrate the
screens. Nevertheless, the geometry was optimized to guarantee that the correlation
coefficients between corresponding profiles were above R = 95 %,

R =
1

n

nX

i=1

✓
u1i

− u1

σu1

◆✓
u2i

− u2

σu2

◆
, (6.1)

where u and σu represent the mean and standard deviation, respectively, of the n
points defining each velocity profile u1 and u2. Figure 19 reveals a reasonably good
agreement between reference and generated profiles in spite of the complexity of the
set-up designed to achieve these results.

An instantaneous snapshot of the vorticity field plotted in figure 20 reveals that
the shear profile generated by the screens does not have the coherent vortices typical
of bluff-body vortex shedding. This is even clearer when the instantaneous wake is
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−5 −4 −3 −2 −1 0 1 2 3 4 5
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0.20

0.25

0.30

0.35

0.40

0.45

0.50

y/D

u–
(m

 s
–1

)

Re = 19 200
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Figure 19. Comparison between steady velocity profiles for various flow speeds measured
across the wake at x0/D = 3.0: ——, set of screens; − · −, pair of cylinders. R = 98, 97, 97 and
96 % from the lowest to the highest Re.

(a) (b)

Figure 20. Instantaneous vorticity contours of the wake downstream of (a) a single cylinder
and (b) a set of screens. Both images have the same contour-colour scale to allow direct
comparison. Re =9600 based on cylinder diameter.

contrasted with the wake of a static-cylinder shedding vortices in the 2S mode. Both
vorticity fields in figure 20 have the same contour-colour scale, with dark-grey colour
meaning greater vorticity, allowing direct comparison between fully developed wakes.
(The position of the screens in figures 18 and 20 is merely illustrative. In reality, the
set of screen was positioned at around 10D upstream of the cylinder, as shown in
figure 17.)

6.2. Steady forces on a static cylinder

We begin by investigating the steady fluid forces acting on a static cylinder as it
traverses across the shear flow for various Reynolds numbers. Figure 21(a, c) shows
maps of lift and drag that can be compared to the steady-force maps of a pair of
staggered cylinders (extracted from figure 13). We immediately see a considerable
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Figure 21. Steady (a, c) and fluctuating (b, d ) fluid forces on a static cylinder in shear flow
and on the downstream cylinder of a pair with x0/D =4.0. Re = 19 200.

difference between the lift curves. While for a pair of cylinders the minimum
lift towards the centreline reached Cy = −0.65 at around y0/D = 1.0, the cylinder
immersed in a shear flow only reaches a minimum of Cy = −0.2 for the same position.
Nevertheless, the similarity in steady drag between the two cases is remarkable. Both
reach a minimum around Cx = 0.5 on the centreline of the wake with a very similar
behaviour as the cylinder is displaced outwards. This correspondence must be related
to the fact that the streamwise component in both cases is very similar; therefore, the
shielding effect observed in the steady flow field is well reproduced by the screens.

In addition, we also note a remarkable reduction in the fluctuating fluid forces if
vortices are not present in the upstream wake. Figure 21(b, d ) compares Ĉy and Ĉx

on static cylinders for both experiments. While the fluctuating lift coefficient reaches
values around Ĉy = 0.8 for the downstream cylinder of a tandem pair, the maximum

fluctuation of lift in the shear flow is only around Ĉy = 0.3, which is very close to the

magnitude of Ĉy = 0.35 due to vortex shedding measured for a single static cylinder.
The fluctuation in drag is also affected, with a 10-fold amplification at y0/D = 1.0 if
vortices are present in the upstream wake. Note that for larger separations out of
the wake-interference region, the curves for both cases seem to be converging to the
value of an isolated cylinder.

This is strong evidence suggesting that vortex interactions from the upstream wake
are responsible for the high steady and fluctuating lift on static cylinders in staggered
arrangements. Remove the unsteadiness from the wake and the steady lift towards
the centreline is considerably reduced, almost disappearing, with the fluctuating term
tending towards values measured for a single cylinder.

Previous works tried to attribute the existence of a steady force towards the
centreline to the other mechanisms, as summarized by Price (1976), but none of those
mechanisms accounted for the total magnitude of Cy on the downstream cylinder. In
figure 21(a, c), we showed that a residual Cy = −0.2 at y0/D = 1.0 still remains even
when vortices are removed from the upstream wake. Of course, not all the unsteady
vorticity in the wake could be removed, as seen in the instantaneous flow contours
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Single-cylinder VIV

Single-cylinder VIV in shear flow
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ŷ/
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Figure 22. Response of the downstream cylinder in shear flow compared with typical
VIV and WIV responses.

of figure 20, and the residual Cy towards the centreline may as well be an effect
of this weak unsteady vorticity field that still remains. Nonetheless, we were able to
show that the presence of vortices is indeed responsible for the high Cy measured for
staggered cylinders. In summary, the presence of a steady shear flow contributes to
a minimum Cy = −0.2, but only with the presence of unsteady vortices will the total
Cy = −0.65 be reached – not to mention the effect of unsteady vortices in enhancing
the fluctuating term of the fluid force presented in figure 21(b, d ). This result combined
with the unsteady analysis presented in figure 15 offers a good explanation for the
role of vortical structures in enhancing lift on the downstream body.

6.3. Response of an elastic cylinder in shear flow

We then placed an elastically mounted cylinder in the shear flow in order to investigate
the FIV response. However, the response that built up was completely different from
previous WIV results. Figure 22 shows the comparison.

Instead of developing a high-amplitude branch that increases with reduced velocity,
the response resembled that of a single cylinder under VIV. A clear resonant peak is
observed around U/Df0 = 7 (note that here U is the free-stream velocity outside the
shear flow), but drops steeply towards a residual level below ŷ/D =0.2 for reduced
velocities higher than 15. Even though upper and lower branches are not as clearly
distinguishable as for a single-cylinder VIV, a synchronization range is still evident.
The response is slightly different from the typical VIV curve, but it is strikingly similar
to VIV rather than to the measured WIV curve also plotted in figure 22. In fact,
the similarity is so strong that we cannot avoid concluding that the cylinder in shear
flow is only responding with a type of VIV modified by the steady shear flow. The
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Figure 23. Superimposed plots of WIV cycles with similar amplitude; y/D in dark grey and
Cy in light grey with average cycle in black. x0/D = 4.0, U/Df0 = 25 and Re = 19 200.

fact that the resonance peak is slightly offset towards higher reduced velocities is in
agreement with the shielding effect of the steady wake. From the velocity profiles
presented before (see figure 19), we note that the deficit in streamwise velocity in the
wake is on average around 45 %, resulting in precisely the observed offset from the
VIV peak for an isolated cylinder.

Although we have the evidence to show that vortex–structure interaction is
important and necessary for the mechanism to be sustained, so far it is still not
clear how vortices from the upstream wake interact with the downstream cylinder
during oscillation. Hence, we still need to investigate why vortices enhance the steady
and fluctuating lift on the downstream cylinder and also how the phase lag is
generated.

7. Analysis of unsteady lift on an oscillating cylinder
As discussed before, the WIV response is characterized by considerable variations

between cycles as far as displacement is concerned (figure 9); an irregular envelope
of displacement is more evident in WIV than in a typical VIV. Figure 23 shows
another example of the time series of displacement and lift at U/Df0 = 25, far from
the influence of the VIV regime.

In order to investigate the relation between displacement and fluid force in
more detail, we shall plot a collection of several superimposed cycles with similar
displacement amplitudes. Figure 23 shows the displacement and lift for 20 % of the
total number of cycles recorded at this reduced velocity; once more, the variation in
both y and Cy is evident. It is also clear that the fluid force signal shows a component
of higher frequency apart from the lower frequency that matches the cylinder
oscillation frequency. Taken as a whole, it appears that the fluid force is indeed out
of phase with the displacement; however, if we look carefully at the multitude of
light-grey lines crossing Cy = 0 in figure 23, we will note that the lift force anticipates
the displacement practically in all cycles. In fact, if we estimate φ based on the
average cycles given by the black lines, we conclude that the displacement lags the
lift by a phase angle which is rather close to the average value of φ = 161◦, calculated
as an average of all points represented in the curve ‘φ (Hilbert)’ in figure 11.
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Figure 24. Time series of displacement and vortex-force component of lift on the
downstream cylinder under WIV. x0/D = 4.0, U/Df0 = 25 and Re = 19 200.

In fact, if we start from (3.1) and take all other variables from the results presented
above, we conclude that for such very low values of mass and damping (m∗ζ = 0.018) a
minute phase lag of φ = 179.4 would be enough to excite the system with ŷ/D = 1.5 at
U/Df0 = 25. This is the curve ‘φ (Eq.)’ in figure 11. However, if we employ the same
harmonic hypothesis for the actual φ = 161◦ averaged from the Hilbert transform
(curve ‘φ (Hilbert)’ in figure 11), we conclude that the amplitude of oscillation would
reach the unrealistic value of ŷ/D = 45. Hence, we conclude that a simple ‘harmonic
forcing and harmonic motion’ hypothesis does not apply to the WIV mechanism.
Rather, a more complex modelling that considers multiple frequencies present in the
wake should be developed.

Turning again to figure 23, it appears that the phase lag is accentuated by the
existence of the higher frequency present in the lift signal. Since fs from the upstream
cylinder is increasing with flow speed as St = 0.2 and the oscillation frequency of the
downstream cylinder is increasing at a different rate, the relationship between both
frequencies is also changing. Essentially, this higher frequency must be associated with
the vortex-shedding frequency of the upstream wake – at least this is observed for
static cylinders – but one cannot tell how repeatable this forcing is as the downstream
cylinder oscillates and interacts with upstream vortices.

The only conclusion we can draw is that with such an irregular forcing it is most
likely that the fluid force will not be perfectly in phase (or out of phase) with the
displacement, especially as the cylinder crosses the centreline of the wake where strong
vortices are present. Therefore, the phase lag must be coming from the unsteadiness
of the wake, i.e. from the vortex–structure interaction, as we have been arguing so
far.

7.1. Unsteady vortex-structure interaction

As in the investigation presented for a static cylinder in a staggered arrangement of
y0/D = 1.0, we can analyse the wake configuration that generates the corresponding
lift trace for a cylinder undergoing WIV. Figure 24 shows a short sample from the
time series presented in figure 23 for which the flow fields were captured with PIV.
Note that the CyV

component of lift only accounts for the force generated by the
vorticity in the wake. Vorticity contours and velocity fields for six instants ‘a’ to ‘f ’
are shown in figures 25(a, a′) to 25(f, f ′).

Frame ‘a’ was taken with the cylinder very close to maximum displacement when
lift was the strongest towards the centreline. Like the wake configuration observed
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(a)
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A2 + B4

A1 + B3
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A2 + B4

A1 + B3

A2

B4

B1

B3

A1

A3

B2

(a′)

(b) (b′)

(c) (c′)

Figure 25(a, a′, b, b′, c, c′). For caption see facing page.

for static cylinders, we find vortex A2 inducing high-speed flow close to the inner side
of the cylinder, while A1 induces vortex B3 to form closer to the cylinder surface.
However, as the cylinder accelerates towards the centreline, B3 is suddenly released
and a new vortex B5 forms in its place. In figure 24, we see that the lift force changes
its direction slightly before the cylinder crosses the centreline. In frame ‘b’, we see
that vortex A2 impinges on the downstream cylinder, splitting into two parts around
the body as it crosses the centreline: one part will merge with B4 and the other part
will join B5 in the downstream wake. At the same time, we see that A3 coming from
the upstream cylinder induces a high-speed flow that is contrary to the motion of
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A6
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A6

A8
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A5

B7

A6

B8

B6

A7

A5
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B8

B6

A5

B7

B5
B6

A2 + B4

(d) (d′)

(e) (e′)

(f) (f ′)

Figure 25(d, d ′, e, e′, f, f ′). (a, b, c, d, e, f ) Instantaneous vorticity contours and (a′, b′, c′, d ′,
e′, f ′) velocity field (coloured by velocity magnitude) obtained with PIV around a pair of
cylinder under WIV. Horizontal arrows represent the lift acting on the cylinder (see figure 24).
x0/D = 4.0, U/Df0 = 25 and Re = 19 200.

the downstream cylinder. This strong interaction is responsible for the local peak
in the lift curve in figure 24. A moment later, in frame ‘c’, vortex A3 is splitting
around the downstream cylinder and inducing A2+B4 away from the body, while a
strong B5 rolls up on the other side resulting in an almost zero lift as the cylinder
decelerates towards the minimum peak of response.
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The process is repeated for the other half of the cycle as the cylinder crosses
the wake in the opposite direction. Frame ‘d’ shows that maximum lift towards the
centreline occurs when vortex A5 induces high-speed flow on the inner side of the
body, while A4 induces B6 to form closer to the cylinder. Note that maximum lift
was not registered for the lowermost displacement, but when the cylinder encountered
that particular wake configuration on its way towards the centreline. Again, the lift
reversal happened slightly before the cylinder crossed the centreline. Similarly, another
local peak of lift shown in frame ‘e’ is caused by the impingement of vortex A5; it
splits around the cylinder merging with B7 on the inner side and with B8 on the outer
side. Almost zero lift is obtained in frame ‘f’ when the cylinder experiences the same
wake interaction as in ‘c’, though in the opposite direction.

We chose to analyse this portion of the time series because the lift force in the first
half of the cycle is mirrored in the second half, giving more of an opportunity to
understand the wake–structure interaction taking place. However, we note that the
peak of amplitude in frame ‘a’ is different from the peak that the cylinder will reach
just after frame ‘f’. This reveals that the response of the body is very dependent on the
configuration of the wake it encounters for each cycle. With the crossing velocity ẏ
changing for each cycle, the vortex–structure interaction will also be different, resulting
in different responses. In fact, if we look again at the short time series presented in
figure 24, we will note that the lift signal for the previous cycle between t =0 and
1.0 s is different from the cycle that we investigated between t = 1.1 and 3.1 s, and
also different from the next cycle after t = 3.1 s. Even the phase lag varies from cycle
to cycle. At t = 0.7 s, the opposite is also observed and now it is the displacement that
anticipates the fluid force. This variation between successive cycles imposes on the
system the irregularity in response observed in the displacement and lift envelopes.
But the fact that the phase lag will rarely be equal to zero also guarantees that energy
will be transferred from the fluid to the structure sustaining WIV, albeit in irregular
amounts from cycle to cycle.

8. Conclusion
Up to now, the wake-displacement mechanism proposed by Zdravkovich (1977)

seemed to be the most plausible explanation for the WIV phenomenon, even though
he could not conclude how the wake was being ‘displaced’ to generate the necessary
phase lag to sustain the vibrations. In this paper, we have shown that WIV is indeed
a wake-dependent type of FIV. Yet we found that it is the unsteadiness of the wake
that plays the main role in the WIV process and not simply the displacement of a
steady flow field.

We suggest that the WIV mechanism is sustained by unsteady vortex–structure
interactions that input energy into the system as the downstream cylinder oscillates
across the wake.

We have verified that WIV is not a resonant phenomenon. While VIV finds
its maximum amplitude of vibration at fs = f0, WIV keeps increasing ŷ/D even
when fs is much higher than f0. In the shear-flow experiment, we removed the
upstream shedding frequency from the system, leaving only fs , which is generated
by the downstream cylinder. As a result, the oscillations returned to a typical VIV
response, meaning that the upstream frequency – or the upstream vortex shedding –
was somehow important to sustain the excitation. Hence, WIV is essentially a type of
vortex-induced mechanism, in the sense that it requires the interaction of the structure
with vortices, even though these vortices are coming from an upstream wake.
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Energy input from the fluid to the structure will only occur when there is a phase
lag greater than φ = 0◦ or less than 180◦ between the fluid force and displacement.
Coherent vortices impinging on the downstream cylinder and merging with its own
vortices induce fluctuations in lift that are not synchronized with the motion. Strong
vortices from the upstream wake induce considerable changes in the lift force. The
shear-flow experiment proved that a steady shear flow without vortices cannot excite
a cylinder into WIV. Remove the unsteady vortices from the wake and WIV will not
be excited.

The characteristic response of the downstream cylinder is consistent with the
arguments presented above. Irregular envelopes of the displacement and lift indicate
that the downstream cylinder encounters different wake configurations from cycle to
cycle. As the second cylinder is moved farther downstream, vortices coming from
the upstream wake have more time to diffuse and the resulting vortex–structure
interaction is weakened. This is in agreement with the response curves presented
for separations up to x0/D = 20.0 and also agrees with the fact that the lift force
(both steady and fluctuating terms) also diminishes with increasing x0. The flow’s
three-dimensionality is also likely to increase with x0 and contribute to reducing the
response.

We have shown that WIV had been referred to as a type of galloping mostly
because the typical response presents a build-up of amplitude for higher reduced
velocities. We argue that quasi-steady assumptions, commonly employed in classical
galloping theory, would not fit the WIV phenomenon, as we now understand it.
For that reason, we have been insisting on a dissociation of WIV from the classical
galloping idea. When Bokaian & Geoola (1984) call this mechanism ‘wake-induced
galloping’ they are correct in the sense that it is a 1-d.o.f. fluid-elastic mechanism
generated by the interference of the upstream wake. However, we do not agree that
the excitation mechanism is similar to that of classical galloping of non-circular bluff
bodies.
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Abstract

Experiments have been carried out on a pair of circular cylinders to investigate the effectiveness of pivoting parallel
plates as wake-induced vibration suppressors. Measurements of amplitude of vibration and average drag are presented
for a circular cylinder, free to respond in the cross-flow direction, with mass ratio 2 and a damping level of 0.7% of
critical damping. Reduced velocities were up to nearly 30, with associated Reynolds numbers up to 2.3! 104 and the
results presented are for a centre-to-centre separation of cylinders of 4 diameters. It is shown how vortex-induced
vibration and wake-induced vibration of the downstream cylinder of a tandem pair can be practically eliminated by
using free to rotate parallel plates. The device achieves vibration suppression with a substantial drag reduction when
compared to a pair of fixed tandem cylinders at the same Reynolds number. Results for a single splitter plate and helical
strakes are also presented for comparison and were found not to be effective in suppressing wake-induced vibration.
& 2010 Elsevier Ltd. All rights reserved.

Keywords: Flow-induced vibration; Suppression; Drag reduction; Parallel plates; Helical strakes; Tandem circular cylinders

1. Introduction

The response of an elastically mounted single cylinder under vortex-induced vibration (VIV) is well known and has
been reviewed in detail by Sarpkaya (1979, 2004), Bearman (1984) and Williamson and Govardhan (2004), to cite only a
few. However, an additional phenomenon appears when an elastically mounted cylinder is immersed in the wake of
another identical cylinder placed upstream. The response of the cylinder with flow interference is very different from the
typical one observed for VIV. The wake generated by the upstream body interacts with the flow around the downstream
cylinder generating fluid forces that excite the structure into even higher amplitudes of vibration. This fluid-elastic
mechanism, known as wake-induced vibration (WIV), occurs whenever one or more cylinders are immersed in the
interference region of a bluff body wake.
Recently, the main motivation for studying this phenomenon is found in the offshore oil industry. A single floating

platform is able to accommodate a number of production risers in complex arrangements together with many other
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cylindrical structures. Long drilling risers also suffer wake-interference from other structures attached to floating
platforms. As the ocean current changes its direction through the sea depth it becomes practically impossible to avoid
flexible structures from falling in the wakes of each other. This results in the probability of pipes developing severe WIV
and increases the risk of damage due to structural fatigue as well as clashing.
Attempts to understand flow-induced vibration with flow interference are found in the literature. Blevins (1990)

explains how a cylinder free to respond in two degrees of freedom (2-dof) can be excited into wake flutter when it is
placed downstream of a fixed cylinder but laterally displaced from the centreline of the wake (the so called staggered
arrangement). He shows how the mean velocity profile can input energy into the system as the cylinder oscillates in an
elliptical orbit. When the gap between the cylinder is in the order of a few diameters Zdravkovich (1977) proposes
another mechanism, called gap-flow-switching, which is able to excite cylinders in close proximity. If the separation
between the cylinders is smaller than a critical value – which varies with turbulence and Reynolds number (Zdravkovich
and Pridden, 1977) – the shear layers from the first cylinder may reattach on the second body and a vortex wake may
not develop in the gap. However, in the present work we are particularly interested in studying a type of WIV that is
different from the two mechanisms described above. We will focus on WIV that occurs when a pair of circular cylinders
is initially aligned with the direction of the flow (Fig. 1) with enough space between them for a vortex wake to develop in
the gap. In this arrangement the vortices from the front cylinder impinging on the second cylinder play a significant role
in causing the rear cylinder to vibrate.
Most of the related works found in the literature present data for the response of flexible cylinders in various tandem

and staggered configurations (King and Johns, 1976; Laneville and Brika, 1999). Bokaian and Geoola (1984), Hover
and Triantafyllou (2001) and Assi et al. (2006), on the other hand, present studies of the cross-flow response of a flexibly
mounted, rigid downstream cylinder in a tandem arrangement. While Bokaian and Geoola (1984) relate the dependency
of WIV on structural parameters such as mass and damping, very few works investigate the fluid mechanism causing the
excitation. A better understanding of the physical mechanism behind WIV has emerged from our recent study of
tandem cylinders (Assi et al., 2010; Assi, 2009); the main findings being that the excitation of the downstream body is
sustained by the unsteady force fluctuations caused by the vortices shed from the upstream body interacting with the
shedding from the downstream one.
We believe that only with a clear phenomenological understanding of the nature of the excitation will be possible to

start the development of suppressors that effectively reduce WIV. In this context, we present an experimental study that
is aimed at developing more efficient suppressors for cylinders in tandem arrangements under flow interference.

1.1. Suppression of VIV with control plates

A widely used method for suppressing VIV of long slender bodies of circular cross-section is the attachment of helical
strakes. Developed originally in the wind engineering field, strakes suffer from two major problems: the first being that they
increase drag and the second that, for a given strake height, their effectiveness reduces with decrease in the response
parameter m#z (where m* is the ratio of structural mass to the mass of displaced fluid and z is the structural damping
expressed as a fraction of critical damping). Whereas a strake height of 10% of cylinder diameter is usually sufficient to
suppress VIV in air, at least double this amount is often required in water, and this increase in height is accompanied by a
corresponding further increase in drag. For a fixed cylinder it is known that if regular vortex shedding is eliminated, say by

Fig. 1. Representation of two circular cylinders aligned in the flow direction (tandem arrangement). Upstream cylinder is fixed and the
downstream one is free to oscillate in the cross-flow direction (y-axis).
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the use of a long splitter plate, then drag is reduced. Hence in theory an effective VIV suppression device should be able to
reduce drag rather than increase it. This idea underlies the work presented in this paper.
According to Bearman (1984), for example, a simple analysis for a linear oscillator model of VIV, assuming harmonic

forcing and harmonic motion, shows that response is inversely proportional to the product of m* and z. Hence the most
rigorous way to test the effectiveness of a VIV suppression device is to work at low mass and damping. In the
experiments to be described in this paper the parameter m#z was equal to 0.014. As concluded by Assi et al. (2009), it
seems that three-dimensional solutions like strakes or bumps are unlikely to provide the required combination of VIV
suppression and low drag.
In previous works (Assi and Bearman, 2008; Assi et al., 2009) we have investigated the efficiency of pivoting control

plates as VIV suppressors for a single cylinder. We concluded that suppression of cross-flow and in-line vibration
of a circular cylinder, with resulting drag coefficients less than that for a fixed plain cylinder, is achievable using
two-dimensional control plates. This has been accomplished at values of the combined mass and damping parameter
down to at least 0.014, showing that the method has potential applications in the offshore industry, for example. The
lowest drag coefficient of C x ¼ 0:63, equivalent to a drag reduction of about 38% interference to a static cylinder,
occurred when free-to-rotate (f-t-r) parallel plates were installed on the cylinder. A f-t-r splitter plate was also found to
suppress VIV but the plate adopted a mean deflection angle and this configuration developed a mean transverse force
towards the side to which the plate had deflected. This force could be eliminated by using a pair of splitter plates
arranged so that the shear layers that spring from the cylinder attach to the tips of the plates. Because the parallel plates
were found to be the most drag-efficient device to suppress VIV it became the focus of the present investigation.
In Assi et al. (2009) we have highlighted the importance of torsional resistance in stabilising f-t-r suppressors.

Torsional friction ‘‘needs to be high enough to hold the devices in a stable position, while still allowing them to realign if
the flow direction changes. Devices with torsional friction below a critical value oscillate themselves as the cylinder
vibrates, sometimes increasing the amplitude of cylinder oscillation higher than that for a plain cylinder.’’ In the present
work we kept the same parameters employed in that study to guarantee that our suppressor is working above the
critical value of torsional resistance.

1.2. WIV suppression of a pair of cylinders

Very few works investigated suppression of flow-induced vibration for bluff bodies with interference. Zdravkovich (1974),
whose study is probably the closest to the present one, presents a wind tunnel investigation of WIV suppression employing
an axial-rod shroud. His level of m#z was rather high, but the shrouds showed some effect in reducing WIV of the second
cylinder. It is interesting to note that the most effective suppression was achieved when both cylinders were fitted with
shrouds. This is evidence that the current understanding of the excitation mechanism, discussed in Assi et al. (2010), is
satisfactory. It is important to disrupt the coherent vortices coming from the upstream cylinder so as to reduce the
interaction with the downstream body. This is exactly what the shrouds accomplished in his experiments.
But it was in another paper that Zdravkovich (1988) brought further insight about VIV suppressors being used in

WIV. He wrote: ‘‘A wide variety of means for suppressing the vortex-shedding-induced oscillations [VIV] has been
developed in the past. These means might not only be ineffective for the interference-induced oscillations [WIV] but
even detrimental.’’ To cite an example, Korkischko et al. (2007) showed that helical strakes typically effective in
reducing VIV for an isolated cylinder are no longer successful if the body is immersed in the wake interference region.
Building up understanding from previous research we set out to explore new solutions that not only are successful in

suppressing VIV but also act on the vortex-structure interaction that drives WIV. It was not our intention to perform a
parametric study of all geometric and structural properties of potential suppressors, but rather to verify if a family of solutions
proven to be effective in suppressing VIV is a potential candidate for suppressing WIV. In addition, one of our objectives is to
find an effective WIV suppressor that is functional and does not incur a drag penalty, preferably it should reduce drag.

2. Experimental arrangement

Experiments were conducted in the Hydrodynamics Laboratory of the Department of Aeronautics at Imperial
College London. Tests were carried out in a recirculating water channel with a free surface and a test-section 0.6m wide,
0.7m deep and 8.0m long. The sidewalls and bottom of the section were made of glass, allowing a complete view of the
models for flow visualisation purposes. The free stream flow speed (U) was continuously variable and flow with
turbulence intensity less than 3% could be obtained up to at least 0.6m/s. The circular cylinder models were constructed
from 50mm diameter perspex tube, giving a maximum Reynolds number of approximately 30 000 (based on cylinder
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diameter D and U incident on the upstream cylinder). The models were mounted vertically and passed through the free
water surface down to almost the full depth of the section. The downstream cylinder was mounted such that there was a
2mm gap between the lower end of the cylinder and the glass floor of the test section. With a wet-length of 650mm
(total length below water level) the resulting aspect ratio of the model was 13.

2.1. Elastic rig and cylinder models

The upstream cylinder was rigidly attached to the structure of the channel preventing displacements in any direction,
while the downstream cylinder was fixed at its upper end to an elastic mounting. Fig. 2 shows a schematic
representation of the apparatus and helps in describing the operation of the system. The support system is firmly
installed on the channel structure and the sliding cylindrical guides are free to move in the transverse direction, defined
by the y-axis. A load cell connects the moving parts of the base to the top end of the model and is able to measure
instantaneous fluid forces acting on the cylinder in the cross-flow and streamwise directions.
A pair of coil springs connecting the moving base to the fixed supports provides the restoration force for the system,

setting the natural frequency of oscillation (f0). All the moving parts of the elastic base contribute to the effective mass,
resulting in a mass ratio of m*=2.0 defined as the ratio of the total oscillating mass to the mass of displaced fluid. An
optical positioning sensor was installed to measure the y-displacement of the cylinder without introducing extra friction
to damp the oscillations. Thus, the cylinder is free to oscillate only in the y-direction with a very low structural damping
z¼ 0:7% (calculated as the percentage of the critical damping obtained from free decay oscillations performed in air)
giving a value of the product of mass ratio and damping of only m#z¼ 0:014. Measurements were made using one set of
springs and the reduced velocity range covered was from 1.5 to 30, where reduced velocity (U/Df0) is defined using the
cylinder natural frequency f0 measured in air. As shown in Fig. 1, the cylinders are aligned one behind the other in the
direction of the flow (known as tandem arrangement) with a longitudinal separation, measured from the centre of one
model to the centre of the other, kept at x0/D=4.0.
Throughout the study, cylinder displacement amplitude (ŷ=D) was found by measuring the root-mean-square value

of response and multiplying by
ffiffiffi
2
p

. This is likely to give an underestimation of the maximum peak response but, since it
offers a good measure of the overall amplitude for many cycles of vibration, it appeared to be suitable for assessing the
general effectiveness of suppression devices. The same method has been successfully employed by Assi et al. (2006, 2009)
and others. The experimental set-up was validated by carrying out measurements of VIV for a single cylinder and the
results were found to be in very good agreement with other works in the literature. Further details about the facilities,
apparatus and validation can be found in Assi (2009).

2.2. Free-to-rotate parallel plates

The suppression device studied was inspired by the early work of Grimminger (1945) related to suppressing VIV of
submarine periscopes, and its application to a single cylinder has been studied by Assi et al. (2009). It consists of two

Fig. 2. Illustration of the test-section. The flow is moving perpendicular to the page plane and the cylinder is allowed to oscillate in the
transverse direction (y-axis).
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parallel plates running along the whole span of the cylinder. Starting at the 790% points each plate is 3mm thick (about
0.06D) and trails back 1D from the base of the cylinder (Fig. 5). The plates were mounted flush with the side of the
cylinder, as close as possible to the cylinder wall, leaving only a small gap of less than 1mm to allow for contactless
rotation. Both plates were held together and kept parallel to each other by a supporting arm mounted on ball bearings
at the extremities of the cylinder, freely rotating as one body around the centre of the cylinder.
The downstream cylinder, which was mounted on the elastic rig, could be fitted with free-to-rotate (f-t-r) plates. The

upstream cylinder was kept fixed and could be fitted with an identical pair of fixed parallel plates. In addition to the
reference configuration of two plain cylinders, three configurations with f-t-r plates were tested: plates fitted to both
cylinders and plates fitted to either the upstream or downstream cylinder.

3. Preliminary results: attempt to suppress WIV with helical strakes

In order to verify the results presented by Korkischko et al. (2007) and to generate data for comparison we performed
a series of tests with the most widespread of the VIV suppressors, helical strakes. The model had a diameter of 68mm, a
strake height of 0.1D and a helical pitch of 5D. While this geometry does not match strake geometries currently
employed by the offshore industry, it provides some insight into the ineffectiveness of strakes in reducing vibrations
when there is flow interference from an upstream wake. Separation was kept at x0/D=4.0 and only the downstream
cylinder was fitted with strakes as shown in Fig. 3(f). The upstream cylinder was left plain in order to generate a
correlated vortex wake in the gap and represent the worst scenario for WIV excitation.
Fig. 4 presents the results compared to the reference VIV and WIV curves for plain cylinders. First, we note that this

configuration of strakes installed on a single cylinder is able to reduce VIV amplitude by 44% at the resonance peak
when compared to the plain cylinder response. The level of vibration remains fairly low around ŷ=D¼ 0:1 up to reduced
velocity 10, after which vibration builds up again reaching amplitudes around 0.4 at U/Df0=23. This increasing
response is an effect of random fluctuations in lift generated by the disruption of the flow by the strakes. The energy
content of the force fluctuations increases with flow speed, and so does the random response. These VIV results are in
good agreement with Bearman and Brankovic (2004), who found an almost 50% reduction of response at the resonance
peak for a similar cylinder mounted with helical strakes (strake height: 0.12D; pitch: 5D and Re=103–104).
Once a plain cylinder is placed 4D upstream of the straked cylinder the response changes significantly. The amplitude

returns to ŷ=D¼ 0:8 at the VIV resonance peak; it then falls slightly as reduced velocity is increased, but remains at a
comparatively high level of around ŷ=D¼ 0:5 for the rest of the reduced velocity range. As we can see, the response does
not reach the high values of WIV found for plain cylinders, but still the significant level of response is enough to
conclude that the strake loses efficiency when flow interference is present. In Fig. 4 we can also see the level of drag on
the cylinder generated by the device. On average, the cylinder with strakes showed a 26% increase in the drag coefficient
when compared to a static plain cylinder. The downstream cylinder with strakes also presented a higher drag coefficient
relative to a static cylinder in tandem. It should be noted that drag coefficients for all configurations are defined
throughout using the plain cylinder diameter and the undisturbed free stream velocity on the upstream cylinder.
Based on our current understanding of the WIV mechanism (Assi et al., 2010), we are able to conclude that the unsteady

wake from upstream is still able to interact with the downstream body and enhance the response even if it is fitted with
strakes. An ideal WIV suppressor has to work not only in disrupting the vortex formation from its own cylinder, but also
avoiding the vortex-structure interference coming from the upstream wake. In principle, if WIV suppression with drag
reduction is to be achieved the helical strake is not a family of solutions to be followed.

Fig. 3. Configurations tested as reference and to investigate strake effectiveness. Cylinders marked with a cross are not free to oscillate.
(a) Static single; (b) VIV plain; (c) VIV with strakes; (d) static tandem; (e) WIV plain; (f) WIV with strakes. Results are presented
in Fig. 4.
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4. Results and discussion: WIV suppression with f-t-r parallel plates

Assi et al. (2009) have shown that two-dimensional control plates are very successful in suppressing VIV of a single
cylinder. The cylinder responds with vibration below 0.1D and a 38% drag coefficient reduction is achieved with
reference to a static cylinder. Hence, we selected the most effective configuration presented in that work, the parallel
plates, to investigate its effectiveness in suppressing WIV. Knowing that the WIV response decreases with increasing x0

we tested devices at x0/D=4.0, where we have found the most vigorous WIV response for a pair of plain cylinders (Assi
et al., 2010).
The downstream cylinder, which was mounted on the elastic rig, could be fitted with f-t-r plates. The upstream

cylinder was kept fixed and could be fitted with an identical pair of fixed parallel plates, resulting in three different
configurations presented in Fig. 5.

4.1. Preliminary results: upstream elastic cylinder

We started our investigation by fitting an elastically mounted cylinder with parallel plates but placing the static plain
cylinder downstream; similar to configuration Config. I in Fig. 5, but with the upstream cylinder being the one free to
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Fig. 4. WIV response (top) and mean drag coefficient (bottom) for cylinders fitted with strakes. Measurements are for the downstream
cylinder of the tandem pair. Configurations as shown in Fig. 3.
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oscillate. We observed that the presence of the downstream cylinder at x0/D=4.0 did not interfere with the response of
the upstream cylinder, i.e., when the second cylinder was positioned downstream of the cylinder mounted with the
suppressor the latter remained motionless in a stable condition confirming the effectiveness of the suppressor in that
configuration. This was important to validate our hypothesis that an upstream cylinder fitted with f-t-r parallel plates
would behave as a static cylinder due to the effectiveness of the suppressor, at least for x0=DZ4:0. This being true, we
could replace the upstream cylinder by a fixed cylinder fitted with fixed parallel plates and concentrate our attention on
the response of the downstream cylinder.

4.2. WIV response of the downstream cylinder

Results are presented in Fig. 6. The first set shows the response for a plain downstream cylinder when the upstream
cylinder is fitted with fixed plates (Config. I in Fig. 5). We know that WIV is related to the unsteady vortices from the
upstream cylinder and we believe the amplitude of vibration is directly related to the dynamics of the vortices that are
able to form in the gap between the cylinders (Assi, 2009). We also know that the parallel plates work by delaying the
interaction between the two shear layers, thus delaying the formation of vortices and weakening the wake in the gap
(Assi et al., 2009). (The fact that the drag on a single cylinder fitted with parallel plates is less than the drag on a plain
fixed cylinder indicates that the wake being generated is weaker.) Therefore, since the plates do not suppress the
formation of vortices from the first cylinder, but weaken them, the amplitude of vibration of the downstream cylinder is
expected to be less than that observed for a pair of plain cylinders under WIV. This is exactly what we see in Fig. 6. If
the upstream cylinder is the only one fitted with parallel plates (Config. I) the downstream cylinder still experiences
WIV, although with a reduced amplitude level.
Now, in Config. II (Fig. 5) the cylinder fitted with f-t-r plates is positioned downstream of a plain static cylinder and Fig. 6

presents a remarkable result. The WIV of the downstream cylinder was suppressed to levels around 10% of a diameter, the
same level of residual vibration measured for a single cylinder under VIV for reduced velocities after the synchronisation
region. This amplitude of vibration is considered to be low and we could say that the parallel plates have successfully
suppressed vibration to an acceptable level. We know that the upstream cylinder in Config. II is shedding vortices in a similar
way to an isolated cylinder (Assi et al., 2010); and hence, the wake coming from the upstream cylinder will be similar to that
found between two plain cylinders in a tandem arrangement. Therefore the parallel plates must be acting not only on the
vortex shedding mechanism of the downstream cylinder, but also on the vortex-structure interaction this body encounters
with the approaching flow. As a result, the vigorous type of WIV is suppressed.
The mass and damping parameters of the system play an important role and may reduce WIV for certain critical

values (Bokaian and Geoola, 1984; Zdravkovich and Medeiros, 1991). One might suggest that the presence of two long

Fig. 5. Configurations of downstream and upstream cylinders fitted with f-t-r parallel plates. Centre-to-centre separation is x0/D=4.0.
Cylinders marked with a cross are not free to oscillate.
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plates along the cylinder axis may increase the hydrodynamic added mass and fluid damping in the direction of
movement. Although this change could be responsible for reducing the response it is probably not enough to suppress
the vibration completely. Therefore we believe the plates are acting directly on the WIV excitation mechanism and not
simply changing the dynamic characteristics of the system.
Finally, in Config. III we note the response of the downstream cylinder being suppressed to even lower levels. In this

configuration the unsteadiness of the wake in the gap is also attenuated by the presence of parallel plates installed
upstream and the response of the second body is further reduced. From this series of experiments we conclude that it is
essential to install parallel plates on the downstream cylinder to suppress WIV, but if plates are also installed on the
upstream cylinder the result is further improved.

4.3. Drag reduction

We know that the mean flow profile that reaches the second cylinder of a tandem pair has a deficit in velocity
compared to the free stream flow. Hence, the second cylinder of a tandem pair experiences a lower drag than the first
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Fig. 6. WIV response in 1-dof (top) and mean drag coefficient (bottom) for cylinders fitted with parallel plates. Measurements are for
the downstream cylinder of the tandem pair. Refer to Figs. 5 and 3.
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cylinder, which is exposed to the incident free stream U (Zdravkovich, 1977; Assi et al., 2010). However, as the body
oscillates in and out of the wake interference region, this shielding effect is reduced and the mean drag (Cx) is increased,
as shown in Fig. 6.
Fig. 6 also shows two reference sets of results for drag coefficients on static cylinders: one measured for a single

cylinder and the other for the downstream cylinder of a tandem pair. We clearly see that the level of C x for the rear
cylinder is half of that found for a single static cylinder. Therefore, a correct evaluation of drag reduction for WIV
suppressors must take the averaged C x ¼ 0:49 as a reference and not Cx around unity. Both configurations that
successfully suppressed WIV (Configs. II and III) also reduced drag when compared to a fixed cylinder in a tandem
arrangement. Table 1 summarises the data plotted in Fig. 6 averaging drag for the whole Re range.
In Assi et al. (2009) we have shown that the parallel plates act to delay the interaction between the shear layers and

form in effect a cavity behind the cylinder resulting in weaker vortices in the wake. This was clearly noted by a reduction
in the drag coefficient in relation to the cylinder without the plates. With weaker vortices coming from the upstream
cylinder in Config. II the WIV response of the downstream cylinder is reduced—this is in agreement with the
explanation for the WIV mechanism presented in Assi et al. (2010)—however it does not have as large an effect in
reducing the drag of the downstream cylinder. The upstream cylinder fitted with parallel plates generates a wake that
reaches the second cylinder with less of a mean velocity deficit than that for a plain cylinder, hence as a result the
downstream body experiences more drag with plates on the upstream cylinder. While Config. II produced a 33%
reduction in drag (Cx ¼ 0:33) in relation to a downstream static cylinder (Cx ¼ 0:49), the drag reduction in Config. III
was limited to 22% (C x ¼ 0:38).

5. Single splitter plate as a WIV suppressor

Knowing that parallel plates are effective in suppressing both VIV and WIV, we might investigate if a single, 1D-long
splitter plate is able to suppress WIV of cylinder arrays. The effectiveness of a f-t-r splitter plate was reported by Assi
et al. (2009) who showed that a f-t-r splitter plate requires a stable deflected position in order to suppress VIV, resulting
in a steady lift force being generated towards the side the plate has deflected. If the plate is not able to stabilise, say by
some interference in the flow or by having very low torsional resistance, it will wobble from one side to the other as the
cylinder oscillates.
The wake coming from the upstream cylinder contains coherent vortices that are responsible for the WIV excitation.

This leads to the question: With unsteady forcing coming from the upstream wake, is it possible for a f-t-r splitter plate
fitted on the downstream cylinder to find a stable position? In order to investigate this possibility, we performed an
experiment replacing the parallel plates in Config. II by a single f-t-r splitter plate (1D-long, aligned with the centre of
the cylinder) similar to the one employed in Assi et al. (2009). The result is presented in Fig. 7.
The plate was installed with a torsional friction above the critical value found for VIV suppression in Assi et al.

(2009). We found that the single splitter plate did not stabilise in a deflected position, but oscillated vigorously as the
cylinder responded with amplitudes between ŷ=D¼ 0:6 and 1.0 for the whole range of reduced velocities. It appeared
that the vortex-structure interaction present in the wake was indeed acting on the plate to prevent it from finding a
stable angle.
The WIV excitation mechanism becomes more complex when a splitter plate is pivoting around the cylinder. During

WIV, the lift force acting on the downstream cylinder is enhanced or diminished by the interaction with vortices shed
from the upstream cylinder. Assi et al. (2010) has shown that strong vortex-structure interactions are necessary to

Table 1
Drag reduction for WIV in 1-dof.

Model C x Drag reduction

’ Static, plain single cylinder (Assi et al., 2009) 1.03 Reference
Single cylinder with parallel plates (Assi et al., 2009) 0.63 38%

& Static, plain tandem cylinders x0/D=4.0 0.49 Reference
Tandem cylinders: Parallel plates Config. II 0.33 33%

n Tandem cylinders: Parallel plates Config. III 0.38 22%

C x averaged in the range Re¼ 2! 10321:8! 104. The lower three rows pertain to the downstream cylinder of the tandem pair.
Symbols as in Fig. 6.
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sustain the vibration. Nevertheless, vortices from the upstream wake will also induce fluctuating forces on the f-t-r
splitter plate preventing it from finding a stable deflected position. Assi et al. (2009) showed that if a f-t-r splitter plate is
not able to stabilise around a single cylinder (say by not having enough torsional friction, for example) the system will
respond with vigorous vibrations with displacements higher than typical VIV. Now, for tandem cylinders, if a f-t-r
splitter plate on the downstream cylinder develops a flapping movement due to strong vortex-structure interactions it
will increase the response of the cylinder instead of suppressing it.
In Assi et al. (2009) we have shown that for a splitter plate to be effective suppressing VIV of a single cylinder, its

length needed to be between 0.25 and 1.5 diameters. This was necessary so that the shear layer from one side of the
cylinder could reattach to the tip of the plate allowing it to find a stable deflected position. Since the WIV mechanism
with strong plate-vortex interaction prevents the plate from finding a suppressing configuration, we believe increasing
or reducing the length of the plate would have no effect on suppressing WIV. It is necessary that an effective WIV
suppressor would withstand the plate-vortex interaction without falling into a destabilising configuration.
Now, consider the flow field obtained with PIV measurements in Fig. 8 as an example (a sketch is presented in

Fig. 8(c) for clarity). At this instant the cylinder is returning from its outermost displacement, still with low cross-flow
velocity. The splitter plate shows a small outward deflection angle that will change as the body plunges across the wake.
The resultant lift on the cylinder has a component induced by the interaction with upstream vortices and another due to
the relative deflection of the splitter plate (as expressed by the arrows in opposite directions in Fig. 8(c)). We cannot tell
these components apart based on the flow fields alone; from measurements of lift on the cylinder we can only infer the
direction and magnitude of the resultant force. But the instantaneous competition between the two components
contribute to increase the WIV response of the system, i.e., a small vortex impulse changing the angle of the plate may
result in a substantial lift force exciting the vibration. In fact, we now have two oscillators – the first being the 1-dof
cylinder and the second being the f-t-r splitter plate – and the force generated by their relative motion prevent the
system from finding a stable condition, inputting energy to sustain the vibrations.
The force induced on the system is instantaneously changing as the cylinder vibrates across the wake and vortices

from the upstream cylinder induce both the displacement of the cylinder and the deflection of the splitter plate. But by
applying the concepts discussed in Zdravkovich (1977) and Assi et al. (2009) we could think of a simplified quasi-steady
mechanism to model the dynamics of this system. Zdravkovich (1977) and others have shown that a static cylinder held
at an offset position from the centreline of the wake will experience a steady lift force acting towards the centreline.
From Assi et al. (2009) we also know that a f-t-r splitter plate generates a steady lift towards the side it is deflected.
Depending on the relative position of the cylinder across the wake and the deflection of the plate the cylinder can
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Fig. 7. WIV suppression with f-t-t splitter plate and parallel plates. Measurements are for the downstream cylinder of the tandem pair.
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experience an amplification or reduction of the steady lift force. A positive energy transfer from the flow to the structure
may occur if the deflection of the splitter plate is able to alter the resultant force so that a favourable phase lag exists
between the displacement of the cylinder and lift.
Both unsteady and quasi-steady explanations given above could produce enough excitation to sustain the vibrations.

All that is required is that the relative motion between the f-t-r plate and the cylinder favours the WIV mechanism. This
was certainly the case in our experiments, as the response curve shows, since a f-t-r splitter plate developed flapping
motion under vortex interaction with the upstream wake. We suggest that devices requiring an asymmetric stable
deflection position will not be effective in suppressing WIV. The parallel plates are successful because they do not
depend in a deflected position to interact with the shear layers nor do they generate a destabilising lift force.

6. Conclusion

At the outset, parallel plates or any other device from this family of suppressors needs to be omni-directional in order
to be employed in practical offshore application. Hence f-t-r plates were considered as project requirement. In the case
of single splitter plates, this led to the discovery that a deflection angle was necessary for effective VIV suppression,

Fig. 8. Instantaneous vorticity contours (a) and velocity vectors (b) for a f-t-r splitter plate under WIV at U/Df0=6.0. PIV
measurements at Re=4500; x0/D=4.0. (c) Sketch of possible competition between components of lift generated by wake interaction
with a f-t-r splitter plate under WIV.
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otherwise a rigid plate would induce the cylinder to gallop (Assi et al., 2009). However, when a f-t-r splitter plate was
tested as a WIV suppressor it was found that no stable, deflected position of the plate existed due to the interference
effect coming from the upstream wake, therefore single splitter plates were discarded. On the other hand, a pair of
parallel plates does not require a deflection angle due to its symmetric configuration, thus it appeared as a potential
suppressor for both VIV and WIV.
Cross-flow WIV suppression with drag reduction was achieved when f-t-r parallel plates were installed on the

downstream cylinder of a pair. Response below ŷ=D¼ 0:1 was achieved at a value of the m#zo2! 10&2 for subcritical
Reynolds numbers. If both cylinders are fitted with suppressors, which should be the case for an offshore installation,
the drag coefficient can be as low as Cx ¼ 0:38, what amounts a 22% reduction compared to a downstream static
cylinder in tandem arrangement. If only the downstream cylinder is fitted with parallel plates the drag reduction is
around 33%.
The results presented in the present work refer only to a separation of x0/D=4.0. We already know that the

excitation mechanism may change as x0 is reduced below a critical separation (Zdravkovich and Pridden, 1977; Assi,
2009). We also know that the plates require a minimum length to be effective (Assi et al., 2009). By reducing the gap or
enlarging the plates we will enter the gap-flow-switching range (Zdravkovich, 1977) and a vigorous response may
return. Nevertheless, the study proves that suppressors based on parallel plates have great potential to suppress VIV
and WIV with substantial drag reduction.
It has been demonstrated that helical strakes, at least the configuration tested here, also lose their suppression

efficiency when unsteady excitation is present in the upstream wake.
The present work was concerned with validating a concept of f-t-r parallel plates in suppressing WIV, therefore a 1D-

long plate was chosen as the first trial. In Assi et al. (2009) we have tested the effect of plate length for a single splitter
plate employed to suppress VIV in a single cylinder. It is our intention to perform similar texts with parallel plates as
this would be the obvious step following from this piece of research. Future work should concentrate on optimising the
devices in respect of overall length and geometry. Also, a more detailed parametric investigation of the effects of
rotational inertia and torsional resistance should be carried out.
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a b s t r a c t

In this work, we considered the flow around two circular cylinders of equal diameter
placed in tandem with respect to the incident uniform flow. The upstream cylinder was
fixed and the downstream cylinder was completely free to move in the cross-stream
direction, with no spring or damper attached to it. The centre-to-centre distance between
the cylinders was four diameters, and the Reynolds number was varied from 100 to 645.
We performed two- and three-dimensional simulations of this flow using a Spectral/hp
element method to discretise the flow equations, coupled to a simple Newmark inte-
gration routine that solves the equation of the dynamics of the cylinder. The differences
of the behaviours observed in the two- and three-dimensional simulations are high-
lighted and the data is analysed under the light of previously published experimental
results obtained for higher Reynolds numbers.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The flow around circular cylinders has been extensively studied due to its practical importance in engineering and
scientific relevance in fluid mechanics. When circular cylinders are grouped in close proximity, the flow field and the
forces experienced by the cylinders can be entirely different from those observed when the bodies are isolated in the fluid
stream. The effect of the presence of other bodies in the flow is called flow interference. One of the most severe types of
interference, and the type on which this paper focuses, is wake interference, which happens when the cylinder is immersed
or in close proximity to the wake of another bluff body. In such situations, the flow impinging on the cylinder is usually
totally different from the free-stream. Given the number of differences observed in the forces exerted on cylinders
subjected to wake interference when compared to the single cylinder case, one expects that the flow-induced vibrations
(FIV) experienced by a flexible cylinder or a compliantly mounted rigid cylinder will also be different depending whether
the cylinder is immersed in a vortex wake or not.

A few papers on this matter have been published, most of them were concerned with vibrations within the
synchronisation range, i.e. when the vortex shedding is synchronised with the cylinder vibration. King and Johns (1976)
investigated the vibration of two flexible cylinders in tandem by performing experiments in a water channel. Bokaian
and Geoola (1984) carried out experiments on the flow around circular cylinders in tandem and staggered arrangements,
the upstream cylinder being fixed and the downstream one being rigid and mounted on an elastic base that allowed
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cross-stream displacement. Zdravkovich (1985) investigated the behaviour of two flexible circular cylinders placed in
diverse arrangements using a wind tunnel. Brika and Laneville (1999) utilised wind tunnel experiments to study the flow
induced vibrations of a flexible circular cylinder, allowed to vibrate in one plane only, immersed in the wake of a rigid
cylinder. Assi et al. (2006) performed experiments on the FIV of a elastically mounted rigid cylinder in the wake of a fixed
identical cylinder, using a water channel. Recently, there has also been a few computational studies on FIV of two circular
cylinders in tandem. Examples of this type of work are Mittal and Kumar (2001), Jester and Kallinderis (2004) and
Papaioannou et al. (2008). In all these papers, the computations were two-dimensional and focused on reduced velocities
within the synchronisation range. In general terms, they confirmed the main conclusions of previously published
experimental data: the wake interference led to a wider synchronisation range and within this range the amplitude of
response was larger than that observed in the response of an isolated cylinder with the same structural parameters.

However, some papers have also reported that cylinders subjected to wake interference also experienced vibrations
with high amplitudes for higher reduced velocities, outside the synchronisation range (Bokaian and Geoola, 1984; Brika
and Laneville, 1999; Hover and Triantafyllou, 2001; Zdravkovich, 1985). In most cases, the amplitude levels were even
higher than those observed in the lock-in. Although the reduced velocity for which this peculiar type of response starts to
be significant seems to depend on various aspects, such as the separation between the cylinders and the mass ratio, all the
papers agree on the fact that an upper reduced velocity limit for which these vibrations would cease does not seem
to exist.

In this paper, we investigate the limit case of this phenomenon by removing the springs and the damper attached to the
downstream cylinder, i.e. making the reduced velocity equal to infinity. The arrangement is illustrated in Fig. 1: both
cylinders have the same diameter, the upstream cylinder is fixed and the downstream cylinder is allowed to move in the
cross-stream direction without any type of constraint. We limit our investigation to the case in which the centre-to-centre
separation, Lx, is equal to 4D, and study the influence of the Reynolds number in the range 100rRer645, employing
two- and three-dimensional numerical simulations.

2. Numerical method

The computational results were obtained by coupling the solution of the flow with the solution of the structural
response. The flow is governed by the incompressible Navier–Stokes equations, which can be written in non-dimensional
form as

@u
@t
¼#ðu:rÞu#rpþ

1
Re
r2u, ð1Þ

r:u¼ 0: ð2Þ

The cylinder diameter D is the reference length and the free-stream speed U1 is the reference speed used in the non-
dimensionalisation. u& ðu,v,wÞ is the velocity field, t is the time, p is the static pressure, Re¼ rU1D=m is the Reynolds
number and m is the dynamic viscosity of the fluid. The pressure was assumed to be scaled by the constant density r. The
numerical solution of these equations was calculated using a Spectral/hp discretisation as described in Karniadakis and
Sherwin (2005).

On the structural side, we assumed that the moving cylinder was rigid and free to move in only one direction. The
response of the cylinder to an external force is governed by Newton’s second law, written in non-dimensional form as

pmn

4
€yn

c ¼ Fn

yð €y
n

c , _yn

c ,yn
c ,tnÞ: ð3Þ

In this equation, mn ¼ 4M=ðrpD2LÞ is the mass ratio, Fn

y ¼ CL=2¼ Fy=ðrU2
1DLÞ is the non-dimensional force imposed by the

fluid in the direction of motion. L is the (axial) length of the cylinder and CL is the lift coefficient. The variables €yn

c , _yn

c , yn
c are

the non-dimensional acceleration, velocity and displacement of the body, respectively, and tn is the non-dimensional time.

Fig. 1. Schematic drawing of arrangement studied.
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These variables are non-dimensionalised according to the expressions

€yn

c ¼
€ycD

U2
1

, _yn

c ¼
_yc

U1
, yn

c ¼
yc

D
, tn ¼

tU1
D

:

The structural equation was integrated using Newmark’s (1959) scheme.
The fluid–structure interaction problem this paper is concerned with comprises the flow around two bodies, with one

of them being allowed to move independently of the other. The computational code used to simulate the flow had to
provide support for that, thus an Arbitrary Lagrangian–Eulerian (ALE) formulation was employed. The ALE formulation
consists basically in incorporating arbitrary displacements of the mesh into the equations being solved, so the movement
of the bodies and the mesh deformations necessary to maintain an adequate spatial discretisation can be taken into
account. This can be achieved by doing a simple modification in the advection term of the incompressible Navier–Stokes
equations (1) and (2),

@u
@t
¼#ðu#mÞ 'ru#rpþ

1
Re
r2u, ð4Þ

r ' u¼ 0, ð5Þ

where m is the velocity of the mesh. The velocity of the mesh on the cylinder walls was given by the velocity of the bodies
and was zero on the other boundaries of the domain. The velocity of the mesh in the interior of the domain was calculated
in an automated way following the scheme presented by Batina (1990). Eqs. (4) and (5) are the Arbitrary Lagrangian–
Eulerian form of the Navier–Stokes equations.

Eqs. (3)–(5) have to be solved in a coupled manner. The fluid load Fn

y in Eq. (3) is calculated from the solution of the
flow (4) and (5), and the motion of the boundaries, which are necessary for the solution of Eqs. (4) and (5), is determined
by the solution of the structure Eq. (3). The equations were integrated in time employing a modified version of the
algorithm described in Carmo et al. (2011). The modification consisted in the effectuation of sub-iterations so as to make
the algorithm tightly coupled. In other words, sub-iterations were performed in order to assure that the body displacement
and fluid force were consistent within the time-step. This measure made the code to run slower but was necessary to the
integration to converge, since the increase in Reynolds number appears to make the simulation more sensitive to the low
mass-ratio instability that takes place in flow–structure interaction calculations (Causin et al., 2005; Förster et al., 2007).

3. Numerical simulations

Two- and three-dimensional simulations were performed for the tandem arrangement with centre-to-centre
separation Lx=D¼ 4. This separation was chosen because we were interested in investigating flows in which there is a
complete wake in the region between the cylinders (the WG regime described in Carmo et al., 2010a) with high vibration
amplitude, and previous tests with fixed cylinders showed that this configuration exhibited the desired shedding regime
with high lift coefficient amplitude. The mesh employed for all the simulations is shown in Fig. 2. It extended 36D
upstream of the upstream cylinder, the lateral boundaries were located 50D from the upstream cylinder centre and the
outflow boundary located 45D from the downstream cylinder. No-slip boundary conditions were enforced on the cylinder
walls, essential boundary conditions ðu,vÞ ¼ ð1,0Þ were enforced on the lateral and upstream boundaries, and outflow

Fig. 2. Example of a mesh used with the ALE formulation, showing also the detail of the discretisation close to the cylinders. The dark grey region remains
fixed, the elements in the light grey region move rigidly with the downstream cylinder and the elements in the white region deform to comply with the
movement of the cylinder.
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boundary conditions ð@u=@n,@v=@nÞ ¼ ð0,0Þ were employed on the downstream boundary. The high-order pressure
boundary conditions were enforced on the cylinder walls, upstream and lateral boundaries, while the pressure was fixed
to p¼0 on the downstream boundary. For the three-dimensional simulations, the spanwise length of the domain was 15D
discretised with 64 Fourier modes, and periodic boundary conditions were employed on the planes that crossed the ends
of the cylinder. The mass ratio was mn ¼ 2:0 for all calculations.

The Reynolds numbers tested varied between 90 and 645 for the two-dimensional simulations and between 300 and
600 for the three-dimensional simulations. The polynomial order of the basis functions varied from 3 (lowest Reynolds
numbers) to 9 (highest Reynolds numbers) for the two-dimensional simulations and from 4 to 6 for the three-dimensional
simulations. We also used different time-steps according to the Reynolds number, varying from Dt¼ 7:4( 10#3 for Re¼ 90
to Dt¼ 7:6( 10#4 for Re¼ 645.

4. Results

4.1. Two-dimensional simulations

Fig. 3 shows the amplitude of response (rms of the amplitude signal multiplied by
ffiffiffi
2
p

) obtained with the numerical
simulations. It is possible to identify three different regimes in the curve relative to the two-dimensional simulations.

The first regime shows a monotonically decreasing amplitude with increasing Reynolds number, comprising the range
90rRer165. It is interesting to note that for this Reynolds number range, the flow around a tandem arrangement with
fixed cylinders with Lx=D¼ 4 is basically two-dimensional – the critical Reynolds number regarding three-dimensional
instabilities for this arrangement is Re¼ 163:5 (Carmo et al., 2010b). Fig. 5(a) shows the time history of the downstream
cylinder lift coefficient and displacement. It can be seen that both the force and the displacement are harmonic, with no
amplitude modulation for neither quantity. The displacement signal is always in anti-phase with respect to the force
signal. Comparing the power spectral density (PSD) of the force on the upstream cylinder (Fig. 4(a)) to the PSD of the
downstream cylinder displacement (Fig. 4(b)), it can be seen that the power of these two signals is concentrated at the
same frequency, i.e. the displacement of the downstream cylinder is synchronised with the shedding of the upstream
cylinder. The vorticity contours depicted in Fig. 5(b) show that the vortices shed from the downstream cylinder form two
separated rows of vortices that interact only far downstream, more than 8D away from the downstream cylinder
(therefore, not visible in the figure).

The second regime starts at Re) 180 and is observed for Reynolds numbers up to 360. The amplitude of vibration for
this regime exhibits significant scatter, as can be seen in Fig. 3. The displacement time history for this regime displays a
slow modulation, as shown in Fig. 6(a). Nonetheless, the downstream cylinder displacement and upstream cylinder lift
coefficient signals remain synchronised, as shown in Fig. 4. It can be seen in the vorticity contours in Fig. 6(b) that the
vortices in the wake of the downstream cylinder interact in a region approximately 6D away from the downstream body,
i.e. much closer to the bodies than for the first regime (at lower Reynolds numbers).

There is a gradual transition between the second and third regimes, happening for 360rRer405. The third regime
then extends up to the highest Reynolds number tested. For this regime, Fig. 3 shows that the amplitude grows
monotonically with the Reynolds number. The PSD contours of the displacement of the downstream cylinder (Fig. 4(b))
shows that for this regime there is a strong component at low frequencies and this component does not have
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Fig. 3. Response amplitude obtained from two- and three-dimensional simulations at different Reynolds numbers.
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a corresponding match in the PSD contours of the lift of the upstream cylinder (Fig. 4(a)). The time history of the lift
coefficient and displacement of the downstream cylinder, shown in Fig. 7(a), exhibit a very erratic behaviour. We see in
Fig. 7(b) that the vortices in the near wake of the downstream cylinder, more precisely between the base region of the
cylinder up to 4D downstream, but without a regular pattern.

In order to better understand why in the third regime the downstream cylinder exhibits a significant part of its
oscillation power at low frequencies, let us analyse the response of a mass-spring-damper system to a oscillatory force. In
this case, the motion of the body is governed by the equation,

€ycþ2zo0 _ycþo2
0yc ¼

F0 sin ðotÞ
M

,

Re
100 200 300 400 500 600

0

0.1

0.2

0.3

Re
100 200 300 400 500 600

0

0.1

0.2

0.3

Fig. 4. Contours of normalised power spectral density of the upstream cylinder lift coefficient and downstream cylinder displacement, as functions of the
Reynolds number; two-dimensional simulations. (a) Upstream cylinder CL. (b) Downstream cylinder yc.
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Fig. 5. Downstream cylinder lift coefficient and displacement time series (a) and instantaneous vorticity contours (b); Re¼ 150, two-dimensional
simulations.
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Fig. 6. Downstream cylinder lift coefficient and displacement time series (a) and instantaneous vorticity contours (b); Re¼ 300, two-dimensional
simulations.

B.S. Carmo et al. / Journal of Fluids and Structures 41 (2013) 99–108 103151



where o0 ¼
ffiffiffiffiffiffiffiffiffiffi
k=m

p
is the natural frequency of the structure in vacuum and F0 and o are the force amplitude and frequency,

respectively. After the initial transient is finished, the structure will respond according to

ycðtÞ ¼
F0

Mo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
M

" #2þðo
2
0#o

2Þ2

o2

q sin ðotþfÞ,

with

f¼ arctan
2oo0z
o2#o2

0

 !
:

Considering that our system does not have a spring (k¼0), so o0 ¼ 0, nor a damper (C¼0), the response amplitude obeys
the equation

A¼
F0

Mo2
, ð6Þ

from this we conclude that the amplitude of vibration of the structure will be larger if the frequency of the force is low.
A generic force can be decomposed into its Fourier components and the system will respond with larger amplitudes to that
components with low frequency.

The spectra of the downstream cylinder lift coefficient and displacement for diverse Reynolds numbers are plotted in
Fig. 8. It can be seen that at the laminar regime (Fig. 8(a)), the force signal is harmonic, showing a very clean spectrum, so
the response of the structure is also harmonic, displaying peaks only at the shedding frequency and its third harmonic.
If the Reynolds number is increased (Figs. 8(b)–(d)), the signal of the force on the downstream cylinder starts to show a
multitude of components due to the now turbulent wake that impinges on the downstream cylinder, although a very clear
peak is still observed at the shedding frequency. Consequently, the structure then responds with larger amplitudes at the
low frequency range of the spectrum, and this is basically the reason why a significant part of the power is concentrated at
the low frequencies for higher Reynolds numbers, as shown in Fig. 4(b).

The origin of the third harmonic can be understood by considering that a periodic function f(t) of zero mean value and
period T can be represented by a Fourier series of the form:

f ðtÞ ¼
X1

n ¼ 1

an sin ðnotÞþbn cos ðnotÞ:

The terms an and bn of this series are given by

an ¼
2
T

Z T

0
f ðtÞ sin ðnotÞ dt bn ¼

2
T

Z T

0
f ðtÞ cos ðnotÞ dt:

By choosing the initial time appropriately, the function can be made odd, that is f ð#tÞ ¼#f ðtÞ. For odd functions, bn¼0 for
every n. Furthermore, f ðtÞ ¼#f ðtþT=2Þ, hence an¼0 for even values of n. Therefore, the function f(t) can be represented by

f ðtÞ ¼ a1 sin ðotÞþa3 sin ð3otÞþa5 sin ð5otÞþ ' ' ' , ð7Þ

and the number of harmonics necessary to represent f(t) depends on how different from a sinusoidal function f(t) is. In the
cases investigated in this paper (two- and three-dimensional), both the displacement and the force signals are periodic
with zero mean, but they are not perfectly sinusoidal. So Eq. (7) indicates that the odd numbered harmonics should be
strong in the spectra, and this is what we observe.
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Fig. 7. Downstream cylinder lift coefficient and displacement time series (a) and instantaneous vorticity contours (b); Re¼ 540, two-dimensional
simulations.
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4.2. Three-dimensional simulations

Fig. 3 shows that the amplitude of vibration varies very little for the three-dimensional simulations, within the
Reynolds number range tested. The same can be said regarding the frequency of vibration: Fig. 9 shows that the frequency
of vibration of the downstream cylinder and the frequency of shedding of the upstream cylinder are basically constant and
have the same value for the entire Reynolds number range.

The time history of the downstream cylinder lift and displacement and the vorticity contours observed in the results of
the three-dimensional results display very similar behaviour. Fig. 10 illustrates this behaviour by displaying these plots
for Re¼ 400. The time histories in Fig. 10(a) show that both the lift coefficient and displacement signals exhibit a little
modulation in their amplitudes. This amplitude is less strong than those observed for the second and third regimes of
the two-dimensional result, and for every cycle the cylinder crosses the line y¼0, which is not the case for the two-
dimensional simulations (see Figs. 6(a) and 7(a)). Fig. 10(b) shows clearly that the spanwise vortices diffuse much more
quickly if three-dimensional flow is considered. It can be seen in Fig. 11 that the wake is strongly three-dimensional, with
considerable streamwise vorticity present both in the region between the cylinders and in the wake of the downstream
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Fig. 8. Spectra for the downstream cylinder lift coefficient (dashed black lines) and displacement (solid grey lines) for various Reynolds numbers,
obtained from two-dimensional simulations. (a) Re¼120, (b) Re¼300, (c) Re¼420 and (d) Re¼600.
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Reynolds number; three-dimensional simulations. (a) Upstream cylinder CL. (b) Downstream cylinder yc.
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cylinder. This weakening of the spanwise vortices seems to be the main responsible for the fact that the amplitudes
observed in the three-dimensional results are smaller than those observed in the two-dimensional results, for the same
Reynolds numbers. Besides that, it is interesting to highlight that the amplitude level obtained from the three-dimensional
calculations stays at roughly the same level, while experimental results for subcritical Reynolds numbers show growing
values with increasing Reynolds numbers (Assi, 2009). We suggest that this disparity of behaviours is due to fundamental
differences in the flow regimes. Once the wake is three-dimensional, an increase of Reynolds number causes two opposite
effects. The first is an increase of the vortex strength, due to an increase of the vorticity magnitude of the boundary layers
and consequently of the free shear layers. The second is the intensification of the three-dimensional character of the flow
and turbulence in the wake, which contributes for a faster diffusion of the spanwise vorticity. The work by Noca et al.
(1998) indicates that the second effect prevails over the first for Ret1500 and the first effect prevails over the second
for Re\1500. Since the forces on the downstream cylinder are directly linked to the strength of the vortices reaching
the body, it is expected that the amplitude will only grow if the strength of the vortices shed by the upstream cylinder
increases, i.e. if the Reynolds number is increased beyond the threshold Re) 1500.

As the structural parameters did not change from the two-dimensional simulations, we still expect that the amplitude
of response will be given by Eq. (6). In order to analyse the three-dimensional results using this equation, the spectra of the
downstream cylinder lift coefficient and displacement were plotted for a number of different Reynolds numbers in Fig. 12.
The graphs show that for all the cases the force is composed by diverse components, but the peaks at the shedding
frequency and its third harmonic are clearly dominant and more pronounced than in the two-dimensional results (Fig. 8).
It is important to note that the turbulent diffusion is higher in the three-dimensional simulations, because in these
calculations all the components of the Reynolds stresses, combining the three velocity components, are taken into account,
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Fig. 10. Downstream cylinder lift coefficient and displacement time series (a) and instantaneous vorticity contours at z=D¼ 7:5 (b); Re¼400, three-
dimensional simulations.

Fig. 11. Instantaneous iso-surfaces of spanwise vorticity (translucent surfaces) and streamwise vorticity (solid surfaces) for Re¼ 400, three-dimensional
simulation. Solid light grey and dark grey surfaces represent iso-surfaces of negative and positive ox , respectively.
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as well as vortex stretching and vortex tilting. As a result, the flow reaching the downstream cylinder has less energy at the
lower frequencies. As a consequence of these characteristics of the force signal, the cylinder response also shows marked
peaks at the shedding frequency and its third harmonic. However, it is also clear that a significant part of the displacement
energy is concentrated at the lower frequencies, and the importance of this part of the spectrum increases with the
Reynolds number. This trend is consistent with what is observed in the experiments performed at moderate Reynolds
numbers (Assi, 2009), in which most of the energy is concentrated at low frequencies of vibration.

5. Conclusion

In this paper, we have investigated the flow-induced vibration of a circular cylinder subjected to wake interference, at
infinite reduced velocities. The results confirm that the presence of the wake upstream of the cylinder lead to higher
amplitudes of vibration when compared to vortex-induced vibration (VIV). Furthermore, it was shown that, differently
than what is observed for VIV with mass ratios above the critical value found by Govardhan and Williamson (2002),
there is not a delimited range of reduced velocities for which the vibration occurs with significant amplitude. We have
highlighted the differences between the results obtained with two- and three-dimensional simulations and suggested
explanations for the behaviours observed. In the near future, we will try to stretch the Reynolds number range to reach
values up to 2000, so as to have a more complete picture of the response of the cylinder from the onset of the transition in
the wake ðRe) 150Þ until the end of the crisis in the lift coefficient ðRe) 2000Þ.
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When a pair of tandem cylinders is immersed in a flow the downstream cylinder can
be excited into wake-induced vibrations (WIV) due to the interaction with vortices
coming from the upstream cylinder. Assi, Bearman & Meneghini (J. Fluid Mech., vol.
661, 2010, pp. 365–401) concluded that the WIV excitation mechanism has its origin
in the unsteady vortex–structure interaction encountered by the cylinder as it oscillates
across the wake. In the present paper we investigate how the cylinder responds to that
excitation, characterising the amplitude and frequency of response and its dependency
on other parameters of the system. We introduce the concept of wake stiffness, a
fluid dynamic effect that can be associated, to a first approximation, with a linear
spring with stiffness proportional to Re and to the steady lift force occurring for
staggered cylinders. By a series of experiments with a cylinder mounted on a base
without springs we verify that such wake stiffness is not only strong enough to sustain
oscillatory motion, but can also dominate over the structural stiffness of the system.
We conclude that while unsteady vortex–structure interactions provide the energy input
to sustain the vibrations, it is the wake stiffness phenomenon that defines the character
of the WIV response.

Key words: flow-structure interactions, vortex streets, wakes/jets

1. Introduction

Wake-induced vibration (WIV) is a fluid-elastic mechanism able to excite into
transverse oscillatory motion a bluff body immersed in a wake generated from another
body positioned upstream. In the present study we are concerned with the WIV
of the downstream cylinder of a tandem pair. WIV differs from the well-studied
phenomenon of vortex-induced vibration (VIV) in the sense that the excitation is not

† Present address: NDF Research Group, Dept. Eng. Naval e Oceânica, Escola Politécnica
da Universidade de São Paulo, Av. Professor Mello Moraes 2231, 05508-030, São Paulo, SP,
Brazil. Email address for correspondence: g.assi@usp.br
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x
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D m

k c

y

x0

y0

FIGURE 1. Arrangement of a pair of cylinders. The static upstream cylinder may be removed
during experiments with a single cylinder. Solid lines represent hypothetical interaction
between shear layers.

generated in the vortex shedding mechanism of the body itself, but it comes from the
interaction with a wake developed farther upstream. In addition to that, while VIV is
a resonant phenomenon, WIV does not depend on the fluid excitation matching the
natural frequency of the structure. This will be explained in detail later.

In the past literature, WIV has also been referred to as: ‘interference galloping’
(Ruscheweyh 1983), ‘wake-induced galloping’ (Bokaian & Geoola 1984) and ‘wake-
displacement excitation’ (Zdravkovich 1988). Nevertheless, later in the present work it
will become clear why we hold to the WIV terminology.

In order to investigate the fundamental physics behind the phenomenon we study
the simplest case consisting of two circular cylinders with the same diameter initially
aligned with the flow. The basic arrangement is illustrated in figure 1, where x0 and
y0 define the initial geometry of the pair. In the present work, the upstream cylinder is
always static while the downstream cylinder is allowed to respond with oscillations in
one degree of freedom (1-dof) in the cross-flow direction only.

Previous works found that the typical WIV response is characterized by an
asymptotic build-up of amplitude with increasing reduced velocity. In one of them,
Assi, Bearman & Meneghini (2010) investigated the origin of the fluid force involved
in the excitation of the second cylinder. It has been concluded that WIV is indeed
a wake-dependent type of flow-induced vibration (FIV), yet it was found that the
unsteadiness of the wake plays a critical role in the WIV excitation mechanism and
not simply the displacement of a steady flow field. It has been suggested that the WIV
mechanism is sustained by unsteady vortex–structure interactions that input energy into
the system as the downstream cylinder oscillates across the upstream wake. It has been
shown that, in WIV, the upstream static body sheds vortices as an isolated cylinder
while the downstream elastic body responds with oscillations at a different frequency.
For flow velocities far beyond the typical VIV resonance the upstream vortex shedding
frequency ( fs) can be many times the natural frequency ( f0), and yet the body will
respond with severe vibrations.

Assi et al. (2010) showed that WIV is not a resonant phenomenon. Coherent
vortices impinging on the second cylinder and merging with its own vortices induce
fluctuations in lift that are not synchronized with the motion. While VIV finds
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212 G. R. S. Assi and others

its maximum amplitude of vibration at the resonance when fs ⇡ f0, WIV response
keeps increasing even when fs is much higher than f0. Nonetheless, for the sake of
classification, WIV is essentially a type of vortex-induced mechanism in the sense that
it requires the interaction of the structure with vortices, even though these vortices are
coming from an upstream wake.

So far, this is what is known from previous research efforts as recently highlighted
in Assi et al. (2010). In the present paper we will concentrate our attention on what
we call the ‘character’ of the vibration. In other words, once we have understood why
vibrations are excited and sustained (Assi et al. 2010), we are able to investigate how
the cylinder responds to that excitation. Our objective is to characterize the response
(amplitude and frequency) and its dependence on other parameters of the system, such
as Reynolds number, x0 separation, structural stiffness and structural damping. Thus,
the present paper is a continuation of the work presented in Assi et al. (2010).

1.1. WIV response of the downstream cylinder
Reflecting a need from the heat-exchanger industry, the earliest experiments to
measure the response due to WIV of a pair of cylinders were performed with flexible
tubes in order to supply data to design engineers. A more complete understanding
of the fluid mechanics of the phenomenon was gradually developed when researchers
started to limit the number of variables, performing tests with rigid cylinders in 2-dof.
A further step was to simplify even more and allow a rigid cylinder only to vibrate
either in the in-line or in the cross-flow direction. First, let us present some previous
data found in the literature (including figures reproduced in this paper) that will be
useful to support our conclusions.

King & Johns (1976) performed experiments in water (Re = 103–2 ⇥ 104) with two
flexible cylinders for separations in the range x0/D = 0.25–6.0. They observed that
for x0/D = 5.5 the upstream cylinder responded with a typical VIV curve reaching
amplitudes around ŷ/D = 0.45 at the resonance peak, comparable to their tests with
a single cylinder at same Re. On the other hand the downstream cylinder also started
to build up oscillations together with the upstream one, but instead of the oscillations
disappearing after the synchronization range they remained at roughly the same level
for reduced velocities up to the highest tested. They identified the response of the
second cylinder as a type of buffeting, since it originated from the wake interference
coming from the upstream cylinder.

Brika & Laneville (1999) performed tests with a pair of long tubes in a wind
tunnel with a flexible cylinder positioned from 7 to 25 diameters downstream of a
rigid cylinder for Reynolds number between 5000 and 27 000. A series of curves
for different separations reveal that as x0 increases the interference effect from the
upstream wake is reduced until the response resembles that of a single cylinder
without any (or with very little) interference. It is interesting to note that even between
separations of 16 and 25 diameters the authors were still able to identify some change
in the interference effect with the second cylinder positioned so far downstream.
Because their experiment was performed in air, the mass ratio m⇤ (the ratio between
the mass of the structure and the mass of displaced fluid) was two orders of magnitude
higher than other experiments in water. Yet their damping parameter ⇣ was extremely
low, resulting in a combined mass-damping of only m⇤⇣ = 0.068.

Moving from flexible to rigid cylinders, we recall experiments performed by
Zdravkovich (1985) with two rigid cylinders free to respond in 2-dof mounted in
a wind tunnel (Re = 1.5 ⇥ 104–9.5 ⇥ 104, m⇤ = 725 and ⇣ = 0.07). Due to a very
high mass-damping parameter of m⇤⇣ = 50, Zdravkovich was only able to observe
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FIGURE 2. Response in the cross-flow direction of the downstream cylinder under WIV.
(a) Varying x0, m⇤ = 8.4, ⇣ = 0.013, Re = 700–2000, !w is the natural frequency in radians
per second measured in still water (Bokaian & Geoola 1984). (b) ⌃, x0/D = 4.75, m⇤ = 3.0,
⇣ = 0.04, Re = 3 ⇥ 104 (Hover & Triantafyllou 2001); �, x0/D = 4.0, m⇤ = 1.9, ⇣ = 0.007,
Re = 3000–13 000 (Assi et al. 2006).

a build-up of oscillations at x0/D = 4.0 for reduced velocities beyond U/Df0 = 50,
asymptotically reaching a maximum of ŷ/D = 1.7 for the last point of his experiments
at around reduced velocity 80. Nevertheless, he has also recorded a monotonically
increasing branch of response that was qualitatively very similar to those results later
presented by Brika & Laneville (1999). In a subsequent study of the effect of mass
and damping, Zdravkovich & Medeiros (1991) performed similar 2-dof tests in a wind
tunnel varying m⇤⇣ between 6 and 200 (Re = 5 ⇥ 103–1.4 ⇥ 105). Once more, the cross-
flow vibrations presented the same monotonic-asymptotic behaviour with the amplitude
increasing with the reduced velocity. Their results revealed a strong dependence of the
response on m⇤⇣ , but more importantly showed that very high values of mass-damping
are required to inhibit WIV of the second cylinder. Maximum amplitude was obtained
at a maximum reduced velocity of 120, but in order to reduce the amplitude ŷ/D by
half (from 2.2 to 1.1) it was required to increase m⇤⇣ ten times (from 6.4 to 64).

Going one step further in the simplification of the problem, we find a few results
from Bokaian & Geoola (1984) who performed experiments for two rigid cylinders
in tandem responding only in 1-dof in a water channel. The upstream cylinder was
fixed while the downstream cylinder was elastically mounted on air bearings and free
to respond only in the cross-flow direction. They varied centre-to-centre separation
in the range of x0/D = 1.09–5.0. Results for amplitude of response versus reduced
velocity (with !w being the natural frequency in radians per second measured in still
water) are presented in figure 2(a) for three values of x0 tested. A vigorous build-up
of oscillations with increasing flow speed is observed for all flow speeds greater than
a critical threshold velocity. Such a severe 1-dof vibration was observed to resemble
the response of classical galloping of non-circular bodies; therefore it was referred to
as ‘wake-induced galloping’. They noted that ‘galloping carries the strong connotation
of a negatively damped single degree of freedom oscillation, and its use to describe the
problem under study is only because of the many similarities between the two kinds
of instability’. However, elsewhere in their work Bokaian & Geoola (1984) stated that
‘whilst some characteristics of wake-excited galloping were found to be similar to
those of galloping of sharp-edged bodies, others were observed to be fundamentally
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214 G. R. S. Assi and others

different’. The authors concluded that depending on x0, m⇤ and ⇣ the downstream
cylinder ‘exhibited a vortex-resonance, or a galloping, or a combined vortex-resonance
and galloping, or a separated vortex-resonance and galloping’ response. In figure 2(a)
two examples of these different responses are found: results for x0/D = 1.5 present
a vortex resonance that is followed by (or combined with) a ‘galloping’ response at
about reduced velocity 2; results for x0/D = 2.0 and 3.0 present separated vortex-
resonance and ‘galloping’ regimes. A pure vortex resonance is not shown in figure 2(a)
but this would be similar to what we understand as a typical VIV response.

Hover & Triantafyllou (2001) measured displacements of and forces on rigid
cylinders under WIV in a water towing tank at a constant Reynolds number. They
made use of a closed-loop control system that forces the oscillation of the cylinder in
response to a measured and integrated fluid force. In this way they cleverly tuned the
mass, damping and stiffness parameters (m–c–k) in an equation of motion in order to
generate any artificial combination of f0, m⇤ and ⇣ . As a result, their curve presented
in figure 2(b) was obtained for Re = 3 ⇥ 104 adjusting f0 in order to vary the reduced
velocity from 3 to 12. The resulting parameter m⇤⇣ = 0.12 is very close to m⇤⇣ = 0.11
obtained by Bokaian & Geoola (1984) in figure 2(a); however the difference in the
level of amplitude might be related to a difference of one order of magnitude in Re,
as will be discussed later. For a separation of x0/D = 4.75, Hover & Triantafyllou
(2001) observed one single branch of response that builds up monotonically reaching
amplitudes of [ŷ/D]max = 1.9 for reduced velocities around 17 (their curve represents
an average of the 10 % highest peaks of displacement). Although they referred to the
branch of high amplitude as an ‘upward extension of the frequency lock-in branch’
that occurs for the VIV response of a single cylinder, there is no evidence that the
vortex shedding frequency of either cylinder is synchronized with the frequency of
oscillation; on the contrary, their results reveal that vibrations occur ‘without any clear
signature of vortex resonance’.

More recently, Assi et al. (2006) performed 1-dof experiments with two rigid
cylinders in a recirculating water channel (Re = 3 ⇥ 103–1.3 ⇥ 104). Their results,
also presented in figure 2(b), are comparable to those of Hover & Triantafyllou (2001)
since they have a similar Re range; however Assi et al. (2006) employed a very
low-damping elastic system resulting in m⇤⇣ = 0.013, one order of magnitude lower.
Both curves are in good agreement showing an expected branch of high-amplitude
oscillation building up as the reduced velocity is increased. In addition, the data
points from Assi et al. (2006) also reveal a smooth hump corresponding to a local
vortex-resonance response around U/Df0 = 6.0.

Later in this paper we shall return to some of these results in order to compare our
data and support our conclusions.

1.2. Steady fluid forces on staggered cylinders
It is known that the downstream cylinder of a staggered pair experiences a steady
lift force even if the bodies are held static in the flow (Price 1976; Bokaian &
Geoola 1984). Zdravkovich (1977) presents a map of steady fluid forces acting on a
cylinder across the wake for separations as large as x0/D = 5.0. His results, which
are in agreement with many other maps in the literature, clearly show that the steady
lift always points towards the centreline of the wake, i.e. as restoring the staggered
downstream cylinder back to the tandem configuration. The steady lift is zero on
the centreline of the wake, increases as the second cylinder is displaced towards the
wake interference boundary and is reduced as the body is positioned farther out of
the wake. Assi et al. (2010) have suggested that such a strong steady lift is induced
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The role of wake sti�ness on wake-induced vibration 215

by the unsteady interaction of vortices present in the wake coming from the upstream
cylinder. In a controlled experiment, the periodic unsteadiness associated with vortex
shedding was removed from the upstream wake, leaving only a steady shear profile
generated by a set of screens. It was shown that the steady lift acting on a static
downstream cylinder was considerably reduced if coherent vortices were not present in
the upstream wake.

Igarashi (1981) and others have identified two distinct regimes in the wake formed
in the gap between tandem cylinders. The first regime occurs when the proximity
of the cylinders allows the shear layers that separate from the upstream cylinder to
reattach to the second body and a vortex street is not developed in the gap. The second
regime, which normally occurs for larger separations, is characterized by the existence
of a developed vortex wake in the gap. The force map presented by Zdravkovich
(1977) shows that distinct regimes also appear for staggered arrangements and a steady
lift force presents two prominent regions associated with different wake regimes. In
the present work we are only interested in the second regime, i.e. the force field
and vibration generated when a developed wake is present in the gap. The transition
from the first to the second regime has a small influence of Re, but most of the
investigations agree that the critical separation is between x0/D = 3.0 and 4.0.

Bokaian & Geoola (1984) presented more detailed measurements of the steady
lift Cy acting across the wake for three separations of 3.0, 4.0 and 5.0 diameters
and Re = 5900. Their measurements made it clear that the maximum lift towards
the centreline decreases as the second cylinder moves farther downstream. While
the steady drag Cx is minimum on the centreline, due to the shielding effect of
the upstream wake, Cy is minimum around y0/D = 1.0. This brings us back to the
definition of interference regions proposed by Zdravkovich (1977). He says that ‘the
wake boundary is a line along which the (mean) velocity becomes the same as the
free stream one. The (wake) interference boundary is the line along which (the mean)
lift force becomes zero or negligible’. These two lines do not necessarily coincide, but
the wake interference boundary is always outside the wake boundary. It will become
clearer later that the interaction between flow and structure occurring within the wake
boundary is fundamental to WIV.

1.3. Vortex-induced vibration of a single cylinder
Before starting our analysis of WIV, we briefly review the modelling employed to
understand other types of flow-induced vibrations, especially vortex-induced vibration
(VIV), which has its origin in the cyclic loads generated by vortices shed from a bluff
body. It has been extensively reviewed in the literature (Sarpkaya 1979; Bearman 1984;
Parkinson 1989; Blevins 1990; Zdravkovich 1997; Williamson & Govardhan 2004),
but some of the basic modelling is mentioned here since it will be employed to model
WIV later in this paper.

An elastic cylinder will be modelled by its structural properties: mass (m), stiffness
(k) and damping (c). Allowing for displacements only in one degree of freedom
(1-dof) in the y-axis, the equation of motion per unit length becomes

mÿ + cẏ + ky =
1
2⇢U2D

h
Cy + Ĉy sin(2⇡ft + �)

i
, (1.1)

where y, ẏ and ÿ are respectively the displacement, velocity and acceleration of the
body, leaving the term on the right-hand side of the equation to represent the time-
dependent fluid force in the cross-flow direction. As proposed by Bearman (1984) and
others, the displacement of a cylinder under VIV may be expressed by the harmonic
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response

y(t) = ŷ sin(2⇡ft), (1.2)

where ŷ and f represent the harmonic amplitude and frequency of oscillation. For
large-amplitude oscillation under a steady-state regime of VIV the fluid force and the
body response oscillate at the same frequency f , which is usually close to the natural
frequency of the system. According to this ‘harmonic forcing and harmonic motion’
hypothesis the fluid force can be divided into a time-average term Cy and a transient
term modelled as a sine wave with amplitude Ĉy and frequency f . For body excitation
to occur, the phase angle between y(t) and Cy(t) must be between � = 0 and 180�.

A second-order oscillator presents an undamped natural frequency that only takes
into account the structural stiffness and mass of the system ( f0 =

p
k/4⇡2m). The

structural damping is generally expressed by a damping ratio ⇣ , defined as a fraction
of the critical damping (⇣ = c/

p
4km). If ⇣ is kept sufficiently low, the damped natural

frequency can be considered approximately equal to f0. It is useful to present the flow
speed in terms of a reduced velocity U/Df0. The reduced velocity for maximum VIV
response occurs around U/Dfs (the inverse of the Strouhal number), that is at the
resonance where the vortex shedding frequency fs is equal to f0.

According to Bearman (1984) the VIV response is inversely proportional to the
product of m⇤ and ⇣ , yielding the non-dimensional amplitude of vibration as

ŷ
D

=
1

4⇡3 Ĉy sin �

✓
U

Df0

◆2 ✓
1

m⇤⇣

◆ ✓
f0

f

◆
. (1.3)

Bearman (1984) states that ‘It is clear that the phase angle � plays an extremely
important role. The amplitude response does not depend on Ĉy alone but on that part
of Ĉy in phase with the body velocity. Hence, measurements of just the sectional
fluctuating lift coefficient on a range of stationary bluff-body shapes will give little
indication of the likely amplitudes of motion of similar bodies flexibly mounted’.
Therefore, the combined Ĉy sin � term is fundamental in an unsteady analysis of the
phenomenon.

2. Experimental set-up and validation with a single cylinder

The experimental set-up employed in the present study is exactly the same as
that described in Assi et al. (2010). For further details, refer to Assi (2009). It is
worth recalling here that a pair of coil springs connecting the moving base to the
fixed supports provided the restoration force of the system. All the moving parts of
the elastic base contributed to the effective mass oscillating along with the cylinder
resulting in a mass ratio of m⇤ = 2.6 (calculated as the total oscillating mass divided
by the mass of water displaced by the cylinder). By carrying out free decay tests in air
it was also possible to estimate the structural damping of the system as ⇣ = 0.7 %,
calculated as a percentage of the critical damping. Therefore, the mass-damping
parameter was m⇤⇣ = 0.018 for the majority of the experiments.

In order to validate the experimental set-up and obtain reference data for
comparison, a preliminary experiment was performed with a single cylinder free to
oscillate in 1-dof in a uniform flow. These results have been discussed in more detail
in Assi et al. (2010); therefore they will be presented very briefly here to allow
comparison with the main WIV data to be discussed later.

D
:

0
5

7
D

D
D

 2
0

1
8

6
 

6
2

 .
8B

8
28

28
0

/
0

0
B1

9
2

7
,0

1
8

6
,

5B
0C

08
:0

1:
0

7
D

D
D

 2
0

1
8

6
 

6
2

 7
8 

6
 

95
 

 

163



The role of wake sti�ness on wake-induced vibration 217

0.8

0.6

0.4

0.2

2.5

1.5

1.0

2 4 6 8 10

2 4 6 81 3 5 7 9
(× 103)

0 10

Re

Upper

Lower

Initial

0 12

1.0

0

2.0

0.5

(a)

(b)

FIGURE 3. VIV response of a single cylinder free to oscillate in the cross-flow direction.
Reproduced from Assi et al. (2010).

The typical VIV response, in terms of amplitude and frequency of oscillation, is
presented in figure 3 and shows a good agreement with the results reviewed by
Williamson & Govardhan (2004). The three typical branches of response, initial, upper
and lower, are clearly identified in the displacement curve. Fluid force measurements
(not presented in this paper) were in good agreement with the results presented by
Khalak & Williamson (1999) and can be found in Assi et al. (2010). Figure 3 also
shows the frequency response normalized by the natural frequency ( f /f0); variation
from light to dark grey represents higher peaks in the normalized power spectral
density (PSD) of the frequency of oscillation (refer to Assi 2009 for more details).
(The fw/f0 line will be explained later.)

Throughout the study, the cylinder displacement amplitude normalized by the
cylinder diameter (ŷ/D) was found by measuring the r.m.s. value of response and
multiplying by

p
2. Such a harmonic amplitude assumption is likely to give an

underestimation of maximum response but was judged to be perfectly acceptable
for assessing the average amplitude of response for many cycles of steady-state
oscillations. The same procedure was employed to determine the magnitude of all
other fluctuating variables, such as Ĉy and Ĉx.

3. Results: WIV response of the downstream cylinder

The characteristic build-up of response for higher reduced velocities, reported in
previous works, is clearly observed in figure 4 and contrasts with the typical VIV
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FIGURE 4. WIV response of the downstream cylinder for various x0 separations:
(a) displacement; (b) dominant frequency of oscillation.

response obtained for a single cylinder in figure 3. A discrete hump is found to occur
for all centre-to-centre separations at around U/Df0 = 5.0 and corresponds to the local
peak of VIV resonance, although this happens slightly later in the reduced velocity
scale due to the shielding effect of the wake that reaches the downstream cylinder.
Beyond that, for higher reduced velocities, a branch of monotonically increasing
amplitude starts to build up showing different levels of vibration for each separation.
As expected, it reveals that displacement amplitude is inversely proportional to the
separation x0. As the downstream cylinder is moved farther away, the effect of WIV
is reduced until the response curve eventually resembles that of VIV of an isolated
cylinder. While at x0/D = 4.0 the cylinder reaches displacement amplitudes around
ŷ/D = 1.6, a cylinder at x0/D = 20 shows only the VIV peak with levels of ŷ/D
around 0.2 for the rest of the regime. The curve for x0/D = 8.0 is a particularly
interesting one because the intensity of the WIV effect is just enough to sustain
the same level of response observed for VIV through the whole range of reduced
velocities. Nevertheless, all presented cases show some type of combined VIV and
WIV response, with the maximum amplitude of VIV at U/Df0 = 5.0 showing a minor
dependence on x0.
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Since WIV has its origin in the wake developed in the gap between the cylinders, it
is expected that the centre-to-centre separation between a tandem pair has a major
effect on the response of the downstream body. In Assi et al. (2010) we have
suggested that as x0/D is increased the fluid force induced by upstream vortices is
reduced due to diffusion of vorticity and increasing flow three-dimensionality. This
theory is supported by the results presented in figure 4 showing that the response
curve has indeed a strong dependence on x0. Our results are in good qualitative
agreement with those of Laneville & Brika (1999) even though they have performed
tests with flexible tubes.

Figure 4(b) shows the dominant frequency of oscillation for each case plotted above.
At first sight it is remarkable that all data points collapse over the range of separations
investigated. During the beginning of the VIV regime the frequency curve follows
closely the St = 0.2 line until f = f0, but later it departs from this line to follow the
lock-in behaviour observed for a single cylinder within the synchronization regime.
But where the typical VIV regime would have finished for a single cylinder, say for
U/Df0 > 15, the f /f0 curve remains on the same trend as before, which is distinctively
lower than St = 0.2. Even for larger separations of x0/D = 20, in which the response
resembles that of simple VIV, the dominant frequency is observed not to return to
St = 0.2 after the end of the supposed synchronization, but instead it remains at a
much lower level for the rest of the reduced velocity range with ŷ/D around 0.2.

This is the first evidence that there must be a fluid force with a lower frequency that
sustains the response – a frequency that is lower than the vortex shedding frequency of
both cylinders. The frequency of this fluid force appears not to vary with x0 and shows
only a small dependence on reduced velocity or Reynolds number when compared to
the St = 0.2 line, for example.

3.1. WIV response of the downstream cylinder at x0/D = 4.0
In order to investigate the mechanism behind WIV we will now concentrate our
attention on a single separation; later we shall return to the effect of x0/D on the
response. A separation of x0/D = 4.0 was chosen for various reasons: (i) it was
beyond the critical separation where a bistable reattachment of the shear layers may
occur, therefore a developed wake was observed to be present in the gap for all
flow speeds; (ii) it gave a WIV response that is qualitatively consistent with other
larger separations, being the most energetic behaviour observed; (iii) the cylinder
displacement and magnitude of fluid forces were rather large and provided accurate
measurements with the load cell; (iv) and the separation was not too large to fit in the
particle image velocimetry (PIV) field of view.

Figure 5 presents the WIV response of the downstream cylinder of a pair, initially
in tandem, with x0/D = 4.0. The same pair of springs was employed during the
whole experiment and the velocity of the flow in the test section was varied in
order to cover a large range of reduced velocity, therefore yielding Re = 2000–25 000.
Figure 5(a) plots displacement versus reduced velocity with ŷ/D being the harmonic
amplitude of displacement. Although it gives a good idea of the average amplitude
of vibration for many cycles of oscillation, ŷ/D does not offer a good estimation
of the maximum amplitude the cylinder might reach if displacement is varying from
cycle to cycle. By actually counting individual peaks of oscillation it was possible to
estimate a maximum and a minimum peak amplitude taking an average of the 10 %
highest and 10 % lowest peaks of the whole series, yielding [ŷ/D]max and [ŷ/D]min
respectively. Therefore we can say that for a certain reduced velocity the cylinder
oscillates on average with ŷ/D but reaches the maximum and minimum limits given
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FIGURE 5. WIV response of the downstream cylinder at x0/D = 4.0: (a) average
displacement and average of maximum and minimum peaks; (b) normalized PSD of
frequency of oscillation.

by the other two curves. This brings considerable new information about the response
since it shows that ŷ/D is not only building up with reduced velocity, but also the
deviation from the average amplitude is increasing, i.e. the width of the envelope is
also increasing.

Figure 5(b) shows the frequency of oscillation versus reduced velocity, the same
data presented for x0/D = 4.0 in figure 4 but now plotted as normalized PSD. It shows
that f indeed follows a branch with values greater than f0 but still not related to
St = 0.2. However, the PSD contours also reveal that any other secondary frequency
or harmonic present in the spectrum of oscillation is much smaller than the single
dominant branch that is evident across the reduced velocity range. That is to say that
there is no significant trace of a frequency branch associated with St = 0.2 beyond
reduced velocity 10, with only a hint appearing between 5 and 10 (represented by
white shading around the dashed line).

In Assi et al. (2010) we discussed in detail the behaviour of the lift force acting
on both cylinders. For now it is enough to remember that the upstream cylinder
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is shedding vortices as a single static body with St ⇡ 0.2. This was evident from
measurements of lift as well as velocity fluctuation in the wake of the upstream
cylinder. On the other hand, the lift force on the downstream cylinder has shown
two clear branches bifurcating from the VIV resonance point (refer to figure 10 in
Assi et al. 2010). The lowest branch corresponds to the frequency of oscillation in
figure 5, but the highest branch is clearly associated with a vortex shedding frequency
that follows the St = 0.2 line. This frequency may originate in the vortex shedding
mechanism occurring on the upstream cylinder, or on the downstream cylinder, or on
both.

Looking again at the response curve in figure 5 it is quite apparent that three
different regimes can be identified and related to different inclinations of the
displacement curve: (i) a VIV resonance hump (upper branch) around U/Df0 = 5; (ii)
a combined VIV (lower branch) and WIV regime roughly in the range U/Df0 = 5–17;
and (iii) a WIV regime for U/Df0 > 17.

We conclude that the WIV response of the downstream cylinder of a pair is
distinctively different from the VIV response of a single cylinder. Although some
aspects are common to both types of FIV, especially those related to the overlap of
VIV regime in the WIV response, others are very different. So far, it is clear that
the low frequency of response observed for high reduced velocities is not directly
associated with the vortex shedding mechanism of either cylinder.

4. Results: steady fluid forces on static cylinders

Traditionally, quasi-steady theory has been employed in an attempt to model various
fluid-elastic phenomena. Therefore, we have also performed experiments with a pair
of static cylinders in order to evaluate the behaviour of fluid forces acting on the
downstream body in various staggered arrangements. Measurements were obtained by
holding the upstream cylinder fixed and traversing the downstream cylinder across 160
stations (each marked by a small cross in figure 6) in and out of the wake interference
region at Re = 19 200.

Figure 6(a) presents the map of steady lift (or mean lift) acting on the downstream
cylinder for different regions of wake interference. A negative value of Cy indicates
lift force acting towards the centreline. As expected, the first evident observation is
that the steady lift force points in the direction of the centreline for all configurations
investigated. The Cy map reveals two regions of intense steady lift as high as �0.8.
The first region between x0/D = 1.5–2.5 is associated with the gap-flow-switching
mechanism (described in Zdravkovich 1977) occurring in the first wake-interference
regime, i.e. when fully developed vortices do not form in the gap. The second region
with intense lift occurs for larger lateral separations around y0/D = 0.8. Beginning
around x0/D = 2.5–3.0 with Cy ⇡ �0.8, it develops into a trend of maximum Cy
(indicated by the dash-dotted line) that decreases in intensity as the second cylinder
moves farther downstream. For x0/D > 3.0, it is observed that the magnitude of Cy
continually decreases on increasing the separation, but the transverse extent of the
force field increases farther downstream as the wake widens. This second region is
associated with the second interference regime in which the upstream shear layers are
not able to reattach to the downstream cylinder but roll up to form a developed vortex
wake in the gap, i.e. what we are calling WIV.

In the steady drag map presented in figure 6(b) positive contours of Cx denote
drag in the streamwise direction. Dotted lines represent contours of zero or negative
drag that occur when the cylinders are close enough for the gap flow to be enclosed
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FIGURE 6. Contours of (a) steady lift (Cy) and (b) steady drag (Cx) on the downstream
cylinder of a static pair. Re = 19 200.

by the reattaching shear layers. For x0/D > 2.5 the downstream cylinder in tandem
arrangement only experiences positive drag indicating that a developed wake can now
be formed in the gap. This critical separation coincides with the overlap of the two
trends of maximum Cy presented in figure 6(a). While the downstream cylinder is
immersed in the wake of the upstream cylinder the steady drag will be lower than that
expected for a single cylinder exposed to a free stream. Only for lateral separations
greater than y0/D = 1.5 does this shielding effect disappear and Cx reaches values
above 1.0. Our experimental results for the steady components are in very good
agreement with other works found in the literature, including the maps produced by
Zdravkovich (1977) and Bokaian & Geoola (1984).

4.1. Detailed map for x0/D = 4.0
Since we are concentrating our attention on x0/D = 4.0 we present a more detailed
investigation of the steady fluid forces acting on the downstream cylinder for this
separation. These results will be the basis for the discussion that will follow.

Starting from the Cy and Cx maps above, we can keep the downstream cylinder at
x0/D = 4.0 and traverse it in small steps across the wake along the vertical dashed
line plotted in figure 6. If we now vary Re for each one of these stations we have the
detailed curves presented in figure 7. Once more, it shows that the steady lift acting
on the downstream cylinder points towards the centreline of the wake for all y0/D
separations. An almost linear behaviour is observed for the range �1.0 < y0/D < 1.0
with a maximum of absolute Cy = 0.65 found just past y0/D = �1.0. Beyond that
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FIGURE 7. Steady fluid forces on a static downstream cylinder at x0/D = 4.0 and various
staggered positions.

separation the steady lift gradually reduces until it is beyond the influence of the wake
and reaches zero around y0/D = 3.0.

In figure 7(b) the steady drag curve reveals the shielding effect of the wake by
showing an almost 60 % reduction in drag at the centreline; however the mean drag
never attains negative values (drag inversion) for this separation. Bokaian & Geoola
(1984) observed that the distribution of the drag coefficient is insensitive to a limited
increase of Re from 2600 to 5900. Price (1975) also observed the same independence
from Re for a range one order of magnitude higher. We also conclude that the steady
fluid forces, lift and drag, do not vary with Re for the range of the experiments
(Re = 2000–25 000). In fact, several Re within this range were analysed but only three
are plotted in figure 7 for clarity. This explains why our maps from figure 6 for
Re = 1.9 ⇥ 104 are in good agreement with Zdravkovich’s (1977) for Re = 6 ⇥ 104.

5. Experiment without springs: f0 = 0
In Assi et al. (2010) we performed an idealized experiment by removing the

unsteadiness of the upstream wake generated by vortices being shed from the upstream
cylinder. In that case we made fs = 0 and concluded that a cylinder immersed in
such a steady wake would not develop WIV. We were convinced that the interaction
between the oscillating cylinder and the unsteady wake from upstream is crucial to
sustain the WIV mechanism. The necessary phase lag that drives and maintains the
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excitation was shown to originate in this complex vortex–structure interaction. But
one question was still left unanswered: Why is the cylinder oscillating at a frequency
that is distinctively different from both the upstream vortex shedding frequency ( fs)
and the natural frequency of the system ( f0)? WIV turned out to be understood as
a non-resonant mechanism with the amplitude of response increasing far beyond any
synchronization range. The fact that the excitation mechanism is not dependent on the
forcing frequency matching f0 gave us the idea of removing yet another fundamental
frequency of the system. In the previous experiment we made fs = 0 by generating a
steady shear profile without vortices; now we make f0 = 0 by removing the springs of
the oscillator.

The same experimental set-up was employed. While mass (m) and damping (c)
remained unchanged, the pair of springs was removed from the system so that k = 0
and f0 = 0. Therefore, for the downstream cylinder immersed in still water there
was no structural stabilizing force whatsoever to keep it in position. Cylinders were
initially aligned in tandem, but the downstream body would drift away from the
centreline, responding to any perturbation coming from the flow or from the rig.

We found no other works on WIV of cylinders where all stiffness had been removed.
Zdravkovich (1974) performed experiments with a downstream cylinder mounted
on a horizontal swinging arm without springs, but he was left with a restoration
force generated by the steady flow. The drag acting on the cylinder generated a
stabilizing force component towards the centreline – in the same way that the weight
stabilizes a vertical pendulum in free oscillation – resulting in an equivalent stiffness
generated by the flow. Most of his experiments were concerned with the gap-flow-
switching mechanism, hence were concentrated in the proximity interference region.
For x0/D < 3.5 he observed severe vibrations with a clear dominant frequency; yet the
response was abruptly reduced for separations between x0/D = 3.5–7.0 with no clear
dominant frequency being identified. Beyond that critical separation the downstream
cylinder was not prone to gap flow switching any longer but on entering the WIV
region still the expected build-up of response was not observed. Zdravkovich’s
experiment was performed in air and his elastic rig presented a very high damping
factor of ⇣ = 0.24. Probably, we believe, a high value of combined m⇤⇣ was enough to
suppress WIV but not gap flow switching, only proving that the content of energy in
the first mechanism is lower than in the latter. Apart from this experiment we have not
seen any other WIV investigation on cylinders mounted without springs – and even in
this case there was still a remaining stabilizing force left due to resolved drag.

5.1. WIV response without springs
In the WIV response with springs we found that a VIV resonance peak always
occurred around U/Df0 = 5.0, before a pure WIV mechanism could prevail. A
hypothesis is that the cylinder was being excited by VIV up to a condition of motion
(coupled displacement and frequency) from which WIV could eventually take over.
But now, once the springs are removed, we do not expect to see the local peak of VIV
appearing, consequently the cylinder may not be excited into the critical motion for
WIV to start. Would it still be possible to obtain a WIV response without first passing
through a VIV resonance peak?

We already know that a static downstream cylinder in a staggered arrangement
experiences a steady lift force towards the centreline. Keeping this stabilizing effect
in mind, we expect that a free downstream cylinder mounted without springs would
respond in one of the three possible ways.
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(i) Drift sideways: the impulse generated by the vortex–structure interaction would
be strong enough to overcome Cy towards the centreline; the cylinder would drift away
beyond the wake-interference region (static divergence) and no oscillatory motion
would be sustained.

(ii) Remain stable on the centreline: the impulse generated by the vortex–structure
interaction when the cylinder is on the centreline would be too weak to displace
the cylinder and initiate any WIV; the cylinder would find a stable position on the
centreline due to a strong Cy field and no oscillatory motion would be sustained.

(iii) Develop oscillatory motion: the impulse generated by the vortex–structure
interaction would be strong enough to displace the cylinder, but the stabilizing Cy
would restore the cylinder towards the centreline. A phase lag between force and
displacement would appear to build up the WIV mechanism and sustain oscillatory
motion even without springs.

In principle it appears that the existence of oscillatory motion depends on the
balance between the impulse force from the vortex–structure interaction and the
stabilizing lift towards the centreline, at least in a system without springs. But since
both force components depend on the unsteady wake configuration and motion of the
body we cannot predict a priori if the system will respond with sustainable oscillatory
motion – and even if some oscillation is developed there is no indication that it would
resemble the WIV response obtained when springs were present.

Figure 8 presents the WIV response for the downstream cylinder mounted without
springs compared with the curve already presented for a cylinder with springs. Both
curves were obtained for the same variation of the flow speed; therefore both data sets
share the same Reynolds number scale. But because the system without springs has
no inherent f0 it does not make sense to plot this curve with a reduced velocity axis.
In fact, by making f0 = 0 we are effectively making U/Df0 = 1 for all points of the
response without springs; the variation of flow speed can only be represented by Re in
this case.

From among the three hypotheses presented above, the response certainly agrees
with the third one concerned with sustainable oscillatory motion. Not only was the
cylinder able to sustain oscillations, but most surprisingly the amplitude of response
was remarkably similar to the case with springs. As far as the amplitude of response
is concerned, it appears that the absence of springs is insignificant for the WIV
mechanism. As expected, the local peak of VIV around U/Df0 = 5.0 disappeared once
the resonance fs = f0 was eliminated by removing the springs. However, the overall
response for both cases, with and without springs, is notably similar. The fact that
ŷ/D increases with flow speed is not an effect of reduced velocity; in other words, the
increase in WIV response observed for a cylinder without springs cannot be related
to any structural stiffness. Instead, it seems that the response reveals some dependence
simply on Reynolds number. Since both curves are essentially very similar, we suggest
that an independence of response from reduced velocity and a dependence on Re
might also be occurring for the cylinder mounted with springs. We shall return to this
subject later on.

Let us turn now to the frequency of response presented in figure 8(b). Since f0 is
not defined for the case without springs, we can only compare both curves if they are
plotted in dimensional form (s�1). The response with springs was analysed above, but
it is convenient to summarize it here once more: f follows the St = 0.2 line up to the
VIV resonance; then follows close to f0 through a distorted synchronization range, but
eventually continues on a distinct branch dominated by pure WIV. On the other hand,
the frequency of response without springs shows no effect of VIV synchronization

D
:

0
5

7
D

D
D

 2
0

1
8

6
 

6
2

 .
8B

8
28

28
0

/
0

0
B1

9
2

7
,0

1
8

6
,

5B
0C

08
:0

1:
0

7
D

D
D

 2
0

1
8

6
 

6
2

 7
8 

6
 

95
 

 

172



226 G. R. S. Assi and others
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(b)

FIGURE 8. WIV response of a downstream cylinder mounted with and without springs at
x0/D = 4.0: (a) displacement; (b) dominant frequency of oscillation.

– that is obvious since there is no f0 for it to be synchronized with – but follows an
almost straight line as the flow speed is increased. In fact, we note that it follows
very closely the dash-dotted line marked as fw, which shall be explained later. Another
way to analyse this result is to create a non-dimensional parameter fD/U, a type
of Strouhal number, plotted in figure 9. This way, the St = 0.2 line presented in
figure 8 becomes a constant in figure 9 and all the data are distorted to incorporate the
effect of U varying in both axes. We shall return to this graph after some analytical
modelling that will follow in the next sections. Before that, we will look at the time
series of displacement and lift.

Figure 10 shows three examples of time series for the WIV response without
springs. The flow speed in each case, represented by Re, would correspond to a
reduced velocity of U/Df0 = 10, 20 and 30 for the cylinder mounted with springs
(which can be compared with the plots in Assi et al. 2010). The displacement
plots on the left (a,c,e) show that the system is indeed responding with oscillatory
motion. Although the frequency of response seems to be rather regular, it is evident
that the envelope of amplitude varies from cycle to cycle throughout the series.
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40
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(× 104)

0
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0 3.0

FIGURE 9. Non-dimensionalized dominant frequency of oscillation of a downstream cylinder
mounted with and without springs. See figure 8 for key.

Figure 10(b,d,f ) presents superimposed plots of displacement and lift for similar cycles
around the average value of ŷ/D given in figure 8.

A considerable variation in displacement is evident from the deviation of dark-grey
lines from the average cycle represented in black. Nevertheless, it is the irregularity
of the lift force that really catches the attention. A clutter of light-grey lines reveals
that almost no cycle is identical to any other and an abundance of higher frequencies
induce Cy to present significant fluctuations within a single cycle of displacement.
Once more we can note that intense, high-frequency fluctuations in lift, a consequence
of the instantaneous interaction between cylinder and wake, may have a similar effect
as generating the phase lag between y and Cy that is necessary to transfer energy
from the flow to the structure. However, by looking at the average cycle of lift, given
by a dashed-black line, we can still note a lower frequency component almost, but
not exactly, out of phase with the displacement. This term must have some inertia
component reacting against the acceleration of the body; part must be related to the
flow excitation, but part must also be related to the steady Cy field acting towards the
centreline.

Analysing the PSD of Cy of both cylinders (figure 11) we note that the upstream
cylinder (figure 11a) is shedding vortices as an isolated body, with no interference
from the motion of the second cylinder propagating upstream. This was also observed
for the case with springs and there is no reason to expect that it would be different
for the same separation. On the other hand, the PSD of lift on the downstream
cylinder shows two distinct branches of frequency: the higher f (Cy) branch is clearly
an effect of vortex shedding from the upstream cylinder; whereas the lower f (Cy)
branch is promptly identified with that frequency of response observed in figure 8. It
is important to note that in this case there is no f0 defined by springs (that is why
f (Cy) has a dimension of s�1), hence the fact that f (Cy) presents a lower branch is
not associated with any structural stiffness. It is only at the very beginning of the
scale, for Re < 0.3 ⇥ 104, that we see the vortex shedding branch having more energy
than the lower one; otherwise, for the rest of the response curve, the lower frequency
branch clearly dominates the character of Cy. Now, with such a clear preponderance
of the lower f (Cy) branch it is not surprising that the dominant frequency of response
matches this major excitation.
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FIGURE 10. Three examples of time series for WIV without springs. (a,c,e) Displacement
signal for around 50 cycles of oscillation. (b,d,f ) Superimposed plots of similar cycles:
y/D in dark grey and Cy in light grey with average cycle in black. (a,b) Re = 0.8 ⇥ 104,
(c,d) Re = 1.5 ⇥ 104, (e,f ) Re = 2.3 ⇥ 104.
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FIGURE 11. Normalized PSD of lift force acting on the (a) upstream static cylinder and (b)
downstream cylinder without springs.

The body is able to sustain oscillatory motion even without any springs to create
structural stiffness and we are still left with the question about the origin of a lower
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The role of wake sti�ness on wake-induced vibration 229

frequency force that is not related to either fs or f0. The only possibility left is that
there must be another force acting to restore the body to equilibrium. Since the body
is essentially without any structural stiffness, such a stabilizing force has to be coming
from the flow itself. That is to say that there must be a fluid force playing the role of
the stiffness in the oscillator, otherwise no oscillatory motion would be observed. So
we turn our attention once more to the steady lift generated in staggered arrangements.

6. The wake-sti�ness concept

Now that we have observed that the WIV response without springs indeed presented
oscillatory motion – with amplitude increasing with Reynolds number and a frequency
distinct from fs or any f0 – we should model the problem of a cylinder with no
structural stiffness. The equation of motion (1.1) has the stiffness term removed if we
make k = 0 for a downstream cylinder without springs, resulting in

mÿ + cẏ = Cy
1
2⇢U2D, (6.1)

where all forces are per unit length of cylinder.
Applying the same ‘harmonic forcing and harmonic motion’ assumption, where

y = ŷ sin(2⇡ft) and Cy = Ĉy sin(2⇡ft + �), results in

ŷ
D

=
1

4⇡
Ĉy sin �

⇢U2

cf
. (6.2)

Notice that neither the mass nor any stiffness comes into the equation, but the
excitation is simply balancing the structural damping of the system given by c (friction
damping per unit length of cylinder). Rearranging (6.2) into non-dimensional groups
results in

ŷ
D

=
1

4⇡
Ĉy sin �

✓
U
Df

◆ ✓
⇢UD

µ

◆ ⇣µ

c

⌘
. (6.3)

Knowing that the dynamic viscosity µ is a physical property of the fluid and
assuming that viscous damping per unit length c is only based on the friction of the
air bearings, we conclude that µ/c does not vary with Reynolds number. We are left
with three non-dimensional groups: (i) Cy sin � is associated with the excitation force,
we call it the vortex-impulse term and will consider it later; (ii) U/Df represents the
inverse of a non-dimensional frequency of oscillation; (iii) ⇢UD/µ is the Reynolds
number.

6.1. Frequency of oscillation and natural frequency of wake sti�ness
Let us first investigate the behaviour of the non-dimensional oscillation frequency
(fD/U). If we consider the map of steady lift across the wake for x0/D = 4.0
presented in figure 7 we note that Cy acting towards the centreline has a rather
good linear behaviour between �1.0 6 y0/D 6 1.0 and does not vary within the Re
range. Of course nonlinearities appear for larger separations, but we can estimate the
slope

����
@Cy

@(y0/D)

���� ⌘ �Cy ⇡ 0.65 (6.4)

with 95 % confidence inside the wake interference region (considered to be �1.0 6
y0/D 6 1.0 in this analysis). For convenience, we shall refer to this slope simply as
�Cy from now on.
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230 G. R. S. Assi and others

We know that this steady lift works as a restoring force towards the centreline.
Similarly to the stiffness generated by a spring, the magnitude of Cy increases linearly
with transverse displacement of the cylinder, at least within the wake interference
region. For that reason, the Cy field can be understood as a ‘fluid-dynamic spring’
generated by the flow; such an effect will be referred to as wake stiffness from now
on.

The equivalent spring constant per unit length (kw) that would generate such a flow
effect is

kw = �Cy
1
2⇢U2

; (6.5)

thus an equivalent natural frequency fw could also be associated with the wake stiffness
as

fw =
1

2⇡

vuuut
kw

(m⇤ + Ca)⇢
⇡D2

4

, (6.6)

where Ca denotes the potential added mass coefficient to take into account the effect of
the added inertia of the displaced water.

Since wake stiffness is a fluid-dynamic force, its effect would be equivalent to a
spring with a kw that increases with U2, as seen in (6.5); hence the associated natural
frequency fw increases linearly with Re. Replacing (6.5) in (6.6) and multiplying it by
D/U results in a Strouhal-type non-dimensional parameter

fwD
U

=
1

2⇡

s
2
⇡

�Cy

(m⇤ + Ca)
. (6.7)

We already know that �Cy is invariant with Re. Since Ca cannot vary with Re either,
we conclude that fwD/U is a constant irrespective of Re.

Turning back to figure 8 we note that the frequency of oscillation f for a cylinder
without springs presents a remarkable linear behaviour that grows with Re, which is
represented by an almost constant curve far from St = 0.2 in figure 9. This suggests
that there must be a preferred frequency lower than fs dominating the response. Note
that this characteristic frequency cannot be related to f0 because the system has no
springs. Therefore we are left with the possibility that this restoration is indeed coming
from the Cy field, hence it must be related to �Cy .

Now if we substitute the numerical values �Cy = 0.65, m⇤ = 2.6 and Ca = 1.0 in
(6.7) we find that fwD/U = 0.054, which is represented by the fw dot-dashed line in
figures 8 and 9. The agreement between fw and the WIV response without springs is
remarkable. This is evidence that a cylinder without springs may also be responding
to the wake stiffness with f = fw for the whole range of Re. That is to say that the
excitation frequency identified in the lower branch of f (Cy) in figure 11 – the one
that matches the response frequency f in figure 8 – is actually governed by the wake
stiffness effect described in (6.5) to (6.7).

If it is true that f = fw, (6.7) tells us that fD/U is also a constant and the cylinder
indeed oscillates with f that increases linearly with Re. In figure 8 we note that
f closely follows fw up to around Re = 1.5 ⇥ 104 when the response amplitude
reaches about ŷ/D = 1.4. Beyond this point the amplitude grows towards values
around ŷ/D = 1.8 meaning that the cylinder is oscillating further out of the wake
interference region. From the Cy map for x0/D = 4.0 (figure 7) we know that the
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The role of wake sti�ness on wake-induced vibration 231

steady lift grows linearly with lateral separation up to around y0/D = 1.0. Beyond that,
nonlinear effects start to appear and the wake stiffness is not able to be represented
simply by the slope �Cy but would gradually be reduced. This is exactly what is
observed as the frequency curve begins to depart from the fw line as ŷ/D increases. Of
course some effect in reducing f must be coming from the fact that secondary effects
in the effective added mass of fluid may appear as the cylinder moves in and out of
the wake interference region. But even considering that the effective added mass is
constant throughout Re the agreement is still very good.

Although it is very helpful to think of the wake stiffness effect as a linear spring,
a quasi-static lift map still is an oversimplification of the problem. If the restoring
fluid force towards the centreline is induced by complex vortex–structure interactions
– as proposed in Assi et al. (2010) – it should also present unsteady variations as the
cylinder moves across the wake. However, we can still imagine that if the cylinder
is displaced farther away from the wake interference region (y/D � 1.0) the induced
force at that instant must be reduced. On the other hand, if in another instant the
cylinder is located closer to the wake boundary the vortex-induced force can be
amplified. For that reason we could suggest that the total excitation force must be
composed of two fluctuating terms with distinct frequencies: one term is associated
with the wake stiffness, which obviously depends on the position of the body across
the wake and is related to f ; the other is associated with the impulse vortex-force
induced on the cylinder, which also depends on the lateral position of the cylinder
and is thus related to fs. We believe that while a series of vortices streaming along
the wake induces a steady force towards the centreline, each vortex also induces an
instantaneous force fluctuation (an impulse) on the cylinder. The magnitude of both
wake-stiffness and vortex-impulse terms will depend on the relative position of the
body and a particular interaction with the wake.

6.2. VIV and WIV resonances: fs = f0 and fw = f0

If the wake-stiffness is dominant over the vortex-impulse term it is straightforward to
predict that the cylinder should respond with f = fw and not f = fs. As we have seen
so far fwD/U does not vary with flow speed, thus fw increases linearly with Re. Since
f0 is a constant defined by the springs, there must be a critical point where the wake
stiffness has the same intensity as the spring stiffness, i.e. kw = k and fw = f0. This
occurs in figures 8 and 9 where fw crosses the f0 line at Re = 1.2 ⇥ 104 (equivalent
to U/Df0 = 18.8 for the case with springs). We know the present set of coil springs
provides the system with a measured stiffness of k = 11.8 N m�1. But considering the
steady lift map with �Cy = 0.65 in (6.5) we see that the wake stiffness can reach
values as high as kw = 34 N m�1 at the end of the Re range of the experiments.

For the case with springs we find f following closer to the f0 line during the range
where VIV is relevant, with the lock-in peak occurring around the intersection of f
with both f0 and St = 0.2 lines. This first VIV resonance is marked by the vertical
line fs = f0 in figure 8. At this point kw = 1.8 N m�1 is only 15 % of k provided
by the springs. As the flow speed is increased the VIV synchronization tends to
disappear as St = 0.2 moves away from f0. At the same time the wake stiffness is also
getting stronger until both kw and k have the same value. As we saw, this occurs for
U/Df0 = 18.8 and is marked by the second WIV resonance line fw = f0, beyond which
kw is greater than k.

The two resonance lines divide the response for a cylinder with springs into three
regimes that are best identified in figure 8. (i) Before fs = f0, when St = 0.2 is
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232 G. R. S. Assi and others

approaching f0, the displacement resemble an initial branch of VIV and f follows the
Strouhal line up to the resonance peak. (ii) The second regime, between fs = f0 and
fw = f0, is marked by a steep slope in the displacement curve; f remains rather close
to f0 as the VIV synchronization range gradually gives way to a wake stiffness that is
growing stronger with Re. (iii) The third regime, beyond the second resonance fw = f0
is characterized by a change of slope in both the displacement and frequency curves.
With kw > k the WIV response is established and dominates alone for the rest of the
Re range.

The system works as if the set of springs were important only in the first regime
before the fw = f0 resonance, but the system completely overlooks its small structural
stiffness given by f0 as kw gets relatively stronger. It appears that away from the
resonances fs = f0 and fw = f0 the spring acts against the WIV excitation with the effect
of reducing the amplitude of vibration. This idea is in agreement with the classical
theory of linear oscillators; if the excitation force is outside the resonance of the
system the response will not be as high as the resonance peak.

Various experiments have investigated the flux of energy in the system for a cylinder
oscillating in forced vibrations in a flow. Recently, Morse & Williamson (2009) have
presented a detailed energy map for VIV of a single cylinder. If we take values of
displacement and frequency from our own WIV curves and plot them in their VIV
energy map we will see that the structure is actually losing energy to the flow. If we
assume that the major forcing term is coming from the WIV mechanism governed by
wake stiffness, the VIV part governed by spring stiffness is contributing to dissipate
energy and reduce the vibration. That is why the response curve with springs shows
reduced amplitude away from the two resonance lines when compared with the case
without springs. Because our excitation force is believed to have a wake-stiffness
and a vortex-impulse component, each related to one characteristic frequency, the
response will be slightly accentuated when fs = f0 (VIV resonance) and fw = f0 (WIV
resonance).

One could ask if it would be possible to have a third resonance fs = fw, potentially
occurring also for a cylinder without springs. Since both St = 0.2 and fw are dependent
on Reynolds number, they would have to be equal throughout the whole Re range.
Starting from (6.7) and considering that the Strouhal number of a cylinder is roughly
constant with Re, there are only two ways to bring both St = 0.2 and fw lines together.

Firstly, fixing the mass of the system we would have to generate a steady lift field
with �Cy = 8.9 which is one order of magnitude higher than the maximum value
measured for staggered cylinders. Now, if the steady lift towards the centreline has its
origin in the unsteady vortex–structure interaction, both fs and fw originate in the same
phenomenon and have to coexist within physical boundaries. By this we mean that
the wake structure required to generate such an intense steady field would have to be
very different from the vortex shedding mechanism that we know. Therefore we do not
expect fs = fw due to such an intense Cy field.

Secondly, knowing that �Cy is invariant with Re, we can change the mass of the
system in order to change the natural frequency fw. Keeping �Cy = 0.65 and Ca = 1.0
constant in (6.7) and equating the right-hand side to St = 0.2 results in m⇤ = �0.74.
Since this result is impossible in a physical system we can affirm that St = 0.2 and fw
will never overlap.

In fact, since we know the cylinder is responding to WIV with f = fw, to have
fw = fs means that the cylinder would be oscillating at the frequency of vortex
shedding for the whole Re range. This is the WIV equivalent of the phenomenon
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The role of wake sti�ness on wake-induced vibration 233

described by Govardhan & Williamson (2002) for VIV of a single cylinder. They
verified that for m⇤ below a critical value around 0.54 the VIV response would
persist for an infinite regime as if the lower branch were extended indefinitely. It
was observed that the frequency of oscillation f would follow the vortex shedding
frequency fs, linearly increasing with reduced velocity, sustaining a regime they called
‘resonance forever’. Although this appears to be physically impossible in our case, we
hypothesize that if we could artificially bring both St = 0.2 and fw lines together – in a
force feedback system this would be possible – the cylinder would vibrate indefinitely
with both VIV and WIV perfectly combined.

6.3. Response without springs in a shear flow
In Assi et al. (2010) we have seen that the unsteadiness of the wake was necessary to
excite WIV; a cylinder immersed in an artificial wake without vortices did not respond
with WIV. In the present paper we investigated the importance of the wake-stiffness
effect in sustaining the vibration of a cylinder mounted without springs. Finally, we
can combine the two concepts of wake stiffness and vortex impulse in the response
of a cylinder immersed in a shear flow (without unsteady vortices) but also without
springs (without structural stiffness). This experiment was performed and the result
was that no vibration was observed.

Although some small wake-stiffness effect was left in the shear flow after vortices
were removed – �Cy ⇡ 0.2 could be estimated from the steady lift field in Assi et al.
(2010) – it was not strong enough to sustain oscillatory motion and the cylinder did
not respond with vibrations. If our theory is correct, we need to bring the excitation
term from the vortex–structure interaction acting together with the wake-stiffness effect
in order to produce a WIV response. Removing the unsteadiness of the upstream wake
we are essentially left without the WIV excitation term, therefore the response will be
that of VIV. But, by removing both the unsteadiness of the wake and the springs at the
same time we are left with no response at all.

7. Dependence on Reynolds number

Returning to (6.3), we can now analyse the behaviour of the non-dimensional
parameter Ĉy sin � (that we are calling the vortex–impulse term) with respect to
Reynolds number. We already know that the cylinder is responding with f = fw, a
dominant frequency produced by the wake stiffness effect. In the harmonic assumption
applied in (6.1) we consider that the fluid force is represented by only a single
dominant frequency and phase angle. However, in figures 10 and 11 we clearly see
that Cy in fact presents two significant frequencies: a lower branch associated with
wake stiffness and a higher branch associated with vortex–impulse from the upstream
wake.

Retaining the harmonic hypothesis we could split the actual effect of Cy into two
parts. Because fw is clearly dominant over fs let us consider that the magnitude of
Ĉy is only produced by the wake stiffness effect and has very little influence from
vortex–impulse fluctuations. Consequently, the fluid force would have a dominant
component f = fw, with magnitude depending only on �Cy and acting out of phase
with the displacement (again we are entering quasi-static territory, but at least now
we are supported by having U/Df0 = 1). On the other hand, we need to account
for the phase lag necessary to sustain the vibration. We have already proposed (Assi
et al. 2010) that it is generated by the complex vortex–structure interaction as the body
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FIGURE 12. Comparison between lift coefficient (a) and phase angle (b) for the WIV
response of a cylinder with and without springs at x0/D = 4.0.

crosses the wake, therefore we could attribute the existence of � to the vortex–impulse
fluctuations operating at fs.

We have shown that �Cy does not vary with Re, therefore Ĉy should also be
invariant. However, we have also demonstrated that, due to fluctuations caused by
vortex–impulse, the phase angle varies from cycle to cycle as the cylinder interacts
with different wake configurations. Albeit not being very strong, this supposition
finds some support in the time series presented in figure 10. Therefore, let us now
investigate Ĉy and � independently.

Figure 12(a) compares the total lift coefficient for WIV responses both with and
without springs. An abrupt reduction in Ĉy for the case with springs is characteristic
of the VIV phase shift and occurs at the fs = f0 resonance. We can still note some
differences between the cases while VIV is losing strength between the resonances,
but yet it is beyond the resonance fw = f0 that WIV clearly dominates and both curves
follow each other closely for the rest of the Re range. Apart from a small range of
Re < 0.5 ⇥ 104, Ĉy without springs shows a fairly constant behaviour with a small
negative slope. Figure 12(b) compares average values of � for WIV responses with
and without springs. Each data point was obtained by employing the Hilbert transform
to calculate instantaneous values of phase angles and then averaging � for more than
500 cycles of oscillation (refer to Assi 2009 for more details). The curve shows that �
without springs presents a relatively constant value around 153� for Re > 0.5 ⇥ 104.

Although both Ĉy and � appear to be fairly invariant with Re, we cannot forget
that values plotted in figure 12 are averaged for as many as 500 cycles of oscillations.
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The role of wake sti�ness on wake-induced vibration 235

We have already seen in figure 10 how irregular Cy can be from cycle to cycle.
Variations within the present Re range are also expected to occur due to the complex
characteristic of the wake. For example, it is known that the vortex formation length
presents a strong variation with Re (Norberg 1998; Assi et al. 2006); and the three-
dimensionality of the wake may also present some Re dependence. Nevertheless,
although Ĉy and � cannot be confirmed as strictly constant we are able to conclude
that, to a first approximation, the non-dimensional term Ĉy sin � should be roughly
invariant with Re, at least within the subcritical Re range of the experiments.

Turning back to (6.3), we can now verify that µ/c, U/Df and Ĉy sin � are
approximately invariant with Re, leaving only the Reynolds number term itself on
the right-hand side of the equation. As a result it is evident from this analysis that
ŷ/D is linearly dependent on Re and the WIV response should increase with flow
speed up to a critical amplitude. Once the cylinder starts to be displaced out of the
wake interference region nonlinear effects become important, limiting the response to
an asymptotic value. Secondary effects may be acting on U/Df and Ĉy sin � conferring
on the response the curved shape presented in figure 8. The analysis developed above
is in good agreement with displacement curves presented for both cases (with and
without springs). Therefore we conclude that the mechanism that is building up the
amplitude of vibration in WIV is definitely not a consequence of reduced velocity but
a direct effect of Reynolds number.

Picking a displacement point from the curve without springs at an arbitrary value
of Re = 2.3 ⇥ 104 (the location represented by a vertical arrow in figure 8) we are
able to estimate the limiting value the response is asymptotically approaching as
U/Df0 ! 1 for that specific Re. Of course this is the data point from the curve
without springs immediately above the vertical arrow, but it can also be represented on
the right-hand axis for U/Df0 = 1 (this will be useful later when comparing different
x0/D separations).

Such a strong Re dependence turned out to be a rather unexpected result. It took us
some time to comprehend how a fluid-elastic system could show large variations over
such a short Re range. However, if we consider that our system actually possesses a
fluid-dynamic spring that increases stiffness with U2, a seen in (6.5), we are left with
the only conclusion that ŷ/D must indeed vary with Re.

7.1. Experiments with constant Re
At this point one may recall the results from Hover & Triantafyllou (2001), presented
in figure 2(b), who measured the WIV response of a cylinder at x0/D = 4.75 and
constant Re = 3 ⇥ 104. They achieved this by varying the spring stiffness of a force-
feedback system. In spite of operating at a fixed Reynolds number, they were able
to measure a build-up of response that increased with reduced velocity. In principle,
this seems to contradict our theory that the WIV response is not affected by reduced
velocity.

Considering that their separation of x0/D = 4.75 must provide a wake-stiffness effect
in the order of �Cy ⇡ 0.55 (based in our figure 6), we can estimate that the critical
reduced velocity at which the wake stiffness equals the spring stiffness (kw = k) is
as high as U/Df0 = 21 (based in our Cy map of figure 6, Ca = 1.0 and their value
of m⇤ = 3.0). However, the maximum reduced velocity achieved in their experiment
is only around 17. Hence the regime Hover & Triantafyllou (2001) observed was
still between the resonances fs = f0 and fw = f0, a region where VIV still has some
significance.
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0.5 1.0 1.5 2.0 2.5

Re
0 3.0

5 35

Varying Re

0

2.0
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C

FIGURE 13. WIV response at constant Re for x0/D = 4.0. Reduced velocity varied by
changing the springs, compared to our reference cylinder with fixed springs and varying
U/Df0 by varying flow speed (the secondary axis of Re refers to this curve only).

According to our theory, we would expect their results to reach an asymptotic
value around ŷ/D = 1.5 for Re = 3 ⇥ 104, which is in good agreement with their
curve reproduced in the present work (figure 2b). Note, however, that Hover &
Triantafyllou (2001) do not plot ŷ/D but an average of the 10 % highest peaks of
displacement. As we have seen in figure 5 the maximum displacement of the cylinder
can be considerably greater than the averaged ŷ/D that we usually employ. The same
observation is also true for the results obtained by Assi et al. (2006) also presented in
figure 2(b). Even though k was constant, they could not reach the regime above the
WIV resonance fw = f0 due to a limitation in the maximum flow speed.

In order to verify this phenomenon, we carried out a series of experiments for three
constant Reynolds numbers at x0/D = 4.0. The flow speed was fixed and reduced
velocity was varied by changing the set of springs and, consequently, changing f0.
Figure 13 presents the results compared to our reference WIV response of a cylinder
with fixed springs and varying U/Df0 by varying flow speed (the secondary axis of Re
refers to this curve only).

Three vertical arrows (A, B, C), one for each Re curve, mark the condition where
the stiffness of the varying wake spring matches the fixed spring k. Hence all data
points to the right of these arrows have a spring that is softer than our reference curve
(and stiffer to the left). None of the curves was able to span the three regimes defined
by the resonance lines fs = f0 and fw = f0, but considering the results of all three curves
we are able to understand the general behaviour of the response at a constant Re.

The curve for Re = 9600 does not have enough data points to reveal a local peak
of VIV at fs = f0, but the majority of the points fall within the first regime between
the resonances, where VIV is gradually losing its influence to WIV. In our experiment
with varying Re we have noticed that the amplitude of response generally presents a
positive slope in this first regime; this is verified now for a constant Re as well. As
we have discussed above, Hover & Triantafyllou (2001) also found increasing response
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The role of wake sti�ness on wake-induced vibration 237

for a constant Re in this regime. Our data agree with theirs in showing a build-up of
response between fs = f0 and fw = f0. Such an effect is also observed for our curve at
Re = 19 200.

Let us move on to the other curves at Re = 14 500 and 19 200 that cross fw = f0 and
enter the second regime where WIV dominates. Now that the wake stiffness is greater
than the spring stiffness we see that the response is not influenced by reduced velocity
anymore, but presents a rather constant level of amplitude for each fixed value of Re.
Even if the reduced velocity is increased from 20 to 35 the amplitude of response
seems not to be much affected and the data points appear to follow the same trend as
long as Re is kept constant. Going back to the curve without springs in figure 8 we
are able to find a displacement amplitude for each of our Re curves at U/Df0 = 1

towards which the data points should be converging. We note that they are slightly
higher than the level of amplitude the curves are reaching beyond fw = f0, but we have
to remember that we are still operating with springs, although soft ones, that might be
contributing to reduce the response away from the resonance lines.

While on the one hand the VIV peak at fs = f0 seems to always reach ŷ/D around
1.0 (for this value of m⇤⇣ ), the amplitude at the end of the first regime, at fw = f0,
varies with the intensity of the wake-stiffness effect. Because kw increases with Re the
amplitude at fw = f0 must also increase with Re. This level of amplitude is already
very close to the asymptotic value predicted by the experiments without springs; hence,
as the spring stiffness gets less important beyond fw = f0, we expect the curves to be
converging towards the values plotted at U/Df0 = 1.

This series of experiments at constant Re proved that while the response below
fw = f0 is dependent on both Re and reduced velocity, the response for fw > f0 is
clearly governed by Re only. In other words, we conclude that in the first regime
where both VIV and WIV are competing (or cooperating) the response increases due
to a combination of spring and wake-stiffness effects. Even with constant Re we note
a build-up of response while the ratio between k and kw makes reduced velocity an
important parameter. But once the wake stiffness becomes dominant over the springs
the response is not affected by the structural stiffness and is only governed by wake
stiffness. Now this second regime is clearly dominated by a Reynolds number effect.

7.2. Equivalent damping
Another way to comprehend the behaviour of the amplitude of response is to think in
terms of an equivalent damping ratio. We can define ⇣ by the ratio between c and a
critical damping:

⇣ =
c

4⇡f0m
. (7.1)

Note that the natural frequency and the mass of the system are present in the
denominator. Apart from removing the pair of springs we keep exactly the same
set-up from previous experiments, therefore we assume all other parameters are kept
constant including the structural damping c. In other words, we presuppose the friction
in the air bearings was kept the same; hence the system would dissipate the same
amount of energy for a similar velocity of the cylinder. However, now that the springs
are removed we do not have f0 that can be used to non-dimensionalize ⇣ as expressed
in (7.1).

Govardhan & Williamson (2002) encountered a similar problem to define a suitable
damping ratio when performing experiments with a cylinder mounted on air bearings
without springs. They also wanted to investigate the VIV response for U/Df0 ! 1
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and achieved that by removing the springs from the elastic system, making k = 0
and f0 = 0. In their experiment f followed the shedding frequency throughout
the oscillatory regime, therefore they employed an equivalent damping ratio non-
dimensionalized by fs instead of f0. But in the present WIV investigation f was
observed not to follow fs; instead it increases linearly with flow speed following fw
– the natural frequency given by wake stiffness – as demonstrated above. Therefore,
unlike in Govardhan & Williamson (2002), it does not make sense to define an
equivalent damping ratio based on the shedding frequency fs, but based it on the
oscillation frequency f = fw instead:

⇣w =
c

4⇡fwm
. (7.2)

According to this definition of ⇣w the damping ratio varies with flow speed since
fw is also varying with U, as seen in (6.6). The same occurred for Govardhan &
Williamson (2002), where their damping ratio was based on fs which also varies
with U according to the Strouhal law. (This was not the case with the traditional ⇣ ,
which is invariant with U given a constant natural frequency f0 defined by structural
stiffness.) Now, substituting c from (7.2) into (6.3) results in

ŷ
D

=
1

4⇡
Ĉy sin �

✓
U
Df

◆2 ✓
1

m⇤⇣w

◆
, (7.3)

with a combined m⇤⇣w parameter appearing in the denominator.
We now observe that the amplitude of response should be inversely proportional

to this new m⇤⇣w. However, now the combined mass-damping parameter is not
constant but incorporates a variation with flow speed. Because fw increases with Re, ⇣w
decreases with flow speed and, thinking about an equivalent damping term, we reach
the same conclusion that the response should in fact increase with Re.

8. Wake sti�ness for other separations

Now that we have analysed the WIV response for a pair of cylinders at x0/D = 4.0
we can bring the wake-stiffness concept back to our starting point and investigate the
effect it has on other separations. We already know that moving the second cylinder
farther downstream does not affect the wake formed in the gap, i.e. the upstream
vortex shedding process is not affected if the separation changes from x0/D = 4.0 up
to 20.0, the highest case investigated in the present work.

The development of a von Kármán wake from a static cylinder has been diligently
studied in the literature. Schaefer & Eskinazi (1958) performed experiments in a wind
tunnel in order to model the effect of fluid viscosity in diffusing a vortex from the
instant it is shed from the cylinder. The core of concentrated circulation expands with
time as vortices travel downstream towards the second body, so if the cylinder is
farther away we expect weaker vortices (at least with less concentrated vorticity) to
reach that specific position of the wake. Weaker vortices induce weaker fluid forces,
therefore we would expect both wake-stiffness and vortex-impulse terms to decrease
with increasing x0.

Looking back at the steady lift map presented in figure 6 we see that the maximum
Cy is indeed decreasing for larger separations, consequently �Cy is also reduced with
increases in x0. To a certain extent it is straightforward to think that the wake-stiffness
effect is inversely proportional to x0 and results in lower values of fwD/U for larger
separations. As a consequence, the frequency of oscillation should also be reduced.
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FIGURE 14. WIV response of a downstream cylinder mounted without springs at various x0
separations: (a) displacement; (b) dominant frequency of oscillation.

However, (6.3) tells us that the amplitude must increase if fD/U is reduced and all
other terms are kept constant. This is clearly not observed in the response with springs
presented in figure 4. Instead ŷ/D for the WIV regime is seen to be reduced with
increasing x0, up to a separation where no effect from the upstream wake can be
sensed by the downstream cylinder and it returns to a simple VIV regime. Therefore,
some other non-dimensional terms in (6.3) must be dominating over the effect of fD/U
to reduce the response as x0 is increased.

Figure 14 presents the effect of x0 on the response of a cylinder mounted without
springs. In accordance with (6.3), the amplitude of displacement should increase with
Reynolds number for a fixed separation, while ŷ/D should be reduced for larger
separations if Re is kept constant. Although this plot is not as densely populated with
data points as figure 4, it can still reveal the overall behaviour of the response in
relation to Re and x0. The main difference now is that no VIV resonance peak is
identified because the system lacks any f0 conferred by springs, but still the WIV
response seems to diminish as the second cylinder is moved farther downstream.

Remember that every point in figure 14 represents an infinite reduced velocity.
Therefore, variations observed in the curves are an effect of Re and x0 only. We can
pick one data point from each x0/D curve at Re = 2.3 ⇥ 104 in figure 14 and plot
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fw
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FIGURE 15. Non-dimensionalized dominant frequency of oscillation of a downstream
cylinder mounted without springs at various x0 separations. See figure 14 for key.

them back in figure 4 at U/Df0 = 1. Every point plotted there (on the right-hand axis)
represents the asymptotic value the response would reach if Re were kept constant
beyond the vertical dashed line of Re = 2.3 ⇥ 104. This agreement confirms that
beyond the flow speed range in which VIV is important reduced velocity has no
effect on the WIV response and the cylinder is expected to sustain a constant level of
vibration for the rest of the Re range. It is also verified that the asymptotic value that
limits ŷ/D is indeed a function of Re and x0 alone and must be related to the actual
configuration of the wake at those conditions.

As we saw in figure 8 for x0/D = 4.0 the frequency of oscillation shows a fairly
linear behaviour with Re, which is represented by a constant line when plotted non-
dimensionally as fD/U in figure 9. Interestingly, we know that as far as the separation
is concerned �Cy decreases with x0. However, when this effect is reflected into fw

it seems to cause only a small variation in the frequency of response, making all
frequency curves for different x0 collapse onto each other. A similar result was
observed in figure 4 for the response with springs, where, differently from the
displacement, f /f0 did not show much variation with x0.

Considering our smallest separation of x0/D = 4.0 we saw that the steady lift field
generates, to a first approximation, a wake stiffness effect proportional to �Cy = 0.65
(figure 7). Again we can plot fw from (6.6) associated with this steady field as
a dot-dashed line in figure 14(b). However, on moving the second cylinder farther
downstream in the wake we saw that �Cy is reduced. Considering the maximum
separation measured in the Cy map of figure 6 we can estimate a wake-stiffness effect
proportional to �Cy = 0.45 for x0/D = 6.0. If we then plot fw associated with this
weaker wake stiffness in figure 14(b) we are able to verify that the expected variation
of f between both separations is actually rather small. This is made even clearer when
the data are plotted in the non-dimensional form of fD/U in figure 15.

Turning back to our analysis of (6.3) regarding separation, we conclude that the
variation of fD/U versus x0 may be rather small and unlikely to dominate over other
non-dimensional groups, leaving us with the vortex-impulse term Ĉy sin � that might
present some significant variation with x0.

As suggested above, the diffusion of vortices in the wake may be responsible for the
reduction of the wake stiffness effect observed in figure 6. But, since we argue that
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FIGURE 16. Fluctuating lift coefficient (a) and phase angle (b) for WIV responses without
springs at various x0 separations.

both wake-stiffness and vortex-impulse terms originate in the same phenomenon, we
believe that vortex diffusion may also be responsible for changes in Ĉy sin � versus x0.

Figure 16 presents the variation of Ĉy and � with both Re and x0. We have shown
that Ĉy has a small dependence on Re, resulting in a mildly decreasing slope for
x0/D = 4.0. However, as separation is increased in figure 16 we observe that not
only is the overall level of Ĉy reduced, but also that the negative slope with Re is
accentuated. On the other hand, figure 16(b) shows that although � is roughly constant
with Re it is also reduced for larger x0. Now, depending on the combination of both
terms, Ĉy sin � can show significant variation with x0, as much as to dominate over
fD/U and govern the behaviour of the response versus separation.

9. Conclusions

The experiment without springs was crucial in the understanding of the WIV
phenomenon. It not only revealed the existence of a dominant wake-stiffness effect
that can sustain vibrations even if springs are removed, but also helped to explain
different regimes of the response when springs are present. We proved that Cy towards

D
:

0
5

7
D

D
D

 2
0

1
8

6
 

6
2

 .
8B

8
28

28
0

/
0

0
B1

9
2

7
,0

1
8

6
,

5B
0C

08
:0

1:
0

7
D

D
D

 2
0

1
8

6
 

6
2

 7
8 

6
 

95
 

 

188



242 G. R. S. Assi and others

the centreline not only provides some restoration for a quasi-static system but is in fact
responsible for the characteristic WIV response of a cylinder that is free to vibrate.

The wake-stiffness concept does not explain the excitation mechanism but it
predicts rather well the characteristic signature of the WIV response both in terms
of displacement and frequency. We can say that while unsteady vortex–structure
interactions provide the energy input to sustain the vibrations (Assi et al. 2010), it
is the wake-stiffness phenomenon that defines the character of the WIV response.

We conclude that the restoration force provided by wake stiffness is strong enough
to balance the flow excitation and produce oscillatory motion for a system without
structural stiffness. The cylinder was not observed to drift away from the centreline,
but presented WIV throughout the Re range of the experiments. The analytical
modelling for a system without springs revealed that the amplitude of response should
increase with Reynolds number. This was verified by experimental data. However, a
simple model that did not account for nonlinear effects in the fluid force was not
able to predict the correct level of amplitude. We found that the WIV response should
converge to an asymptotic value that depends on Re but not on reduced velocity.

As ŷ/D is increased beyond a certain limit, the cylinder starts to reach amplitudes
outside the wake interference region. The wake-stiffness effect cannot be represented
by a linear spring anymore, but the overall stiffness tends to be reduced. This effect
was in agreement with cases with and without springs and also with various x0
separations. A simple linear model was able to predict the frequency of response rather
well. It was confirmed that the cylinder without springs does not respond following
the vortex shedding frequency fs. Instead the response matches the frequency branch
fw associated with wake stiffness, which was well predicted by the model. A cylinder
with springs responds with a frequency that combines influences from fw and f0, yet is
different from both.

In our experiments we observed a gradual transition from an initial VIV regime to
a dominating WIV regime as flow speed was increased. The boundaries between them
were found to be related to two resonances: fs = f0 and fw = f0. The first regime has a
clear VIV character, with a local peak of displacement occurring at fs = f0. The wake
stiffness is still smaller than the spring stiffness, making U/Df0 a significant parameter.
The amplitude of the VIV peak is in agreement with the response curve for a single
cylinder and showed no noticeable dependence on Re for the range of the experiments.
The second regime is characterized by an established WIV response that experiences
no influence of VIV. Beyond fw = f0 the wake-stiffness effect is dominant over the
spring stiffness and reduced velocity becomes irrelevant.

During the transition between the regimes we find an intermediate condition in
which VIV is losing strength and WIV is taking control. Between the resonances
fs = f0 and fw = f0 the response leaves the VIV peak until it reaches a characteristic
value at fw = f0 that is dependent on Re. During the transition, reduced velocity
gradually loses its influence until the WIV response is only dominated by Re as it
enters the second regime. The total stiffness of the system is not only caused by either
the wake stiffness (kw) or the spring stiffness (k) alone, but it is a combination of
both; k is very relevant in the first regime, but kw becomes dominant in the second.
Nevertheless, both k and kw contribute in part to the characteristic displacement and
frequency responses.

As expected, the x0 separation between the two cylinders was confirmed to have
a significant effect on the response. We suggest this effect is related to an increase
in vortex diffusion and flow three-dimensionality as the gap is enlarged. The WIV
response changed as the second cylinder was moved farther downstream. The first VIV

D
:

0
5

7
D

D
D

 2
0

1
8

6
 

6
2

 .
8B

8
28

28
0

/
0

0
B1

9
2

7
,0

1
8

6
,

5B
0C

08
:0

1:
0

7
D

D
D

 2
0

1
8

6
 

6
2

 7
8 

6
 

95
 

 

189



The role of wake sti�ness on wake-induced vibration 243

regime experienced no influence of x0 and the local resonance peak kept the same
level of displacement for all separations between 4D and 20D. On the other hand, the
second WIV regime showed a strong influence of the separation. The characteristic
WIV branch of response gradually disappeared with increasing x0 until the response
resembled only that of a typical VIV phenomenon. In contrast with the displacement,
the frequency of oscillation showed only a small variation with x0, with curves for all
separations collapsing onto the value predicted by the wake-stiffness effect, especially
for the case without springs. Such a strong x0 dependence was associated with the
fact that vortices from the upstream cylinder have more time to diffuse as they travel
to reach a cylinder located farther downstream. Together with that is the fact that
increasing three-dimensionality of the flow also weakens the coherent wake. Weaker
vortices induced weaker forces. Both the wake-stiffness effect (proportional to �Cy)
and the vortex-impulse term (related to Ĉy sin �) are affected.

By modelling a second-order oscillator without springs but incorporating the
stiffness as a consequence of the fluid force (wake stiffness) we were able to predict
the frequency behaviour rather well. But no matter how good this approach was
in regard to the frequency response, the displacement response is somewhat more
complex and is not fully captured by this first approximation. We believe this is
due to the simplicity in modelling the term Ĉy sin �. Even though in some analysis
we have considered Ĉy and � to be independently related to the wake-stiffness and
vortex–impulse terms, we are fully aware that this decomposition is not ideal and must
overlook significant secondary effects.

A simple harmonic model such as the one we have employed cannot account
for nonlinear effects that might be important to the system. It will not be able,
for example, to predict the asymptotic effect that is limiting the displacement. The
complex interaction between body and wake causes �Cy and Ĉy sin � to be coupled
in such a way that we cannot simply analyse them independently. Since we believe
both wake-stiffness and vortex-impulse terms originate in the same fluid-mechanic
phenomenon, we are not able to uncouple and isolate their effects into linear concepts.
We argue that an improved, nonlinear model is necessary to account for more complex
fluid-dynamic phenomena that we have identified to exist but were not considered in
our model.

In Assi et al. (2010) we have discussed the idea that WIV could not be predicted
by the classical galloping theory. Remember that, in the literature, WIV had been
referred to as a type of galloping mostly because the typical response presents a build-
up of amplitude for higher reduced velocities. But now we know that the response
is increasing due to the wake-stiffness effect as a function of Reynolds number.
We have argued that quasi-steady assumptions commonly employed by the classical
galloping theory would not fit the WIV phenomenon nor help to understand the real
flow–structure mechanism. For that reason we have insisted on a dissociation of WIV
from the classical galloping idea. In the present work we have shown that WIV is
indeed a wake-dependent type of flow-induced vibration. Remember that according
to the classical galloping theory the oscillations of the body are dependent on the
structural stiffness of the system to provide the restoration force, even more for the
wake-flutter phenomenon of interfering cylinders, where structural stiffness in 2-dof is
required. In our case, however, we showed that a body without any structural stiffness
can be excited into flow-induced vibration. If some stiffness is provided by the flow,
the body is able to be excited and sustained into oscillatory motion. The concept of
wake stiffness is a powerful one but it also requires the existence of an unsteady
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244 G. R. S. Assi and others

vortex wake present in the gap to generate the excitation. Therefore we continue to
propose that WIV is not to be understood as a type of classical galloping, but must be
interpreted as a wake-excited and wake-sustained FIV mechanism.
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a b s t r a c t

The wake-induced vibration (WIV) of the downstream cylinder of a tandem pair is
investigated for different diameter ratios of D1=D2 ¼ 1=1, 1/2 and 1/3, where D1 and D2

refer to the upstream and downstream cylinders, respectively. The streamwise separation
between the cylinders was L=D1 ¼ 3:5, 7.0 and 6.5, respectively, measured from the centre
of the upstream cylinder to the forward stagnation point of the downstream cylinder.
Experiments with low mass-damping cylinders have been conducted in a water channel
at around Re¼25 000. The dynamic response showed that the downstream cylinder
experienced WIV for all diameter ratios investigated, with displacement amplitudes
reaching more than 1.5 diameters for higher reduced velocities beyond the vortex
resonance range. The frequency response showed a similar behaviour for all three
configurations, giving hints that a type of wake-stiffness mechanism might be governing
the frequency of oscillation for all diameter ratios. The response was found to be
dependent on both D1=D2 and L=D1. In all cases, the static upstream cylinder was found
to shed vortices as an isolated cylinder, not influenced by the presence or movement of
the downstream body. Lift and drag coefficients as well as measurements of velocity
fluctuations in both wakes are presented for all cases.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When an elastic bluff body, like a circular cylinder, is immersed in the wake developed from an upstream body it will
dynamically respond with wake-induced vibrations (WIVs). This hydroelastic mechanism has also been referred to as ‘wake-
induced galloping’, ‘interference galloping’ or ‘wake-displacement excitation’ (Ruscheweyh, 1983; Bokaian and Geoola, 1984;
Zdravkovich, 1988) and consists of the excitation of the downstream body by the interference of vortices developed in an
unsteady wake generated upstream. The response of the downstream cylinder of a tandem pair is known to be severely
increased by WIV when compared with that of an isolated cylinder under the resonant phenomenon of vortex-induced
vibration (VIV).

Assi et al. (2010) reported on the effect of flow interference in the response of two identical cylinders aligned with the
flow with centre-to-centre separations as large as 20 diameters. They have shown that vortices in the upstream wake play
an essential role in driving the high-amplitude vibrations of the downstream cylinder. In fact, they performed an idealised
experiment in which the unsteady vortex wake was replaced by a steady shear flow of equivalent mean velocity profile.
They showed that the downstream cylinder immersed in that shear flow responded with a distorted type VIV but not with
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high-amplitude WIV. Their conclusion was that the unsteady interaction of coherent and periodic vortices from the
upstream wake was necessary to input energy into the system and sustain the vibration.

The present work is a step further in the direction of understanding the vortex–structure interferences driving WIV of
two bodies. This time we are concerned with varying the length and time scales of the wake involved in this kind of fluid–
structure interaction. The downstream cylinder of a tandem pair is immersed in the wake developed from an upstream
cylinder with smaller diameter. Consequently, the length and the time scales of the vortices that come from the upstream
wake and reach the downstream cylinder vary proportionally. Three tandem configurations with the smaller cylinder
positioned upstream are investigated in the present study, as illustrated in Fig. 1. The subscripts 1 and 2 will always refer to
the upstream and downstream cylinders, hence D1 and D2 represent the respective cylinder diameters. Three diameter
ratios of D1=D2 ¼ 1=1, 1/2 and 1/3 were chosen for the experiments and the centre-to-centre separation was kept constant at
200 mm in order to allow for the upstream wake to develop in the gap with no interference from the second body. As a
consequence, the wake reaching the second cylinder will be proportionately different in each case due to the scale of the
upstream vortex shedding mechanism and wake diffusion in the gap.

(Note: The subscripts in the non-dimensional numbers follow the same convention. Reynolds numbers (Re1 and Re2) take
the diameter of the specified cylinder and Strouhal numbers are calculated employing the vortex shedding frequency (fs)
and the diameter of the referred cylinder, i.e. St1 ¼ f s1D1=U for the upstream cylinder and St2 ¼ f s2D2=U for the downstream
cylinder.)

1.1. Flow interference between cylinders

Zdravkovich (1988) proposed a map of wake interference for two static cylinders with the same diameter arranged in
several tandem and staggered configurations. The boundaries for each wake-interference zone clearly depend on the
diameter of the two cylinders involved. It is expected that a smaller cylinder in the wake of a larger one will have to move
many diameters across the wider wake before being free from any flow interference from upstream. The opposite might also
happen for a larger cylinder moving across the narrower wake of a smaller body; the wake-interference zone might be
reduced. Hence, the wake-interference map proposed by Zdravkovich (1988) will probably be different for each diameter

Fig. 1. Tandem configurations varying cylinders diameters. (a) D1=D2 ¼ 1=1, (b) 1/2 and (c) 1=3. Dimensions are in millimetres. Sketches drawn to scale.

G.R.S. Assi / Journal of Fluids and Structures 50 (2014) 329–339330 194



ratio illustrated in Fig. 1. However, this thought exercise might only be valid for the wake-interference of two static
cylinders. Based on the results of Assi et al. (2010) we expect minute vortex impulses from upstream to have a considerable
effect on the excitation of the downstream cylinder, especially if it presents low structural mass and damping. Even the
wake of a smaller cylinder placed upstream (with smaller vortices at a higher frequency) might be sufficient to induce
severe WIV of the second larger body. Assi (2014) showed that the flow interference from the upstream wake will have an
effect even if the downstream cylinder is initially positioned further out of the centreline of the wake, in what is called a
staggered arrangement. An effect on the response of the downstream cylinder was observed for lateral separations up to 3
diameters when S/D¼4 (both cylinders having the same diameter).

Most of the studies concerning interference of cylinders with different diameters are focussed on the effect that the wake
of a smaller cylinder has on the flow behaviour around a larger body. Studies of this kind can be classified as flow control
experiments and some will go as far as to consider both the small and large cylinders as a coupled pair able to respond to
flow-induced vibrations. Rahmanian et al. (2012) performed numerical simulations of the flow around two interfering
cylinders with D1=D2 ¼ 0:1. The pair was mechanically coupled and able to respond to flow-induced vibrations in two
degrees of freedom, thus the investigation was aimed at understanding the interference effect of the smaller cylinder on the
larger one as the gap and the angular position were varied between them. Their main finding was that the maximum
vibration observed for the coupled pair occurred when the cylinders were arranged in staggered configuration and not
aligned with the flow. Tsutsui et al. (1997) also presented an experimental and numerical investigation employing a similar
arrangement of a very small cylinder positioned about the main body. But their investigation with static cylinders only
showed that the wake structure and fluid forces were strongly affected by the position of the small cylinder. Zhao et al.
(2005) and Zhao and Yan (2013) both presented numerical investigations in the same lines.

The present investigation, however, is not concerned with the flow interference between a very small cylinder positioned
in the vicinity or about a main body nor it is concerned with a mechanically coupled pair. In the present work we will
investigate the flow interference from a fully developed upstream wake on the response of the downstream cylinder of a
tandem pair with relatively similar diameters. Thus, we are truly concerned with the effect that wakes of different scales will
have on the wake-induced vibration of the downstream body. The upstream cylinder is always static and only responsible
for generating a vortex wake that reaches the second body. The downstream cylinder is free to respond with flow-induced
vibrations only one degree of freedom (1-dof) in the cross-flow direction. The in-line separation between the cylinders is
kept constant at all times.

In our experiments, the upstream cylinder is always smaller than the downstream one. Nevertheless, it is worth
mentioning the work done by Huang and Sworn (2011), in which they investigated the WIV of a cylinder when a lager body
was placed upstream. In their experiments, performed in a water flume at subcritical Re, they employed a pair of rigid
cylinders in tandem with D1=D2 ¼ 2:0 and in-line spacing varying between S=D1 ¼ 1 and 10. Both cylinders were elastically
supported in a low-damping system, free to respond in both the cross-flow and streamwise directions. They observed that
the signature of lift measured on the downstream cylinder had the frequency components from the upstream vortex
shedding as well as from its own vortex shedding, with predominance depending on the in-line spacing. Independently of
the separation, they observed that the upstream cylinder always showed a typical VIV response, while the downstream
cylinder presented WIV response reaching cross-flow displacements as high as 1.5 diameters in amplitude. In a later study,
Huang and Sworn (2013) employed cylinders with D1=D2 ¼ 1, 2 and 4 and varied the in-line spacing between S=D1 ¼ 1
and 15 to reach similar conclusions. As expected, when both cylinders were held static, the average drag measured on
the downstream cylinder showed the effect of a slower mean flow coming from the upstream body, which in turn was
dependent on the diameter ratio and the in-line separation.

Alam and Zhou (2008) performed wind-tunnel experiments with a pair of static cylinders with different diameters to
measure forces and flow structures of the interfering flow. The diameter ratio varied between D1=D2 ¼ 0:24 and 1.0 and the
in-line spacing was fixed at L=D1 ¼ 5:5, providing that a fully developed wake was generated in the gap for the range of
Re2 ¼ 0:6" 104–2:7" 104. The authors found two distinct frequencies of vortex shedding coexisting in the wake down-
stream of the pair, which were attributed to the vortex shedding mechanisms of each of the cylinders. This was only verified
for certain diameter ratios for static cylinders.

In a recent study, Alam and Zhou (2014) investigated the flow-induced response of a similar pair of cylinders at
Re2 ¼ 2:7" 104. The smaller, static cylinder was placed upstream of a cantilevered cylinder, with the ratio between the two
diameters also varying between D1=D2 ¼ 0:24 and 1.0. This time the tandem cylinders were arranged in close proximity,
with in-line separation being set at L=D2 ¼ 1:0 and 2.0. Interestingly, Alam and Zhou (2014) only observed severe vibrations
of the downstream cylinder for D1=D2 ¼ 0:24–0.8 (considering both in-line separations tested) and not for cylinders with the
same diameter. In addition, vibrations were observed for reduced velocities in the range of 13–22.5, too high to be regarded
as a result of resonant VIV. They explained that the smaller cylinder placed upstream would generate a narrower wake
capable of exciting vibrations as the shear layers flipped from one side to the other during the cross-flow displacement of
the downstream body. For cylinders of equal diameters at close proximity, on the other hand, the wider upstream wake
would engulf the downstream cylinder making the side-to-side flipping mechanism rather difficult to occur. We believe
these vibrations are better described by the ‘gap-flow switching’ mechanism explained in Zdravkovich (1988), since the
close proximity of the bodies prevents a developed wake to form in the gap. The fact that the downstream cylinder was
mounted as a cantilever may result that not its entire length is being excited by the same mechanism, especially knowing
that ‘gap-flow switching’ requires a considerable amount of transverse displacement to occur.
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2. Method

At first sight it seems rather simple to find a parameter to represent the in-line separation between the cylinders, but one
must not be mistaken by the effect that the apparent simplicity of the geometries in Fig. 1 has on the hydrodynamic
mechanisms involved. Since both cylinders vary in diameter, the effective gap between the bodies changes from case to case.
For example, to consider the centre-to-centre separation S to be the characteristic in-line distance of the problem will make
the gap between cylinders in Fig. 1(b) to appear larger than in the other two cases. Another way to interpret the actual
length scale affecting the flow interference would consider the gap Gmeasured between the cylinder walls, thus making the
cylinders in Fig. 1(a) to look closer than the others. One can see that there are several ways to organise and interpret the
data. The physical characteristics of the wake interference phenomena must not be forgotten. On top of that, there is the
problem of choosing which diameter should be the reference for normalisation: that of the static upstream cylinder (D1),
where the wake is generated, or that of the oscillatory downstream cylinder (D2), the object of WIV.

Perhaps the most reasonable interpretation would consider the distance measured from the centre of the upstream
cylinder to the wall (or forward stagnation point) of the downstream cylinder, defined by L in Fig. 1. Such an interpretation
might be possible because the separation points on the upstream cylinder are practically aligned with the centre of the
cylinder; hence at roughly the same location for all three configurations independently of the dimension D1. The
interference effect of the wake on the downstream cylinder, on the other hand, depends on D2 and the position of
the forward stagnation point. Therefore, as far as wake interference is concerned, the most appropriate parameter to be
employed in the study appears to be L=D1, non-dimensionalised by the diameter of the upstream cylinder, where the
upstream wake is being generated.

Table 1 presents all geometrical parameters and respective normalisations as explained in the paragraphs above. All
possible normalisations of S, G and L were kept in the table to illustrate the variety of ways that could be employed in
interpreting the in-line separation. In the present work, however, L=D1 is considered to be the length scale representative of
the wake interference phenomenon, thus special attention will be given to the penultimate column.

2.1. Experimental setup

Experiments were performed during a test campaign in the Department of Aeronautics at Imperial College, London. Tests
were carried out in a recirculating water channel with a free surface and a test section 0.6 m wide, 0.7 m deep and 8.0 m
long. Flow speed was continuously variable up to U¼0.6 m/s and free stream turbulence intensity was around 3%. Circular
cylinder models were made from acrylic tubes, giving a maximum Re¼30 000 based on a cylinder diameter of 50 mm.

The downstream cylinder was fixed at its upper end to a 1-dof elastic mounting represented in Fig. 2. The model was
aligned in the vertical direction passing through the free surface and mounted such that there was a 2 mm gap between the

Table 1
Geometrical parameters for the tandem configurations illustrated in Fig. 1. Dimensional terms in columns 2–6 are in millimetres.

D1=D2 D1 D2 S G L S=D1 S=D2 G=D1 G=D2 L=D1 L=D2

1/1 50 50 200 150 175 4.0 4.0 3.0 3.0 3.5 3.5
1/2 25 50 200 162.5 175 4.0 4.0 6.5 3.25 7.0 3.5
1/3 25 75 200 150 162.5 8.0 2.7 6.0 2.0 6.5 2.17

Fig. 2. Representation of the downstream cylinder mounted on the 1-dof rig in the test section of the water channel. View of the cross-section. Dimensions
are in millimetres.
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lower end of the cylinder and the floor of the test section. It was judged preferable not to install end plates on the cylinder in
order not to increase the fluid damping in the system. The support was firmly attached to the channel structure and sliding
cylindrical guides were free to move in the transverse direction (y-axis) through air bearings. A pair of coil springs
connecting the moving base to the fixed supports provided the restoration force for the system.

It is known that the dynamic response of a cylinder is extremely sensitive to the structural characteristics of the system;
therefore extra care was taken to determine the precise value of natural frequency, mass and damping of the structure. The
air bearings proved to be an effective way to reduce damping without compromising the stiffness of the structure, especially
in resisting drag loads for higher flow speeds. By carrying out free decay tests in air it was possible to estimate the natural
frequency (f0) and the structural damping parameter of the system (ζ, calculated as a percentage of the critical damping).
They are presented in Table 2 along with the mass ratio (mn, calculated as the total mass divided by the mass of displaced
water), for the configurations tested.

A load cell was installed between the model and the platform to measure hydrodynamic forces acting on the cylinder
(inertial components have been subtracted from the total force acquired by the load cell). An optical positioning sensor
measured the y-displacement without adding damping. Two hot-film probes were employed to measure velocity
fluctuation in the wake of both cylinders in order to capture the frequency of vortex shedding close to the vortex formation
regions. Probes were positioned at roughly 1D downstream of the cylinder centre and 1D to the side of the centreline;
locations are marked by quartered-circle symbols in Fig. 1. More details about the apparatus, flow quality, design of the load
cell and operation of the 1-dof rig can be found in Assi (2009).

Measurements were made using one set of springs and the reduced velocity range covered was from U=D2f 0 ¼ 2 to 30,
where reduced velocity is defined using f0 measured in air. The only flow variable changed during the course of the
experiments was U, which alters both the reduced velocity and the Reynolds number. Throughout the study, cylinder
displacement amplitudes (ŷ=D2) were found by measuring the root mean square (r.m.s.) value of response and multiplying
by

ffiffiffi
2

p
(the so-called harmonic amplitude). Displacements were non-dimensionalised by dividing by the downstream

cylinder diameter.

3. Results and discussion

Fig. 3 presents the WIV response for the tandem configurations versus reduced velocity. Displacement and frequency
curves are compared with the response of a single cylinder with D¼50 mm, which will serve as a reference for the
discussion that follows. During the typical single-cylinder VIV excitation, as U increases, the frequency of vortex-shedding
(fs) gets close enough to the body's natural frequency of oscillation (f0) in a way that the unsteady pressure fluctuation in the
near wake induces the body to respond in resonance. Once the cylinder starts to oscillate, high-amplitude movements will
control the vortex formation and fs will be locked in the response frequency (f) near f0. If U continues to increase the typical
vortex-shedding frequency will move far away from the natural frequency of the system, i.e. fs and fwill be uncoupled again.
Refer to Bearman (1984) and Williamson and Govardhan (2004) for a detailed description of the VIV mechanism and typical
responses.

Since reduced velocity was increased by changing U in the channel an extra horizontal axis has been introduced to
indicate the equivalent Reynolds number scale calculated for a cylinder with D¼50 mm. All three experiments were
performed until the maximum flow speed was reached in the channel, making the third dataset look shorter in the reduced
velocity scale; hence the Re scale is not true for the D1=D2 ¼ 1=3 curve.

Fig. 3(a) presents the harmonic amplitude of vibration of the downstream cylinder. It is evident that all three
configurations present the build-up of displacement for higher reduced velocities that are characteristic of WIV. For
U=D2f 0 ¼ 4–7 all tandem configurations present a local peak of vibration related to the resonance of vortex shedding; this is
equivalent to the upper branch registered for the single cylinder under VIV. But for U=D2f 0412 it becomes clear that the
responses are not driven by resonance any longer, but sustained by the WIV mechanism.

The case D1=D2 ¼ 1=1 (with L=D1 ¼ 3:5) reaches a maximum ŷ=D2 ¼ 1:8 at U=D2f 0 # 30. For D1=D2 ¼ 1=2 the maximum
response reaches ŷ=D2 ¼ 1:3 at around the same reduced velocity, but the effective separation is now L=D1 ¼ 7:0, twice as
much as the previous case. Between the first two cases there is no variation of Reynolds number, so the decrease in the level
of response must be related to decreasing the diameter ratio and/or doubling the effective in-line separation.

On the other hand, when the diameter ratio was made even smaller in the D1=D2 ¼ 1=3 configuration the response
increased when compared with the D1=D2 ¼ 1=2 case. A maximum ŷ=D2 ¼ 1:4 was reached for the maximum reduced

Table 2
Structural properties for the downstream cylinder.

D1=D2 mn ζ(%) mnζ

1/1 2.6 0.35 0.0091
1/2 2.6 0.35 0.0091
1/3 1.2 0.35 0.0041
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velocity, now just above 20, but an amplification of the response was clear to be occurring for the whole range of reduced
velocities tested. In this case, decreasing D1=D2 produced stronger vibration of the downstream cylinder, which might be
related to the fact that the effective in-line separation decreased to L=D1 ¼ 6:5 when compared with the previous tandem
configuration (it must be noted that Rehas also increased).

Comparing the three response curves in Fig. 3(a) we may conclude that both the diameter ratio and the effective in-line
separation have a strong effect on the WIV response of the downstream cylinder. Nevertheless it is interesting to note that
even the smallest upstream cylinder with D1=D2 ¼ 1=3 is capable of inducing vibrations on the downstream body of
comparable amplitude as a configuration with cylinders with equal diameters.

The mass ratio, however, might still be another factor playing some role in the amplification of response from case
D1=D2 ¼ 1=2 to 1/3. As seen in Table 2, the D1=D2 ¼ 1=3 case presents mn ¼ 1:2, less than half of the mn ¼ 2:6 for the other
two configurations due to the larger diameter of the cylinder. Probably a relatively lighter cylinder would be more
vulnerable to the upstream excitation even though it comes from a much smaller cylinder. This could produce higher
amplitudes of response during the VIV resonance range, as it is known to occur for a single-cylinder VIV. Past the VIV range,
say for reduced velocities above 15, the response for D1=D2 ¼ 1=3 is lower than that for D1=D2 ¼ 1. We suspect this is related
to the width of the upstream wake relative to D2. In this case, the downstream cylinder moves out of the upstream wake at
smaller displacements and the unsteady excitation mechanism proposed in Assi et al. (2010) is therefore weakened.

The dominant frequency of response of the downstream cylinder normalised by the natural frequency of vibration (f =f 0)
is presented in Fig. 3(b). An inclined dashed line indicates that the frequency associated with the vortex shedding of the
downstream cylinder was it to follow a typical Strouhal number of 0.2. Between U=D2f 0 ¼ 2 and 7, in the region associated
with the stronger VIV resonance, all configurations vibrate with dominant frequency following close to the St2 ¼ 0:2 line, as
well as the single cylinder under VIV. As flow speed is increased towards the end of the VIV synchronisation range, the
dominant frequencies for all cases depart from the St2 ¼ 0:2 towards the horizontal line of f =f 0 ¼ 1. Eventually, for even
higher reduced velocities past the VIV influence, the frequency curves tend towards another dot-dashed line identified as

Fig. 3. WIV response of cylinders with different diameters. (a) Displacement and (b) frequency of vibration versus reduced velocity. Key: ~, single cylinder
VIV; ○, D1=D2 ¼ 1=1; □, D1=D2 ¼ 1=2; ▿, D1=D2 ¼ 1=3.
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f w=f 0. Surprisingly, this line represents the frequency of wake stiffness introduced by Assi et al. (2013) as the characteristic
WIV frequency of vibration of the downstream cylinder of a pair with equal diameters. (Note that the slope of this line was
determined in Assi et al., 2013 and is only valid for D1 ¼D2.)

The wake-stiffness concept explains that there is a natural frequency of oscillation of hydrodynamic nature (fw)
dominating over the response of the cylinder immersed in the upstream wake (Refer to Assi et al., 2013 for details on the
estimation of fw). We believe fw to be strongly dependent on the vortex interaction occurring in the wake, thus depending on
the width of the upstream wake as well as the length and time scales of the vortices being shed (wake topology). Tandem
pairs with different diameter ratios would probably produce different values of fw, but this was not measured in the present
investigation. What is surprising here is that the frequency of response for D1=D2 ¼ 1=2 was not expected to follow the f w=f 0
line previously determined for D1=D2 ¼ 1=1, but as a matter of fact it falls very close to it. Unfortunately the response curve
for D1=D2 ¼ 1=3 does not go much further than U=D2f 0 ¼ 20, but up to that point it follows the other two curves pretty well.
If wake stiffness is a function of wake topology and geometry, as believed, it is not a strong dependency as to make
significant difference in these response curves, at least not in the present range of D1=D2 and L=D.

In summary, even with considerable variations of D1=D2, L=D1 and mn the frequency signatures of WIV for all tandem
cases are remarkably similar and follow very closely the behaviour governed by the wake stiffness of WIV introduced by Assi
et al. (2013) for D1 ¼D2. More striking is the fact that the dominant frequency of vibration of the downstream cylinder is
higher than the structural natural frequency of the system (line for f =f 0 ¼ 1), clearly different from the expected vortex
shedding frequency of the cylinder (line for St2 ¼ 0:2) and probably very different from the expected shedding frequency of
the upstream cylinder, which has a smaller diameter. In order to clarify that, we shall turn to the frequency signature
measured in both wakes and derived from the forces acting on the cylinders.

3.1. Frequency signatures of lift and wakes

Fig. 4 presents a series of contour plots representing the power spectrum signature of wakes and forces for the
configuration D1=D2 ¼ 1=1. Each plot shows the frequency scale non-dimensionalised by f0 in the vertical axis versus
reduced velocity in the horizontal axis. The intensity of the colour shade represents the power content for either velocity
fluctuation in the wake or fluctuating force on the cylinder. Power spectra were normalised for each reduced velocity in
order to make it possible to follow through branches of dominant frequency along the horizontal axis. The dominant
frequency of oscillation presented in Fig. 3(b) is repeated as data points in each plot as a reference of the response.

Fig. 4. Power spectra for configuration D1=D2 ¼ 1=1. Frequency of lift on the (a) upstream and (b) downstream cylinders. Frequency of velocity fluctuation
in the wake of the (c) upstream and (d) downstream cylinders.
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The frequency signature of lift measured on the upstream cylinder (f Cy
=f 0) is presented in Fig. 4(a), revealing that the

upstream static cylinder is shedding vortices as an isolated cylinder following the typical St2 ¼ 0:2 dashed line (in this case
D1 ¼D2). As seen in Fig. 4(c), the behaviour is confirmed by the signature of velocity fluctuation in the wake (f u=f 0)
measured by a hot-film probe downstream of the upstream cylinder. Hence, the upstream cylinder is shedding vortices as
an isolated cylinder and no traces of the frequency of oscillation of the downstream cylinder are noticeable in the spectra of
the wake or lift.

The spectrum of lift (f Cy
=f 0) on the downstream cylinder, presented in Fig. 4(b), reveals that the second body indeed

experiences lift at the frequency of shedding coming from the upstream cylinder. This is a result of vortices impinging on the
downstream cylinder as it moves across the wake. However, a much stronger branch appears to dominate the spectrum, one
which is associated with the frequency of vibration represented by the data points. Now, one cannot tell how much of the
power in that strong branch is a result of the unsteady flow excitation or simply the hydrodynamic inertia measured by the
load cell as the cylinder moves across the wake. Perhaps it is a combination of both. A branch at that frequency would also
appear if the cylinder were vibrating with f in still water. The fact is that this is the preferred frequency of vibration for the
downstream cylinder, the one associated with the wake stiffness. This happens to be the only frequency branch identified in
the wake of the downstream cylinder, as seen in Fig. 4(d), and no traces of vortex shedding following the Strouhal line were
registered. Again, this might be the effect of the movement of the downstream cylinder dominating over the velocity
fluctuations measured by the hot-film probe in the wake.

Moving on to the D1=D2 ¼ 1=2 configuration presented in Fig. 5, we notice that the frequency signature of lift on the
downstream cylinder (f Cy

=f 0), shown in Fig. 5(a), also presents a clear dominant branch coinciding with the frequency of
oscillation, as expected. Other secondary frequency branches, nonetheless, can be seen to occur at the shedding frequencies
of both cylinders, i.e. following the St1 ¼ 0:2 and St2 ¼ 0:2 dashed lines (represented by very light shades of colour in the
contour plots). Looking at the wake signature of the upstream cylinder in Fig. 5(b) it becomes clear that the first body is
shedding vortices as an isolated static cylinder and no significant traces of the downstream oscillation are being propagated
upstream either. Once more, the wake signature (f u=f 0) of the downstream cylinder in Fig. 5(c) only captures weak traces of
these higher frequencies, with the dominant frequency branch being associated with the frequency of vibration. As noted
before, Alam and Zhou (2008) verified the existence of higher frequencies associated with the upstream shedding for two
static cylinders. We believe that when the downstream cylinder is free to oscillate the frequency of oscillation will dominate
over the shedding frequencies of the upstream body and the latter will not be very clear in the spectrum plots of the
downstream wake.

Fig. 5. Power spectra for configuration D1=D2 ¼ 1=2. (a) Frequency of lift on the downstream cylinder. Frequency of velocity fluctuation in the wake of the
(b) upstream and (c) downstream cylinders.
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Finally, for the D1=D2 ¼ 1=3 configuration presented in Fig. 6(a) we observe that traces of the vortex shedding frequency
of the upstream cylinder (occurring at St1 ¼ 0:2) are barely noticeable in the lift signature of the downstream cylinder. The
lower branch associated with the frequency of vibration still dominates over the spectrum, however a second branch of
f Cy

=f 0 # 3 appears for U=D2f 0412. It is not clear what mechanism this higher frequency represents. In the wake spectrum
presented in Fig. 6(b) we do not observe other significant frequency branches other than the actual dominant frequency of
vibration.

Based on the spectrum plots presented in Figs. 4–6 we conclude that the separation of S¼200 mm (resulting in
L=D1 ¼ 3:5, 7.0 and 6.5 for each respective configuration) was sufficiently large to prevent any interference from the
downstream wake or vibration from propagating upstream to affect the vortex shedding mechanism of the first cylinder.
The upstream cylinder behaved as an isolated static cylinder for all cases and the higher frequency associated with the
upstream shedding reached the downstream cylinder and was captured by the lift spectrum for all cases. This is similar to
what was observed by Huang and Sworn (2011) with the larger cylinder placed upstream. However, the vibration of the
downstream body was not directly associated with that frequency of excitation, but it responded in a much lower frequency
closely related to the frequency of wake stiffness (fw) proposed by Assi et al. (2013).

3.2. Hydrodynamic force coefficients

In the response curves presented in Fig. 3 we observed that different levels of amplitude of vibration were reached by
each D1=D2 case. We also noticed in the spectrum plots of Figs. 4–6 that the WIV excitation is indeed coming from the fully
developed wakes of the upstream cylinders, which produce vortices with different strengths, lengths and time scales due to
variations in D1=D2 and L=D1. Now, in order to investigate how the amplitude of response is correlated with the upstream
excitation we will turn to measurements of lift on the downstream cylinder.

Fig. 7 presents the r.m.s. of lift coefficient (Cy rms) measured on the downstream cylinder compared with Cy rms measured
on a single cylinder under VIV, the latter being in good agreement with the experimental data presented by Khalak and
Williamson (1999). As expected, all tandem configurations present a peak of Cy rms corresponding to the local resonance of
VIV at U=D2f 0 # 4. After that, when Cy rms associated with VIV starts to diminish with the end of the synchronisation range,

Fig. 6. Power spectra for configuration D1=D2 ¼ 1=3. (a) Frequency of lift on the downstream cylinder and (b) frequency of velocity fluctuation in the wake
of the downstream cylinder.

Fig. 7. Lift coefficient (r.m.s.) versus reduced velocity. Key: ~, single cylinder VIV; ◯, D1=D2 ¼ 1=1; □, D1=D2 ¼ 1=2; ▿, D1=D2 ¼ 1=3.
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Cy rms for the tandem cases increases to a much higher level, which is sustained until the end of the reduced velocity range
testes.

Lift coefficient for D1=D2 ¼ 1=1 remains at Cy rms # 0:5 while the other two cases find levels slightly below that, with
D1=D2 ¼ 1=3 showing the lowest Cy rms level. It appears that the level of Cy rms is more dependent on D1=D2 rather than on
L=D1. The amplitude of response (ŷ=D2), on the other hand, seems to be more dependent on L=D1 rather than on D1=D2, with
D1=D2 ¼ 1=3 reaching amplitudes higher than D1=D2 ¼ 1=2. Nevertheless, as suggested before, this could also be related to
the fact that D1=D2 ¼ 1=3 presents half of the mn of the other two cases.

We have seen that the lift on the downstream cylinder will act at the frequency of wake stiffness (fw) and those of vortex
shedding (fs), which will be sustained for an indefinite range of reduced velocities during the WIV mechanism. Assi et al.
(2010) explained how this excitation mechanism depends on the unsteady interaction of the vortices coming from the
upstream wake and the downstream cylinder. Therefore, the topology of the wake (width, vortex strength, length, time
scales, etc.) modified by an upstream cylinder of smaller diameter must be playing a fundamentally different role in the
excitation mechanism.

Mean drag coefficients (Cx) on the downstream cylinder are presented in Fig. 8. The drag curve for a single cylinder
reveals the amplification of drag normally observed during the synchronisation range of VIV, which agrees well with the
results presented by Khalak and Williamson (1999). A curve for the drag of a static single cylinder has also been added as a
reference.

All tandem configurations present a similar amplification of drag during the resonance range of VIV. Past the
synchronisation range, Cx due to WIV remains at slightly higher levels, but very close to the drag measured for a static
single cylinder. In general, Cx decreases as D1=D2 increases, perhaps due to the deficit of mean velocity in the wake coming
from the upstream cylinder; i.e. a smaller D1 will create a wake with higher streamwise velocity reaching the second
cylinder.

4. Conclusion

In the present work we investigate the WIV response of the downstream cylinder of a pair with diameter ratios
D1=D2 ¼ 1=1, 1/2 and 1/3. For all tandem configurations, the static upstream cylinder appears to be shedding vortices as
an isolated cylinder, not being affected by the presence or movement of the downstream body. This is true for effective
separations of L=D1 ¼ 3:5, 7.0 and 6.5, respectively.

The overall WIV response turned out to be dependent on several parameters: wake topology (Re), arrangement geometry
(both D1=D2 and L=D1) and system dynamics (mn). Other dimensionless representations of the separation parameter
can lead to different interpretations of the data. In the present work, the effective separation L=D1 was chosen as a
representative of the effect of the upstream wake impinging on the downstream body.

The frequency response, on the other hand, turned out to be rather independent of both D1=D2 and L=D1. In fact, a
mechanism similar to the wake stiffness proposed by Assi et al. (2013) might be occurring for different diameter ratios but
with different intensities. Nevertheless, all frequency responses appeared to be very close to the wake stiffness frequency
previously characterised for cylinders of equal diameters.

It is not clear from the present investigation if the enhanced response of D1=D2 ¼ 1=3 in relation to D1=D2 ¼ 1=2 is due to
the decrease of the effective separation L=D1, the decrease of mn or the increase of Re. Assi et al. (2010) have already shown
that Reynolds number plays a very important role in WIV. Maybe increasing the diameter of the downstream cylinder from
50 mm to 75 mm from case D1=D2 ¼ 1=2 to 1/3 may include such a Re effect. Future experiments should be able to isolate
some of these parameters in order to achieve a better understanding of the phenomenon.

Fig. 8. Mean drag coefficient versus reduced velocity. Key: n, single static cylinder; ~, single cylinder VIV; ○, D1=D2 ¼ 1=1; □, D1=D2 ¼ 1=2; ▿, D1=D2 ¼ 1=3.
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a b s t r a c t

The wake-induced vibration (WIV) of two staggered cylinder with two degrees of freedom
(2-dof) has been investigated by experiments in a water channel for Reynolds number
between 2000 and 25 000. The streamwise separation was fixed to 4 diameters and the
lateral separation varied between 0 and 3 diameters for tandem and staggered config-
urations. Results are presented in the form of trajectories of motion and dynamic response
curves of displacements, frequencies and force coefficients. Excitation caused by the WIV
mechanism is found to get weaker as the initial position of the downstream cylinder is
increased from the centreline of the wake (tandem arrangement) towards the sides. For a
lateral separation of 3 diameters wake interference was already found to be negligible.
Evidence of a type of wake-stiffness concept is also observed to occur for 2-dof WIV in
tandem arrangement, especially for higher reduced velocities. A similar mechanism may
also be occurring for staggered arrangements around the centreline.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The topic of wake-induced vibration (WIV) of a pair of interfering cylinders is a fundamental subject in fluid–structure
interaction that still draws the attention of many researches. In a few words, WIV is a fluid–elastic mechanism able to excite
into oscillatory motion a bluff body immersed in the wake generated from another body positioned upstream. At first sight
it appears to be a very simple phenomenon, but careful investigations have uncovered complex mechanisms that can only
be understood through the lenses of unsteady fluid–elasticity. In the present study we are concerned with the WIV of the
downstream cylinder of a pair arranged in tandem and staggered configurations, i.e. in staggered arrangements the
cylinders are not aligned with the flow but offset from the centreline. WIV differs from the well studied phenomenon of
vortex-induced vibration (VIV)—reviewed by Bearman (1984), Williamson and Govardhan (2004) and others—in the sense
that the excitation is not generated in the vortex shedding mechanism of the body itself, but it comes from the interaction of
the body with a wake developed further upstream.

It is not difficult to be carried away by the apparent simplicity of the problem and plan or design experiments without
considering the number of parameters involved. For example, take two cylinders modelled as rigid bodies with two degrees
of freedom (2-dof) each. To start with geometric parameters, there will be two diameters and a streamwise and a cross-flow
separation, which will distinguish the tandem from the staggered arrangements. On the structural properties side, there will
be different parameters of mass for each cylinder as well as damping and stiffness regarding each direction of motion. After
all, a pair of rigid cylinders oscillating in 2-dof will present a dozen of different possible combinations of geometric and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jfs

Journal of Fluids and Structures

http://dx.doi.org/10.1016/j.jfluidstructs.2014.07.002
0889-9746/& 2014 Elsevier Ltd. All rights reserved.

E-mail address: g.assi@usp.br

Journal of Fluids and Structures 50 (2014) 340–357 204



structural parameters to be considered, not to mention experiments with long flexible cylinders with several modes of
vibration. In addition, one may include flow parameters such as speed, velocity profiles and turbulence intensity on the free
stream. For this reason, only a few studies that managed to vary one or two parameters at a time were able to contribute to
the understanding of the WIV excitation mechanisms and tell it apart from other types of flow-induced vibration of bluff
bodies.

Nevertheless, WIV has been revisited by quite a few papers in the recent years. In addition to the papers pointed out
along this text, one should refer to the book of Paidoussis et al. (2011) and the comprehensive review paper published by
Sumner (2010) as a means to finding old and new literature on the topic of wake interaction. WIV has also been referred to
by different names in the past literature, such as ‘wake-induced galloping’ (Bokaian and Geoola, 1984) and ‘wake-
displacement excitation’ (Zdravkovich, 1988). But we shall follow Assi et al. (2010) and keep the terminology wake-induced
vibration not to mistake it by 1-dof vibrations normally associated with classical galloping of non-axisymmetric cross-
sections.

Bokaian and Geoola (1984) and Assi et al. (2010, 2013) have studied the flow-induced vibration of the downstream
cylinder moving only in the cross-flow direction in water channels. Simpson (1977), on the other hand, has investigated the
streamwise instabilities of a pair of tandem cylinders in a wind tunnel. Several models have been developed to capture the
mechanisms behind this type of flow-induced vibration, most of them starting from quasi-steady assumptions but adding
time delays to account for the unsteady effects of the wake–structure interaction (a review of these models is found in Price,
1995). Simpson and Flower (1977) enhanced the quasi-steady model including movements of the upstream cylinder. Tsui
and Tsui (1980) further developed an instability analysis for when the cylinders are mechanically coupled. And the nonlinear
analysis performed by Price and Abdallah (1990) revealed interesting results about the effect of damping and frequency
detuning on the response. Most of these works have been concerned with the vibration of the downstream cylinder
undergoing a type of mechanism called ‘wake flutter’, in which the cylinder is able to extract energy from the flow as it
oscillates in an elliptical orbit within the upstream wake. Price (1975), Price and Abdallah (1990) and Naudascher and
Rockwell (1994) offer clear descriptions with illustrated explanations of this mechanism.

Fig. 1 presents the velocity field obtained with PIV (particle-image velocimetry) around two static cylinders in staggered
arrangements. PIV was performed at mid length to characterise steady wake topology; details on the set-up are presented in
Assi (2009). As the downstream cylinder moves away from the centreline, the wake interference from the upstream cylinder
is reduced. For the tandem arrangement, in Fig. 1(a), the upstream wake is symmetrically split around the downstream
body, while for the staggered configurations in (b) and (c) the upstream wake interferes with the inner side of the second
cylinder. Streamlines show that the steady wake of the upstream cylinder is displaced by the presence of the second body.
For a lateral separation of y0=D¼ 3:0 the downstream cylinder appears to be so far out of the upstream wake that its wake
symmetry is almost recovered.

We believe Fig. 1 illustrates rather well the phenomenon described by Zdravkovich (2003) as ‘wake-displacement’ when
he writes that “the downstream cylinder is not immersed in the upstream cylinder wake but displaces it instead”. However,
as shown by Assi et al. (2013), the unsteady flow field around a static downstream cylinder is quite different from that
around a cylinder that is not moving across the wake. In fact, the unsteady wake interference was found to be fundamental
to excite WIV. Assi et al. (2010) showed how the instantaneous vortex interference may enhance or diminish lift depending
on the wake pattern. Hence the time-averaged flow fields in Fig. 1 are very limited in terms of information they provide for
an investigation of the unsteady phenomenon. Nevertheless, they show how far out of the centreline the downstream
cylinder needs to be in order for wake interference to become insignificant, setting the boundaries for the present study.

2. Method

The present paper is a follow-up on the previous works of Assi et al. (2010, 2013) so, in order to avoid unnecessary
lengthy repetition, the reader will be constantly referred to those papers. In those previous works we kept constant as many
parameters as possible in order to investigate the intricate mechanisms of wake interference. Only allowing for the
downstream cylinder of a tandem pair to respond to flow excitation in the cross-flow direction made it possible to identify
the complex unsteady excitation mechanism by vortex–structure interaction and the powerful concept of wake stiffness.
Now, in the present study, we shall release some constraints adding new parameters to the investigation.

The basic arrangement is illustrated in Fig. 2. The initial position of the downstream cylinder can be varied from the
tandem arrangement (in which both cylinders are aligned with the flow direction) to staggered configurations changing the
lateral spacing between the bodies, hence x0 and y0 define the initial geometry of the pair. The streamwise separation,
measured from centre to centre, was kept fixed at x0=D¼ 4:0 at all times and y0=D was varied between 0 and 3. The
upstream cylinder was always static while the downstream cylinder was allowed to respond with oscillations in 2-dof in the
cross-flow (y) and streamwise (x) directions. Although this represents only a sample of the multi-parametric universe, by
testing the system on these conditions we may identify some general characteristic behaviours. For example, we will be able
to notice the decreasing effect of the WIV mechanism as the downstream cylinder moves away from the centreline of the
wake and we will see evidence for the existence of ‘wake-stiffness’ for configurations other than the tandem arrangement
(to be described later).

Fig. 3, reproduced from Assi et al. (2010), presents the WIV response of the downstream cylinder of a tandem pair free to
respond in one degree of freedom (1-dof) in the cross-flow direction. The top graph shows the variation of the amplitude of
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Fig. 1. Steady flow velocity field around a pair of static cylinders. Contours of velocity magnitude normalised by free stream velocity. Re¼ 19 200,
x0=D¼ 4:0 and (a) y0=D¼ 0:0, (b) y0=D¼ 1:0, (c) y0=D¼ 2:0, (d) y0=D¼ 3:0.

Fig. 2. Arrangement for a pair of tandem and staggered cylinders. The initial streamwise spacing was fixed at x0=D¼ 4:0 and the lateral spacing varied
between y0=D¼ 0:0, 1.0, 2.0 and 3.0. Solid lines represent hypothetical interaction between the shear layers.
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vibration for various tandem separations ðx0=DÞ between 4 and 20 diameters. One immediately notices that the interference
effect from the upstreamwake reduces as the second cylinder is moved further downstream. But it is interesting to note that
even for a large gap of x0=D¼ 10 the vibration of the downstream cylinder still is influenced by the upstream wake. It was
only for x0=D¼ 20 that the typical VIV response of an isolated cylinder was recovered.

Another interesting aspect of WIV lies in the frequency signature of the response. In the bottom graph of Fig. 3 it
becomes evident that, independently of the separation, the downstream cylinder presents a rather well behaved and
predictable frequency of vibration. Assi et al. (2013) later pointed out that this response frequency is a signature of the WIV
mechanism and could be associated with the concept of wake stiffness, which dominates over the structural stiffness for
higher reduced velocities. They argued that the wake–structure interaction creates a restoring force of hydrodynamic nature
that confers the system a kind of characteristic frequency of vibration.

Now, if the initial position of the cylinders is altered to staggered configurations it is expected that the WIV response will
also change, since the downstream cylinder will oscillate in regions of different wake interferences. Zdravkovich (1988)
mapped the wake downstream of the first static cylinder regarding the wake interference on the second static body and
Sumner et al. (2000) investigated the flow patterns of the wake around several staggered configurations. Fig. 4 identifies a
region of ‘proximity interference’ for various staggered arrangements when the streamwise separation is less than a critical
value around x0=D¼ 3:5. Flow-induced vibration in this region is driven by different mechanisms other than WIV and will
not be covered in the present study. For an investigation of ‘interference galloping’ of the cylinder at close proximity the
reader should refer to Ruscheweyh (1983), who performed tests with an elastic cylinder in a wind tunnel to explain the
excitation from hysteretic flow-switching in the gap between the cylinders (later verified in waterchannel experiments by
Ruscheweyh and Dielen, 1992). A second region identified as ‘wake interference’ appears for tandem and staggered
configurations up to y0=D$ 1:5 independently of streamwise separation. In this region the WIV mechanism described in
Assi et al. (2010, 2013) takes place. Finally, another region identified as ‘no interference’ appears when the downstream
cylinder is located out of the reach of the upstream wake for y0=D41:5.

In the present study we shall focus on the response of the downstream cylinder in 2-dof at x0=D¼ 4:0 in order to avoid
close ‘proximity interference’ and a response excited by ‘interference galloping’. Four lateral separations will vary between
y0=D¼ 0 and 3. According to the static map of Zdravkovich (1988) the cylinder should move from the strongest ‘wake

Fig. 3. WIV response of the downstream cylinder with 1-dof for various x0=D separations. (top) Displacement and (bottom) dominant frequency of
oscillation. Reproduced from Assi et al. (2010).
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interference’ region out of the upstream wake to the ‘no interference’ region without passing through the ‘proximity
interference’ region.

3. Experimental setup

Experiments were performed in the Department of Aeronautics at Imperial College, London, in a recirculating water
channel with a test section 0.6 mwide, 0.7 m deep and 8.4 m long. Flow speed, U, could be continuously varied up to 0.6 m/s
with free stream turbulence intensity around 3%. The actual flow quality was proved to be adequate to perform flow-
induced vibration tests and preliminary results were validated in Assi et al. (2010) against other experiments presented in
the literature. A pair of cylinders was arranged in the test section, as illustrated in Fig. 2, at x0=D¼ 4:0 and y0=D¼ 0:0, 1.0, 2.0
and 3.0. Measurements of displacement were taken in relation to the initial position of the downstream cylinder, i.e. the
origin of the x and y axes in Fig. 2.

Fig. 4. Sketch of interference regions for static cylinders. Hatched areas mean bistable flow regions. Adapted from Zdravkovich (1988).

Fig. 5. Schematic representation of the experimental setup with the 2-dof pendulum rig holding the downstream cylinder. (Units are in millimetres.)
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A schematic representation of the experimental setup is shown in Fig. 5. Circular cylinder models were made from a
50 mm-diameter acrylic tube, giving a maximum Reynolds number of approximately 30 000, based on cylinder diameter, D,
at U¼0.6 m/s. With a wet-length of 650 mm, the resulting aspect ratio of the model was 13. The upstream cylinder was
rigidly attached to the structure of the channel preventing displacements in any direction, while the downstream cylinder
was fixed from its upper end to a 2-dof elastic rig that allowed the cylinder to freely respond in both cross-flow and
streamwise directions. The downstream cylinder was mounted at the lower end of a long carbon-fibre tube which formed
the arm of a rigid pendulum and was connected to a universal joint fixed at the ceiling of the laboratory.

A small gap of 2 mmwas left between the bottom of the downstream cylinder and the floor of the test section. Although
end conditions were different at the extremities of the cylinder, flow visualisations showed that vortex shedding remained

Fig. 6. Trajectories of motion versus reduced velocity for (a) a single cylinder and the downstream cylinder of a pair at x0=D¼ 4:0, (b) y0=D¼ 0:0,
(c) y0=D¼ 1:0, (d) y0=D¼ 2:0, (e) y0=D¼ 3:0.
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parallel to the cylinder for all flow speeds. The distance between the bottom of the cylinder and the pivoting point of the
universal joint was 2800 mm, hence for a displacement equal to 1 diameter the inclination angle of the cylinder was only
just over 1 degree from the vertical. Two independent optical sensors were employed to measure displacements in the x and
y-directions; all displacement amplitudes presented for 2-dof measurements are for a location at the mid-length of
the model.

Two pairs of coil springs were installed in the x and y-axes allowing the setting of different natural frequencies in the
cross-flow and streamwise directions, f 0y and f 0x

, respectively. Although the cylinder was initially aligned in the vertical
position, in flowing water the mean drag displaced the cylinder from its original location. To counteract this effect the
in-line pair of springs was attached to a frame that could be moved back and forth in the direction of the flow. For each flow
speed there was a position of the frame that maintained the mean position of the cylinder within 10% of a diameter from the
original vertical arrangement, balancing the drag force with the displacement of the springs. This was more difficult to
achieve for higher reduced velocities due to the unsteady nature of the phenomenon, as will be explained later. It was a
compromise in either altering the mean position or allowing the cylinder to freely respond. In the end it was preferable to

Fig. 7. VIV dynamics response of an isolated cylinder. (a) Displacement and (b) frequency of vibration and (c) force coefficients.
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keep the parameter x0 constant, thus favouring parametric analyses. Using two pairs of springs perpendicular to each other
resulted in nonlinear spring constants for large displacements in the transverse and in-line directions. Movement in the
transverse direction will cause a lateral spring deflection in the in-line direction and vice versa. This nonlinearity was
minimised by making the springs as long as possible, hence the in-line springs were installed at the end of 4 m-long wires
fixed at the extremities of the frame.

It is known that during the cycle of vortex shedding from bluff bodies the fluctuation of drag has double the frequency of
the fluctuation of lift. Hence a particularly severe vibration might be expected to occur if the hydrodynamic forces in both
directions could be in resonance with both in-line and transverse natural frequencies at the same time. For this reason, we
set f 0x

to be close to twice of f 0y by adjusting the stiffness of both pairs of springs. Values for f 0x
, f 0y and ζ were determined

by measuring free oscillations in air in both directions. In fact, the actual value turned out to be f 0x=f 0y ¼ 1:9. In the reduced
velocity parameter, U=Df 0, the frequency f0 is the natural frequency in the cross-flow direction f 0y

. The mass ratio was found
to be mn ¼ 1:6, defined as the ratio between the total oscillating mass to the mass of displaced fluid. The structural damping
ζ ¼ 0:3%, represented as a fraction of the critical damping, was practically the same for both directions of motion.

A load cell was attached at each cylinder to measure instantaneous and time-averaged hydrodynamic forces—inertial
components have been subtracted from the total force acquired by the load cell, find details in Assi et al. (2009). Total lift
was divided into mean ðCyÞ and r.m.s. ðĈ yÞ components. The same applied to the drag coefficient (Cx and Ĉ x). Each data point
presented in the following section is composed of more than 200 cycles of vibration on that specific reduced velocity.

4. Results and discussion

Results are presented in the form of trajectories of motion and curves of the dynamic response of displacement and
frequency. Hydrodynamic force coefficients are also presented for all configurations compared with those for an isolated
cylinder.

Fig. 8. Dominant frequency of vibration (symbols) and power spectrum (background red contours) of (a) lift and (b) drag for an isolated cylinder. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

G.R.S. Assi / Journal of Fluids and Structures 50 (2014) 340–357 347211



4.1. Trajectories of motion

Before going into the details of the response for all staggered configurations we shall start by an overall qualitative
comparison between the response of an isolated cylinder under VIV and the tandem and staggered cases under WIV. Fig. 6
compares 2-dof trajectories of motion versus reduced velocity for all investigated cases. The x-axis for displacement is not
shown in the figure for clarity, but it has the same scale as the y-axis. Also, trajectories alternate in colour and line style for
clarity.

Fig. 6(a) presents the typical trajectories of motion for a single cylinder under 2-dof VIV in which the f 0x
is almost twice

as f 0y
. As reduced velocity is increased vibrations start to build up in a ‘C’ shape, changing into ‘8’-shaped curves until the

end of the synchronisation range at around reduced velocity 12. The overall response was found to be in good agreement
with results found for f 0x=f 0y

¼ 1:9 in Fig. 4 of Dahl et al. (2006) and those of Assi et al. (2009).
The 2-dof response of the downstream cylinder of a tandem pair is presented in Fig. 6(b). As expected, trajectories are

very different from those of the typical VIV response of an isolated cylinder due to the interference effect of the upstream
wake. It is evident that both streamwise and cross-flow displacements are increased when compared to Fig. 6(a), but one
may also note that the cycles of WIV are not as repeatable as those for VIV, especially for reduced velocities above 6 when
the WIV mechanism dominates over VIV. One may argue about the non-existence of harmonic motion in WIV, but the fact is
that each cycle of vibration will be the result of interference with different wake patterns (as proposed by Assi et al., 2010),
resulting in a unique trajectory at each cycle but with overall periodic characteristics.

In Fig. 6(c) we find the response of a staggered cylinder initially dislocated from the centreline of the upstream wake by
1D. The trajectories manage to capture the asymmetry in the wake interference by showing one loop of the ‘8’ shapes larger
than the other. For reduced velocities above 9 the ‘8’-shaped cycles tend to disappear and the trajectories take the form of
periodic orbits that could be associated with ‘wake flutter’ (to be discussed later).

The wake interference effect is further reduced as the cylinder moves out of the upstream wake, as observed in
Fig. 6(d) for a staggered configuration of y0=D¼ 2:0. The asymmetry in motion is still perceived, but rather weakened
when compared to Fig. 6(c). For the last staggered arrangement of y0=D¼ 3:0, presented in Fig. 6(e), the downstream
cylinder finds itself too far out of the upstream wake that almost no interference is observed in the response. The trajec-
tories resemble that of an isolated cylinder in VIV, not quite like those observed in Fig. 6(a), but still very different from
Fig. 6(b)–(d).

According to Zdravkovich (1988), somewhere between y0=D¼ 1:0 and 2.0 a static downstream cylinder should cross the
boundary from the ‘wake interference’ to the ‘no interference’ region (Fig. 4). However, when the downstream cylinder is
oscillating with high amplitudes of motion it is expected that wake interference will occur for initial separations further out
of the centreline, since the cylinder moves in and out of the ‘wake interference’ zone. This is made clear by the fact that a
significant change in the response seen in Fig. 6(d) and (e) was only achieved when the downstream cylinder was moved
from y0=D¼ 2:0 to 3.0.

4.2. Displacement, frequency and force coefficients

Moving on to a more detailed analysis involving displacements, frequencies and hydrodynamic forces we come to Fig. 7,
which will serve as a reference presenting the response of an isolated cylinder in 2-dof VIV.

Fig. 9. Power spectrum (red contours) of lift for the upstream cylinder of a tandem pair. Identical plots were obtained for all staggered arrangements. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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4.2.1. Isolated cylinder
Fig. 7(a) presents the amplitudes of displacement in the cross-flow ðŷ=DÞ and streamwise ðx̂=DÞ directions nondimen-

sionalised by the cylinder diameter. The amplitudes ŷ and x̂ represent the so called harmonic amplitude of motion,
calculated as the r.m.s. of the signal multiplied by

ffiffiffi
2

p
. Vertical bars associated with each data point represent an estimation

of the maximum and minimum peaks of vibration achieved for each reduced velocity. In fact, the bars have been calculated
taking an average of the 25% highest and lowest peaks for each time series constituted of more than 200 cycles of oscillation.
Therefore, for a given reduced velocity it is possible to evaluate the average amplitude of vibration as well as variations in
the envelope of vibration through time. Larger bars mean that the displacement presents considerable variation from cycle
to cycle.

In Fig. 7(a) the synchronisation range of VIV is clearly identified by a rise in amplitude in both ŷ=D and x̂=D roughly
between reduced velocities 2 and 11. A maximum amplitude of ŷ=D$ 1:0 is achieved at the end of the synchronisation

Fig. 10. WIV dynamic response of the downstream cylinder in tandem arrangement, x0=D¼ 4:0 and y0=D¼ 0:0. (a) Displacement and (b) frequency of
vibration and (c) force coefficients.
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range, just before a sudden drop in response in both directions. This is typical of the 2-dof VIV response of a single cylinder
with f 0x=f 0y $ 2 and has been reported by Dahl et al. (2006) and Assi et al. (2009), among others.

The dominant frequencies of vibration nondimensionalised by f0 are plotted in Fig. 7(b). Both f y=f 0 and f x=f 0 follow clear
trends in which the streamwise vibration shows double the frequency of the cross-flow direction, as expected. Two dashed
lines mark the equivalent frequency for a hypothetical Strouhal number of 0.2 and twice as that. Fig. 8 presents the same
frequency data in a slightly different manner. The same dominant frequency data points are plotted over the normalised
power spectrum of the hydrodynamics force associated to each direction. Darker areas represent peaks in the spectrum.
So, in Fig. 8(a) it becomes clear that although the preferred frequency of oscillation follows very closely the St¼0.2 line, the
lift force measured on the cylinder presents clear evidence of the third harmonic. In Fig. 8(b) only one single branch is
identified in the spectral signature of drag, which obviously corresponds to the dominant f x=f 0. For details about how the
spectrum plots were created refer to Assi (2009).

Returning to Fig. 7(c), the mean and fluctuating components of lift and drag are presented for almost the whole range of
reduced velocities. A few data points for the lowest reduced velocities have been excluded due to the high experimental
uncertainty in measuring minute hydrodynamic forces caused by very low flow speeds; data points for U=Df 0o2 were kept
in the figures but must be considered with caution since uncertainties are still high. Nevertheless, the typical amplification
of Cx and Ĉ y is observed to occur during the synchronisation range. It is difficult to find similar measurements in the
literature, but our results show some agreement with those of Jauvtis and Williamson (2004), at least as far as orders of
magnitude are concerned.

4.2.2. Tandem arrangement
The spectrum of lift on the upstream static cylinder has also been measured in a similar way, as presented in Fig. 9 for

when the cylinders are arranged in tandem ðy0=D¼ 0:0Þ. It reveals that the upstream cylinder is shedding vortices as an

Fig. 11. Dominant frequency of vibration (symbols) and power spectrum (background red contours) of (a) lift and (b) drag for the downstream cylinder of a
tandem pair: x0=D¼ 4:0 and y0=D¼ 0:0. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)
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isolated cylinder, with the frequency of lift clearly following the St¼0.2 line. Identical plots were obtained for the upstream
cylinder for all tandem and staggered configurations, thus not repeated here for brevity. We conclude that the upstream
cylinder (or its vortex shedding mechanism, to be precise) is not affected by the presence or movement of the downstream
cylinder in any of the four tested arrangements if x0=DZ4:0.

Fig. 10(a) presents the WIV response for the downstream cylinder in tandem arrangement ðy0=D¼ 0:0Þ. As seen in the
trajectories of motion in Fig. 6, the displacements are very different from the VIV of a single cylinder due to wake
interference. Similar to what was observed for 1-dof WIV of tandem cylinders (Assi et al., 2010), there is no synchronisation
range in the WIV excitation, but both ŷ=D and x̂=D increase in amplitude with increasing reduced velocity. The variation
between maximum and minimum peaks also increases for both cross-flow and streamwise vibrations.

The dominant frequency plot in Fig. 10(b) shows an interesting result. Once more f y=f 0 and f x=f 0 seem to follow clear
lines that are multiples of each other for most of the reduced velocity range. However, close to the end of the experiments at
around U=Df 0 ¼ 9:0, the dominant f x=f 0 jumps to a much lower frequency branch and remains there until the end of the

Fig. 12. WIV dynamic response of the downstream cylinder in staggered arrangement, x0=D¼ 4:0 and y0=D¼ 1:0. (a) Displacement and (b) frequency of
vibration and (c) force coefficients.
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reduced velocity range. Looking at the power spectrum of lift and drag in Fig. 11, we verify two branches in Fig. 11(a) for the
lift signature (the highest corresponding to the third harmonic), and two branches in Fig. 11(b) for drag. Now, the lowest
branch in the drag signature is the one that dominates the frequency of response for reduced velocities above 9. If we take
the concept of wake stiffness developed by Assi et al. (2013) for tandem cylinders at x0=D¼ 4:0 and plot the corresponding
wake-stiffness frequency as a dash-dotted line f w=f 0 in the frequency plots we find that the lowest branch observed in the
drag spectrum is indeed very close to f w=f 0. The same dash-dotted line was added to Fig. 10(b).

We know that for higher reduced velocities around 9 or 10 the resonant effect of VIV is getting weaker as we approach
the end of the synchronisation range (Assi et al., 2013). So, for higher reduced velocities the response is totally governed by
WIV, hence the wake stiffness could be playing some role in the response, even though the system now has 2-dof. If it is not
a coincidence that the dominant f x=f 0 is so close to f w=f 0—it might as well be the case—we are left with an open question:
why do traces of ‘wake-stiffness’ frequency appear for vibrations in the streamwise direction rather than in the cross-flow
direction? Further investigation, perhaps restraining the cross-flow degree of freedom, may be required for an answer.

The hydrodynamic coefficients in Fig. 10(c) show the amplification of Cx due to vibration but with a reduction caused by
the shading effect of the upstream wake, as expected. Cy is very close to zero (within the experimental uncertainty for force
measurements) as a result of a symmetric wake interference.

4.2.3. Staggered arrangements
Fig. 12 presents the WIV response for the downstream cylinder in staggered arrangement with y0=D¼ 1:0. The overall

displacements in Fig. 12(a) are not very different from the tandem configuration, showing that the downstream cylinder is
still under a similar interference effect of the upstream wake. The top amplitude of ŷ=D$ 1:2 obtained for the highest

Fig. 13. Dominant frequency of vibration (symbols) and power spectrum (background red contours) of (a) lift and (b) drag for the downstream cylinder of a
tandem pair: x0=D¼ 4:0 and y0=D¼ 1:0. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)
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reduced velocity is slightly reduced when compared to the tandem case. On the other hand, the maximum x̂=D is increased
to 0.6. The vertical bars indicate that the envelope of vibration shows an even greater peak variation between cycles.

Again, the frequency curves in Fig. 12(b) bring the most interesting results. Up to reduced velocity 8 both f y=f 0 and f x=f 0
are very similar to the tandem case. But for higher reduced velocities the cylinder vibrates with the same frequency in both
directions, at least up to U=Df 0 $ 10:5. This congruence of frequencies results in the kind of orbit trajectories seen in
Fig. 6(c). In fact, the response for high reduced velocities at this y0=D¼ 1:0 separation might be governed by ‘wake flutter’ on
top of WIV. Theoretically, ‘wake flutter’ can be excited in spite of the unsteadiness of the flow, being sustained only by the
steady fluid forces present in the wake. Force maps presented in Price (1975) and Assi et al. (2010) show that a static
downstream cylinder will be subjected to changes in the steady fluid forces for considerably large separations. A reduced
drag force has minimum values on the centreline of the wake and a steady lift force develops maximum values close to the
wake interference boundary around y0=D¼ 1:0. If the downstream cylinder is able to respond in two degrees of freedom (as
is the case here) following an elliptical orbit it will move across different gradients of steady lift and drag. A counter-
clockwise orbit on the starboard side of the wake extracts energy from the flow to sustain the oscillations.

Fig. 14. WIV dynamic response of the downstream cylinder in staggered arrangement, x0=D¼ 4:0 and y0=D¼ 2:0. (a) Displacement and (b) frequency of
vibration and (c) force coefficients.
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This quasi-steady approach does not take into account the vortex wake from upstream, but only the steady effect of lift
and drag. Also, this mechanism would not excite systems with 1-dof, since it requires an orbit in x and y for a positive input
of energy. Naudascher and Rockwell (1994) comment that wake flutter, like other coupled instabilities, occurs only if the natural
frequencies in the x and y directions are reasonably close, which is not the case for this experiment. But perhaps for a reduced range
of reduced velocities, the WIV mechanism is able to bring both oscillation frequencies close together, as seen in Fig. 12(b), and
extract energy from the flow in such a manner. (Note: Wake flutter has been called ‘wake galloping’ by Zdravkovich, 1997 and
Blevins, 1990, but we prefer to stick to the terminology ‘wake flutter’ since it requires response in 2-dof to be sustained.)

Elliptical vibrations can happen in different regions of the wake wherever the steady velocity profile is favourable. The
amplitude of the oscillation is directly related to the intensity of the lift and drag gradient in the wake, hence oscillations are
reduced for larger separations as the steady force profiles get attenuated. Bokaian and Geoola (1984) and Assi et al. (2010)
correctly noted that the fluid–elastic instability reported in their work was not be mistaken by the wake-flutter mechanism
described above, since their experiment presented only a single degree of freedom.

For y0=D¼ 1:0 we cannot directly employ the same wake-stiffness concept as we did for the tandem case. Assi et al.
(2013) showed that the ‘wake spring’ in the ‘wake-stiffness’ concept is only considered to be linear for around 71D away
from the centreline. Nevertheless, a close look in the spectrum of drag in Fig. 13 reveals the existence of two branches in the
Cx signature. Perhaps there is a similar ‘wake stiffness’ effect acting for oscillations around y0=D¼ 1:0 as well, which we
cannot determine in the present work.

Hydrodynamic coefficients in Fig. 12(c) show a very similar behaviour to the tandem case, except for a small variation in
Cy due to the asymmetric characteristic of wake interference. The presence of a steady force pushing the cylinder towards
the centreline of the upstream wake is also noticeable in a small lateral drift in the trajectories of Fig. 6(c).

As we move further out of the centreline to the staggered arrangement with y0=D¼ 2:0 the interference effect of the
wake starts to weaken. Fig. 14(a) shows that the maximum cross-flow displacement for the reduced velocity range is now

Fig. 15. Dominant frequency of vibration (symbols) and power spectrum (background red contours) of (a) lift and (b) drag for the downstream cylinder of a
tandem pair: x0=D¼ 4:0 and y0=D¼ 2:0. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)
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reduced to ŷ=D$ 1:0, even though x̂=D still shows the same levels as the previous separation. Vertical bars now decrease
revealing a more well behaved envelope of vibration.

Fig. 14(b) shows that f y=f 0 still follows a well behaved trend, also identified as the lowest branch in the Cy spectrum of
Fig. 15(a). However, f x=f 0 only shows a dominant frequency during the reduced velocity range in which resonant VIV is
effective. After the end of the synchronisation region, for U=Df 048, no clear dominant frequency is identified in the
streamwise motion, only slow drift and random vibrations as observed in Fig. 6; nevertheless they do amount to a
significant amplitude of displacement. Also, no clear inferior branch is found in the Cx spectrum in Fig. 15(b), especially none
related to the ‘wake stiffness’ concept.

Fig. 14(c) shows that Cx has increased as the cylinder moved out of the protected, low-speed region of the wake. But the
most interesting result lies in the variation of Cy versus reduced velocity. One can imagine that as the cylinder oscillates
with higher amplitudes it enters the region with stronger interference of the upstream wake. A lateral force will develop to

Fig. 16. WIV dynamic response of the downstream cylinder in staggered arrangement, x0=D¼ 4:0 and y0=D¼ 3:0. (a) Displacement and (b) frequency of
vibration and (c) force coefficients.
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draw the cylinder towards the centreline, thus changing the mean lift Cy. However, this phenomenon turned out to be
stronger for y0=D¼ 2:0 and not the smaller separation.

Finally, Fig. 16 presents the results for the furthest staggered case of y0=D¼ 3:0. We will limit to comment that at this
lateral separation the downstream cylinder is too far out of the centreline to encounter significant interference from the
upstream wake. Displacements, frequencies and forces all come back to be similar to the isolated cylinder case in VIV. Also,
no signs of wake interference are noticeable in the spectrum of Cy and Cx in Fig. 17 either. With the exception of a small
variation in Cy, that should appear as the cylinder gets closer to the ‘wake interference’ region during vibration, the response
seems to be driven by VIV and not WIV any longer.

5. Conclusion

In the present work we observed that the downstream cylinder of a pair is able to undergo 2-dof WIV for lateral
separations between y0=D=0:0 and 2.0. For a larger separation of y0=D¼ 3:0 the cylinder was found to respond in a typical
VIV behaviour.

For reduced velocities in the range between 1.5 and 12, the response was found to pass through a synchronisation range
in which VIV is important. If reduced velocity is increased beyond this range, the WIV mechanism will dominate the 2-dof
response in pretty much the same way it dominates 1-dof vibrations.

The WIV response in 2-dof is not qualitatively different from that observed for 1-dof systems oscillating in the cross-flow
direction. Of course the branches of response take a different shape, but apart from that the general behaviour is
monotonically increasing amplitude of displacement for increasing reduced velocity (or Reynolds number) was observed
once more. The typical wake-flutter response, showing elliptical orbits, was not observed during the experiments, maybe

Fig. 17. Dominant frequency of vibration (symbols) and power spectrum (background red contours) of (a) lift and (b) drag for the downstream cylinder of a
tandem pair: x0=D¼ 4:0 and y0=D¼ 3:0. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)
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due to the frequency ratio being different from 1. For some specific flow speeds for y0=D¼ 1:0 we might consider that wake-
flutter was acting together with WIV

We have found evidence for a mechanism of ‘wake stiffness’ to be occurring for the 2-dof tandem arrangement and
traces of it for y0=D¼ 1:0. Further investigation is required to understand how the ‘wake-stiffness’ concept in 2-dof would
differ from the 1-dof case.

Postscript: At the time of this paper going to print, Chaplin and Batten (2014) published a very interesting work
concerning WIV of two cylinders with four degrees of freedom, two in each direction of motion. This is probably the work
most similar to the present investigation and deserve the attention of the reader interested in WIV.
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a b s t r a c t

Experiments have been conducted to investigate the two-degree-of-freedom vortex-
induced vibration (VIV) response of a rigid section of a curved circular cylinder with low
mass-damping ratio. Two curved configurations, a concave and a convex, were tested
regarding the direction of the flow, in addition to a straight cylinder that served as
reference. Amplitude and frequency responses are presented versus reduced velocity for a
Reynolds number range between 750 and 15 000. Results for the curved cylinders with
concave and convex configurations revealed significantly lower vibration amplitudes
when compared to the typical VIV response of a straight cylinder. However, the concave
cylinder showed relatively higher amplitudes than the convex cylinder which were
sustained beyond the typical synchronisation region. We believe this distinct behaviour
between the convex and the concave configurations is related to the wake interference
taking place in the lower half of the curvature due to perturbations generated in the
horizontal section when it is positioned upstream. Particle-image velocimetry (PIV)
measurements of the separated flow along the cylinder highlight the effect of curvature
on vortex formation and excitation revealing a complex fluid–structure interaction
mechanism.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ongoing deep-sea exploration, installation and production of hydrocarbon energy need the development of new viable
technologies. One of these is the requirement of a robust and reliable analysis tool for the prediction of vortex-induced
vibration (VIV) of marine structures exposed to ocean currents. Because VIV can cause high cyclic-loading fatigue damage of
structures, it is now widely accepted to be a crucial factor that should be taken into account in the preliminary analysis and
design. However, many insightful VIV aspects are still unknown and far from fully understood; these render the structural
design quite conservative with the use of a large factor of safety. For offshore structures with initial curvatures and high
flexibility such as catenary risers, mooring cables and free-spanning pipelines, the theoretical, numerical or experimental
VIV research is still very lacking.
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Risers are very long pipes used to carry oil from the sea bed to offshore platforms floating on the water surface. Under the
effect of sea currents, these flexible structures are especially susceptible to flow-induced vibrations, particularly since they
have a relatively low mass compared to the mass of the displaced fluid. Generally, an offshore floating platform
accommodates several riser pipes together with many other cylindrical structures. The interaction of these flexible
structures can produce an even more complex problem, resulting in vibrations with rather unexpectedly higher amplitudes
(Assi et al., 2010a). Flow interference from the platform hull, the soil on sea bed and the pipe itself can also increase the
complexity of the flow, generating complex responses.

The riser may respond with different amplitudes and frequencies depending on the flow excitation and structural
stiffness along the length of the pipe. Consequently, several modes of vibration with varying curvature appear along the
span resulting in a very rich fluid–structure interaction mechanism (Srinil, 2010). In addition to that, flexible risers can be
laid out in a catenary configuration which results in high curvature close to the region where it touches the bottom of the
ocean, called the touchdown point.

In an attempt to understand and model the fluid-dynamic behaviour around curved sections of risers we have performed
experiments with a curved, rigid circular cylinder in a water channel. This idealised experiment is far from reproducing the
real conditions encountered in the ocean; nevertheless it should throw some light on understanding how the vortex
shedding mechanism is affected by the curvature of the pipe. In addition to the phenomenological aspects, the present work
may also serve as reference for validation and benchmarking of numerical simulations of fluid–structure interaction.

An investigation into the vortex shedding patterns and the fundamental wake topology of the flow past a stationary
curved circular cylinder has been carried out by Miliou et al. (2007) and de Vecchi et al. (2008, 2009) based on
computational fluid dynamics studies. As a result of pipe initial curvatures, flow visualisations highlight different kinds of
wake characteristics depending on the pipe (convex or concave) configuration and its orientation with respect to (aligned
with or normal to) the incoming flow. When the flow is uniform and normal to the curvature plane, the cross-flow wake
dynamics of curved pipes behave qualitatively similar to those of straight pipes. This is in contrast to the case of flow being
aligned with the curvature plane where wake dynamics change dramatically. However, these scenarios are pertinent to a
particular stationary cylinder case in a very low-Reynolds number range. The VIV behaviour will further transform if the
structure oscillates and interacts with the fluid wakes, depending on several fluid–structure parameters.

2. Experimental arrangement

Experiments have been carried out in the Circulating Water Channel of the NDF (Fluids and Dynamics Research Group) at
the University of São Paulo, Brazil. The NDF-USP water channel has an open test section 0.7 m wide, 0.9 m deep and 7.5 m
long. Good quality flow can be achieved up to 1.0 m/s with turbulence intensity less than 3%. This laboratory has been
especially designed for experiments in flow-induced vibrations and more details about the facilities are described in
Assi et al. (2006).

A rigid section of a curved circular cylinder, with an external diameter of D¼32 mm, was made of ABS plastic and
Perspex tubes according to the dimensions shown in Fig. 1. The curved cylinder was composed of a horizontal section with
10D in length, a curved section with a 10D radius and a vertical section with length h/D that could be varied with reference
to the water line. The water level was set to 700 mm from the floor of the channel, which meant that the 10D-long
horizontal part of the cylinder was not close enough to the floor to suffer interference from the wall.

The model was connected by its upper end to a long pendulum rig (length H¼3.0 m) that allowed the system to oscillate
in two degrees of freedom (2-dof) in the cross-flow and streamwise directions. The model was attached to two pairs of coil
springs that provided the stiffness of the system. The springs were set to provide the same natural frequency (f0, measured
in air) in both the cross-flow and streamwise directions. The design and construction of the pendular elastic rig was made by
Freire and Meneghini (2010) based on a previous idea employed by Assi et al. (2009, 2010b) for experiments with VIV
suppressors. The present apparatus has been validated for VIV experiments by Freire et al. (2009, 2011).

Two laser sensors measured the cross-flow and streamwise displacements of the pendulum referring to the
displacement of the bottom tip of the models. A load cell was installed before the springs to allow for instantaneous
measurements of lift and drag acting on the cylinder. (Hydrodynamic forces will not be discussed in this paper.) A particle-
image velocimetry (PIV) system was employed to analyse the instantaneous wake patterns along the cylinder span.

Nomenclature

D cylinder external diameter
f0 natural frequency in air
fx streamwise oscillation frequency
fy cross-flow oscillation frequency
h cylinder vertical length below the water line

mn mass ratio
Re Reynolds number
U flow speed
U=Df 0 reduced velocity
x̂ streamwise harmonic amplitude of vibration
ŷ cross-flow harmonic amplitude of vibration
ζ structural damping ratio
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Regarding the flow direction, two orientations were investigated: a convex and a concave configuration according to the
direction of the flow approaching the curvature. The flow direction in the test section of the water channel was not changed;
naturally the curved cylinder was rotated by 180 degrees to allow for both concave and convex arrangements. This is also
illustrated in Fig. 1.

Decay tests have been performed in air in order to determine the natural frequencies of the system in both directions as
well as the level of structural damping. The apparatus with one universal joint and four springs turned out to present a very
low structural damping of ζ ¼ 0:2%, measured as a fraction of the critical damping. The total oscillating mass of the system
was measured in air, resulting in a non-dimensional mass ratiomn, defined as the ratio between the total mass and the mass
of displaced fluid. Consequently, the mass-damping parameter mnζ of the system was kept to the lowest possible value in
order to amplify the amplitude of response.

Table 1 presents a summary of the structural parameter for both the straight and curved cylinder.

3. Results for a straight cylinder

A preliminary VIV experiment was performed with a straight cylinder in order to validate the set-up and generate data
for comparison. The same pendulum rig was employed, only replacing the curved model by a straight cylinder with the
same diameter. This time, the straight cylinder was long enough to reach the bottom wall only leaving a 3 mm clearance to
allow for free movement of the pendulum in any direction.

The dynamic response of the straight cylinder covered a reduced velocity range from 1.5 to 12, where reduced velocity
(U=Df 0) is defined using the cylinder natural frequency of oscillation measured in air. The only flow variable changed during
the course of the experiments was the flow velocity U, which, as for full-scale risers, alters both the reduced velocity and the
Reynolds number between 750 and 15 000 for a maximum reduced velocity of 20.

The flow around a smooth, straight circular cylinder in the considered Reynolds number range (identified as sub-critical)
is generally expected to be three-dimensional, with a laminar boundary layer over the cylinder surface and turbulent vortex
wake. However, in the case of curved cylinder, the curvature plays a significant role in modifying the wake dynamics, which

Fig. 1. Experimental arrangement in the NDF-USP circulating water channel. The cylinder was rotated by 180 degrees to arrange concave and convex
configurations.

Table 1
Structural properties.

Model mn ζ (%) mnζ

Straight cylinder 2.8 0.2 0.0056
Curved cylinders 2.1 0.2 0.0042
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depends on the leading geometry facing the approaching flow. This entails both the normal and axial flow components
along the cylinder curved section, further complicating the spatio-temporal vortex shedding mechanisms, associated forces
and frequencies. This has been exemplified by Miliou et al. (2007) for Re¼ 500.

Throughout the study, cylinder displacement amplitudes (x̂=D for the streamwise and ŷ=D for the cross-flow directions)
were found by measuring the root mean square value of response and multiplying by the square root of 2 (the so called
harmonic amplitude). This is likely to give an underestimation of maximum response but was judged to be perfectly
acceptable for assessing the general behaviour of VIV, since the response is mostly harmonic. Results presented in the
present study correspond to the displacement of the lowest point of the model, i.e., the end of the cylinder closer to the
section floor, thus representing the maximum displacement developed by each model. Consequently, the equivalent
amplitude at the water surface for the cylinder with a 10D vertical section is 20% smaller than the amplitude indicated in the
results. Applying similar corrections, amplitudes are 16% smaller for the cylinder with a 5D vertical section and 11% smaller
for the cylinder with no vertical section.

Displacements are non-dimensionalised by the cylinder diameter D. The dataset for the straight cylinder is repeated in
Figs. 2–5 to serve as reference.

Figs. 2 and 4 compare the reference cross-flow and streamwise responses obtained from two different runs with the
straight cylinder. In the first one, the flow speed (U) was increased in 30 steps from zero to a maximum, while in the second
it was decreased from the maximum to zero. Both data sets overlap rather well for all the reduced velocity range except for a
region around U=Df 0 ¼ 6 where the well-known phenomenon of hysteresis in the VIV response has been observed.
The streamwise VIV response also seems to occur in two resonance ranges (U=Df 0 ¼ 2 and 6), the so-called second and third
instability ranges involving asymmetric vortices (Bearman, 1984).

Although the observed peak amplitude of ŷ=D¼ 1:5 around U=Df 0 ¼ 6 is slightly higher than other results found in the
literature for similar values of mnζ (for example, Assi et al., 2009) the general behaviour of both curves shows a typical
response for 2-dof VIV. The higher amplitude found here could be explained by the very low mass-damping characteristics
of the system and the geometric projection of the amplitude at the tip of the model and not at mid-length as usual.

Although the cylinder was initially aligned in the vertical position, in flowing water the mean drag displaces the cylinder
from its original location reaching a slightly inclined configuration from the vertical. This was judged not to be detrimental
to the experiment; hence the inclination of the cylinder was not corrected between each step. The same procedure was
adopted for the curved cylinder.

Figs. 3 and 5 present the dominant frequency of response versus reduced velocity. Two dashed lines inclined with
different slopes represent the region for a Strouhal number of 0.2 and 0.4, i.e., an estimation of the vortex shedding
frequency for a straight cylinder in the cross-flow and streamwise direction respectively. It is clear that the straight cylinder

Fig. 2. Cross-flow (ŷ=D) and streamwise (x̂=D) amplitude of vibration versus reduced velocity for a straight cylinder and concave configurations varying the
vertical section length (h/D). Symbols ▶ are for runs with increasing flow speed, while ◀ are for decreasing.
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Fig. 3. Cross-flow (ŷ=D) and streamwise (x̂=D) dominant frequency of response versus reduced velocity for a straight cylinder and curved concave
configurations varying the vertical section length (h/D). Symbols ▶ are for runs with increasing flow speed, while ◀ are for decreasing.

Fig. 4. Cross-flow (ŷ=D) and streamwise (x̂=D) amplitude of vibration versus reduced velocity for a straight cylinder and convex configurations varying the
vertical section length (h/D). Symbols ▶ are for runs with increasing flow speed, while ◀ are for decreasing.
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presents a typical VIV response oscillating in the cross-flow direction with a frequency following the St¼ 0:2 line up to the
beginning of the upper branch. Eventually, f y=f 0 departs from St¼ 0:2 towards the unity value around U=Df 0 ¼ 6. The
behaviour observed for the streamwise vibration is also typical of VIV with the difference that the frequency of response is
twice as that for the cross-flow direction during much of the synchronisation range.

4. Response of the curved cylinder

As mentioned above, experiments with the curved cylinder were performed taking into account two distinct
configurations as far as the flow direction is concerned. In the concave configuration the flow approaches the model
reaching first the horizontal section. As opposed to that, in the convex configuration the horizontal section is placed
downstream of the curved and vertical parts.

4.1. Amplitude of vibration

In general terms, as presented in Figs. 2 and 4, the curved cylinders showed significantly less vibration for both concave
and convex configurations when compared to the typical VIV response of the straight cylinder. Such a reduction is
noticeable in both the cross-flow and streamwise responses. This clearly shows that the curvature of the cylinder modifies
the vortex shedding mechanism in a manner that the structure extracts less energy from the flow. We shall return to this
point when investigating the velocity flow field with PIV.

For each concave and convex configuration, the vertical section of the cylinder close to the free surface was varied in
three different lengths: h=D¼ 0, 5 and 10. The overall response for the three values of h/D is very similar, showing only
minor differences at the beginning of the synchronisation range between U=Df 0 ¼ 3:0 and 5.0. Apart from that, no distinct
behaviour was observed as far as a variation in h/D is concerned for both concave and convex configurations.

The cross-flow displacement does not reveal distinct upper and lower branches of vibration such as those observed for a
straight cylinder, but it produces a smooth curve that spans the whole synchronisation region with maximum amplitude
around ŷ=D¼ 0:75 for the concave and 0.65 for the convex configurations. No hysteresis is found.

However, the most interesting feature of such a behaviour is found when the convex response is compared to the
concave one (Figs. 2 and 4). While the convex curve for ŷ=D drops immediately between U=Df 0 ¼ 8 and 10 to a level of
ŷ=D# 0:1, the response for the concave case does not diminish, but is sustained for higher reduced velocities around
ŷ=D¼ 0:3 until the end of the experiment. Apparently there must be a fluid-elastic mechanism occurring for reduced

Fig. 5. Cross-flow (ŷ=D) and streamwise (x̂=D) dominant frequency of response versus reduced velocity for a straight cylinder and curved convex
configurations varying the vertical section length (h/D). Symbols ▶ are for runs with increasing flow speed, while ◀ are for decreasing.
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velocities above 8.0 for the concave configuration capable of extracting energy from the flow to sustain vibrations around
ŷ=D¼ 0:3. We shall discuss this point later while analysing the PIV flow fields.

In the streamwise direction the responses of the curved cylinders are different from the typical VIV developed by the
straight cylinder. Streamwise vibrations in the first and second resonance regions are totally suppressed, probably owing to
the hydrodynamic damping effect induced by the cylinder's horizontal part. At the same time, the streamwise vibration x̂=D
for the concave case also shows increasing amplitude beginning at reduced velocities higher than 10 and reaching
x̂=D# 0:35 for the highest flow speed. It coincides with the increased amplitude observed in the cross-flow direction and
should be related to the same excitation mechanism. Once more, no distinct difference in the streamwise response was
observed while varying h/D.

4.2. Frequency of vibration

Figs. 3 and 5 present the dominant frequency of oscillation non-dimensionalised by the natural frequency for both cross-
flow and streamwise directions of motion. Results for the curved cylinder show a consistent behaviour in the cross-flow
direction, with data points following the Strouhal line up to the upper branch peak but remaining closer to f y=f 0 ¼ 1:0 for
the rest of the reduced velocity range. In the streamwise direction, we find data points following both Strouhal lines and also
very low frequencies indicating random drifts instead of periodic oscillations. Since the displacements in the streamwise
direction are much smaller for the curved cylinder than the straight one, we should expect broader frequency spectra
dominating over the response.

One might remember that the straight and curved cylinder should have very similar values of added mass in the cross-
flow direction, but slightly different values in the streamwise direction due to the geometric properties relative to the flow.
We have not taken such effect into account in this paper, but it might be playing an important role defining the frequencies
of oscillation in water.

4.3. Trajectories of motion

Fig. 6 qualitatively compares samples of displacement trajectories obtained for three experiments performed with the
straight cylinder and the curved cylinders with h=D¼ 10. The straight cylinder presents distinct eight-shape figures typical
of 2-dof VIV owing to the 2:1 ratio on the streamwise to cross-flow frequency of excitation. On the other hand, trajectories
for both configurations of the curved cylinder reveal that the streamwise displacement is greatly reduced when compared to
the straight cylinder. Both concave and convex cases show very little movement in the streamwise direction for the whole
range of reduced velocity.

Fig. 6. Response trajectories of motion for a (a) straight cylinder and a curved cylinder in (b) concave and (c) convex configurations. Each trajectory was
taken at the reduced velocity indicated in the horizontal axis. (a) Straight cylinder, (b) curved cylinder, concave configuration, h=D¼ 10, and (c) curved
cylinder, convex configuration, h=D¼ 10.
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Another interesting observation relates to the movement of both curved cylinders. It is clear that for reduced velocities
greater than 10 the convex cylinder shows small displacements in both directions, while vibrations are sustained until the
end of the experiment for the concave case as shown in Figs. 2 and 4.

5. Velocity and vorticity fields of stationary cylinders

Two dimensional PIV (particle image velocimetry) measurements of the flow around the cylinder were performed,
for both concave and convex configurations, on a vertical plane parallel to the plane of curvature. In addition, PIV
measurements were also performed on three horizontal planes (marked H1, H2 and H3 in Fig. 1 across the cylinder
diameter.

All PIV measurements were taken for Re¼ 1000 in the sub-critical Reynolds number regime found for a straight circular
cylinder. According to Williamson (1996), the particular flow is in the shear-layer transition regime, characterised by an
increase on the base suction, a gradual decrease in the Strouhal number and a decrease in the formation length of the mean
recirculation region. These trends are caused by the developing instability of the separating shear layers from the sides of
the body. The flow around a curved cylinder, which presents different elliptical cross-sections along the span, may behave
slightly different from the above description. Further investigation is necessary in order to evaluate that.

Fig. 7. Composition of instantaneous PIV velocity fields for concave configuration with h=D¼ 5.

Fig. 8. Composition of instantaneous PIV vorticity fields for concave configuration with h=D¼ 5.
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Fig. 9. Detailed velocity and vorticity fields from Figs. 7 and 8. Flow direction is from right to left. Re¼ 1000. Colour scale for velocity magnitude is from
0.004 m/s (blue) to 0.05 m/s (red). Colour scale for vorticity contours in the range 70,004 s$1. (Velocity fields do not correspond to the vorticity fields in
time.). (a) Velocity magnitude, A1, (b) vorticity contours, A1, (c) velocity magnitude, A2, (d) vorticity contours, A2, (e) velocity magnitude, A3, (f) vorticity
contours, A3, (g) velocity magnitude, A4, and (h) vorticity contours, A4. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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5.1. Vertical plane

We shall start discussing the results obtained from the vertical plane, as presented in Figs. 7–12. Four visualisation areas
for each configuration, labelled A1–A4, were conveniently distributed along the length of the cylinder in order to evaluate as
much as possible to the flow pattern around the body. All four areas are in the same plane illuminated by the laser, which is
parallel to the plane of curvature only dislocated by 1D from the centre of the cylinder towards the camera in order to
capture the highest velocities induced by the vortex tubes. Figs. 9 and 12 show the location of each area composing the flow
filed along the cylinder. It is important to note that each velocity field was obtained from a different acquisition instant;
hence A1, A2, A3 and A4 are not correlated in time.

All PIV measurements were performed for a static cylinder at Re# 1000. Of course the wake pattern for the static
cylinder is expected to be different from the wake of an oscillating cylinder, but even an analysis of a fixed body can
contribute to the understanding of the complex vortex–structure interaction occurring during the response. A similar
approach was employed by Miliou et al. (2007) who performed numerical simulations for a static, curved cylinder between
Re¼ 100 and 500. The same colour scales have been employed from Figs. 7 to 12 to allow for direct comparison of velocity
magnitude and vorticity contours.

With that in mind, let us analyse first the flow pattern around the concave configuration in Figs. 7–12. The overall flow
around the body can be divided into two parts:

Fig. 10. Composition of instantaneous PIV velocity fields for convex configuration with h=D¼ 5.

Fig. 11. Composition of instantaneous PIV vorticity fields for convex configuration with h=D¼ 5.
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Fig. 12. Detailed velocity and vorticity fields from Figs. 10 and 11. Flow direction is from right to left. Re¼ 1000. Colour scale for velocity magnitude is from
0.004 m/s (blue) to 0.05 m/s (red). Colour scale for vorticity contours in the range 70.004 s$1. (Velocity fields do not correspond to the vorticity fields in
time.). (a) Velocity magnitude, A1, (b) vorticity contours, A1, (c) velocity magnitude, A2, (d) vorticity contours, A2, (e) velocity magnitude, A3, (f) vorticity
contours, A3, (g) velocity magnitude, A4, and (h) vorticity contours, A4. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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(I) Areas A1 and A2 show the region where the flow is mostly parallel to the axis of the cylinder. Therefore, no clear vortex
tubes are observed with concentrated axial vorticity. Instead, the flow along the horizontal length is disturbed by the
separation occurring at the tip of the cylinder. Area A1 shows the flow approaching the disk facing upstream and
separating into a recirculation bubble. The periodicity of the shedding associated with this region is also related to the
flow speed and the diameter D, but no coherent vortices parallel to the cylinder are able to form. As a consequence, a
cascade of small vortices is convected downstream along the horizontal length (see area A2) reaching the beginning of
the curved section.

(II) Areas A3 and A4 show the region where the flow is mainly perpendicular to the axis of the cylinder. Coherent vortex
tubes tend to form following the curvature of the body, but further downstream they are stretched and rapidly
breakdown into smaller vortices that are convected by the flow. Area A3 shows the instant when a vortex tube is shed
almost tangent to the curvature, while area A4, around the vertical section, reveal a formation region more or less
aligned with the axis of the cylinder. Streamlines drawn in areas A3 and A4 reveal a non-negligible velocity component
deflecting the flow downwards immediately after the vortex formation region. As we move along the cylinder towards
the water line from A3 to A4 the downward component is gradually reduced until it eventually disappears towards the
upper half of A4. This region marks the competition between two wake modes existent along the transition from curved
to straight cylinder. This looks similar to Fig. 15 in Miliou et al. (2007), with Re¼ 100, although without the cylinder
horizontal section therein.

Analysing the flow pattern for the convex configuration in Figs. 10–12 we notice two striking differences:
Firstly, because the flow approaching the convex body does not encounter a blunt disk facing upstream, no strong

separation or recirculation bubble is formed. As a consequence, the horizontal section seen in areas A1 and A2 is not
exposed to a disturbed, unsteady flow parallel to the axis of the cylinder. In fact, A1 and A2 reveal that the upper half of the
horizontal length is exposed to a periodic flow formed by a regular wake, while the bottom half experiences almost no
perturbation, with streamlines showing a well behaved flow field parallel to the axis.

Secondly, looking at the upper half of the body (A3 and A4) we notice much stronger and coherent vortex tubes when
compared to the flow around the concave configuration. Area A3 reveals some kind of vortex dislocation after a formation region
that increases in length as we move upwards. Because the convex geometry does not encourage the vortex tubes to stretch and
break, a periodic wake seems to be sustained farther downstream. In contrast with the flow around the concave configuration,
the velocity field around the curved section has a non-negligible vertical component upwards. It is stronger in A2 and is
gradually reduced as wemove upwards along the curvature in A3. This looks similar to Fig. 3 in Miliou et al. (2007) for Re¼ 100.

Gallardo et al. (2011) stated that there is a certain degree of alignment of the flow structures with the axial curvature of
the cylinder, which tilts the flow structures with respect to the vertical direction. Fig. 12(e) and (f) captures this behaviour,
also recognised in Fig. 2 of Gallardo et al. (2011) and Fig. 8 of Miliou et al. (2007).

5.2. Horizontal planes

Figs. 13 and 14 present PIV velocity fields for the three horizontal planes indicated by H1, H2 and H3 in Fig. 1. All
measurements were performed with h=D¼ 5. Plane H1 was positioned at the transition from the straight to the curved
section of the model, i.e., 5D below the water line. Plane H2 was located 5D below that position and plane H3 another 5D
down towards the floor.

Fig. 13 presents results for the concave configuration. The two cameras were positioned underneath the model as
viewing from the bottom through the glass floor. A light grey circle or ellipse marks the cross section of the cylinder at the
illuminated plane. A dark grey rectangle represents the part of the curved model in front of the laser plane, while a dashed
line illustrates the projection of the model behind the plane. Each image is composed of two PIV areas taken simultaneously;
for some cases they overlap, for others they are apart.

In Fig. 13(a), for the horizontal plane at the transition from the straight to the curved section, we notice a wider wake
with a longer formation region that generates stronger vortices. This formation is related to the strong vortex tubes parallel
to the straight section presented in Fig. 9(g). Moving down to plane H2, the cross section of the cylinder turns into an ellipse.
The wake becomes much narrower with a short formation length and no strong vortices are distinguishable in the
downstream flow. Fig. 9(e) also showed that an oblique vortex tube would form closer to the cylinder with vortices breaking
apart into smaller eddies. Farther down to plane H3, the cross section illuminated by the laser plane now shows the
beginning of the horizontal portion of the model. No vortex wake is identified, but only a region of disturbed flow which
agrees with pattern shown in Fig. 9(c).

Results for the convex configuration in Fig. 14 were obtained in the same way as the concave, the only difference being
that the cameras were installed above the channel, viewing from the top through the free surface. As a consequence, plane
H3 does not result in any useful velocity field once the flow that separates from the cylinder follows attached to the
horizontal portion of the model, as seen in Fig. 12(c).

Fig. 14(a) presents velocity fields for the first plane H1 at the transition region. A rather wide wake with strong vortical
structures is noticeable through high induced velocities. Again, the same pattern was captured on the vertical PIV shown in
Fig. 12(g). Moving down to plane H2 we notice that an organised wake may still exist, even though the cross section of the
cylinder turned into an ellipse. Vortex tubes were also verified to persist further downstream in Fig. 12(c) and (e) as
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coherent flow structures appeared periodically downstream of the cylinder in the flow fields. Similar vortex structures were
verified by Miliou et al. (2007) and Gallardo et al. (2011). This proves that the convex configuration is more prone to produce
correlated vortex tubes along the curved length of the cylinder, while in the concave configuration vortices soon break apart
as they are convected downstream.

Fig. 13. Velocity fields for horizontal planes across the concave configuration. Refer to Fig. 1 for positions. Flow direction is from right to left. Re¼ 1000.
Colour scale for velocity magnitude is from 0.004 m/s (blue) to 0.05 m/s (red). (a) Plane H1, (b) plane H2, and (c) plane H3. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 14. Velocity fields for horizontal planes across the convex configuration. Refer to Fig. 1 for positions. Flow direction is from right to left. Re¼ 1000.
Colour scale for velocity magnitude is from 0.004 m/s (blue) to 0.05 m/s (red). (a) Plane H1 and (b) plane H2. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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Based on the results of Gallardo et al. (2011) for the convex configuration, one can observe that the interaction of the
shear layers and thus the vortex formation length is a function of the cross-sectional shape being circular or elliptical, here
represented by different planes along the cylinder span as can be seen in Fig. 14 and also in Fig. 3 of Gallardo et al. (2011).

Plane H1 in Fig. 14(a), which corresponds to plane z=D¼ 16 in Gallardo et al. (2011), shows that the shear layers interact
in a farther downstream position from the body and the wake is wider compared to a horizontal position of the H2 plane in
Fig. 14(b) where the cross-section of the cylinder is elliptical. In the latter case, seen also at the z=D¼ 8 plane in Gallardo
et al. (2011), there are vortices produced within the recirculation region exhibiting the wavier shear layers.

6. The excitation mechanism

The main question to be answered by the present study is concerned with the fact that the amplitude in the cross-flow
direction for the convex configuration is able to drop down to 0.1 for high reduced velocities while the concave
configuration sustains vibration around 0.35. We believe this distinct behaviour between the convex and the concave
configurations is related to the wake interference happening in the lower half of the cylinder due to perturbations generated
in the horizontal section when it is positioned upstream.

In the concave configuration the horizontal part of the cylinder is located upstream of the curved and vertical parts.
The approaching flow encounters a circular blunt leading edge with a clear separation region around the circumference
(Fig. 9(a)). The flow that separates at the leading edge tends to create a separation bubble and latter reattaches along the
horizontal section of the cylinder. Because the cylinder already presents cross-flow and streamwise vibrations, the three-
dimensional separation bubble will not find a stable configuration nor a definite reattachment region, instead it will develop
a periodic behaviour that may result in three-dimensional vortices being shed downstream, reaching the other parts of the
cylinder. This is very clear in areas A1 and A2 of Figs. 7 and 9 for the static cylinder.

The fluid-elastic mechanism behind the response may be a composition of different phenomena acting at the same time.
We believe this interaction between the disturbed flow from the upstream horizontal part with the curved and vertical parts
is responsible for sustaining the level of vibration around ŷ=D¼ 0:35 and x̂=D¼ 0:35. We suggest such an interaction may be
occurring in the following forms:

(i) Vortices generated along the horizontal section may impinge on the curved part generating impulses in the same
manner that large eddies of turbulence induce buffeting on elastic structures. Because the concave configuration has a
longer section immersed in such a disturbed wake it is more susceptible to buffet. Evidence that a buffeting-like
phenomenon might be occurring is that the streamwise vibration shows a considerable increase in amplitude with
increasing flow speed further out of the synchronisation range. Fig. 6(b) also reveals that these vibrations are not
harmonic and may even be chaotic, another evidence supporting the buffeting-excitation hypothesis.

(ii) The disturbed flow from the horizontal part may be disturbing and disrupting the vortex shedding mechanism from the
curved and vertical sections, for example uncorrelating the vortex shedding mechanism in a curved region of the
cylinder near the horizontal part. Also, the vortex wake along the curved-vertical half of the concave cylinder showed
less correlation along the span, resulting in a lower peak of vibration during the synchronisation range.

(iii) Because the concave configuration has a fixed separation ring at the circle facing upstream, there might be some galloping-
like instability related to the separation and reattachment of the three-dimensional bubble. This could generate non-
resonant forces that could sustain some level of vibration for reduced velocities above the synchronisation range.

(iv) Finally, the concave configuration might experience some kind of instability related to the geometric arrangement of
the experiment. Because the centre of pressure is located upstream of the vertical axis of the pendulum a minute
deflection of the cylinder may result in a resolved force that will increase displacement. The opposite is true for the
convex configuration in which the centre of pressure downstream of the vertical axis of the pendulum can only
generate stabilising forces.

Of course all four mechanisms suggested above may also be occurring simultaneously or it may not even be possible to
explain them separately. In addition, they might as well be very dependent on Reynolds number and amplitude of vibration.

7. Conclusions

We have experimentally investigated the two-degree-of-freedom VIV response of a rigid, curved circular cylinder with a
low mass-damping ratio. With regard to the approaching flow (Reynolds number is in the range of 750–15 000) both
concave and convex configurations were considered and the measured responses were compared with those of a typical
straight cylinder. In summary, we conclude that:

(i) In general terms, a curved cylinder presents a lower peak of amplitude of vibration in both the cross-flow and
streamwise direction when compared to a straight cylinder. Nevertheless, a considerable level of streamwise vibration,
not attributed to VIV, was observed for reduced velocity as high as 18.
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(ii) Although the peak amplitude is reduced, a curved cylinder may present a significant level of vibration that is sustained
for higher values of reduced velocity beyond the end of the typical synchronisation range.

(iii) The concave configuration shows a considerable level of cross-flow vibration around ŷ=d¼ 0:35 up to the highest
reduced velocity performed in this experiment.

(iv) The overall response showed little dependency on the vertical length immediately below the water line, at least for a
section varying between h=D¼ 0 and 10.

(v) From the PIV study on a stationary curved cylinder, we suggest that the flow–structure interaction mechanism that
differentiates the concave from the convex cylinder response may have its origin in the disturbed flow that separates
from the horizontal part located upstream. This could be related to buffeting, galloping, disturbed VIV or geometric
instabilities.

Future work should concentrate on correlated PIV analyses of the vortex formation along the curvature as well as on
measurements of the flow field on planes perpendicular to the plane of curvature. An investigation of the interference effect
generated by the separation at the tip of the horizontal section could also help towards understanding the response. PIV and
instantaneous force measurements for an oscillating cylinder, especially at high reduced velocities, could throw some light
into the actual mechanism of excitation.
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Investigation on the Stability of
Parallel and Oblique Plates as
Suppressors of Vortex-Induced
Vibration of a Circular Cylinder
Experiments have been carried out with models of free-to-rotate parallel and oblique
plates fitted to a rigid section of circular cylinder to investigate the effect of plate length
and oblique angle on the stability of this type of vortex-induced vibration (VIV) suppres-
sor. Measurements of the dynamic response and trajectories of motion are presented for
models with low mass and damping which are free to respond in the cross-flow and
streamwise directions. It is shown that, depending on a combination of some geometric
parameters, the devices might not be able to completely suppress VIV for the whole
range of reduced velocities investigated. Plates with larger oblique angles turned to be
less stable than parallel plates and induced high-amplitude vibrations for specific
reduced velocities. Systems may present streamwise vibration due to strong flow separa-
tion and reattachment on the outer surface of plates with large oblique angles. Large
angles may also increase drag. Experiments with a plain cylinder in the Reynolds num-
ber range from 3000 to 20,000 have been performed to serve as reference. Reduced ve-
locity was varied between 2 and 13. Two-dimensional numerical simulation of static
systems at Re¼ 10,000 revealed that complex and fully separated flow regimes exist for
almost all investigated cases. There is a good chance that systems with such geometric
characteristics will be unstable unless other structural parameters are positively verified.
[DOI: 10.1115/1.4027789]

Keywords: VIV suppression, stability, free-to-rotate suppressors, parallel and oblique
plates

1 Introduction

This paper reports on new fundamental studies regarding a pair
of free-to-rotate plates acting as suppressors for the VIV of a cir-
cular cylinder. The development of new suppressors of flow-
induced vibration (FIV) of offshore structures is a topic that
became frequent in the literature in the past years. As previously
discussed in Refs. [1–3], with the advancement of offshore oil ex-
ploration, research on FIV suppressors was pushed to a new level.
“The industry demands suppressors that are not only efficient for
low mass-damping systems but also that could be installed under
harsh environmental conditions; such is the case for offshore
risers” [3].

The present work contributes to the understanding of the
dynamic stability and hydrodynamic phenomena behind a type of
free-to-rotate device made of a pair of rigid plates attached to a
cylinder. Suppressors employing parallel plates are already avail-
able as viable commercial solutions [4,5] for offshore drilling ris-
ers. Drilling risers are not in operation for as long as production
risers; therefore, fatigue damage is not as important a concern as
the loads caused by strong currents. Therefore, besides suppress-
ing FIV, suppressors must contribute to reduce drag, consequently
reducing pipe bend during drilling operation. A real drilling riser
in the field is not a rigid structure, but responds the flow excitation
in several modes of vibration with different frequencies. Testing
free-to-rotate devices on a rigid section of a finite cylinder, as is
the case in this fundamental investigation, elucidates the local
fluid–structure interaction associated with the suppression

mechanism occurring in different sections along the riser, but is
limited to capture the complex three-dimensional phenomena
along the pipe. Small variations in the angle between the plates
may affect the flow behavior around the suppressor, enhancing ef-
ficiency in suppression and potentially drag reduction. However,
an opposite effect may also occur and plates with oblique angles
may produce hydrodynamically unstable systems. The present
study sets out to investigate these possibilities.

It is known that free-to-rotate suppressors may experience
hydrodynamic instabilities that will not only cause a substantial
increase in drag but also prevent it from suppressing vibrations
[1]. Actually, an unstable free-to-rotate suppressor may induce the
structure into more vigorous vibrations excited by a type of flutter
mechanism. Assi et al. [1,3] have shown that the instability of
free-to-rotate suppressors is directly related to the level of rota-
tional resistance encountered in the system as well as geometric
parameters such as plate length. They performed experiments in
laboratory scale and showed that a free-to-rotate suppressor
formed by a single splitter plate may need a minimum rotational
resistance (or be above a critical rotational friction) to enable a
stable configuration with effective suppression. The same was
verified for free-to-rotate suppressors composed of two parallel
plates [6], revealing that a minimum rotational resistance is neces-
sary to stabilize the devices.

Assi et al. [1,2] have already shown that 1D-long parallel plates
can be very efficient in suppressing both VIV and wake-induced
vibration (WIV). WIV occurs when the downstream body of a set
is excited by the unsteady wake generated from another body
placed upstream [7,8]. In the present work, we set out to investi-
gate if free-to-rotate oblique plates are able to find stable configu-
rations and suppress VIV for various plate lengths and oblique
angles. The installation of free-to-rotate suppressors on offshore
risers requires fitting bearings or sliding components around the
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pipe that may be vulnerable to fatigue or deteriorate due to the
marine environment. The present study is limited to a fundamental
investigation of a concept as far as the stability of the system is
concerned; hence, it will not discuss the devices in a deeper tech-
nological level.

2 Parallel and Oblique Plates

Variations on the concept of double plates, some inspired by
the early work of Grimminger [9] related to suppressing VIV of
submarine periscopes, were the inspiration for previous works that
employed a similar apparatus [1–3,6,10,11]. In Grimminger’s
experiments, the plates were fixed since the direction of the flow
around a submarine is known, but in the investigations mentioned
above the plates were free to rotate according to the flow
orientation.

Based on the previous investigations [1], we believe that paral-
lel plates and splitter plates are able to suppress VIV based on the
same fluid-dynamic mechanism. Free-to-rotate parallel plates are
not a “fairing” in the strict sense of the term, i.e., they do not
make the cylinder a streamlined body. For this to occur, the length
of the fairing would have to be many times the diameter of the
cylinder (as shown in Refs. [12–14]). In essence, parallel plates
act in the near wake with fully separated flow, avoiding the inter-
action between the shear layers and delaying vortex formation and
shedding, hence the same mechanism as splitter plates and short-
tail (or teardrop) fairings [1,3].

In a previous work [6], we have investigated if free-to-rotate
parallel plates would be able to find stable configurations and sup-
press VIV for various plate lengths. In that configuration, the

leading edge of the plate was practically touching the cylinder
wall, creating a chamber of almost stagnant flow downstream of
the cylinder and in between the plates. That configuration did not
allow any flow to “ventilate” the near wake. The longer the plates,
the larger would become the region of stagnant flow. In the pres-
ent study, we want to investigate if a small vent in the form of a
gap between the plates and the cylinder would possibly allow
high-speed flow to feed momentum into the near wake, creating a
more streamlined body by disrupting the interaction between the
shear layers that generate vortices.

We chose to vary three geometric parameters to characterize
the suppressors, as seen in Figs. 1(a) and 1(b): Plate length nor-
malized by the diameter, L/D; plate angle, a, that defines the
oblique configurations (a¼ 0 deg means parallel plates); and the
normalized gap, G/D, measured between the leading edge of the
plate and the cylinder wall. Both plates are installed so that their
leading edge is aligned with the center of the cylinder. Plates can-
not move in relation to each other, but the pair is free to rotate
about the center of the cylinder. Plate thickness t/D¼ 0.06 was
kept constant in the present study, even though it was thought to
be a relevant parameter for investigation.

It is intuitive to think that if we held L/D fixed, only varying the
other two geometrical parameters, we could already produce sev-
eral different flow patterns. G/D is directly related to the flow
intake into the near wake, especially related to the flow behavior
in the boundary layers. Increasing a directs momentum inward
(toward the centerline), but it is also directly related to strong flow
separation that may occur on the outer surface of the plates. Minor
variations in both G and a would be enough to modify the flow
behavior. Actually, it is not difficult to imagine that an optimum

Fig. 1 (a) First experiment: Free-to-rotate parallel plates. Fixed G/D 5 0.4 and
a 5 0 deg, varying L/D 5 0.5, 1.0, 1.5, and 2.0 from top to bottom. (b) Second experi-
ment: Free-to-rotate oblique plates. Fixed G/D 5 0.4 and L/D 5 1.0, varying a 5 0 deg,
10 deg, 20 deg, and 30 deg from top to bottom.
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solution to minimize vibration and reduce drag would have a
small gap and a minute oblique angle with almost no separation.

The present investigation is not intended as a study of optimiza-
tion, but it aims on the understanding of the overall behavior of
the system for larger variations of G/D, L/D, and a, much larger
than the intuitive geometries. At the moment, we are more con-
cerned with the overall stability of the system rather than with op-
timum proportions. Therefore, our parameters will vary in large
steps as follows: L/D¼ 0.5, 1.0, 1.5, 2.0 and a¼ 0 deg, 10 deg,
20 deg, 30 deg with G/D¼ 0.4 kept constant. Overall, our broader
study results from 80 different tested configurations. This paper
will focus on the eight most interesting cases, not necessarily the
ones that produced effective suppression and drag reduction, but
especially on those that showed surprising results. The study was
divided into two experiments. In the first experiment, with parallel
plates shown in Fig. 1(a), G/D¼ 0.4 and a¼ 0 deg were kept con-
stant while L/D was varied in four steps. In the second experi-
ment, with oblique plates shown in Fig. 1(b), G/D¼ 0.4 and L/
D¼ 1.0 were kept constant while a was varied in four steps. Vary-
ing one parameter at a time was thought to help the parametric
analysis that will follow.

3 Experimental Arrangement

Experiments have been carried out in the circulating water
channel of NDF Fluids and Dynamics Research Group at the Uni-
versity of S~ao Paulo, Brazil. The NDF-USP water channel has an
open test section which is 0.7 m wide, 0.9 m deep, and 7.5 m long.
Good quality flow can be achieved up to 1.0 m/s with turbulence
intensity less than 3%. This laboratory has been especially

designed for experiments in FIV; further details about the
facilities are described in Ref. [15].

A rigid section of circular cylinder with an external diameter of
D¼ 50 mm was made of a perspex tube (please refer to Figs. 1
and 2 for details). Four pairs of rigid perspex plates were manufac-
tured varying in length in four steps of L/D¼ 0.5, 1.0, 1.5, and
2.0. The plates were mounted on ball bearings at the extremity of
the cylinder and could not move in relation to each other, i.e., the
angle between the plates was kept constant at all times. The lead-
ing edge was kept at the same vertical alignment as the center of
the cylinder so that plates were oriented at the 6 90 deg points in
relation to the incoming flow. The oblique angle of the plates a in
Fig. 1(b) (defined as the actual angle of attack for each flat plate)
was adjusted in four steps of a¼ 0 deg, 10 deg, 20 deg, and 30 deg.
As a result, the pair of parallel or oblique plates would freely
rotate as one body around the center of the cylinder. The gap
between the leading edge of the plates and the cylinder wall was
kept constant at G/D¼ 0.4. As far as the boundary layer thickness
is concerned, this is considered to be a large gap relative to the
cylinder diameter, at least large enough for the plate not to interact
with the laminar boundary layers around the natural separation
points. A schematic representation of all the considered geome-
tries is presented in Fig. 1. Rotational friction was not measured in
this study, instead it was simply verified if the actual level of
rotational friction in the bearings was high enough to stabilize the
1D-long plates around the expected peak of response for VIV.

Models were mounted on a low-damping rig that allowed the
cylinder to freely respond in both cross-flow and streamwise
directions, as seen in Fig. 2. The cylinder model was mounted at
the lower end of a long titanium tube forming the arm of a rigid
pendulum connected to a universal joint fixed at the ceiling of the
laboratory. The water channel was filled up to 650 mm, resulting
in a submerged length to diameter ratio of 13. The design and con-
struction of the pendular elastic rig were made by Freire and
Meneghini [16] based on a previous idea employed by Assi et al.
[1,2] for experiments with VIV suppressors. Two independent op-
tical sensors were employed to measure displacements in the x
and y directions at the midlength of the model. It should be noted
that for a displacement equal to one diameter the inclination angle
of the cylinder was only just over 1 deg from the vertical. Two
pairs of springs were installed in the x and y axes to set the natural
frequencies in both directions of motion. The springs were chosen
to provide the same natural frequency (f0) measured in air in both
the cross-flow and streamwise directions.

Decay tests have been performed in air in order to determine
the natural frequencies of the system in both direction as well as
the level of structural damping. The apparatus with one universal
joint and four springs turned out to present a very low structural
damping of f¼ 0.20%, measured as a fraction of the critical
damping. The total oscillating mass of the system was measured
in air, resulting in a nondimensional mass parameter of m*" 2.0,
defined as the ratio between the total mass and the mass of dis-
placed fluid. Consequently, the mass-damping parameter m*f of
the system was kept to the lowest possible value in order to
amplify the amplitude of response. Preliminary tests have been
performed with a plain cylinder to serve as reference for compari-
son. Table 1 summarizes the structural parameter for both the
plain cylinder and the cylinders fitted with plates of various

Fig. 2 Experimental setup: cylinder with parallel plates
mounted on the two-degrees of freedom rig in the test section
of the NDF-USP water channel

Table 1 Structural properties

m* f (%) m*f

Plain cylinder 1.90 0.2 0.0038

Cylinder with plates
L/D¼ 0.5 2.10 0.2 0.0042
L/D¼ 1.0 2.17 0.2 0.0043
L/D¼ 1.5 2.24 0.2 0.0045
L/D¼ 2.0 2.30 0.2 0.0046
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lengths. Notice that m* varies slightly from model to model due to
the mass variation of the installed plates.

Measurements were made using a fixed set of springs and the
reduced velocity range covered was up to 13, where reduced ve-
locity, U/Df0, is defined using the cylinder natural frequency of
oscillation in the cross-flow direction measured in air. The only
flow variable changed during the course of the experiments was
the flow velocity, U, which alters both the reduced velocity and
the Reynolds number between 3000 and 20,000. Throughout the
present study, cylinder displacement amplitudes nondimensional-
ized by the plain cylinder diameter (x̂=D for streamwise and ŷ=D
for cross-flow directions) were found by measuring the root mean
square value of response and multiplying by the square root of 2
(the so called equivalent harmonic amplitude). This is likely to
give an underestimation of maximum response but was judged to
be perfectly acceptable for assessing the effectiveness of VIV sup-
pression devices.

4 Preliminary Results for a Plain Cylinder

A preliminary VIV experiment was performed with a plain cyl-
inder in order to validate the setup and methodology. The same
pendulum rig was employed, only replacing the model with paral-
lel plates by a plain cylinder with the same diameter. Figures 3
and 4 will compare the reference cross-flow and streamwise
responses obtained for the plain cylinder with those obtained for
each suppression device. As far as the plain cylinder is concerned,
the observed peak amplitude of ŷ=D ¼ 1:2 between U/Df0¼ 6.0
and 7.0 is in good agreement with other results presented in the
literature [1,17]. The general behavior of the cross-flow response
confirms the typical response for the two-degrees of freedom VIV
of a system with the same natural frequency in both directions.

The recorded streamwise response presented a peculiar feature.
Around reduced velocity of 7.0, corresponding to the transition
from the upper to the lower branch in the cross-flow response, we
observed high-amplitude vibration above x̂=D ¼ 0:6. At first
sight, one might conclude that such a distinct peak could be
related to a local resonance between the streamwise excitation and
a higher harmonic in that direction. However, this idea was dis-
carded once the time series for the displacement signal was ana-
lyzed. In fact, it occurred that the cylinder experienced an
unstable transition from the upper to the lower branch in the
cross-flow oscillations, jumping back and forth from one mode to
the other. This alternation between two different levels of ampli-
tude had an effect on the streamwise response due to fluctuations
on the mean drag induced by the cross-flow vibrations. As a result,
the response appeared as if the cylinders were oscillating with
x̂=D > 0:6 around a mean position, but in fact it was alternating
between two branches of vibration as long as the transition was
not completed.

Although the cylinder was initially aligned in the vertical posi-
tion, in flowing water, the mean drag displaces the cylinder from
its original location reaching a slightly inclined configuration
from the vertical. This was judged not to be detrimental to the
experiment, hence the inclination of the cylinder was not
corrected between each step of increasing flow speed. The same
procedure was adopted for the cylinders fitted with plates.

5 Results for Cylinders With Plates

Figures 3 and 4 also present two sets of data with cross-flow
and streamwise response curves for the suppressors tested in the
first and second experiments, respectively. We shall start discus-
sing results from the first experiment.

Fig. 3 First experiment: cross-flow (ŷ=D) and streamwise (x̂=D) amplitude of vibration versus
reduced velocity for a plain cylinder compared to cylinders fitted with parallel plates of various
lengths
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5.1 First Experiment: Varying L/D. The first experiment
presents only parallel plates varying in length. These configura-
tions differ from those of Assi et al. [6] in the existence of a lateral
gap of G/D¼ 0.4 between the cylinder and the plate; nevertheless,
the overall behavior of the free-to-rotate devices is very similar in
both studies. The general behavior of all free-to-rotate parallel
plates shows a remarkable reduction in vibration in both directions
for most of the reduced velocity range investigated (Fig. 3). Given
the minimum level of rotational friction provided by the bearings,
all parallel plates were found to be reasonably stable for the whole
range of reduced velocities.

Except for two data points for the shorter plates of L/D¼ 0.5
around reduced velocity of 6.0, most plates were able to practi-
cally mitigate vibrations below ŷ=D ¼ 0:2 for the whole range of
reduced velocities, even during the cross-flow and streamwise
resonances. This localized amplification of the response around
U/Df0¼ 6.0 is attributed to a minor resonance of the vortex-
shedding mechanism altered by the presence of the short plates.
For reduced velocities greater than ten, random vibration associ-
ated with turbulence buffeting appeared for all suppressors as well
as for the plain cylinder, reaching ŷ=D " 0:1. The increase of am-
plitude is even more pronounced for the streamwise motion,
monotonically building up from reduced velocity of 8.0 and
reaching x̂=D " 0:3 for the maximum flow speed. A qualitative
analysis of trajectory plots (Fig. 6) reveals a nonperiodic motion,
supporting the buffeting hypothesis. We shall return to this point
when discussing the trajectories in Sec. 6.

Based on the first experiment, we cannot tell which plate length
presented the most efficient suppression. We cannot affirm that all
plates are perfectly stable either, since we have observed some
distinct vibration for L/D¼ 0.5. One can only infer that shorter
plates around L/D¼ 0.5 may be more prone to instability than
the others. There is a possibility that other plates may present

unstable regimes as well, especially if plate length is increased
beyond L/D¼ 2.0. Results obtained for the 1D-long parallel plates
are in good agreement with the previous experiments reported by
Assi et al. [1,10,11]. Although their parallel plates had a slightly
different geometry than the ones tested in this experiment, the
general behavior agrees quite well.

Assi et al. [6] showed that parallel plates with no gap (G/
D¼ 0.0) were able to suppress VIV because they inhibited the
interaction between the free shear layers, delaying vortex forma-
tion and consequent excitation. For a geometry with G/D¼ 0.0,
the boundary layers do not separate, but the shear layers flow
alongside the outer surface of the plates. Now, in the present study
with a large gap of G/D¼ 0.4, the flow separates around the cylin-
der and the free shear layers flow downstream along the inner side
of the parallel plates. Hence, there is no obstruction to the interac-
tion of the shear layers and, in principle, the vortex-shedding
mechanism occurs confined in between the plates. Even with vor-
tices being shed in between the plates, VIV is still suppressed by
parallel plates with G/D¼ 0.4.

5.2 Second Experiment: Varying a. The second experiment
presents 1D-long plates varying only the oblique angle a. These
are new results for which we found no references in the literature
to be compared with. Case L/D¼ 1.0 and a¼ 0 deg (marked with
gray squares in Figs. 3 and 4) is repeated in both experiments.
Differently from the first experiment, variation in a showed an
interesting effect over the response, especially in the cross-flow
displacement of the cylinder. As seen, a¼ 0 deg suppressed vibra-
tion below ŷ=D ¼ 0:1 for most of the velocity range tested. Now,
as a is increased in steps of 10 deg the cross-flow response curves
reach higher levels of monotonically increasing amplitude.

The only exception was found for the case for a¼ 10 deg in
which the system presented resonant behavior for reduced

Fig. 4 Second experiment: cross-flow (ŷ=D) and streamwise (x̂=D) amplitude of vibration ver-
sus reduced velocity for a plain cylinder compared to cylinders fitted with oblique plates of
various angles
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velocities between 6.0 and 9.0. During this interval, the amplitude
of response practically followed the response curve obtained for a
plain cylinder reaching almost ŷ=D ¼ 1:3 for reduced velocity of
6.0. At the same time, streamwise vibration was also increased to
x̂=D " 0:3 for a shorter resonant range between reduced velocities
of 6.0 and 7.0. Periodic motion registered in the trajectory plot of
Fig. 7(b) supports the hypothesis of resonant vibration within a
limited range of reduced velocity. Apart from that, all other cases
showed vibration that is associated with turbulence buffeting
rather than a resonant phenomenon such as VIV. Of course, other
excitation mechanisms may also be occurring for highly oblique

plates. It is not difficult to imagine that large values of a generate
strong separated flow around the plates and the cylinder. The
interaction between unstable reattachment bubbles and small-
scale vortices may be driving the cylinder into vibrations of a dif-
ferent nature. Minute variations of a may drastically alter the flow
behavior in the region in between the plates. It is interesting to
know if there is a value of a (as well as the other geometric pa-
rameters) to permit maximum “ventilation” of the near wake with
minimum flow separation around the plates and consequent VIV
suppression with drag reduction.

6 Trajectories of Motion

Trajectory figures are a simple and qualitative manner to ana-
lyze the responses presented in Figs. 3 and 4. Samples of displace-
ment trajectories obtained for the plain cylinder (Fig. 5) are
compared with those for the suppressors for the first and second
experiments (Figs. 6 and 7). The same scale was kept in all figures
to allow for direct comparison between them and a few trajectory
lines have been suppressed for clarity. The plain cylinder response
in Fig. 5 presents characteristic figures typical of VIV in two
degrees of freedom. A C-shaped trajectory, at the initial branch,
progressively changes into an eight-shaped trajectory up to the
peak amplitude at the upper branch. When the response changes
from the upper to the lower branch, after reduced velocity of 6.0,
the trajectories immediately take a flatter shape with reduced
displacement in the streamwise direction.

Fig. 5 Reference experiment: trajectories of motion for a plain
cylinder

Fig. 6 First experiment: trajectories of motion for a cylinder fit-
ted with parallel plates of different lengths

Fig. 7 Second experiment: trajectories of motion for a cylinder
fitted with oblique plates of different angles
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Trajectories for the suppressors investigated in both experi-
ments are very different from those of the plain cylinder in Fig. 5.
In general terms, the cylinders fitted with free-to-rotate plates
present small movement around a mean position for most of the
reduced velocity range, except for a few points as seen in Figs.
6(a) and 7(b). A distinct behavior was observed for a parallel plate
with L/D¼ 0.5 around reduced velocity 6.0, as seen in Fig. 6(a)
and registered in Fig. 3. Sometimes, the plates were unable to
stabilize for a range of reduced velocities and periodic vibrations
were registered for a few cycles, as illustrated in Fig. 4 for L/
D¼ 1.0, a¼ 10 deg and reduced velocity between 6.0 and 9.0.
Such vibrations are normally associated with resonant mecha-
nisms, such as VIV, but they can also be an effect of a flutter type
of excitation due to the rotational movement of the plate.

Almost all trajectory plots of Figs. 6 and 7 show random vibra-
tions for the higher reduced velocities. Figure 7(d) particularly
shows nonperiodic vibrations for most of flow speeds. In addition,
Figs. 7(b)–7(d) clearly show that the cylinder drifted to one side
as the flow speed was increased. Oblique plates, especially those
with high angles, tend to be more difficult to align with the flow,
thus stabilizing at a small deflected position from the centerline.
As a consequence, a steady lift force drives the cylinder toward
the side the plate has deflected. Assi et al. [1,3] showed that such
a drift is due to occur for a single splitter plate that finds a
deflected but stable position to one of the sides while suppressing
VIV. Assi et al. [6] showed a similar behavior for parallel plates
longer than L/D¼ 1.0. Now, a similar behavior has been observed
for oblique plates.

7 Numerical Simulations of the Flow

In order to gain insight into the flow around the cylinder and
devices, numerical simulations have been performed for the four
geometries of oblique plates investigated in the second experi-
ment. Keeping G/D¼ 0.4 and L/D¼ 1.0 fixed, a was varied in the
four steps studied above. Such numerical simulations are pre-
sented here to illustrate and contribute to our understanding of the
flow characteristics around the devices. It is evident that the main
body of work presented in this paper is concerned with the experi-
mental results obtained for free-to-rotate systems. In the numeri-
cal study, the cylinder and the plates are all static, i.e., they cannot
move in relation to one another nor can the system respond with
FIV. Nevertheless, we believe that even a qualitative analysis of
the flow around a static system is able to elucidate some interest-
ing points.

The commercial code AUTODESK SIMULATION Computational
Fluid Dynamics (CFD) was employed in the study. Each two-
dimensional mesh was composed of around 8000 elements with
particular care taken into refining the mesh around the walls and
in the gap between the cylinder and the plates. The unsteady
Reynolds-Averaged Navier–Stokes equations were solved for an
incompressible flow employing a segregated upwind, finite ele-
ment method. The two-dimensional domain extended for 5D
upstream, 15D downstream, and 5D to each side of the cylinder.
Reynolds number was set to 10,000 and the k-omega shear-stress
transport (SST) turbulence model was employed. Each simulation

was performed for at least 100 cycles of vortex shedding after a
steady wake regime had been reached.

The results discussed below focus on the vortex formation
region and the near wake in order to observe flow structures around
the plates and in the gap between plates and cylinder. Velocity and
vorticity fields are both presented side by side for the same instant
in time for each configuration. The flow around a single cylinder
without plates has been computed as a reference and is presented
in Fig. 8. As expected, a classic von Karman wake was obtained.
The color scales for velocity magnitude and vorticity is the same in
all figures to allow for direct comparison of the wakes.

Figure 9 presents the results for the cylinders fitted with plates.
In Figs. 9(a) and 9(b), we observe that the two parallel plates
spaced from the cylinder barely interfere with the vortex formation
mechanism. A typical vortex wake is formed and confined between
them, but only farther downstream the vorticity generated on the
plates will interact with the vortices shed from the cylinder. The
result is a rather typical vortex street with minor interference from
the external vorticity from the plates. Nevertheless, even this minor
effect might be responsible for the suppression achieved by this ge-
ometry through the whole range of reduced velocities, as observed
in the experimental results in Fig. 7(a).

Once the oblique angles are changed, the flow around the cylin-
der and plates changes drastically. Figures 9(c) and 9(d) show that
even the smallest angle of attack of a¼ 10 deg already causes con-
siderable separation of the flow on the outer surface of the plates.
One may argue that a¼ 10 deg is not a small angle of attack and
one should not expect anything different from the separated flow
around a flat plate; we agree with that. The vortex formation
region is confined between the plates and forced toward the cen-
terline by the high-speed flow coming through the gap. Vortices
are shed with higher frequency in this narrower wake and then
combined with other small vortices shed from the plates. The
result is a periodic wake with a frequency signature different from
the typical Strouhal number of a plain cylinder. Experimental
results in Fig. 7(b) have shown that this configuration can become
very unstable and induce severe vibrations to the level of the VIV
response of a plain cylinder.

For a¼ 20 deg, shown in Figs. 9(e) and 9(f), the high-speed
flow ventilated through the gaps forces a much narrower wake
behind the cylinder, with the contribution of the two plates closing
the gap as the vortices are shed downstream. The overall wake is
now dominated by the two large vortex systems shed from each of
the oblique plates. They interfere further downstream merging
with the small vortices formed behind the cylinder near the
centerline.

The final configuration with a¼ 30 deg, presented in Figs. 9(g)
and 9(h), shows that the flow behavior has changed completely
from a wake dominated by vortices shed from the cylinder to a
wake dominated by vortices shed from the plates. While for
a¼ 10 deg and 20 deg, we could say that vortices from the cylin-
der and from the plates had roughly the same scale and intensity,
we observe now for a¼ 30 deg that the wake is completely domi-
nated by vortices shed form the plates. The vortex formation
region behind the cylinder is practically nonexistent and only a
symmetrical bubble is observed to survive between the jets from

Fig. 8 Reference simulation: wake of a plain cylinder
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the gaps through the confinement of the plates. The overall wake
is a result of the interference of the wakes of mainly two bluff
bodies, i.e., the plates.

Of course numerical simulations of this sort are very limited in
modeling the fluid–structure interaction occurring in the free-to-
rotate experiments. But it becomes clear that systems with so
many regions of separated flow, with severe wake interactions and
gaps with accelerated flow in the form of jets have all the ingre-
dients to produce unstable dynamics. In fact, we can conclude that
suppressors with such geometric characteristics will rarely help to
streamline the flow around a cylinder; on the contrary, the system
will behave as a distinct bluff body with several separation
regions and wake interferences. Stability becomes very difficult to
achieve with such configurations and will require other structural
parameters such as damping and inertia to be precisely adjusted.

8 Conclusions

Although being a fundamental study in laboratory scale, the
present investigation throws some light in the technological devel-
opment of new geometries for VIV suppressors. Results showed
that free-to-rotate parallel and oblique plates with G/D¼ 0.4 may
present hydrodynamically unstable behavior depending on L/D
and a. Nevertheless, most of the tested configurations were able to

suppress vibrations down to ŷ=D " 0:2 and x̂=D " 0:2 for most of
the reduced velocity range, given the level of rotational friction of
the system. In summary, we conclude that:

(i) The gap between plates and cylinder is thought to act as a
vent, directing the flow toward the near wake and injecting
momentum into the vortex formation region. However,
large gaps, such as the one studied in the present paper,
may cause the plate to act as a strong lifting surface
detached from the cylinder.

(ii) Systems may present streamwise vibration due to strong
flow separation and reattachment on the outer surface of
the plates, particularly for larger oblique angles. Conse-
quently, large values of a also increase drag.

(iii) An undesirable lateral force appeared to act on the system
for plates with high oblique angles causing the cylinder to
drift to one side. This is being caused by a small deflection
of the plates (although such a deflection angle was too
small to be noticeable or measured in the present work) or
nonsymmetric flow separation around the cylinder.

(iv) Numerical simulation of the flow around static systems
revealed that complex and fully separated flow regimes
exist for almost all investigated cases. The wake of the
cylinder is severely affected by the wakes generated on
the plates and the wake of a distinct bluff body is what

Fig. 9 Wake of a cylinder with oblique plates: fixed G/D 5 0.4 and L/D 5 1.0, varying a 5 0 deg,
10 deg, 20 deg, and 30 deg from top to bottom
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remains farther downstream. Systems with such flow char-
acteristics will have a tendency to become unstable unless
other structural parameters are adequately adjusted.

Acknowledgment

The authors wish to acknowledge the support of FAPESP S~ao
Paulo Research Foundation (No. 2011/00205-6). G.R.S.A. is
thankful to CNPq (No. 308916/2012-3). G.S.F. is in receipt of a
undergraduate research grant from ANP Agência Nacional do
Petr!oleo, G!as Natural e Biocombust!ıveis (PRH-19).

Nomenclature

D ¼ cylinder external diameter
f0 ¼ natural frequency in air
G ¼ gap between plate edge and cylinder wall
L ¼ plate length

m* ¼ mass ratio
Re ¼ Reynolds number
U ¼ flow speed

U/Df0 ¼ reduced velocity
x̂ ¼ streamwise harmonic amplitude of vibration
ŷ ¼ cross-flow harmonic amplitude of vibration
a ¼ plate oblique angle
f ¼ structural damping ratio

References
[1] Assi, G. R. S., Bearman, P. W., and Kitney, N., 2009, “Low Drag Solutions for

Suppressing Vortex-Induced Vibration of Circular Cylinders,” J. Fluids Struct.,
25, pp. 666–675.

[2] Assi, G. R. S., Bearman, P. W., Kitney, N., and Tognarelli, M., 2010,
“Suppression of Wake-Induced Vibration of Tandem Cylinders With Free-to-
Rotate Control Plates,” J. Fluids Struct., 26, pp. 1045–1057.

[3] Assi, G. R. S., Bearman, P. W., Rodrigues, J. R., and Tognarelli, M., 2011,
“The Effect of Rotational Friction on the Stability of Short-Tailed Fairings Sup-
pressing Vortex-Induced Vibrations,” 30th International Conference on Ocean,
Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands,
June 19–24.

[4] Schaudt, K., Wajnikonis, C., Spencer, D., Xu, J., Leverette, S., and Masters, R.,
2008, “Benchmarking of VIV Suppression Systems,” 27th International Confer-
ence on Offshore Mechanics and Arctic Engineering, OMAE2008, Estoril, Por-
tugal, June 15–20.

[5] Taggart, S., and Tognarelli, M., 2008, “Offshore Drilling Riser VIV Suppres-
sion Devices? What is Available to Operators?,” 27th International Confer-
ence on Offshore Mechanics and Arctic Engineering, OMAE2008, Estoril,
Portugal, June 15–20.

[6] Assi, G. R. S., Rodrigues, J. R., and Freire, C., 2012, “The Effect of Plate
Length on the Behaviour of Free-to-Rotate VIV Suppressors With Parallel
Plates,” 31st International Conference on Ocean, Offshore and Arctic Engineer-
ing, OMAE2012, Rio de Janeiro, Brazil, July 1–6.

[7] Assi, G. R. S., Bearman, P. W., and Meneghini, J. R., 2010, “On the Wake-
Induced Vibration of Tandem Circular Cylinders: The Vortex Interaction
Excitation Mechanism,” J. Fluid Mech., 661, pp. 365–401.

[8] Assi, G. R. S., Bearman, P. W., Carmo, B. S., Meneghini, J. R., Sherwin, S. J.,
and Willden, R. H. J., 2013, “The Role of Wake Stiffness on the Wake-Induced
Vibration of the Downstream Cylinder of a Tandem Pair,” J. Fluid Mech., 718,
pp. 210–245.

[9] Grimminger, G., 1945, “The Effect of Rigid Guide Vanes on the Vibration and
Drag of a Towed Circular Cylinder,” David Taylor Model Basin, Technical
Report No. 504.

[10] Assi, G. R. S., and Bearman, P. W., 2008, “VIV Suppression and Drag Reduc-
tion With Pivoted Control Plates on a Circular Cylinder,” 27th International
Conference on Offshore Mechanical and Arctic Engineering, OMAE2008,
Estoril, Portugal, June 15–20.

[11] Assi, G. R. S., and Bearman, P. W., 2009, “VIV and WIV Suppression With
Parallel Control Plates on a Pair of Circular Cylinders in Tandem,” 28th Inter-
national Conference on Ocean, Offshore and Arctic Engineering, OMAE2009,
Honolulu, HI, May 31–June 5.

[12] Henderson, J., 1978, “Some Towing Problems With Faired Cables,” Ocean
Eng., 5, pp. 105–125.

[13] Wingham, P., 1983, “Comparative Steady State Deep Towing Performance of
Bare and Faired Cable Systems,” Ocean Eng., 10, pp. 1–32.

[14] Packwood, A., 1990, “Performance of Segmented Swept and Unswept Cable
Fairings at Low Reynolds Numbers,” Ocean Eng., 17, pp. 393–407.

[15] Assi, G. R. S., Meneghini, J. R., Aranha, J., Bearman, P. W., and Casap-
rima, E., 2006, “Experimental Investigation of Flow-Induced Vibration
Interference Between Two Circular Cylinders.,” J. Fluids Struct., 22,
pp. 819–827.

[16] Freire, C., and Meneghini, J. R., 2010, “Experimental Investigation of VIV on a
Circular Cylinder Mounted on an Articulated Elastic Base With Two Degrees-
of-Freedom,” BBVIV6–IUTAM Symposium on Bluff Body Wakes and
Vortex-Induced Vibrations, Capri, Italy.

[17] Williamson, C., and Govardhan, R., 2004, “Vortex-Induced Vibrations,” Annu.
Rev. Fluid Mech., 36, pp. 413–455.

Journal of Offshore Mechanics and Arctic Engineering AUGUST 2014, Vol. 136 / 031802-9

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/136/3/031802/6244038/om
ae_136_03_031802.pdf?casa_token=xYVsC

3S_nw
0AAAAA:7G

51VKm
EAdR

C
x19PG

fnyR
cBAJKlpe5C

g3R
G

m
drM

9U
W

dsM
aY9bw

XgI8cLY5w
baV3bYIFa1F_co_I by U

niversidade D
e São Paulo U

SP user on 12 M
ay 2020

245



On the stability of a free-to-rotate short-tail fairing and a splitter plate
as suppressors of vortex-induced vibration

Gustavo R.S. Assi a,n, Peter W. Bearman b, Michael A. Tognarelli c
a Dept. of Naval Arch. and Ocean Eng., University of São Paulo, São Paulo, Brazil
b Department of Aeronautics, Imperial College, London, UK
c BP America Production Company, Houston, USA

a r t i c l e i n f o

Article history:
Received 10 December 2013
Accepted 20 October 2014
Available online 6 November 2014

Keywords:
Vortex-induced vibration
Galloping
Suppression
Splitter plate
Short-tail fairing
Offshore risers

a b s t r a c t

Experiments in the Reynolds number range of 1000 to 12,000 have been carried out on a free-to-rotate
short-tail fairing fitted to a rigid length of circular cylinder to investigate the effect of rotational friction
on the stability of this type of VIV suppressor. Measurements of the dynamic response are presented for
models with low mass and damping which are free to respond in the cross-flow and streamwise
directions. It is shown how vortex-induced vibration can be reduced if the rotational friction between
the cylinder and the short-tail fairing exceeds a critical limit. In this configuration the fairing finds a
stable position deflected from the flow direction and a steady lift force appears towards the side to
which the fairing has deflected. The fluid-dynamic mechanism is very similar to that observed for a free-
to-rotate splitter plate of equivalent length. A non-rotating fairing as well as splitter plates is shown to
develop severe galloping instabilities in 1-dof experiments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Efficient suppression of flow-induced vibration (FIV) of slender
submarine structures is a challenging and interesting problem for
the offshore industry and the scientific community. Various
methods for suppressing vortex-induced vibrations (VIV) of bluff
bodies have been investigated over the past decades. With the
advancement of offshore oil exploration, research on VIV suppres-
sors was pushed to a new level. The industry demands suppressors
that are not only efficient for low mass-damping systems but also
that could be installed under harsh environmental conditions;
such is the case for offshore risers. Zdravkovich (1981) and Every
et al. (1982) present comprehensive reviews of solutions varying
from the simple attachment of ribbons to quite expensive devices
such as helical strakes and fairings. Drilling risers may typically be
inspected more often than production risers, therefore fatigue
damage is not as important a concern as the steady loads caused
by strong currents. Therefore, besides suppressing FIV, suppressors
must reduce drag consequently reducing pipe bend and wear risk
during drilling operations.

It is known that free-to-rotate suppressors may experience
hydrodynamic instabilities that will not only cause a substantial
increase in drag but also prevent them from suppressing vibra-
tions (Assi et al., 2009). Actually, an unstable free-to-rotate
suppressor may induce more vigorous structural vibrations excited
by a type of flutter mechanism. Assi et al. (2009) have shown that
the instability of free-to-rotate suppressors is directly related to
the level of rotational resistance encountered in the system as well
as geometric parameters such as plate length. They performed
experiments in laboratory scale and showed that a free-to-rotate
suppressor formed by a single splitter plate may need a minimum
rotational resistance (or be above a critical rotational friction) to
enable a stable configuration with effective suppression. The same
was verified for free-to-rotate suppressors composed of two
parallel plates (Assi et al., 2012), revealing that a minimum
rotational resistance is necessary to stabilise the devices. Assi
et al. (2009, 2010a) have also shown that 1D-long parallel plates
can be very efficient in suppressing both VIV and WIV (wake-
induced vibration). WIV occurs when the downstream body of a
set is excited by the unsteady wake generated from another body
placed upstream (Assi et al., 2010b, 2013a).

In the present work we contribute to the understanding of the
hydrodynamic mechanism behind a type of free-to-rotate device
known as the short-tail fairing compared with a cylinder asso-
ciated with a simple geometry of a splitter plate. We focus on the
dynamic stability and hydrodynamic phenomena that cause the
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fairing and the splitter plate to behave in quite the same way.
A parametric investigation of the geometry of suppressors, in
special the splitter plate, is not the concern of the present work.
For that matter, the reader may refer to other works of the same
authors (Assi et al., 2012, 2013b; Assi and Franco, 2013).

2. Free-to-rotate suppressors

It is known that if vortex shedding from a fixed cylinder is
eliminated, say by the use of a long splitter plate (Cimbala and
Garg, 1991), then drag is reduced. Hence conceptually an effective
VIV suppression device should be able to reduce drag rather than
increase it. This simple idea was the motivation for the develop-
ment of suppressors such as splitter plates and fairings that act
primarily by disrupting the vortex shedding mechanism on the
near wake of bluff bodies by delaying the interaction between the
separated shear layers.

Assi et al. (2009) have shown that suppression of cross-flow
and in-line VIV of a circular cylinder, with resulting drag coeffi-
cients less than that for a fixed plain cylinder, has been achieved
using two-dimensional control plates in low mass-damping sys-
tems. A free-to-rotate splitter plate was also found to suppress VIV
but instead of remaining aligned with the flow on the centreline of
the wake the plate adopted a stable but deflected position when it
was released. VIV was suppressed, throughout the range of
reduced velocity investigated, and drag reduced below that of a
plain cylinder. Cimbala and Garg (1991) had also observed this
bi-stable behaviour for a free-to-rotate cylinder fitted with a
splitter plate.

Particle-image velocimetry (PIV) measurements performed by
Assi et al. (2009) showed that on the side to which the plate
deflected the separating shear layer from the cylinder appeared to
attach to the tip of the plate and this had the effect of stabilising
the near wake flow. Vortex shedding was visible downstream but
this did not feed back to cause vibrations. An unwanted effect was
that a steady transverse lift force developed on the cylinder
towards the side to which the splitter plate deflected. This steady
lift could be eliminated by using a pair of splitter plates arranged
so that the shear layers that spring from both sides of the cylinder
attach to the tips of the plates. The maximum suppression and
drag reduction occurred with a pair of free-to-rotate parallel plates
installed on the sides of the cylinder.

Assi et al. (2009) also found that the level of rotational friction
between the free-to-rotate plate and the cylinder plays a funda-
mentally important role, needing to be “high enough to hold the
device in a stable position, while still allowing them to realign if
the flow direction changes. Devices with rotational friction below
a critical value oscillate themselves as the cylinder vibrates,
sometimes increasing the amplitude of cylinder oscillation higher

than that for a plain cylinder”. All devices with rotational friction
above a critical value appeared to suppress VIV and reduce drag.
However, if the rotational resistance was above a limiting thresh-
old the suppressors could not rotate and an undesired galloping
response was initiated.

In the present study we set out with the hypothesis that short-
tail fairings and short splitter plates are able to suppress VIV based
on the same fluid-dynamic mechanism. Short-tail fairings are not
“fairings” in the strict sense of the term, meaning that they do not
make a streamlined body. For this to happen the length of the
fairing would have to be many times the diameter of the cylinder,
as shown in Henderson (1978), Wingham (1983) and Packwood
(1990). In essence, we believe a short-tail fairing acts in the near
wake with fully separated flow avoiding the interaction between
the shear layers and delaying vortex shedding, therefore the same
mechanism as the splitter plate.

If this is true, we expect short fairings to find stable but
deflected positions towards one of the sides of the cylinder instead
of aligning itself with the flow. In the same manner as splitter
plates, the stability of short fairings might also depend on a
minimum level of rotational friction in order to suppress VIV.
The effect of rotational friction on the stability of a short-tail
fairing is what this present study sets out to investigate. However,
if friction is too high the suppressor may not find itself free to
rotate around the cylinder, but stuck with no angular movement.
If this is the case, the system becomes susceptible to galloping,
which may cause severe vibrations in a very different fashion
from VIV.

3. Experimental arrangement

Two types of suppressors were tested in this experimental
campaign: a free-to-rotate splitter plate and a short-tail fairing.
Fig. 1(a) presents the geometric parameters for the splitter plate.
Plate length L/D could be varied by changing the plate made out of
acrylic plastic. The short-tail fairing was made of a triangular

Nomenclature

Cx mean drag coefficient
D cylinder external diameter
f 0x

streamwise natural frequency measured in air
f 0y

or f0 cross-flow natural frequency measured in air
fx streamwise oscillation frequency
fy cross-flow oscillation frequency
L/D non-dimensional length of the splitter plate
mn mass ratio
Re Reynolds number
St Strouhal number

U flow speed
U=Df 0 reduced velocity
x̂=D non-dimensional streamwise harmonic amplitude of

vibration
ŷ=D non-dimensional cross-flow harmonic amplitude of

vibration
δ stable angular position of a free-to-rotate suppressor
ρ specific mass of water
τf torque due to rotational friction
τnf non-dimensional torque due to rotational friction

ζ structural damping ratio

Fig. 1. Geometries for splitter plates and a short-tailed fairing. (a) Short splitter
plate; (b) Short-tail fairing.
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fairing with a flat tail piece as shown in Fig. 1(b). Devices with a
similar geometry are used by the offshore industry following its
appearance as a commercial solution to reduce VIV (Allen and
Henning, 1995). The geometry adopted in this work was based on
the proportions found in Pontaza and Chen (2006). It consisted of
two perpendicular plates of 0.5D in length joined at the tip to a
short 0.2D-long tail plate. The characteristic length of the fairing
was 0.5D if measured from the base of the cylinder, thus of the
same order as the L/D¼0.5 splitter plate.

Suppressors were supported by two rotating arms at each end
mounted on low-friction ball bearings. Plates were kept at a small
distance from the cylinder wall in order to allow the devices to
freely rotate about the centre of the cylinder. Control of the
rotational friction was achieved by adjusting a screw pushing a
small brake plate between the rotating parts. The same system
was employed by Assi et al. (2009).

Experiments were carried out on devices fitted to a rigid length
of a circular cylinder free to respond to VIV. The investigation was
performed during a test campaign in 2007 in a recirculating water
channel in the Department of Aeronautics, Imperial College,
London. The parallel test section was 0.6 m wide, 0.7 m deep and
8.0 m long. The flow speed U was continuously variable and good
quality flow could be obtained up to at least 0.6 m/s. The cylinder
model was constructed from 50 mm diameter acrylic tube, giving
a maximum Reynolds number of approximately 30,000, based on
cylinder diameter D.

Models could be mounted in two different elastic rigs, one that
allowed one-degree-of-freedom (1-dof) motion in the cross-flow
direction and another that allowed two-degrees-of-freedom
(2-dof) motion in the cross-flow and streamwise directions. The
2-dof rig allowed for motion that is closer to the real application of
suppressors in offshore risers, hence most of the results discussed
in the present study were obtained from experiments in this rig.
Also, 2-dof experiments proved to be rather important to evaluate
the stability of free-to-rotate suppressors due to the effect of
streamwise movement over the rotation of the plates. Of course
the rotation of the plate could be thought of as a third dof in the
dynamic system, but in the present work we shall only consider
the response of the cylinder in the cross-flow and streamwise
directions.

For the 2-dof experiments, models were mounted on a very low
damping rig shown in Fig. 2. The cylinder model was mounted at
the lower end of a long carbon fibre tube which formed the arm of
a rigid pendulum. The top end of the arm was connected to a
universal joint fixed at the ceiling of the laboratory so that the
cylinder model was free to oscillate in any direction in a pendulum
motion.

The cylinder was vertically aligned at the centre of the test
section, distant 300 mm from each of the side walls. A total
blockage of 8.3% was judged not to affect the overall response
based on the study of Brankovic (2004). A small gap of 2 mm was
left between the bottom end of the cylinder and the floor. Also

Fig. 2. Representation of the cylinder with a short-tail fairing mounted on the 2-dof rig in the test section of the water channel. Dimensions are in millimetres.
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based on previous studies employing the same set-up (Assi et al.,
2009, 2010b, for example), the different end conditions at the free
surface and the bottom of the cylinder did not affect the overall
behaviour of the system as far as flow-induced vibration is
concerned.

Two independent optical sensors were employed to measure
displacements in the x- and y-directions at the mid-length of the
model. It should be noted that for a displacement equal to
1 diameter the inclination angle of the cylinder was only just over
11 from the vertical. Two pairs of springs were installed in the
x- and y-axes to set the natural frequencies in both directions of
motion allowing different natural frequencies to be set for each
direction.

Although the cylinder was initially aligned in the vertical
position, in flowing water the mean drag displaces the cylinder
from its original location. To counteract this effect, both pairs of
springs were attached to a frame that could be moved back and
forth in the direction of the flow. For each flow speed there was a
position of the frame that maintained the mean position of the
cylinder in the vertical alignment. By using two pairs of springs
perpendicular to each other, the assembly has nonlinear spring
constants in the transverse and in-line directions for large dis-
placements. Movement in the transverse direction will cause a
lateral spring deflection in the in-line direction and vice versa. This
nonlinearity is minimised by making the springs as long as
possible, hence the in-line springs were installed at the end of
4 m-long wires, fixed at the extremities of the frame.

It is known that during the cycle of vortex shedding from bluff
bodies the fluctuation of drag has double the frequency of the
fluctuation of lift. Hence a particularly severe vibration might be
expected to occur if the hydrodynamic forces in both directions
could be in resonance with both in-line and transverse natural
frequencies at the same time. For this reason, we set the stream-
wise natural frequency ðf 0x Þ to be close to twice the cross-flow
frequency ðf 0y

Þ or simply f0) by adjusting the stiffness of both pairs

of springs. The structural damping of the 2-dof rig was ζ¼0.3%
(measured in air), defined as a fraction of critical damping,
practically the same for both principal directions of motion. A
load cell was attached between the cylinder and the support
system to deduce the instantaneous and time-averaged hydro-
dynamic forces on the cylinder model. The mass ratio mn, defined

as vibrating mass divided by the displaced mass of water, was kept
to the lowest possible value. Preliminary tests have been per-
formed with a plain cylinder to serve as reference for comparison.
Table 1 presents the structural parameters for the arrangements of
cylinder and suppression device tested.

Measurements were made using a fixed set of springs and the
reduced velocity range covered was from 1.5 to 13, where reduced
velocity ðU=Df 0Þ is defined using the cylinder natural frequency of
oscillation in the cross-flow direction measured in air. The only flow
variable changed during the course of the experiments was the flow
velocity U, which, as for full-scale risers, alters both the reduced
velocity and the Reynolds number. Throughout the study, cylinder
displacement amplitudes (x̂=D for streamwise and ŷ=D for cross-flow)
were found by measuring the root mean square value of response and
multiplying by the square root of 2 (the so called harmonic amplitude).
This is likely to give an underestimation of maximum peak response
but was judged to be perfectly acceptable for assessing the effective-
ness of VIV suppression devices. Displacements were nondimensio-
nalised by dividing by the plain cylinder diameter D.

The 1-dof rig has been employed for several VIV experiments
and is described in detail in Assi et al. (2010a). For brevity, we will
limit ourselves to comment that the 1-dof rig consisted of a rigid
support table, mounted on two carbon fibre tubes, sliding through
air bearings in the cross-flow direction. Restoration was achieved
by one pair of coil springs. Mass and damping were also kept to a
minimum, resulting in mn $ 2:6 and ζ¼0.7% (with a combined
parameter mnζ $ 0:0182) for all the 1-dof experiments. The 1-dof
rig was only employed for experiments in which the suppressors
were not free to rotate, as will be presented below.

4. Results and discussion

Preliminary experiments performed with a plain cylinder
(previously presented in Assi et al., 2009) will serve as reference
for the discussion that follows. Fig. 3 presents the typical trajec-
tories of motion for a single cylinder under 2-dof VIV in which f 0x

is almost twice as f 0y . The x-axis for displacement is not shown in
Fig. 3 for clarity, but it has the same scale as the y axis. As reduced
velocity is increased, vibrations start to build up in a ‘C’ shape,
then changing into ‘8’-shaped curves until the end of the synchro-
nisation range at around reduced velocity 12. The overall response
was found to be in good agreement with results from Jauvtis and
Williamson (2004) (even though they had f 0x

¼ f 0y ) and Dahl et al.
(2006). Figs. 4 and 5 both repeat the same 2-dof response for a
plain cylinder projected in the cross-flow ðŷ=DÞ and streamwise
ðx̂=DÞ directions, revealing a different behaviour from the typical
cross-flow VIV response in 1-dof. Initial, upper and lower branches
are not clearly identified but instead 2-dof vibrations build up in
the form of a single branch during the synchronisation range.

Table 1
Structural properties.

Model mn ζ (%) mnζ f 0x
=f 0y

Plain cylinder 1.6 0.3 0.0047 1.93
Splitter plate L/D¼0.5 1.7 0.3 0.0051 1.90
Splitter plate L/D¼1.0 1.7 0.3 0.0051 1.90
Short-tail fairing 1.7 0.3 0.0051 1.90

Fig. 3. Trajectories of motion for a plain cylinder.
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4.1. Free-to-rotate suppressors in 2-dof

In order to investigate the rotation stability of free-to-rotate
splitter plates and short-tail fairings models were prepared with
two values of rotational friction τf. Low friction ðτf ¼ 0:009 Nm=mÞ
and a high friction ðτf ¼ 0:035 Nm=mÞ cases were chosen based on
the results obtained for a splitter plate presented in Assi et al.
(2009). In that same paper, τf was measured in torque per unit
length and could be rewritten as a non-dimensional friction torque

parameter

τnf ¼
τf

ρU2D2; ð1Þ

which represents the ratio of structural torsional resistance to a
hydrodynamic torque, thus varying with flow speed squared.

Similar to what was observed for a splitter plate in Assi et al.
(2009), neither the splitter plate (L/D¼1.0) nor the short-tail
fairing with low friction ðτf ¼ 0:009 Nm=mÞ came to a stable

Fig. 4. 2-dof response of cylinder fitted with free-to-rotate devices with low friction ðτf ¼ 0:009 Nm=mÞ. Displacement (top) and frequency (middle) of vibration and mean
drag coefficient (bottom) versus reduced velocity.
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angular position about the centre of the cylinder wake, instead
they oscillated from side to side as the cylinder responded with
VIV. The trajectories of motion presented in Figs. 6(a) and 7(a) also
resemble a deformed ‘8’ shape with amplitudes of vibration
almost as high as those observed for a plain cylinder (Fig. 3) for
the whole range of reduced velocities.

This effect can also be seen in Fig. 4 for cross-flow and
streamwise directions in contrast with the response of the single
cylinder. It reveals that while the cross-flow response of the short-
tail fairing falls just below the curve for the single cylinder, the

1.0D-long splitter plate actually enhances vibration. One has to
bear in mind that the characteristic length of this specific splitter
plate is twice that of the short-tail fairing, thus inducing more
severe oscillations when the device rotates. Streamwise responses
are rather similar to both suppressors.

In contrast, both the splitter plate and the short-tail fairing
presented a distinct behaviour when rotational friction was
increased from τf ¼ 0:009 Nm=m to 0.035 Nm/m, as shown in
Figs. 6 and 7. Both devices came to a stable position at a deflected
angle (which was different for each suppressor) about the axis of

Fig. 5. 2-dof response of cylinder fitted with free-to-rotate devices with high friction ðτf ¼ 0:035 Nm=mÞ. Displacement (top) and frequency (middle) of vibration and mean
drag coefficient (bottom) versus reduced velocity.
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the cylinder and, similar to what was observed for the splitter
plate in Assi et al. (2009), VIV was reduced. In this angular
configuration the short-tail fairing was successful in suppressing
VIV, though not completely.

Fig. 5 shows that the maximum amplitude of vibration was
ŷ=D$ 0:45 in the cross-flow and x̂=D$ 0:15 in the streamwise
directions within the synchronisation range. Significant vibration
might still appear for higher reduced velocities because the fairing
is not long enough to sufficiently delay the interaction of the shear

layers downstream of the body, thus vortices are feeding back and
exciting the cylinder. The 1.0D-long splitter plate, on the
other hand, seems to be playing this role rather well. Cross-flow
and streamwise vibrations are considerably reduced and kept to
a minimum through the whole range of reduced velocities
investigated.

As far as drag reduction is concerned, Fig. 4 shows that both
suppressors with low rotational friction presented drag coeffi-
cients higher than that of a plain cylinder under VIV for a good

Fig. 6. Trajectories of motion for a splitter plate with L/D¼1.0. (a) Low friction ðτf ¼ 0:009 Nm=mÞ; (b) High friction ðτf ¼ 0:035 Nm=mÞ.

Fig. 7. Trajectories of motion for a short-tail fairing. (a) Low friction ðτf ¼ 0:009 Nm=mÞ; (b) High friction ðτf ¼ 0:035 Nm=mÞ.

G.R.S. Assi et al. / Ocean Engineering 92 (2014) 234–244240
252



part of the synchronisation range. On the other hand, once the
devices were able to stabilise with high friction, the level of drag
dropped to values comparable to a static plain cylinder, as
presented in Fig. 5, with the 1.0D-long splitter plate being the
most efficient in terms of drag reduction. The short-tail fairing did
not show such as large a drag reduction as the splitter plate or
other devices studied in Assi et al. (2009), but achieved an average
reduction of 6% compared to a fixed cylinder if the whole range of
reduced velocity (or Reynolds number) is considered.

A stable angle of deflection δ of around 251 was observed for
the short-tail fairing and was very close to that found for a 0.5D-
long splitter plate by Assi et al. (2009). As illustrated in Fig. 8, this
angle is related to the characteristic length of the suppressor and
its capacity to encounter and reattach one of the separated shear
layers (Assi et al., 2009), thus we expect the short-tail fairing and a
0.5D-long splitter plate to find similar stable angular deflections.

We have observed that, likewise the splitter plate, a short-tail
fairing requires a deflected position in order to stabilise and
disrupt the communication between the shear layers, conse-
quently delaying vortex shedding and suppressing VIV. However,
as a consequence of this new asymmetric configuration, the fairing
also generates a mean lift force towards the side to which it has
deflected. In practise, long risers are fitted with a series of fairings
mounted along the span of the pipe. It is possible, therefore, that
some fairings might randomly deflect to one side whereas others
deflect to the opposite side, in a way that the resultant lift force
generated on the entire riser is neutralised. This prediction was
not verified in our experiments, but operators have reported this
behaviour.

4.2. Fixed suppressors in 1-dof

Now, if a deflected position is capable of generating steady lift,
this lateral force might become a problem for a device that got
stuck at a fixed position about the cylinder. Experiments with
fixed suppressors (not free to rotate) were designed to verify this.
Devices were fixed at 1801 in relation to the flow direction (as
shown in Fig. 1) by locking the rotating arms about the cylinder.
In addition to the short-tail fairing, two splitter plates of length
L/D¼0.5 and 1.0 were tested in the 1-dof rig (cross-flow direction
only). Responses are compared against the typical VIV response of
a plain cylinder with 1-dof from Assi et al. (2010a).

As shown in Fig. 9, the response is very different from that
obtained for free-to-rotate suppressors. Both splitter plates and the
short-tail fairing presented a very vigorous transverse galloping
oscillation that, with increasing reduced velocity, would apparently

increase without limit. In this 1-dof experiment the maximum
amplitude of the rig for cross-flow oscillation was limited to about
2D and this was reached by the splitter plates at reduced velocity of
about 10. The same behaviour has been observed for the short-tail
fairing in the present work. The fairing was allowed to vibrate for
higher reduced velocities and the response presented an abrupt
decrease in displacement at U=Df 0 $ 14. Stappenbelt (2010) per-
formed experiments with low aspect ratio cylinders fitted with
splitter plates with L=Dr4 and noticed the same behaviour for
L=Dr1:0.

The middle graph of Fig. 9 shows the dominant frequency
signature of the response. The plain cylinder follows the typical
frequency behaviour expected for 1-dof VIV, following the dot-
dashed line indicating St¼0.2 and slightly departing from the
natural frequency during the synchronisation range. The cylinder
fitted with fixed devices, on the other hand, adopts much lower
frequencies of vibration, not related to the vortex shedding
mechanism. In addition, the bottom graph of Fig. 9 reveals no
drag amplification for the suppressors through the synchronisa-
tion range would be expected if they were vibrating due to VIV.
The steep ramp in the displacement curve, the low-frequency
signature and no amplification of drag are all evidence that the
system is indeed being driven by a 1-dof galloping mechanism. In
fact, Assi et al. (2009) showed that the origin of the lift force
causing galloping is that of the mean lift that appears for free-to-
rotate devices with an angular deflection.

Flow visualisation and PIV measurements were carried out to
investigate the interaction between the wake and the fixed
devices. Figs. 10–12 present instantaneous vorticity fields for three
different reduced velocities of 3.0, 5.0 and 7.3, identified with a (n)
in the axis of Fig. 9 (top) for convenience. The data was acquired
when the cylinder was crossing the centreline from left to right,
therefore presenting maximum cross-flow velocity; flow direction
is from top to bottom. A key for colour contours is not presented in
these figures because the objective is only the qualitative compar-
ison of the wake.

Fig. 10 presents vorticity contours of the wake of a plain
cylinder under VIV for reference. For reduced velocity 3.0 in
Fig. 10(a) the cylinder presents small vibration with a typical
2S-mode wake being shed (refer to Williamson and Govardhan,
2004 for a description of wake modes). For reduced velocity 5.0 in
Fig. 10(b), close to the peak of resonance, the wake appears much
wider due to the high-amplitude movement of the cylinder. The
wake mode will change again in the lower branch of vibration as it
appears for reduced velocity 7.3 in Fig. 10(c). For all cases in Fig. 10
the interaction of the separated shear layers in the vortex-
formation mechanism is quite evident.

Figs. 11 and 12 present vorticity contours for a cylinder fitted
with non-rotating splitter plates of lengths L/D¼0.5 and 1.0,
respectively. For both plate lengths and for almost all reduced
velocities the shear layer that separates from the right-hand side
of the cylinder reattaches to the tip of the plate. An exception is
the short plate at reduced velocity 3.0 in Fig. 11(a), where the
vortices are able to form downstream of the plate without any
reattachment. As explained in Assi et al. (2009), the reattachment
of the shear layer on the right-hand side will create a lift force
towards that side, which is in phase with the velocity of the
cylinder. This galloping excitation is observed to occur for both
plate lengths. Although one may think that the 1D-long plate
would be able to extract more energy from the flow during the
galloping mechanism, the response of both plates in Fig. 9 (top) is
rather similar.

An identical galloping mechanism appears to occur with the
non-rotating short-tail fairing, as presented in Fig. 13. For reduced
velocity 3.0 in Fig. 13(a) the vortex shedding mechanism is not
affected by the presence of the fairing in quite the same way the

Fig. 8. Steady lift generated on the cylinder due to the deflection of the
suppressors.
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short plate is unnoticed by the flow in Fig. 11(a). As reduced
velocity (and Reynolds number) is increased the vortex formation
length is reduced and the reattachment of the shear layer due to
the relative motion of the fairing is achieved. All three cases
illustrated in Fig. 13 are essentially identical to those for the short
plate in Fig. 11. In fact, the responses of these short suppressors are
not at all different, as seen in Fig. 9. We believe this explains how a
non-rotating short-tail fairing can undergo galloping instabilities
in the same way as a splitter plate with equivalent characteristic
length. Again, Fig. 8 summarises the idea that the origin of the

steady lift on a free-to-rotate but deflected suppressor is the same
as that to cause galloping in a non-rotating fairing.

Once the devices were allowed to rotate about the centre of the
cylinder the 1-dof responses were completely different. The plates
and the fairing tilted to an inclined position and the low-
amplitude levels of displacement proved that they successfully
suppressed VIV. The previous work of Assi et al. (2009) showed
that rotary inertia is not an important parameter for stability, at
least not as important as rotary friction (in the form of rotary
damping). Marine growth, for example, would certainly affect

Fig. 9. 1-dof galloping response of cylinder fitted with non-rotating devices. Displacement (top) and frequency (middle) of vibration and mean drag coefficient (bottom)
versus reduced velocity.
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Fig. 10. Vorticity contours for a single cylinder. (a) U=Df 0 ¼ 3:0; (b) U=Df 0 ¼ 5:0; (c) U=Df 0 ¼ 7:3. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 11. Vorticity contours for a non-rotating splitter plate L/D¼0.5. (a) U=Df 0 ¼ 3:0; (b) U=Df 0 ¼ 5:0; (c) U=Df 0 ¼ 7:3. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 12. Vorticity contours for a non-rotating splitter plate L/D¼1.0. (a) U=Df 0 ¼ 3:0; (b) U=Df 0 ¼ 5:0; (c) U=Df 0 ¼ 7:3. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. Vorticity contours for a non-rotating short-tail fairing. (a) U=Df 0 ¼ 3:0; (b) U=Df 0 ¼ 5:0; (c) U=Df 0 ¼ 7:3. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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rotary friction, thus altering the stability of the system. Although
fairings are being used to suppress VIV in practical offshore
applications, our results show that a non-rotating fairing (for
example, a fairing that got stuck) can cause severe galloping over
a considerable range of flow speeds.

5. Conclusions

Following this study we have achieved a better understanding
of the hydroelastic principles behind the way short-tail fairings
work to reduce VIV. It appears that the short-tail fairing behaves in
a similar manner to a single splitter plate of equivalent character-
istic length.

Although the critical value of rotational friction has not been
determined for a short-tail fairing, our results suggests that a
critical value exists between the low and the high friction cases
presented here. It seems likely that different suppressors might
have different stability boundaries for rotational resistance, but
there is clearly a range of τf within which VIV suppression would
be achieved with short-tail fairings.

Short-tail fairings with a characteristic length of 0.5D proved to
reduce amplitude levels (at the expense of a mean transverse
force) but were not as efficient as other longer suppressors
reported in Assi et al. (2009). Rather than reducing drag for the
entire range of reduced velocities tested, the fairing increased it for
certain velocities. As a result, the average drag has a similar level
to that of a plain fixed cylinder, offering a slight reduction of 6%
throughout the Reynolds number range.

Non-rotating splitter plates produced severe galloping response
in 1-dof, reaching the limiting amplitude for the apparatus
ðŷ=D¼ 2Þ at reduced velocity 10. The non-rotating short-tail fairing
presented similar behaviour, but an abrupt decrease in the response
was observed for reduced velocity 14. PIV measurements revealed
the behaviour of the flow inducing the galloping instability.

As with all circular cylinder flows, undoubtedly Reynolds
number plays a role and hence some caution may need to be
exercised in extrapolating the results presented here to full-scale
risers. However, the underlying flow physics is not expected to
change and the devices described in this study are likely to be
effective at suppressing VIV when applied to full-scale risers.
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a b s t r a c t

The galloping response of a circular cylinder fitted with three different splitter plates and
free to oscillate transverse to a free stream has been investigated considering variations in
plate length and plate porosity. Models were mounted in a low mass and damping elastic
system and experiments have been carried out in a recirculating water channel in the
Reynolds number range of 1500 to 16 000. Solid splitter plates of 0.5 and 1.0 diameter in
length are shown to produce severe galloping responses, reaching displacements of 1.8
diameters in amplitude at a reduced velocity of around 8. Fitting a slotted plate with a
porosity ratio of 30% also caused considerable vibration, but with a reduced rate of
increase with flow speed. All results are compared with the typical vortex-induced
vibration response of a plain cylinder. Force decomposition in relation to the body velocity
and acceleration indicates that a galloping mechanism is responsible for extracting energy
from the flow and driving the oscillations. Visualisation of the flow field around the
devices performed with PIV reveal that the reattachment of the free shear layers on the tip
of the plates is the hydrodynamic mechanism driving the excitation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of bluff bodies fitted directly with splitter plates or in the presence of splitter plates is not new. Experiments
performed by Roshko (1954), Bearman (1965) and Gerrard (1966) with a variety of bluff bodies report significant changes in
base pressure, vortex formation length and Strouhal number depending on the length of a splitter plate and the distance it is
positioned downstream of the body. From the attenuation of vibration of offshore risers to the reduction of noise from an
aeroplane's landing gear, previous studies are mainly concerned with the suppression of vortex shedding.

The present investigation was motivated by the use of a splitter plate as a means to suppress vortex-induced vibration
(VIV) of offshore risers, which are characterised by highly flexible pipes with relatively lowmass and damping susceptible to
excitation by ocean currents. In contrast, if the purpose is to enhance vibrations of a lowmass-damping system (Chang et al.,
2011, for example), the addition of splitter plates may produce considerable improvement in the response for the same
range of flow speeds. Cylinders with splitter plates or fitted with other devices prone to galloping may be useful if employed
to harvest energy from the flow.
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It is known that if vortex shedding from a fixed cylinder is eliminated, say by the use of a long splitter plate (Cimbala and
Garg, 1991), then drag is reduced. Hence conceptually an effective VIV suppression device should be able to reduce drag
rather than increase it. Assi et al. (2009) have shown that suppression of cross-flow and streamwise VIV of a circular
cylinder, with resulting drag coefficients less than that for a fixed plain cylinder, can be achieved using two-dimensional
control plates in low mass-damping systems. A free-to-rotate splitter plate was found to suppress VIV, but instead of
remaining aligned with the flow on the centreline of the wake the plate adopted a stable but deflected position when it was
released. Cimbala and Garg (1991) had also observed such a bi-stable behaviour of the plate for a free-to-rotate cylinder
fitted with a splitter plate.

Successful VIV suppression has been achieved with splitter plates for systems with one and two degrees of freedom as
reported by Assi et al. (2009, 2010a). In their experiments the plate was free to rotate to allow for the device to realign itself
with the incoming flow, thus producing a omni-directional suppressor. However, when non-rotating splitter plates (among
other devices) were investigated it was found that they induced the system into severe galloping-type responses instead of
suppressing VIV. Although a failure in VIV suppression, we find such behaviour very interesting and worthy of a detailed
investigation.

Therefore, the present study will focus on the comparison between the flow-induced vibration (FIV) of a plain circular
cylinder and a cylinder fitted with non-rotating splitter plates with different lengths and porosities, as illustrated in Fig. 1.

1.1. Classical galloping of non-circular cross sections

The term galloping has been generally employed to describe a specific type of FIV mechanism that occurs for bodies
moving in one degree of freedom (1-dof) with non-circular cross sections. Comprehensive reviews of the classical theory of
galloping have beenwritten by Parkinson (1971, 1989), Blevins (1990), Naudascher and Rockwell (1994) and Paidoussis et al.
(2011). Classical galloping of non-circular cylinders (the square section being the classic example) is caused by a fluid-
dynamic instability of the cross section of the body such that the motion of the structure generates forces which increase the
amplitude of vibration (Bearman et al., 1987).

We will argue that a galloping mechanism similar to that occurring in a square cross-section takes place when an
elastically mounted cylinder with a non-rotating splitter plate is placed in an oncoming flow.

If a perturbation displaces the body from rest the relative velocity of the flow will be the vectorial sum of the oncoming
flow speed, U, and the body's velocity, _y, defining an angle of incidence, α, in relation to the free stream. As depicted in Fig. 2,
the upper shear layer approaches the body surface whereas the lower shear layer moves away. Depending on plate length
and the body's movement, the separated shear layers will tend to reattach to the tip of the plates as the cylinder oscillates.
This generates a decrease in pressure on the upper surface and an increase on the lower surface leading to a transverse fluid
force, Fy, acting in the same direction as the motion and causing an increase in the displacement. The stiffness of the spring
will eventually act to restore the body back to its original position. When the body reaches its maximum displacement and _y
then changes direction the process is inverted, though with Fy still acting in the same direction as _y. Therefore, in the
classical galloping mechanism the cross-flow fluid force is in phase with the body's velocity, acting as a negative damping
term in the equation of motion, hence classical galloping is classified as a damping-controlled fluid-elastic mechanism. The
magnitude of Fy increases with α, which itself increases with _y, resulting in a continuous increase in the steady state
amplitude of vibration with increasing flow speed.

“For while VIV is typically limited to amplitudes less than 1D, galloping amplitudes can be many times D” (Parkinson,
1971). Of course a vortex wake will develop further downstream of a square section or a cylinder with splitter plate as in any

Fig. 1. Representation of tested devices: (a) solid splitter plate L/D¼0.5, (b) solid splitter plate L/D¼1.0 and (c) slotted splitter plate L/D¼1.0.
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other bluff body, but the galloping instability is not a resonant mechanism that depends on matching values of natural
frequency, f0, and the vortex shedding frequency, fs. For this reason classical galloping allows for modelling with a quasi-
steady approach considering that the fluid force on the structure is assumed to be determined solely by the instantaneous
relative velocity. “The quasi-steady assumption is valid only if the frequency of periodic components of fluid force,
associated with vortex shedding or time-lag effects, is well above the vibration frequency of the structure ðf sb f 0Þ” (Blevins,
1990). This is generally the case for high values of reduced velocity, defined as the flow speed non-dimensionalised by
cylinder diameter and natural frequency. Of course a square section bluff body is also susceptible to VIV at low reduced
velocities, however this may be combined with a galloping excitation which will persist for velocities above the resonant
range for VIV. “While vortex-induced oscillations occur only in discrete ranges of [flow] speed, galloping will occur at all
flow speeds above a critical value determined by the structural damping” (Parkinson, 1971).

Parkinson (1971), referring to den Hartog (1956), presents a simplified quasi-steady analysis that is very useful in
predicting the stability of a 1-dof system to classical galloping. The so called ‘galloping stability criterion’ is evaluated be
measuring force coefficients on the body for various incidence angles in a steady flow. The reader is encouraged to read
Paidoussis et al. (2011) and the above references for further details.

By balancing the negative damping generated by Fy and the structural damping it is possible to determine the critical
reduced velocity for the onset of galloping. Depending on the parameters of mass ratio (mn, defined as the ratio of structural
mass to the mass of displaced fluid) and damping (ζ, calculated as a fraction of critical damping), galloping instability can
appear for relatively low reduced velocities, overlapping with the VIV range.

Blevins (1990) writes that “the major limitation of the [classical] galloping theory is that the aerodynamic coefficients are
assumed to vary only with angle of attack, but experience shows that the coefficients are affected by turbulence and vortex
shedding.” He states that the quasi-steady assumption employed in this analysis requires that the vortex shedding
frequency be well above the natural frequency so that “the fluid responds quickly to any structural motion”. Based on
experimental works found in the literature he concluded that “the reduced velocity must exceed 20 and the amplitude of
vibration should not exceed 0.1 to 0.2D for application of the quasi-steady theory.” This conclusion was also reached by
Nakamura et al. (1994). Since this is not the case in the present investigation, the classical galloping criterion will not be
verified in the present work.

1.2. Previous experiments of cylinders with splitter plates

A few experiments with static cylinders fitted with splitter plates have been performed in the past and could throw some
light in the hydrodynamic mechanisms behind this investigation.

Apelt et al. (1973) performed experiments with a static cylinder fitted with a splitter plate of L=Dr2:0 (ratio of plate
length to the cylinder diameter) in a water tunnel in the range of Re¼104 to 5$104. They showed that the overall behaviour
of the wake can be greatly affected when a splitter plate is placed in the near wake along the centreline. If separation points
are stabilised, drag may be considerably reduced and a wake narrower than that for a plain cylinder is produced. They
reported that minimum drag and Strouhal number were obtained when L/D¼1.0 and increased for other plate lengths.
Later, the work was extended to plates with L/D between 2 and 7 in the same Re range (Apelt and West, 1975), with results
indicating that no further changes are likely to be produced by lengthening the splitter plates beyond the limits tested. Bluff
bodies other than circular cylinders have also been considered by Apelt and West (1975).

Unal and Rockwell (1987) performed experiments in the range of Re¼140 to 3600 to investigate the control of the wake
by the proximity of a splitter plate to the bluff body. The length of the plate was many times the diameter (L/D¼24), yielding
only the gap between the cylinder and the plate as the governing parameter. The plate was not attached to the cylinder nor
was the system free to respond with flow-induced vibrations, however this fine experiment clearly illustrated the sensitivity
of the vortex formation mechanism to the interference of a plate positioned downstream of the near wake.

Fig. 2. Proposed sketch of flow and hydrodynamic forces for galloping of a cylinder with splitter plate.
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Suppressors that are free to rotate about the cylinder have the advantage of being omnidirectional, realigning their
orientation as flow direction changes. They mitigate vibrations and reduce drag if a stable configuration is found. Particle-
image velocimetry (PIV) measurements from Assi et al. (2009) showed that the shear layer separated from the cylinder
appeared to attach to the tip of the plate on the same side to which the plate had deflected and this had the effect of
stabilising the near-wake flow. Vortex shedding was visible downstream but this did not feed back to cause vibrations. An
unwanted effect was the appearance of a steady transverse force on the cylinder towards the side to which the splitter plate
had deflected. This steady lift could be eliminated by using a pair of splitter plates arranged so that the shear layers
springing from both sides of the cylinder could attach to the tips of both plates. However, it is known that free-to-rotate
splitter plates may experience hydrodynamic instabilities that will not only cause a substantial increase in drag but also
prevent them from suppressing vibrations (Assi et al., 2009). Actually, an unstable free-to-rotate suppressor may induce the
structure into very vigorous vibrations excited by a type of flutter mechanism. Assi et al. (2009, 2011) have shown that the
instability of free-to-rotate suppressors is directly related to the level of rotational resistance encountered in the system as
well as geometric parameters such as plate length. “Devices with rotational friction below a critical value oscillate
themselves as the cylinder vibrates, sometimes increasing the amplitude of cylinder oscillation higher than that for a plain
cylinder”. On the other hand, if the rotational resistance is above a limiting threshold the suppressor cannot rotate and an
undesired galloping response is initiated.

Free vibration experiments performed by Stappenbelt (2010) for a low aspect ratio cylinder fitted with splitter plates
with L=Dr4 registered galloping response for a reduced velocity range between 3 and 60. For small L/D the response of the
cylinder appeared to be strongly influenced by vortex shedding and an abrupt decrease in the galloping response occurred
at higher reduced velocities. With increasing plate length “there appears to be a smooth transition from pure VIV to a
galloping-type response heavily influenced by the vortex shedding at low reduced velocity and a predominantly galloping
response at high reduced velocity”. This is in agreement with experiments with splitter plates and other suppressors
reported in Assi et al. (2011, 2014).

Nakamura et al. (1994) experimented with spring supported circular cylinders fitted with long splitter plates from L/D¼
4.2 to 31.3 in the range of Re¼0.6$104 to 4.2$104 to show that plate length had a significant effect on the galloping
instability. Plots of response amplitude versus reduced velocity were not obtained since they were more concerned with the
onset of galloping by measuring small amplitudes and the growth rate of oscillation. Nevertheless, they highlighted the
inapplicability of the quasi-steady theory of classical galloping to a cylinder fitted with a long splitter plate. Plotting static
force coefficients versus incidence angle they found that L/D¼20.8 produced a stable system. This was very different from
the unstable behaviour observed during free vibration experiments. For a splitter plate with L/D¼4.2 they found a stable
system according to the galloping criterion, but still the classical quasi-steady theory could not predict the correct velocity
for the onset of galloping. Similar results have been observed for a rectangular cylinder reported in Nakamura et al. (1991).
Both papers together conclude that bluff bodies, with or without sharp edges, may gallop in the presence of a splitter plate.

In the present work we are concerned with the flow-induced response of cylinders fitted with much shorter plates of
around L/D¼1. This is the characteristic length for a device that could be employed in the suppression of flow-induced
vibration of offshore structures, for example.

2. Experimental arrangement

Experiments were performed in the Department of Aeronautics at Imperial College using a recirculating water channel
with a free surface and a test section 0.6 m wide, 0.7 m deep and 8.0 m long. Flow speed was continuously variable up to
U¼0.6m/s and free stream turbulence intensity across the section was around 3%. Circular cylinder models were made from
a 50 mm diameter acrylic tube, giving a maximum Re¼30 000, based on cylinder diameter D. With a wet-length of 650 mm

Fig. 3. Representation of the cylinder fitted with a splitter plate mounted on the 1-dof rig in the test section of the water channel. View of the cross-section.
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Fig. 4. Geometric parameters of tested devices: (a) solid splitter plate L/D¼0.5, (b) solid splitter plate L/D¼1.0 and (c) slotted splitter plate L/D¼1.0.

Fig. 5. Galloping response of cylinder fitted with non-rotating devices. (a) Displacement, (b) frequency and (c) mean drag coefficient versus reduced
velocity. Key: % static cylinder, ◊ plain cylinder VIV, □ solid splitter plate L/D¼0.5, ◯ solid splitter plate L/D¼1.0, ▵ slotted plate L/D¼1.0.
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(total length below water level), the resulting aspect ratio of the model was 13. The cylinder was fixed at its upper end to a
1-dof (degree of freedom) elastic mounting represented in Fig. 3. The model was aligned in the vertical direction passing
through the free surface and mounted such that there was a 2 mm gap between the lower end of the cylinder and the glass
floor of the test section. It was judged preferable not to install end plates on the cylinder in order not to increase the fluid
damping in the system. The support was firmly attached to the channel structure and sliding cylindrical guides were free to
move in the transverse direction (y-axis) through air bearings. A pair of coil springs connecting the moving base to the fixed
supports provided the restoration force for the system. The present setup has already been employed and validated in
previous experiments (Assi et al., 2010a, 2010b, 2013; Assi, 2014a, 2014b).

It is known that the dynamic response of a cylinder is extremely sensitive to the structural characteristics of the system,
so extra care was taken to determine the precise values of natural frequency, mass and damping of the structure. All moving
parts of the elastic base contributed to the effective mass oscillating with the cylinder, resulting in a mass ratio of mn ¼ 2:6
(calculated as the total mass divided by the mass of displaced water). The air bearings proved to be an effective way to
reduce damping without compromising the stiffness of the structure, especially in resisting drag loads for higher flow
speeds. By carrying out free decay tests in air it was also possible to estimate the structural damping of the system resulting
in ζ¼0.7%, calculated as a percentage of the critical damping, yielding the product mnζ ¼ 0:018.

A load cell was installed between the model and the platform to measure hydrodynamic forces acting on the cylinder
and an optical positioning sensor measured the y-displacement without adding damping. A PIV system was employed to
map velocity fields. More details about the experimental setup, flow quality, the design of the load cell and operation of the
1-dof rig can be found in Assi (2009).

Measurements were made using one set of springs and the reduced velocity range covered was from U=Df 0 ¼ 2 to 20,
where reduced velocity is defined using the cylinder natural frequency of oscillation, f0, measured in air. The only flow
variable changed during the course of the experiments was U, which alters both the reduced velocity and Reynolds number.
Throughout the study, cylinder displacement amplitudes, ŷ=D, were found by measuring the root mean square value of
response and multiplying by

ffiffiffi
2

p
(the so called harmonic amplitude). Displacements were nondimensionalised by dividing

by D.
Three splitter plates were built out of acrylic plastic and installed on the cylinder model following the geometric

parameters in Fig. 4. Two solid splitter plates with L/D¼0.5 and 1.0, shown in Fig. 4(a) and (b), were employed to evaluate
the dependency of the response on plate length. A slotted plate with L/D¼1.0, shown in Fig. 4(c), was built in order to
investigate the effect of plate porosity (or permeability) on the response. Parallel slots were cut out of the plate material
creating 0.1D-wide continuous gaps in the vertical direction along the whole span of the cylinder (refer to Fig. 1(c)). The
slotted plate presented 70% of the area of a completely solid plate of the same length, thus defining a porosity ratio of 30%.
Plates were rigidly attached to the cylinders and aligned with the incoming flow direction, which is from left to right in
Fig. 4. Plates were 3 mm thick (0.06D) and did not bend with the flow; their installation did not significantly alter mn.

3. Results and discussion

Preliminary experiments performed with a plain cylinder will serve to serve the experimental setup and as a reference
for the discussion that follows. During the typical VIV excitation, as U increases, the frequency of vortex-shedding, fs, gets
close enough to f0 such that the unsteady pressure fluctuations in the near wake induce the body to respond. Once the
cylinder starts to oscillate, the vibrations will control the vortex formation process and fs becomes locked in to the response
frequency, f, near f0. If the velocity continues to increase fs moves away from f0 so that vortex shedding becomes uncoupled
with the cylinder frequency. Refer to Williamson and Govardhan (2004) for a detailed description of the VIV mechanism and
typical responses.

Depending on the mass of the system and the specific mass of the fluid in which the cylinder is immersed, the frequency
of oscillation can be significantly influenced by the additional mass of fluid that is accelerated with the body. For this reason,
the reduced mass parameter, mn is relevant for the response of light cylinders immersed in water and, consequently, f0
measured in air will be different from the natural frequency in still water, fW. As expected, the response of a forced linear
oscillator will be inversely proportional to the product of mn and ζ (Bearman, 1984).

The typical VIV response of a plain cylinder, in terms of amplitude and frequency of oscillation, is presented in Fig. 5 and
shows a good agreement with the results reviewed by Williamson and Govardhan (2004). Fig. 5(a) shows the typical
resonant response of VIV in the displacement curve, with vibration building up in the synchronisation range between
U=Df 0 & 3:0 and 11 and a maximum response of ŷ=D¼ 0:8 at U=Df 0 & 4:0. Fig. 5(b) shows the dominant frequency of
response, f, normalised by f0. The inclined dashed line represents a Strouhal number of 0.2, approximately equivalent to the
vortex shedding frequency for a static cylinder. The horizontal dot-dashed line represents the natural frequency of the
system measured in still water ðf W=f 0 & 0:8Þ. Frequency measurements for U=Df 0411 are kept in the plot but must be
treated with caution, since beyond the end of the synchronisation range displacements are very small (below ŷ=D¼ 0:1) and
the frequency spectrum becomes quite broad. Mean drag coefficient ðCxÞ in Fig. 5(c) reveals the amplification of drag
normally observed during the synchronisation range for VIV. A curve for the drag of a fixed cylinder (static) has also been
added as a reference. Fluid force measurements are in good agreement with the results presented by Khalak and Williamson
(1999).
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3.1. Displacement, frequency and drag

Results for the cylinders fitted with splitter plates are presented together with results for the plain cylinder in Fig. 5. The
first distinct difference, when compared against the plain cylinder VIV, is observed in the displacement curves in Fig. 5(a).
All cylinders fitted with splitter plates show a continuous increase in response as flow speed is increased. Cylinders with
solid splitter plates show a steeper response curve when compared with the slotted plate, but none respond with the
resonant behaviour typical of VIV. In fact, the response curves for the two solid splitter plate cases are not very different,

Fig. 7. (a) Amplitude of fluctuating lift coefficient and (b) phase angle versus reduced velocity. Key: ◊ plain cylinder VIV, □ solid splitter plate L/D¼0.5,
◯ solid splitter plate L/D¼1.0.

Fig. 6. Sample of displacement time series (continuous line) compared with a harmonic curve yðtÞ ¼ ŷ sin ð2πftÞ (dashed line) for a cylinder fitted with a
solid splitter plate with L/D¼1.0 at U=Df 0 ¼ 8:1.
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with the L/D¼1.0 showing a slightly lower response than the shorter plate. Displacement was physically limited to ŷ=D¼ 2:0
by a stop in the rig; this was reached at around a reduced velocity 9 for the solid plates. Two runs have been performed for
each solid device to verify repeatability, producing a small scatter in the data points for the highest amplitudes. The
response of the slotted plate is qualitatively similar in the sense that no VIV was observed. However, the slope of the
response versus reduced velocity is lower than that of the solid plates with ŷ=D monotonically increasing with reduced
velocity until ŷ=D& 1:1 is reached at the highest reduced velocities achieved in the experiments, a reduced velocity of
almost 18.

Stappenbelt (2010) presents comparable results covering a wider range of plate lengths between L/D¼0.34 and 4.0. He
verified that the galloping response for splitter plates with L=Do0:5 terminated abruptly as reduced velocity was increased.
In his investigation the maximum galloping response for L=D¼ 0:34, 0.44 and 0.5 was ŷ=D& 1:8, 2.5 and 3.4 achieved for
reduced velocities 15, 20 and 30, respectively. Stappenbelt also found that the slope of the initial response was not very
different between splitter plates with L/D¼0.5 and 1.0. This phenomenon has also been observed by Assi et al. (2014) to be
occurring with other VIV suppressors with similar characteristic length.

The frequency responses in Fig. 5(b) also show that the cylinders fitted with splitter plates are not responding with VIV.
Apart from a range of U=Df 0o4 the dominant frequencies of vibration for all devices are constant and significantly lower
than that observed for the plain cylinder. The frequencies do not follow the Strouhal line for the plain cylinder during the
typical upper branch of VIV. The solid plates appear to oscillate at more or less the same frequency, which is lower than that
of the slotted plate; we shall return to this point later when discussing added mass.

The mean drag curves in Fig. 5(c) show no drag amplification for the cylinders with splitter plates during the equivalent
synchronisation range of VIV. Although vibrating with much larger displacements, the splitter plates seem to keep drag
below that observed during VIV of a plain cylinder. Results for the solid splitter plates show the same levels of drag as those
reported by Stappenbelt (2010). The solid and the slotted plates, both having L/D¼1.0, managed to reduce drag down to
Cx & 1:0 for the whole of the reduced velocity range. It is surprising that such large vibrations present considerably low
drag; we shall return to this when discussing force decomposition. Stappenbelt (2010) also reports that drag continues to
drop with increasing plate length for solid plates with L=D41:0.

Fig. 8. Decomposition of lift coefficient in phase with (a) acceleration and (b) velocity. Key: ◊ plain cylinder VIV, □ solid splitter plate L/D¼0.5, ◯ solid
splitter plate L/D¼1.0.
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3.2. Harmonic motion hypothesis: lift and phase angle

A careful analysis of the data acquired during each run revealed that response of the cylinder is quite well behaved, with
a single dominant peak in the frequency spectrum and a fairly constant envelop of displacement. Fig. 6 presents a sample of
the time series of displacement for a cylinder fitted with a L/D¼1.0 splitter plate at U=Df 0 ¼ 8:1. The continuous line
represents the recorded displacement of the cylinder over time (t), while the dashed line represents a sine function with the
corresponding frequency, f, and amplitude, ŷ=D, determined experimentally. It is clear that the movement of the cylinder
can be approximated by such a simple harmonic function; the same was verified to occur for all plate configurations at all
reduced velocities. Hence, a harmonic hypothesis for the movement is quite adequate.

Now, following the hypothesis for harmonic forcing and harmonic motion employed by Bearman (1984) and others,
cross-flow displacement of the cylinder can be written simply as a sine function of time

yðtÞ ¼ ŷ sin ð2πftÞ; ð1Þ

where ŷ and f represent the harmonic amplitude and frequency of oscillation, respectively. The equation of motion for the
second order harmonic oscillator is then

m €yþc _yþky¼ Cyþ Ĉ y sin 2πftþϕ
" #h i

1
2 ρU

2D; ð2Þ

Fig. 9. Coefficient of effective added mass. Key: ◊ plain cylinder VIV, □ solid splitter plate L/D¼0.5, ◯ solid splitter plate L/D¼1.0.

Fig. 10. Energy transferred from the flow to the body during one cycle of oscillation. Key: ◊ plain cylinder VIV, □ solid splitter plate L/D¼0.5, ◯ solid splitter
plate L/D¼1.0.
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with the respective structural parameters of mass, m, stiffness, k, and damping, c. Displacement, y, velocity, _y, and
acceleration, €y of the body and fluid force coefficients are time dependent and all terms are expressed per unit length of the
cylinder. The fluid force and the body response oscillate at the same frequency f under a steady-state regime.

The total fluid force, on the right-hand side of Eq. (2) can then be divided into a time-average term Cy (usually equal to
zero for symmetric cross sections) and a transient term modelled as a sine wave with amplitude Ĉ y and frequency f, with ϕ
representing the phase angle between displacement and force. In the present work Ĉ y was determined by taking the r.m.s.
of lift and multiplying it by

ffiffiffi
2

p
, while ϕ was determined by means of a Hilbert transform applied to the time series of force

and displacement, as explained in Khalak and Williamson (1999) and Assi (2009).
For body excitation to occur ϕ must be between 01 and 1801. A phase angle equal to either 01 or 1801 means that no

energy is transferred from the flow to the structure to excite any vibration. As far as the excitation is concerned, Bearman

t /T = 2/10

t /T = 3/10

t /T = 0/10

t /T = 1/10

t /T = 2/10

t /T = 3/10

Fig. 11. Instantaneous fields of (left column) vorticity contours coloured by intensity and (right column) velocity vectors coloured by magnitude during one
cycle of oscillation. U=Df 0 ¼ 6:4 and Re¼ 4800. A horizontal dashed line represents the centreline of the wake.
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(1984) explains that “it is clear that the phase angle ϕ plays an extremely important role. The amplitude response does not
depend on Ĉy alone but on that part of Ĉy in phase with the body velocity. Hence, measurements of the sectional fluctuating
lift coefficient on a range of stationary bluff-body shapes will give little indication of the likely amplitudes of motion of
similar bodies flexibly mounted”. With VIV excitation, when reduced velocity is increased, ϕ shifts from almost 01 to almost
1801 as the response passes through resonance. Khalak and Williamson (1999) clearly show, for a plain circular cylinder,
how this phase shift is related to different wake modes and transitions between branches of response.

Fig. 7(a) presents results for Ĉ y for the plain cylinder compared with the cylinder fitted with solid splitter plates. During
the typical VIV response we notice the plain cylinder experiences a lift amplification close to the peak of resonance (at
U=Df 0 & 4) before a considerable drop in Ĉ y that remains for the rest of the synchronisation range. The cylinders with
splitter plates, on the other hand, show a build-up of Ĉ y at low values of reduced velocity, reaching a maximum of Ĉ y & 2:5
and then reducing slowly for U=Df 046. (Note: Uncertainties for force measurements are larger at low Re due to the small

t /T = 4/10

t /T = 5/10

t /T = 6/10

t /T = 7/10

t /T = 4/10

t /T = 5/10

t /T = 6/10

t /T = 7/10

Fig. 11. (continued)
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magnitude of measured forces, thus results for Ĉ y and ϕ must be taken with caution for U=Df 0o3. To offer an estimate,
uncertainties in Ĉ y vary in approximate bands of: 15% for U=Df 0o3; 5% for 3oU=Df 0o6; and 1% for U=Df 046.) It is
evident that the Ĉ y curve for the resonant mechanism of VIV is qualitatively different from those for the hydrodynamic
instability of galloping, but the difference between the phenomena is made clearer from measurements of ϕ presented in
Fig. 7(b).

While the resonant response of VIV presents a phase shift of almost 1801 when the response crosses the resonance peak
(between U=Df 0 ¼ 4 and 7). The galloping response of the solid plates experiences no such shift in ϕ, proving that the
excitation mechanism is not of a resonant type. For the solid splitter plates Cy was not found to be in phase with velocity,
otherwise ϕ would have been at values close to 901 in Fig. 7. Instead, ϕ remains at low values for the whole of the galloping
response range with lift leading the movement of the cylinder by a very small time lag. This small value of ϕ, coupled with
high values of Cy, provides the excitation to overcome the very-low structural damping of the system and induces high-
amplitude galloping vibrations.

3.3. Added mass and energy transfer

In order to investigate further the system dynamics and the energy transfer from the flow to the body we calculate the
components of the fluid lift force in phase with _y and in phase with €y. Fig. 8(a) presents Cy cosϕ, the portion of the fluid
force in phase with acceleration; as discussed in detail by Sarpkaya (2004) this takes the form of inertia and can also be
considered as being directly related to the added mass of fluid. For a body subjected to FIV the effective added mass will be

t /T = 8/10

t /T = 9/10

t /T = 10/10

t /T = 8/10

t /T = 9/10

t /T = 10/10

Fig. 11. (continued)
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different from the potential added mass (equal to the mass of displaced fluid for a circular cross section) or even the
measured added mass of a cylinder in still water. For the VIV response of a plain cylinder it is known (Bearman, 1984) that
the added mass coefficient will find its maximum at the resonance peak and become negative as the response passes
through the synchronisation range as shown in Fig. 8(a). This will have an effect on the frequency response signature of VIV.
However, Cy cosϕ for the splitter plates shows a different behaviour reaching much higher values and never becoming
negative, once more demonstrating the absence of a resonant VIV-type mechanism. Khalak and Williamson (1999), for
example, suggested that this effective added mass coefficient can be represented by

CEA ¼
1

2π3
Cy cosϕ
ŷ=D

U
Df

$ %2
; ð3Þ

taking into account the reduced velocity, amplitude and frequency of vibration. (Note that Khalak and Williamson (1999)
define CEA with a natural frequency measured in still water, which is cancelled out in the equation above.)

Values of CEA are presented in Fig. 9. It is clear that the effective added mass coefficients of galloping cylinders with
splitter plates are significantly greater than that of a plain cylinder in VIV. The splitter plate with L/D¼1.0 presents higher
CEA than the shorter one, and this is consistent with the lower frequencies of response observed for the galloping cylinder
with splitter plates in Fig. 5(b).

Fig. 8(b) presents Cy sinϕ, the portion of the fluid force in phase with velocity, which gives an idea of the excitation (or
energy transfer) in the system. The VIV response exhibits positive values of Cy sinϕ during the synchronisation range, again
with a maximum value found at the peak of resonance ðU=Df 0 & 4Þ. The galloping responses, on the other hand, show a very
different behaviour with a broad minimum around U=Df 0 ¼ 5 and increasing Cy sinϕ as reduced velocity is further
increased. Based on the theory of second order oscillators, one can present the average non-dimensionalised energy
transferred from the flow to the body during one cycle of oscillation, 〈E〉, as

〈E〉¼ π
ŷ
D
Cy sinϕ; ð4Þ

Fig. 12. Instantaneous vorticity contours and velocity vectors for a single cylinder at various reduced velocities: (a) U=Df 0 ¼ 3:0, (b) 5.0, (c) 7.3 and (d) 12.
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i.e. the work done by the non-dimensional hydrodynamic force in phase with velocity ðCy sinϕÞ during one cycle of non-
dimensional displacement ðŷ=DÞ. Results for 〈E〉 presented in Fig. 10 show that the plain cylinder VIV has its maximum
energy transfer during synchronisation, as expected, but for the cylinder with splitter plates the energy transfer builds up as
reduced velocity is further increased. It becomes evident that adding the splitter plates to the cylinder produces a much
more energetic mechanism for vibration that is not of a resonant kind.

Due to a technical fault Cy was not measured for the cylinder with a slotted plate. Nevertheless, one may expect that the
porosity of the plate will have an effect on the added mass and also the hydrodynamic damping which will influence the
hydrodynamic excitation. Theoretically, the ideal-flow added mass coefficient for a slotted plate in still water should fall
between values for the short and the long solid plates. The solidity of the plate is also expected to have an effect on flow
behaviour in the near wake. Although communication between the shear layers might be inhibited, some flow between the
two sides of the near wake is permitted through the slots. The slots on the plate may also help to dissipate energy as the
flow is forced to pass through the narrow passages as the body oscillates. Flow visualisations presented in the next section
will help to clarify various conjectures regarding the flow with solid and slotted splitter plates. However, the main
conclusion is that the galloping response of the slotted plate is different from that of the solid plate of similar length,
showing, for a given reduced velocity, lower amplitude of vibration at a higher frequency of oscillation (Fig. 5).

4. Flow field measurements

Measurements of the velocity field by PIV were taken on a horizontal plane at mid-length of the cylinder. The objective
was to investigate the separated shear layers reattaching on the splitter plates as the cylinder moved across the flow. First
we shall focus on the detailed visualisations of the flow around a solid splitter plate with L/D¼1.0 before comparing velocity
fields for the various plates.

Fig. 11 presents the evolution in time of the flow around a cylinder fitted with a solid splitter plate of L/D¼1.0 during one
cycle of oscillation at U=Df 0 ¼ 6:4. The sequence is composed of 11 instantaneous flow fields identified in time by t=T , where
T ¼ 1=f is the period of oscillation for that specific reduced velocity. The left column presents vorticity contours coloured by

Fig. 13. Instantaneous vorticity contours and velocity vectors for a cylinder with a solid splitter plate L/D¼0.5 at various reduced velocities: (a) U=Df 0 ¼ 3:0,
(b) 5.0 and (c) 7.3.
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vorticity magnitude and the right column shows the corresponding velocity vectors coloured by velocity magnitude. At
t=T ¼ 0=10 the cylinder is in its uppermost position with _y & 0. The separated shear layers seem to be equally aligned with
the flow direction, but relatively high speed flow is noticeable at the upper side of the cylinder (probably resulting from the
previous cycle of oscillation). As time progresses, the cylinder moves down across the flow passing through the centreline
with maximum _y between t=T ¼ 2=10 and 3/10. At this moment the shear layer on the lower side is drawn closer to the
body and reattaches to the tip of the plate. The corresponding velocity field shows a recirculation bubble developed from the
separation point on the cylinder to the reattachment point on the tip of the plate. This flow configuration generates a lift
force in the same direction as the body movement, thus providing the excitation for galloping. A lift force with the same
hydrodynamic origin was reported by Assi et al. (2009) in experiments with a free-to-rotate splitter plate. The cylinder
reaches its lowermost position with _y & 0 at t=T ¼ 6=10 when the reattaching shear layer seem to recover symmetry. On the
way up, the cylinder crosses the centreline with maximum _y between t=T ¼ 7=10 and 8/10. The reattachment of the upper
shear layer is now made possible by the strong _y.

During this cycle the cylinder is able to extract energy from the flow due to the reattachment of the shear layers on the
plate, thus supporting the flow sketch proposed in Fig. 2. Vortex shedding is observed to occur downstream of the plate
throughout the cycle, which might have an effect on the amount of lift generated on the body as well as the phase lag
between the force and movement. The flow behaviour will vary as reduced velocity (and Reynolds number) is varied,
especially as the reduced velocity moves away from the VIV synchronisation range in which vortex shedding may have a
considerable influence.

Similar PIV measurements were carried out to investigate the flow around the cylinder with other plates. For brevity, we
will only present results for the instant when the cylinder crosses the centreline for various reduced velocities. But first,
Fig. 12 presents vorticity contours of the instantaneous wake generated around a plain cylinder in VIV to serve as a
reference. (Note: Vorticity contours presented in the next figures are intended to offer a qualitative interpretation of the
wake, therefore key for the colour scales, which vary with flow speed, is not necessary. The same applies to the velocity
vectors.)

Fig. 14. Instantaneous vorticity contours and velocity vectors for a cylinder with a solid splitter plate L/D¼1.0 at various reduced velocities (a) U=Df 0 ¼ 3:0,
(b) 5.0 and (c) 7.3.
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Reduced velocities of U=Df 0 ¼ 3:0, 5.0, 7.3 and 12 are located within and just beyond the synchronisation range
(identified with an asterisk in the axis of Fig. 5(a), for convenience). Data was acquired when the cylinder was crossing the
centreline from left to right, therefore presenting maximum cross-flow velocity. It is possible to observe the evolution of the
wake for the different branches of the VIV response. For reduced velocity 3.0 in Fig. 12(a) the cylinder presents small ŷ=D
with a typical ‘2S’-mode vortex wake being shed (Refer to Williamson and Govardhan, 2004 for a description of wake
modes.) For reduced velocity 5.0 in Fig. 12(b), close to the peak of resonance, the ‘2P’ wake appears much wider due to the
high-amplitude movement of the cylinder. This wake changes mode again in the lower branch of vibration as shown for
reduced velocity 7.3 in Fig. 12(c). For U=Df 0 ¼ 12 the cylinder is no longer experiencing VIV excitation. For all cases in Fig. 12
the interaction of the separated shear layers in the vortex-formation mechanism is quite evident.

Fig. 13 presents the flow field around a cylinder with a solid splitter plate with L/D¼0.5 for the same reduced velocities as
presented for the plain cylinder. At U=Df 0 ¼ 3:0 the cylinder experiences very small movement across the flow and the
galloping mechanism has not developed yet. But for the higher reduced velocities, the shear layer on the right-hand side of
the cylinder is drawn closer to the plate as the cylinder moves with maximum _y to the right; consequently, galloping is
sustained. For the longer solid plate of L/D¼1.0, presented in Fig. 14, the separated shear layers manage to reattach to the tip
of the plate for all three reduced velocities investigated. Galloping is incipient at U=Df 0 ¼ 3:0 but it dominates the response
for the higher reduced velocities. The instants captured in Fig. 14 are equivalent to t=T ¼ 2=10 and 8/10 in Fig. 11. Although
one may think the 1D-long plate would be able to extract more energy from the flow during the galloping mechanism it
should be recalled that the responses of both plates in Fig. 5(a) are rather similar.

Results for the slotted splitter plate with L/D¼1.0 are not conceptually different from the others, as seen in Fig. 15. For
U=Df 0 ¼ 3:0 the vortex formation length is certainly extended due to the presence of the plate, but no reattachment of the
shear layers on the plate is observed. For reduced velocities 5.0 and 7.3 a clear deflection of the wake is noticeable due to _y and
the shear layer on the right-hand side reattaches to the tip of the plate. The reduced rate of increase of response with reduced
velocity allowed PIV measurements to be taken up to U=Df 0 ¼ 12, where the same behaviour was observed. In summary, from
Fig. 15 it becomes clear that a similar galloping mechanism is also driving the response of the slotted plate.

Fig. 15. Instantaneous vorticity contours and velocity vectors for a cylinder with a slotted splitter plate L/D¼1.0. (a) U=Df 0 ¼ 3:0, (b) 5.0, (c) 7.3 and (d) 12.
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Note that the PIV measurements performed in the present work were not aimed at capturing the small flow scales within
the recirculation bubble or through the slots. Also, flow fields presented in Figs. 12–15 were taken for the same reduced
velocities, but the cylinders are oscillating at different frequencies for each case.

Independently of plate length or porosity, the general flow pattern that induces galloping is found to be the same, as
summarised for all geometries in Fig. 16. At small amplitudes one shear layer moves close to the splitter plate while the
opposing one moves away, hence producing a pressure difference across the plate. For larger amplitudes the shear layers
intermittently reattach to the tip of a plate as the body oscillates. This reattachment sustains a pressure difference across the
splitter plate feeding the excitation. In all cases, lift is generated on the cylinder/splitter plate combination.

Future investigations could focus on the plate solidity ratio to evaluate its effect on the response of bluff bodies with
permeable structures in between the separated shear layers. Such a configuration may be useful for many engineering
applications if shown that porous plates may be effective in suppressing vortex shedding and reducing drag without being
prone to severe galloping, at least for moderate flow speeds.

5. Conclusion

In the present work we have investigated the FIV response of circular cylinders fitted with three different geometries of
splitter plate. Hydrodynamic force decompositions together with PIV measurements of the flow field around the plates
confirm that a transverse galloping mechanism is responsible for driving the cylinders with splitter plates into high-
amplitude vibrations.

Firstly, this conclusion is supported by the overall behaviour of the response concerning a non-axisymmetric cross-
section vibrating in 1-dof with displacements that monotonically increase with flow speed. Besides that, the driving
mechanism is not resonant, since no phase shift between movement and forcing was observed as the frequency of vibration
passes through the natural frequency of the system. Finally, flow visualization of the separated shear layers reattaching on
the tip of the plates reveal the hydrodynamic mechanism that produces a transverse force in phase with the body's velocity.

Solid plates with L/D¼0.5 and 1.0 showed a much larger increase in response with increasing reduced velocity than the
slotted plate, indicating that they can extract more energy from the flow. The effect of the slots on excitation is thought to be
twofold: they increase hydrodynamic damping and reduce the pressure difference across the splitter plate, but this requires
further confirmation. Independently of plate length or porosity, the general flow pattern that induces galloping is found to
be the same.

The validity of the quasi-steady theory of galloping has not been verified in the present study. Nakamura et al. (1994)
have already pointed out that it might not hold true for circular cylinders fitted with long splitter plates. Simply modelling
the lift force as an harmonic function may not be the most accurate approach, but it reveals distinct features of lift, phase
angle, added mass and energy transfer, clearly isolating the nature of the galloping instability from the VIV response of a
plain cylinder.
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Fig. 16. Sketches of the hydrodynamic mechanism leading to the galloping instability of a cylinder with (a) a solid short splitter plate L/D¼0.5, (b) a solid
long splitter plate L/D¼1.0 and (c) a slotted splitter plate L/D¼1.0.
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a  b  s  t  r  a  c  t

Experiments  employing  a low-mass-damping  cylinder  have  been  conducted  to  determine  the vortex-
induced  vibration  (VIV)  response  of  four suppressors  of the flexible-shroud  family.  The  VIV suppressors
were  inspired  in  the concept  of  the  Ventilated  Trousers  (VT),  a flexible  shroud  composed  of a flexible  net
fitted  with  three-dimensional  bobbins.  Reynolds  number  varied  between  5  ×  103 and  25  × 103, while
reduced  velocity  varied  from  2  to 26.  The  VIV  dynamic  response  showed  that  the  VT  suppressed  the  peak
amplitude  of  vibration  down  to 40%  of that  of  a bare  cylinder.  Other  flexible  shrouds  also  achieved  sup-
pression,  but  not  as  efficiently.  Drag was  reduced  during  the  VIV synchronization  range,  but  remained
above  the  value  for a bare  static cylinder  thereafter.  Spectral  analysis  of displacement  and  lift  revealed
that,  depending  on  the  geometry  and  distribution  of the  bobbins,  the flexible  shroud  can  develop  an
unstable  behavior,  capturing  energy  from  the  wake  and  sustaining  vibrations  for higher  reduced  veloc-
ities.  PIV  measurements  of the  wake  revealed  that  the  entrainment  flow  through  the  mesh  is necessary
to  extend  the  vortex-formation  length  of the  wake;  this  mechanism  only  occurs  for  the  VT  mesh.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The vibration induced by the external flow past slender struc-
tures poses a problem to submarine and offshore cables, flexible
pipes, drilling and production risers and other elastic structures
exposed to sea currents. The excitation has its origin in the shedding
mechanism of alternating vortices occurring in the wake of bluff
bodies, so the hydroelastic phenomenon is called vortex-induced
vibration (VIV). Flexible lines exposed to vibrations for a long time
may  be damaged by structural fatigue [1]. The amplification of drag
due to the vibration of the body is also of considerable concern,
since it increases static and dynamic loads at the joints, platform
and other fixtures.

One way to mitigate the effects of VIV is the installation of sup-
pressors along the riser, or at least on the length of the line where
currents are most intense. Helical strakes and fairings, for example,
have been widely employed by the industry as VIV suppressors
[2]. On one hand, significant VIV suppression of light structures
requires wider strakes, which increases drag. Fairings, on the other

∗ Corresponding author.
E-mail address: g.assi@usp.br (G.R.S. Assi).

1 Currently a Visiting Associate in Aerospace at GALCIT, California Institute of
Technology.

hand, tend to be more efficient in suppression as far as drag is con-
cerned, but may suffer from hydroelastic instabilities [3]. With the
improvement of molded plastic, helical strakes and fairings have
indeed become sturdy contraptions, but they still take considerable
time to install and occupy large areas on the deck. Other devices
based on the disruption of the wake by interfering control surfaces
(as explored by Silva-Ortega and Assi [4], for example) may suffer
from the same problem.

During the last decades many devices have been investi-
gated and offered as commercial products. Following the industry
demand for more efficient, robust and easy-to-install devices, the
technological development for suppressing VIV has been under
pursuit by both the scientific and industrial communities.

In this context, All Brown Universal Components, a technol-
ogy company based in the UK, created an interesting new device
for suppressing VIV of drilling risers called the Ventilated Trousers,
or simply VT [5]. Composed of a net of flexible cables holding an
orthogonal array of bobbins (solid elements fitted on the net), the
VT suppressor is, in the words of the inventors, “a loose fitting sleeve
in the form of a light flexible net with integral bobbins in a special
arrangement. It is omni-directional, rugged, and made from materi-
als compatible with the offshore environment” [6]. Essentially, the
VT is an improvement on the idea of wrapping the drilling riser in
a type of flexible cover able to deform with the flow, interact with
the wake and mitigate the response to hydrodynamic loads.

http://dx.doi.org/10.1016/j.apor.2017.04.003
0141-1187/© 2017 Elsevier Ltd. All rights reserved.
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The suppression effectiveness of the VT and its efficiency con-
cerning drag reduction have been studied over the last years with
promising results [7,6,8]. Brown and King [7], for example, per-
formed experiments in a laboratory scale with flexible cylinders
showing a 90% reduction of the VIV peak amplitude of displace-
ment at a Reynolds number (Re) of approximately 1.4 × 105. So
far, all known experiments have been performed either with flex-
ible pipes or near real conditions at sea, especially regarding the
range Re = 3.7 × 104 to 1.2 × 106 and the structural properties of
a riser [7,6]. Although this kind of experiment verifies the poten-
tial of such a device in practical applications (for being performed
closer to real conditions), they are not designed to reveal the intri-
cate hydrodynamic mechanisms by which the VT is able to achieve
suppression.

1.1. Objective

In the present work we set out to understand the behavior of the
VT and other similar suppressors in idealized laboratory conditions.
It could be said that the VT is part of a larger family of suppres-
sors, here called the flexible shrouds (also called permeable meshes
in our previous investigations). We  believe that exploring geomet-
ric variations based on the VT concept will produce siblings that
could thus reveal the fundamental physical mechanisms behind
the suppression.

Purely motivated by the scientific interest on the topic, the
present work is part of an investigation to study the behavior of this
family of suppressors at moderate Re,  low mass and very low damp-
ing conditions. We  are particularly concerned with the scientific
investigation of the hydrodynamic and hydroelastic mechanisms
that will explain us how this family of VIV suppressors works.

We  will characterize the VIV response of the VT and three other
simpler flexible shrouds derived from it. In idealized laboratory
conditions all variables are under control and crucial parameters
are reduced to enhance the response. The idea is to test the sup-
pression device in the most undisturbed condition, indeed different
for the real application in the ocean, but free from most of the
interference that could mask the understanding of the fundamental
physical phenomena. As will become clearer shortly, the differ-
ences between the models emerge from variations on the geometric
parameters of the original VT, taking us step by step in understand-
ing the physical principles.

2. Experimental method

Experiments have been carried out in the recirculating water
channel of NDF Fluids and Dynamics Research Group at the Uni-
versity of São Paulo, Brazil. The water channel has a test section
0.7 m wide, 0.9 m deep and 7.5 m long. The flow speed (U) is vari-
able up to 1 m/s, allowing for tests with different values of Reynolds
number, with a turbulence intensity of less than 3%.

Models were attached to a one-degree-of-freedom rig which
allowed the model to oscillate freely in the cross-flow direction
(y), as shown in Fig. 1. The platform was mounted on air bear-
ings to reduce friction within the system, thus ensuring very low
structural damping and maximum response. A load cell installed
between the cylinder and the rig measured instantaneous lift and
drag forces acting on the cylinder. A pair of coil springs provided
the restoration force to the system and an optical sensor measured
the displacement without adding extra damping. For further details
on the elastic rig, other VIV experiments employing the rig and
information on the facilities please refer to [9,10].

Tests were performed with a rigid section of a circular cylinder
(external diameter D = 50 mm,  submerged length L = 650 mm)  fit-
ted with four different flexible shrouds. Variations of the meshes

Fig. 1. Cross-view of the test section showing the elastic rig and cylinder in the
water channel.

concerned the geometry of the bobbins, focusing on the main length
scales of the original bobbin, and their distribution on the net.

The first model is a pure reproduction of the VT device. Its main
properties are the perimeter (p), the width of the mesh element
(w) and a characteristic dimension of the bobbin (d), as can be
seen in Fig. 2. Brown [5] provides a guide for the geometric def-
inition of the mesh, allowing some variations on its properties:
the diameter ratio, for example, must vary between d/D = 0.08 and
0.125. Besides that, in a previous work, Brown and King [7] veri-
fied that a mesh element width of 5 times the bobbin characteristic
dimension (w = 5d) resulted in a more effective VT than one in
which w = 3d. They also reported that the net perimeter must be
between p = 4D and 4.71D. Following these guidelines and consider-
ing that the parameters are not completely independent, the largest
possible mesh was  built respecting the restrictions and recommen-
dations proposed by Brown [5]. The final dimensions of the VT
model employed in the present work are shown in Table 1.

Based on the VT mesh, presented in Fig. 3a, three other meshes
with simpler geometries have been built altering the VT bobbin
geometry and distribution, but keeping the same w and p. The thick-
sparse mesh, shown in Fig. 3b, had different bobbins formed by only
one circular cylinder with an external diameter of dext = 3d, corre-
sponding to the outer diameter of the VT bobbin. On the other hand,
the bobbin of the thin-sparse mesh shown in Fig. 3c, was  made with
a single cylinder with external diameter dext = d, resulting in a mesh
following the thinner elements of the VT bobbin.

The VT, the thick-sparse and the thin-sparse meshes all had the
same bobbin distribution, with bobbins fitted on every other mesh
element. Now, the third variation resulted in the thin-dense mesh
shown in Fig. 3d. It was built with the same bobbins used in the
thin-sparse mesh, but fitting bobbins in every element of the net,
resulting in a different distribution of bobbins.

In summary, all three bobbins have the same height of 5d, but
they vary in shape and how they are distributed on the mesh, as
illustrated in Fig. 3 and Table 1. Again, all new bobbins are based
on the main length scales found in the VT bobbin: height 5d and
diameters d or 3d.

By keeping the net perimeter (p) constant for all meshes and
varying the outer diameter of the bobbins, the thin meshes pre-
sented a loose fit around the cylinder when compared with the
other two. At first, this was not intentional, since we believed that
keeping p constant would support the direct comparison of the
results. However, as will be discussed later, the loose meshes had
quite a significant and interesting effect in the response.
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Fig. 2. Geometric properties and dimensions. (a) Three types of bobbins: thick cylinder, thin cylinder and VT bobbin. (b) Mesh distribution. (c) Net perimeter.

Table 1
Model properties.

Model Bobbin Distribution d (mm)  dext w p

VT mesh VT bobbin Skip one cell 0.11D (5.8) 3d 5d 4.64D
Thick-sparse mesh Thick cyl. Skip one cell 0.11D (5.8) 3d 5d 4.64D
Thin-sparse mesh Thin cyl. Skip one cell 0.11D (5.8) d 5d 4.64D
Thin-dense mesh Thin cyl. Every cell 0.11D (5.8) d 5d 4.64D

Fig. 3. Different configurations of the flexible shrouds. (a) VT mesh. (b) Thick-sparse mesh. (c) Thin-sparse mesh. (d) Thin-dense mesh.

3. Results and discussion

3.1. Preliminary results with static models

Preliminary experiments with fixed models have been per-
formed as a reference for the hydrodynamic loads on a static body.
The models were attached to the load cell on a fixed rig while mea-
surements of drag and lift were taken. Hydrodynamic loads are
presented in terms of force coefficients per unit length of cylin-
der, i.e. dividing lift and drag by 1

2 !DU2, where ! is the density of
water and U is the free stream velocity.

Fig. 4a presents the mean drag (C̄D) and mean lift (C̄L) coefficients
versus Re for all meshes compared with those for a bare cylin-
der. The bare cylinder presented C̄D ≈ 1.15, which is in agreement
with the results found in the literature for this range of Re
[11,12]. All the meshes increased C̄D when compared to that of
the bare cylinder: an approximate increase of 30% for the VT
mesh, 65% for the thick-sparse mesh, 40% for the thin-sparse
mesh and 60% for the thin-dense mesh. Since drag was increased,
the shrouds must increase the amount of kinetic energy lost
to the wake. All flexible shrouds not only enlarge the frontal
area exposed to the flow but also increase the kinetic loss due
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Fig. 4. Coefficients of (a) mean drag and (b) mean lift for static models versus Re.

to friction and locally-separated flow around the bobbins and
net.

The mean lift coefficients presented in Fig. 4b, however, tell an
interesting story. While the VT and the thick-sparse mesh have
shown C̄L very close to zero (and also the bare cylinder, as expected
for symmetric bodies), the thin-sparse and the thin-dense meshes
presented C̄L distinctly higher for most of the Re range. It must be
pointed out that even though the system (cylinder and load cell)
was kept fixed, the flexible meshes were able to wobble around
the cylinder responding to the unsteady flow. Because the VT and
the thick-sparse mesh were tighter around the cylinder (compared
to the other two loose meshes) they remained fairly static, while
the thin meshes had more room to oscillate. Even though all meshes
had the same perimeter, the larger size of the bobbins reduced the
clearance between the devices and the main cylinder.

Now, both loose meshes tended to accommodate towards one
of the sides of the cylinder, creating an effective asymmetry of the
body, hence producing a residual mean lift. The meshes could ran-
domly find stable positions on either side of the cylinder (in a kind
of bifurcation), generating steady lift to either side. A very similar
mechanism has been reported by Assi et al. [13] when investigating
the dynamics of a cylinder fitted with free-to-rotate splitter plates.
Of course in the present case the interfering body is not a solid plate,
but a loose, flexible shroud interacting within the vortex formation
region of the wake.

Fig. 5a presents the fluctuation of lift (CL
′), calculated as the RMS

(root mean square) of the lift signal. The reference case for the bare
cylinder shows a scatter of points around CL

′ = 0.2, as expected for

Fig. 5. (a) RMS of lift coefficient and (b) Strouhal number for static models versus
Re.  Key: please refer to Fig. 4.

this Re range and in agreement with Williamson [14]. Similar to the
mean lift discussed above, CL

′ also reveals a different behavior for
the thin meshes, with the same level of CL

′ as that of the bare cylin-
der. This fluctuation is generated by the loose meshes oscillating
towards one of the sides of the cylinder. The VT and the thick-sparse
mesh, however, present very low CL

′, showing that they might be
effectively disrupting the vortex shedding mechanism in the near
wake region.

The Strouhal number (St = fsD/U, where fs is the frequency of
vortex shedding) was  estimated from the frequency of fluctua-
tion of the lift signal and is presented in Fig. 5b. As expected, the
bare cylinder shows a typical value close to St = 0.2, in agreement
with Norberg [15] for this range of Re.  All meshes presented lower
Strouhal numbers when compared to the bare cylinder, which
means that their vortex-shedding frequencies are smaller due to
a wider wake or a wake with weaker vortices.

Flow separation for these models is made very complex by the
three-dimensional interference of the shrouds. Separation might
be occurring from the various regions of the bobbins, from the
cables of the net and ultimately from the wall of the main cylinder.
The actual distance between the separated shear layers (to define
the characteristic length in St)  is not so clear, therefore we chose
to non-dimensionalize St by the external diameter of the main
cylinder (D). Now, the flexible shrouds are indeed enlarging the
effective diameter of the body, but it is interesting to note that the
thick-sparse mesh produced the lowest St (or shedding frequency)
of them all. If the effective external diameter of the body were to
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Table 2
Dynamic properties for the VIV series.

Model m* First VIV series Second VIV series

fN air fN "air "water fN air fN "air "water

Bare cylinder 2.8 0.67 0.58 0.3% 1.6% 0.40 0.35 0.6% 2.0%
VT  mesh 2.9 0.66 0.55 0.3% 6.0% 0.39 0.33 0.6% 7.5%
Thick-sparse mesh 2.9 0.67 0.50 0.3% 10.6% 0.39 0.31 0.6% 12.0%
Thin-sparse mesh 2.8 0.67 0.57 0.4% 3.6% 0.41 0.33 0.6% 6.1%
Thin-dense mesh 2.8 0.67 0.58 0.4% 4.0% 0.39 0.33 0.6% 8.8%

be approximated, say by adding the size of the bobbins to D, then
the true value of St would be very close to 0.2 for all cases.

3.2. VIV response

Tests to determine the VIV response for the models were car-
ried out by installing the cylinders on the elastic rig, which allow
for free vibrations only in the cross-flow direction (y). The pair of
coil springs that conferred the stiffness to the system was  changed
twice, resulting in two ranges of reduced velocity (U/fND) covering
the same Re range. Thus the experimental results are divided in two
series.

Table 2 presents the main structural properties for both series.
The reduced mass (m*, defined as the ratio of structural mass to
the mass of displaced fluid) was approximately 2.9 for all mod-
els, which is close to the values found in real offshore applications.
Free-decay tests were performed in air in order to determine the
natural frequency (fNair

) and the structural damping of the system
("air, defined as a percentage of the critical damping). Additional
decay tests performed in still water yielded the natural frequencies
in water (fN) and the total (structural plus hydrodynamic) damping
("water) of the system. The reduced velocity was normalized using
the natural frequency measured in still water (fN).

3.2.1. First VIV series: reduced velocity up to 16
Fig. 6 presents the VIV response of all models with flexible

shrouds compared with that of the bare cylinder as a reference. The
displacement curve (ŷ/D, where ŷ  is calculated as the RMS  of the
displacement signal multiplied by

√
2) shown in Fig. 6a reveals the

typical VIV response for the bare cylinder, with the initial, upper and
lower branches of vibration clearly identified for a low-m*" system.
A peak amplitude of ŷ/D ≈ 0.9 is found around reduced velocity 5,
with synchronization occurring roughly between U/(fND) = 4.5 and
11.5. Within this range, the frequency of oscillation (f, calculated
from the spectrum of displacement) is synchronized with the fre-
quency of vortex shedding and both remain very close to the natural
frequency of the system, as presented in Fig. 6b. Also for the bare
cylinder, Fig. 6c highlights the amplification of mean drag, reach-
ing a maximum of C̄D ≈ 3.1, occurring in the synchronization range.
Past reduced velocity 12, C̄D returns to the value for a fixed cylin-
der of approximately 1.1, as the cylinder stops responding to VIV.
Reference results for the bare cylinder are in good agreement with
Williamson and Govardhan [16].

Now we shall turn to the VIV response of the cylinder fitted
with the flexible shrouds. In general, Fig. 6a shows that all meshes
managed to reduce the peak amplitude of displacement within the
synchronization range. The VT reached a maximum amplitude of
ŷ/D ≈ 0.38, accounting for a 60% reduction when compared to the
peak amplitude of the bare cylinder. The synchronization range
has also been shortened by the VT. The frequency signature of the
response, shown in Fig. 6b, is not much different from that observed
for the bare cylinder. Peak C̄D, on the other hand, presented a 30%
reduction during the synchronization range, but remained slightly
higher (C̄D ≈ 1.45) than that of the static bare cylinder by the end
of the experiment. That is to say that the VT indeed suppresses

Fig. 6. Dynamic response of VIV versus reduced velocity: (a) amplitude of displace-
ment, (b) dominant frequency of oscillation and (c) mean drag coefficient.

VIV and reduces the maximum drag amplified by the vibration, but
once the vibration ceases, after the synchronization, the mean drag
is higher than that of a bare cylinder.

The thick-sparse mesh follows the trend of VT, but is not as
successful in reducing the peak amplitude of displacement. The
response peak is shifted as the whole synchronization range is
delayed in relation to the bare cylinder, starting at U/(fND) = 5.5 and
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ending at 12. This is due to a significant increase in the effective
diameter of the body, caused by the larger diameter of the bob-
bins. The maximum mean drag is almost as high as that of the bare
cylinder during synchronization, but it remains approximately 70%
higher once the vibration terminates. Again, this might be due to
the enlarged size of the bobbins. The frequency signature is very
similar to the other two previous cases.

The thin-sparse mesh follows the same behavior, reaching the
highest peak of displacement of all the flexible shrouds (only a
40% reduction compared to the bare cylinder). The synchronization
range is not dislocated to higher reduced velocities since the smaller
size of the bobbins tend not the enlarge much the effective diame-
ter of the body. The frequency response, however, shows a different
behavior from the previous cases, with the dominant frequency of
oscillation following just under the frequency of vortex shedding
for the whole range of reduced velocity (the inclined dashed line in
Fig. 6b corresponds to St = 0.2). C̄D is reduced during the synchro-
nization, but remains higher than that of a bare static cylinder when
no vibration exists.

Finally, the thin-dense mesh shows the most interesting behav-
ior of them all. While the peak displacement shows the same level
as that for the VT during synchronization, the vibration does not
die out as expected after resonance. For higher reduced velocities
a steady value of ŷ/D > 0.2 is sustained until the end of the exper-
iment. The frequency of response shows that the cylinder with a
thin-dense mesh is persistently oscillating at the vortex-shedding
frequency for the whole range of reduced velocities. As a conse-
quence, the mean drag coefficient is also sustained at C̄D ≈ 2.5 until

Fig. 7. (a) Amplitude of displacement, (b) spectrum of displacement and (c) spec-
trum of lift for a bare cylinder responding to VIV.

the end of the experiment, while all the other models returned to
their values obtained during the static-models experiments (Fig. 4).

The thin-dense mesh is able to capture energy from the vor-
tex shedding mechanism, sustaining considerable vibration at the
shedding frequency beyond the VIV synchronization. In fact, look-
ing at the mesh during the experiments, we were able to note that
the loose thin-dense mesh could wobble from side to side as the
cylinder oscillated. The thin-sparse mesh would be as loose around
the cylinder as the thin-dense mesh, but the latter was less perme-
able to the flow and able to interact with the unsteady wake. The
concentration of bobbins on the thin-dense mesh together with its
loose fit around the cylinder helped it to work as a sail, oscillat-
ing with the body (including a visible phase lag in the movement),
interacting with the wake and thus exciting the cylinder into sus-
tained oscillations.

Due to the distinct frequency response of the thin meshes, and
especially due to the displacement response of the thin-dense
mesh, we  were motivated to extend the VIV experiments into a
second series, this time changing to a softer set of springs to allow
for higher reduced velocities (Table 2).

3.2.2. Second VIV series: reduced velocity up to 26
The results for the second VIV series will concentrate on the

frequency signature of the response and the excitation, therefore
we will be looking at the frequency signature of both displacement
and lift.

The typical displacement response for the bare cylinder is
shown again in Fig. 7, this time for reduced velocities up to 26. The

Fig. 8. (a) Amplitude of displacement, (b) spectrum of displacement and (c) spec-
trum of lift for a cylinder fitted with the VT responding to VIV.
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frequency of oscillation (f/fN) is not shown as points representing
the dominant frequency of the spectrum (as in Fig. 6), but instead
it shows the whole spectrum in different shades for each reduced
velocity. Darker shades of color represent higher peaks in the
frequency spectrum. This way we are able to follow concurrent
branches in the frequency signature that would otherwise be
hidden. While the second plot (f/fN) in Fig. 7 shows the spectrum
of displacement (the response), the third plot (fL/fN) shows the
spectrum of lift (the excitation).

The spectrum of f/fN shows a clear branch of dominant fre-
quency during the synchronization range (between U/(fND) = 5 and
11), which is then dispersed in a much broader signature with no
dominant frequency at the end of resonance. One may  note that
the bare cylinder is vibrating with very small amplitudes of dis-
placement in a broader range of frequencies close to the natural
frequency. This is a typical indication of turbulence buffeting. A faint
frequency branch is barely noticeable matching the St = 0.2 line,
which is reminiscent of the vortex shedding that is now occurring
from the almost-static body. The same branch can be traced in the
fL/fN plot, showing that at the end of the synchronization the vortex
shedding mechanism returns to its “natural” regime. The magni-
tude of lift due to vortex-shedding, though, is not strong enough to
overcome the damping of the system, that responds predominantly
by buffeting.

We  shall now perform the same analysis for the models with
flexible shrouds. Fig. 8 shows the results for the VT, again show-
ing a synchronization range until reduced velocity 10. Both spectra
for displacement and lift show a clear dominant peak during res-
onance. For higher reduced velocities the spectrum of f/fN reveals
that the small vibrations are around the natural frequency, while
no clear branch of lift is distinguishable, again a clear indication
of turbulence buffeting. A different faint branch is noticeable in
both spectra, revealing the predominant frequency of vortex shed-
ding for the static cylinder with the VT to be lower than that of
the bare cylinder. The resulting St was calculated to be approxi-
mately 0.14, which is in good agreement with Fig. 5b. (Please bear
in mind that very low frequencies in the spectrum plots represent
low-frequency drifts of the cylinder.)

The frequency signature for the thick-sparse mesh is presented
in Fig. 9. Similarly, the synchronization range is clearly identified in
both spectra, but with a little shift towards higher reduced veloci-
ties when compared to the bare cylinder (as explained before). The
residual low-amplitude vibrations at higher reduced velocities is
due to turbulence buffeting. This time, the frequency branch rep-
resenting the vortex shedding frequency for a static model results
in St = 0.13, as expected from Fig. 5b.

Now, the models fitted with thin meshes are the ones with a dif-
ferent behavior. The frequency signature for the thin-sparse mesh is

Fig. 9. (a) Amplitude of displacement, (b) spectrum of displacement and (c) spectrum of lift for a cylinder fitted with the thick-sparse mesh responding to VIV.
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Fig. 10. (a) Amplitude of displacement, (b) spectrum of displacement and (c) spec-
trum of lift for a cylinder fitted with the thin-sparse mesh responding to VIV.

shown in Fig. 10. This time, the spectrum of f/fN shows a clear branch
of response following the vortex-shedding frequency. The same
branch is identified in the spectrum of the excitation in fL/fN, yield-
ing St = 0.16 for the thin-sparse mesh as in Fig. 5b. The fact that the
shedding frequency is not locked-in by the oscillation frequency is
rather curious. A clear resonant peak is evident in the displacement
curve, but the typical synchronization range expected for classical
VIV is seen not to be occurring. A region of scattered f/fN around
the natural frequency reveals the presence of turbulence buffet-
ing for higher reduced velocities. In fact, as shown by the points of
dominant frequency in Fig. 6b, both mechanisms of buffeting and
harmonic vortex excitation are competing throughout the whole
range of reduced velocities.

The behavior for the thin-dense mesh is similar, but intensified
(Fig. 11). The spectrum of f/fN shows a single dominant branch fol-
lowing the St = 0.16 line, also evident from fL/fN. St for both thin
meshes are very similar because the effective diameters of the
bodies are the same. The clear difference lies in the ŷ/D curve
showing that the cylinder with a thin-dense mesh shows no sign of
reducing the amplitude of vibration for higher reduced velocities.
Again, a non-negligible amplitude of ŷ/D ≈ 0.3 is observed to occur
until the end of the experiment. The cylinder does not present tur-
bulence buffeting, but a prominent vortex-excitation mechanism
dominates over the response.

As mentioned before, the clearance between the model and the
thin meshes allows them to oscillate independently of the motion
of the cylinder, showing movements similar to a sail. The thin-
sparse mesh is as loose as the thin-dense mesh. Nevertheless, the

increased number of bobbins might make the thin-dense mesh just
dense enough to reduce its permeability to the flow, interact with
the wake and capture more energy from the vortices. Consequently,
the vortex-excitation mechanism dominates over turbulence buf-
feting for the whole range of reduced velocities.

Once more, it is worth highlighting that the thin meshes were
seen to oscillate from side to side (more or less like a sail) as the
cylinder responded to VIV. We believe this phenomenon is not
much different from the hydrodynamic mechanism driving the
oscillations of a cylinder fitted wit a long splitter plate (with low
friction) that is free to rotate around the body, as presented by Assi
et al. [13].

4. Investigation of the wake

Particle image velocimetry (PIV) measurements of the wakes
have been taken for static models at Re = 9000. A horizontal plane
illuminated the flow at mid  length of the models. Two cameras were
positioned side by side below the test section in order to compose
a vector field wide enough to evaluate the larger flow structures in
the wake. Instantaneous velocity fields were taken at a rate of 15
vector fields per second, thus producing a time-resolved analysis
of 300 vector fields with almost 20 snapshots for each cycle of vor-
tex shedding (considering fs of the bare cylinder). Fig. 12 presents
velocity vectors and vorticity contours for all the models except the
thick-sparse mesh. The dashed white circle represents the masked
region shadowed by the meshes. Each image is a composition of at
least five instantaneous fields phase-averaged in time.

Fig. 12a shows that the bare cylinder is shedding a typical Kar-
man wake of vortices with two  single vortices per cycle. On the
other hand, Fig. 12b reveals a different vortex shedding behavior
for the cylinder with VT. Coherent vortex structures are indeed
present in the wake, but vortices form much further downstream
of the cylinder. Fig. 12c and d shows that, although the wakes of the
cylinder with thin-sparse mesh and thin-dense mesh are affected
by the presence of the flexible shrouds, the overall vortical struc-
tures are much more similar to that of the bare cylinder rather than
that of the VT.

Examining the mean flow averaged in time from 300 images,
presented in Fig. 13, one may  note that the cylinder with VT
(Fig. 13b) produces an extended region of velocity deficit near the
base of the cylinder. Again, the mean flow in the wake of the cylin-
der fitted with the thin-sparse and thin-dense meshes are not much
different from that in the wake of the bare cylinder.

From Figs. 12 and 13 we can conclude that the shrouds are
not preventing the formation of a wake with organized vortices.
They do not work to streamline the body either. In fact, a Kar-
man  wake associated with the typical flow around bluff bodies is
clearly identified for all cases. The flexible shrouds do not prevent
the communication of the separated shear layers, hence they are
able to disrupt and modify the wake formation mechanism, but not
to eliminate it altogether.

In Fig. 14 we have a quantitative view of how the wake is
being modified. Measurement of the vortex-formation length are
presented with streamlines of the mean flow. The color contours
represent the fluctuation of the cross-flow component of velocity
in the wake (vrms is the root-mean-square of v, normalized by the
maximum value obtained in the whole field). The locus of maxi-
mum velocity fluctuation defines the vortex formation length (LF)
indicated by a white target in each figure.

Fig. 14a shows that the Karman wake for the bare cylinder
has a vortex formation length of LF/D = 1.5, in agreement with
the literature (please note that LF is strongly dependent on Re
[17]). Fig. 14c and d shows that the vortex formation lengths in
the wake produced by the thin-sparse and thin-dense meshes
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Fig. 11. (a) Amplitude of displacement, (b) spectrum of displacement and (c) spectrum of lift for a cylinder fitted with the thin-dense mesh responding to VIV.

Fig. 12. Instantaneous velocity vectors and vorticity contours colored by vorticity magnitude (unit is 1/s). (a) Bare cylinder. (b) VT mesh. (c) Thin-sparse mesh. (d) Thin-dense
mesh.
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Fig. 13. Mean velocity field colored by velocity magnitude (normalized by U). (a) Bare cylinder. (b) VT mesh. (c) Thin-sparse mesh. (d) Thin-dense mesh.

Fig. 14. RMS  of the cross-flow component of velocity. vrms is normalized by the maximum value found in each field. (a) Bare cylinder. (b) VT mesh. (c) Thin-sparse mesh. (d)
Thin-dense mesh.

are not very different from that of the bare cylinder, being
respectively LF/D = 2.02 and 1,76. The case for the VT, however,
shows a completely different behavior. Fig. 14b reveals a much
longer vortex formation length of LF/D = 5.31 in the wake of the
VT.

We argue that the longer formation length found for the VT is
responsible for a decrease in the fluctuating lift feeding back to
excite the cylinder into VIV. A longer LF is also related to a decrease
in the mean drag. Therefore, while most of the flow is separated
from the outer surfaces of the bobbins, the entrainment of flow
that permeates the VT mesh bleeds through to feed the near wake
region, extending the vortex-formation length and increasing the
base pressure (thus reducing drag). This mechanism, illustrated in

Fig. 15, is only possible due to the peculiar geometry of the VT bob-
bins, which is not matched by the other meshes. The outer ring
of the VT bobbin separates the vertical cylindrical elements from
the wall of the main cylinder, allowing for entrained fluid to flow
through the mesh.

Please be aware that the PIV measurements have been per-
formed for static cylinders in order to investigate the dominant
flow structures produced by the flexible shrouds. We  understand
that the wake dynamics for the oscillating cylinders could be quite
different from the results presented in this section. Nevertheless,
the investigation of the wakes of static models has already clarified
some interesting points regarding the underlying hydrodynamic
mechanisms.
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Fig. 15. Illustration of the flow around the VT mesh.

5. Concluding remarks

The preliminary experiments with fixed models revealed that
all meshes increase drag for a static body. This is expected, since
al meshes enlarge the area exposed to the flow and C̄D is obtained
using just the diameter D of the bare cylinder. The thick-sparse
mesh, for instance, increases more than 30% the frontal area com-
pared to that of the bare cylinder. Besides that, the net and bobbins
increase significantly the surface area and, consequently, the fric-
tion drag. The effect of an enlarged body is also responsible for
reducing the Strouhal number of the shrouds, verified in Fig. 5b.

The fluctuation of lift presented in Fig. 4 reveals that the VT and
the thick-sparse mesh reduce CL

′ to values close to zero. Since the
integral force is acquired at the top of the models, it is reasonable
to infer that the meshes could either mitigate the sectional force,
or uncorrelate lift along the span of the cylinder, or both. The most
surprising result for the fixed-models experiments was  the mean
lift different from zero for the thin meshes. During the tests, it was
verified that the meshes oscillated like a sail, breaking the body
symmetry and generating a net lift force.

Observing the decay tests (Table 2), all five models have practi-
cally the same values of m* and "air, hence the different behaviors
are related to hydrodynamic effects. From the decay tests in still
water, it is verified that all models increased the hydrodynamic
damping and the effective added mass. It is known that there is a
strong relationship between a decrease in the peak response and
an increase in m*" [18,19]. Fig. 6 shows that all meshes reduced the
peak response, and part of this suppression could be credited to
the increase of hydrodynamic damping generated by the shrouds.
On the other hand, an increase of hydrodynamic damping must
not be solely the only mechanism responsible for all the suppres-
sion. For instance, the VT presents lower "water than the thick-sparse
mesh, but it is more efficient in suppressing the peak amplitude of
response. As a conclusion, the geometry of the bobbin is significant,
since it produces a particular change in flow, leading to different
responses.

The spectrum of the VT (Fig. 8) shows that the VT is more
efficient in disrupting the wake than the other meshes. After the
synchronization range, the oscillation frequency of the VT remains
close to fN while the fL shows no clear trace. The thick-sparse mesh,
on the other hand, even for very small oscillations, shows a typical
trace of the Strouhal frequency for both oscillation and lift frequen-
cies. This indicates that, in spite of reducing the oscillations, the
thick-sparse mesh does not eliminate coherent vortex-shedding,
while the VT disrupts it better. Since their distribution is the same,
the differences between the two meshes can be attributed to their
bobbin geometry.

As seen from the fixed-models experiments, the thin meshes
had a distinctive behavior, showing a fashion for oscillating as a
sail with the wake independently of the motion of the cylinder. As
shown in Figs. 6, 3(c) and (d), there is no clear synchronization range
because these models always oscillate in the same frequency of
vortex-shedding. In the case of thin-dense mesh, not only the oscil-
lation continues for higher reduced velocities, but it also reaches

another peak of response around reduced velocity of 20, which indi-
cates the system is excited by another resonant frequency. The sail
effect made the thin meshes extract more energy and in a wider
range of frequencies than a mesh tightly attached to the cylinder;
this mechanism is not associated with pure VIV.

This sail effect occurs because there is a larger clearance between
the loose, thin meshes and the cylinder. Since the VT and the thick-
sparse mesh have wider bobbins, their clearance is lower and the
sail effect was  not observed. In previous studies, Brown and King [7]
noted the possibility of a “tail effect” due to the influence of mesh
perimeter for VIV suppression. In the same work, they recommend
a maximum value of 3

2 #D for this parameter. As it happened, all
meshes in the present study have the same perimeter, which was
below that limit. Therefore we  suggest that the clearance is more
relevant to predict the sail phenomenon rather than the perimeter
itself (because it considers the influence of bobbin size).

The only difference between the thin-sparse and the thin-dense
meshes is the bobbin distribution. The thin-sparse mesh extract
less energy from the flow. Therefore, we may  conclude that the
hydrodynamic permeability of the mesh as well as the alternating
distribution of the bobbins are important parameters (the latter
due to the loss of three-dimensional correlation along the span).

PIV investigation of the wake for static models revealed that
the cylinder fitted with the VT mesh produces a larger vortex-
formation length, indeed much larger than that for the bare
cylinder. We  believe the suppression efficiency of the VT is related
to the weakening of the feedback mechanism of the fluctuating lift
force associated with vortex shedding. We  have proposed that the
entrainment of the flow between the bobbins and the wall that
feeds through to the near wake is necessary to extend the vortex-
formation length. This mechanism is only possible to occur with
the VT mesh.

Finally, it is worth highlighting that these experiments have
been conducted at relatively low mass-damping systems in order
to enhance the vibration. We  are not saying that all devices will
present the same suppression efficiency at higher Re,  or in systems
with higher damping. Experiments in an idealized laboratory con-
dition with a rigid cylinder, with low-m * ", restricted to oscillate
in one degree of freedom, will serve to establish the basic work-
ing principles of this family of suppressors and offer guidelines for
further development.
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a b s t r a c t

The present work investigates the use of a polar array of 2, 4 and 8 wake-control cylinders as a means to
suppress the vortex-induced vibration (VIV) of a larger circular cylinder. The diameter of the control
cylinders and the gap between their walls have been varied in 27 different configurations.
Experiments have been performed in water at Reynolds numbers between 5000 and 50,000. Cross-
flow amplitude of displacement, frequency of vibration, mean drag and fluctuating lift coefficients are
presented. While some configurations of control cylinders suppressed VIV, others produced a
galloping-like response. The best VIV suppressor was composed of 8 control cylinders and mitigated
99% of the peak amplitude of vibration when compared to that of a plain cylinder; mean drag was
increased by 12%. A polar array of 4 control cylinders was the most efficient configuration to minimize
the mean drag, but the system developed severe vibrations combining VIV and a galloping-like response.
The system appeared to be very sensitive to the parameters investigated; small variations in the size and
position of the control cylinders produced unexpected responses.

! 2017 Elsevier Inc. All rights reserved.

1. Introduction

The vortex-shedding mechanism of a circular cylinder can be
controlled, at least in theory, by the interference of small wake-
control cylinders positioned around the circumference of the main
body. Strykowski and Sreenivasan [18] and others have showed
that this strategy is possible for low Reynolds numbers. Such con-
trol cylinders interact with the boundary layer and/or the sepa-
rated shear layers, disrupting the formation of vortices that are
convected downstream to form a vortex wake. As a consequence,
the periodic hydrodynamic forces feeding back from the vortex-
shedding mechanism are considerably reduced, if not completely
suppressed. In theory, the mean drag acting on the body is also
reduced if suppression of the vortex wake is achieved [3,1]. There-
fore, the development of passive devices to control the wake of a
bluff body has called the attention of not only the scientific com-
munity, but also of the industry. Applications may vary from
reduction of vortex-generated noise in the field of aeroacoustics
to the mitigation of hydrodynamic loads on floating platforms in
the field of offshore engineering. The suppression of the flow-

induced motion of offshore risers or of a monocolumn platform
are good examples [15].

Placing a smaller control rod upstream of the main cylinder is
also a well-established strategy for drag reduction [10]. But Stry-
kowski and Sreenivasan [18] have proved that if the small control
cylinder is placed within a defined region in the near-wake (down-
stream) of the main cylinder, coherent vortices could be effectively
suppressed at a Reynolds number of Re ¼ 80. Hwang and Choi [4]
showed that the flow instability leading to the formation of a vor-
tex street could be delayed by employing even smaller control
cylinders at specific locations in the wake. Later, Kuo et al. [9]
and Kuo and Chen [8] proved that, even if a vortex-wake is formed,
the wake pattern could be altered by the presence of two control
cylinders positioned in the near wake region.

Previous investigations positioning control cylinders in various
arrangements around a bluff body have been performed through
experiments and numerical simulations. Mittal [11] investigated
the flow around a static cylinder with two wake-control cylinders
positioned at "90# in relation to the incoming flow at Re ¼ 102 to
104. He found that vortex shedding could be suppressed only if the
control cylinders (at that specific "90# location) were rotating
above a critical spinning ratio. Sakamoto and Haniu [16] also inves-
tigated the control of a vortex-wake by varying the position of a
smaller cylinder around the main body. They observed that, for
certain positions, the control cylinder could produce the useful
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effect of reducing the hydrodynamic forces experienced by the
main body at Re ¼ 6:5$ 104.

Recently, Silva-Ortega [17] has shown that a polar array of 2, 4
and 8 control cylinders equally spaced around a static body could
be developed into an effective device to suppress vortex shedding
from a larger circular cylinder at Re ¼ 5000 to 50;000. Fundamen-
tal parameters (such as the number of control cylinders, their
diameter and their distance from the main body) have been shown
to play a significant role in the wake-control mechanism. As conse-
quence, a reduction of hydrodynamic forces has been achieved.

1.1. Suppression of flow-induced vibration

In the present work, we move from controlling the wake of sta-
tic bluff bodies to the field of hydroelasticity. This time we investi-
gate the effectiveness of a polar array of control cylinders in
suppressing the vortex-induced vibrations (VIV) of a circular cylin-
der that is free to respond to the excitation of the incoming flow.
Our investigation is limited to vibrations in one degree of freedom
in the cross-flow direction.

VIV is a fluid-structure interaction phenomenon that occurs
when the frequency of vortex shedding resonates with one of the
natural frequencies of an elastic bluff body. Please refer to Wil-
liamson and Govardhan [19] for a comprehensive review of the
phenomenon. In principle, if a device is able to suppress the forma-
tion of coherent vortices, VIV is eliminated at its root and vibrations
do not develop. Now, it is one thing to disrupt or control the wake of
a bluff body when the body is static, but it is another to control the
wake of a body that is free to respond to the flow. Sometimes an
efficient device for the control of vortex-shedding is not as efficient
in suppressing VIV. Various examples of VIV suppressors are found
in the literature, for example, in the review by Zdravkovich [22].

Korkischko and Meneghini [7] have performed VIV experiments
with a circular cylinder free to oscillate in the cross-flow direction
and fitted with two wake-control cylinders in the range of
Re ¼ 7500. They found that the two non-rotating control cylinders
positioned at "90# were not effective in suppressing VIV of the
main body. In fact, they only reduced the peak amplitude of
response by 17%, when compared to that of a plain cylinder. How-
ever, when they applied enough rotation to the small cylinders, the
vortex wake was stabilized and VIV was suppressed.

Zhu et al. [23] performed numerical simulations of the flow at
Re ¼ 2000 and showed that the two-degree-of-freedom vibration
of an elastic cylinder could be reduced by 89% when two control
cylinders were positioned at "135# from the frontal stagnation
point of the cylinder. Again, when the two control cylinders were
forced to rotate, an ever better suppression was obtained. Similar
results were obtained by Muddada and Patnaik [13], who per-
formed two-dimensional numerical simulations of the flow around
a cylinder fitted with two control cylinders located at "120# in the
range of Re ¼ 100–300.

Wu et al. [21] tested the VIV suppression of a long flexible cable
with a circular cross section fitted with four flexible control rods
positioned parallel to the axis of the cylinder. At Re % 103, they
observed that the dynamic response of the cable was substantially
altered by the hydrodynamic interaction of the flow-control rods. In
their experimental arrangement, the distribution of the control
rods was such that there was always one rod aligned with the
incoming flow. In another study, Wu et al. [20] investigated the
effect of rotating the array of control rods around themain cylinder.

1.2. Objective

In the present study, we start with the polar arrays of 2, 4 and 8
control cylinders proposed by Silva-Ortega [17] to reduce the

hydrodynamic loads on a static cylinder and employ them as a
means to suppress the cross-flow VIV of a larger elastic circular
cylinder. The dynamic response due to VIV, as well has the hydro-
dynamic loads acting on the cylinder, are presented for a wide
range of flow speeds.

We will conclude that the VIV of a circular cylinder can be mit-
igated by specific arrangements of wake-control cylinders in the
range of Reynolds number between 5000 and 50,000. On the other
hand, a few arrangements may cause the system to develop severe
vibrations associated with a galloping-like excitation, showing that
the dynamic response of the system is very sensitive to small vari-
ations in the geometrical parameters.

2. Experimental setup

Experiments have been carried out in the Circulating Water
Channel of NDF (Fluids and Dynamics Research Group) at the
University of São Paulo, Brazil. The water channel has an open test
section which is 0:7 mwide, 0:9 m deep and 7:5 m long. Good qual-
ity flow can be achieved up to 1:0 m/s with turbulence intensity
less than 3%. For further details on the apparatus, other VIV exper-
iments employing the elastic rig and information on the facilities
please refer to Silva-Ortega [17] or Assi et al. [2].

A rigid section of a smooth circular cylinder was made of a per-
spex tube of external diameter D ¼ 100 mm. Two, four or eight
identical wake-control cylinders of diameter dc were made of per-
spex rods and supported by rings attached to the ends of the main
cylinder. The distribution of the control cylinders about the main
cylinder is presented in Fig. 1, in which the arrow indicates the
direction of the incoming flow. The position of the N control cylin-
ders was chosen so that they are equally spaced around the main
cylinder, but keeping a symmetric distribution in relation to the
streamwise axis, with no cylinder at the frontal stagnation point.

It is worth noting that our cylinder fitted with 2 control cylinder
is similar to other arrangements found in the literature ([7,11] for
example). Our arrangement with 4 control cylinder is not similar to
that of Wu et al. [21], since they always kept one control cylinder
facing the incoming flow. We are not aware of other works that
have employed an array of N ¼ 8 wake-control cylinders.

The axes of the control cylinders were parallel to the axis of the
main cylinder, spanning the whole immersed length of the model
(L ¼ 700 mm). Two extra supporting rings were installed at L=3
and L2=3 positions to hold the control cylinders in place and pre-
vent them from vibrating by reducing their free span. The control
cylinders did not present significant deflections nor vibrations
due to their own VIV in the course of the experiments.

Inspired by the experimental results of Korkischko and
Meneghini [7] and based on the parametric variation of Silva-
Ortega [17], the diameter of the control cylinders was varied in
three steps of dc=D ¼ 0:04, 0.06 and 0.08. The gap measured
between the wall of the control cylinders and the wall of the main
cylinder was set to G=D ¼ 0:05, 0.10 and 0.15. A total of 27 geomet-
ric variations employing the wake-control cylinder have been
tested, in addition to the case of a plain cylinder (without control
cylinders) that served a reference.

Models were mounted on a especially built load cell attached to
a sliding frame and supported by air bearings. A pair of coil springs
provided the restoration force to the system, which was free to
oscillate only in the cross-flow direction, as shown in Fig. 2. An
optical sensor measured the displacement (y) of the cylinder, keep-
ing structural mass and damping to a minimum. The product
between the mass ratio (m&, calculated as the ratio between the
total oscillating mass and the mass of displaced water) and the
damping ratio (f, measured as a percentage of the critical damping)
was m&f ¼ 0:066. The natural frequency of the system (f 0) as well
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as the damping ratio (f) were determined by decay tests performed
in air.

The only flow variable changed during the course of the exper-
iments was the flow speed (U), which altered Re ¼ UD=m between
5000 and 50,000 (where m is the dynamic viscosity of water) and
the reduced velocity UR ¼ U=ðDf0Þ in the range of 2 to 20. A sum-
mary of all the parameters investigated in the experiment is pre-
sented in Table 1.

The dynamic responses due to VIV are analyzed across the UR

range by comparing the normalized amplitude of displacement

ŷ=D, where ŷ is the RMS of y times
ffiffiffi
2

p
(also called harmonic ampli-

tude). The dominant frequency of oscillation normalized by the
natural frequency (f=f 0) was obtained from the spectrum of dis-
placement with a non-dimensional resolution of 0:02. The mean
drag coefficient (CD) and the RMS of the lift coefficient (bCL) were
obtained by reducing the force measurement of the load cell with
the product 1

2qU
2D, per unit length of the cylinder (where q is the

specific mass of the water). The experimental uncertainties for the
measurements of all variables and parameters are specified in
Table 1.

3. Results and discussion

Preliminary VIV results were obtained for a plain cylinder to
validate the setup and serve as reference for comparison. Fig. 3a
presents the amplitude of displacement (ŷ=D) compared to the
results of Khalak and Williamson [6], who performed VIV experi-
ments with low damping at m& ¼ 2:4 and 3.3. The peak amplitude
of response is almost ŷ=D ¼ 1 around UR ¼ 4 and the typical three
branches of response (initial, upper and lower) are clearly identi-
fied in both datasets. The wider synchronization range observed
in the present data, extending from UR ¼ 3 to almost 15, is due
to our lower value of m& ¼ 1:09.

While Khalak and Williamson [6] normalized UR employing the
natural frequency of the system immersed in still water (f N , in
their notation), their previous work [5] had presented the same
data non-dimensionalizing UR by the natural frequency measured
in air (f 0). In the present paper we have recalculated the UR axis
from Khalak and Williamson [6] based on their data presented in
1996 to allow for a direct comparison of the data. Even though
there are small differences in m& and f, the agreement is very good.

Fig. 3b shows the dominant frequency of vibration (f=f 0). The
inclined line represents a nominal Strouhal number St ¼ 0:2, which
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0°

45° 135°
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22.5°

67.5° 112.5°

157.5°
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Fig. 1. Geometrical parameters for the main cylinder with (a) two, (b) four and (c) eight control cylinders (figures drawn not to scale). Incoming flow direction marked by the
arrow.

Fig. 2. Cross view of the experimental setup: elastic rig mounted on the test
section.
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is expected for a plain, static cylinder in this Re range. Both curves
show the synchronization range within which the frequency of
vortex-shedding is locked by the frequency of oscillation (f). The
curves depart from the St ¼ 0:2 line and follow closer to f=f 0 ¼ 1.
Even though the present data only shows the dominant frequen-
cies of response – and not concurrent frequency branches along
the UR range – the overall trend is in agreement with the reference.

Fig. 3c shows the mean drag (CD) as a function of UR, revealing
the amplification of drag during the synchronization range. The
maximum CD % 4 is consistent in both curves. The fluctuating lift
coefficients, presented in Fig. 3d, also show good agreement with
the results of Khalak and Williamson [6]. Even though our results
show a local amplification of bCL between UR ¼ 7 and 10, corre-
sponding to the transition from the upper to the lower branch of
response, the maximum values of bCL % 2:5 are in very good
agreement.

3.1. VIV response with 2 control cylinders

Fig. 4a presents the VIV response for the case with 2 control
cylinders compared with that of a plain cylinder. In general, all
cases with 2 control cylinders presented peak amplitudes of vibra-
tion at resonance (UR % 4) lower than that experienced by the plain
cylinder. But while the end of the VIV synchronization range was
clearly noticeable for the plain cylinder at UR ¼ 15, all systems
with 2 control cylinders sustained greater ŷ=D for the higher
reduced velocities.

The results obtained by Korkischko and Meneghini [7] for a sys-
tem with two control cylinders are also presented in Fig. 4a for
comparison. In their experiment, Re was varied between 1600
and 7500 and the geometrical parameters were ½dc=D;G=D* ¼
½0:06;0:07*, which fits in between our two cases with
½dc=D;G=D* ¼ ½0:06;0:05* and ½0:06;0:10*. Their response curve
revealed a single branch of considerable vibration extending until
the end of the UR range. While their maximum ŷ=D % 0:6 was
not too far from our results (which showed ŷ=D % 0:7), their sys-
tem did not develop severe vibrations for the higher reduced
velocities. On the other hand, our results showed a considerable
build-up of response with increasing flow speeds, with
½dc=D;G=D* ¼ ½0:06;0:10* reaching ŷ=D % 1:3 at UR ¼ 17. Kor-
kischko and Meneghini [7] concluded that their system did not
respond due to a galloping instability even though their control
cylinders broke the axial-symmetry of the body, making it, at least
in theory, susceptible to galloping.

This fundamental difference in the responses may suggest that
Re could play an important role in the dynamics of the system. The

difference of Re between the two experiments was only of one
order of magnitude, but it might have been that different regimes
of separated flow could have sustained galloping-like oscillations
for higher reduced velocities in our case. Another possible explana-
tion – and perhaps a more probable one – regards the difference in
the level of structural damping of both systems. Since Korkischko
and Meneghini [7] reported a f ¼ 0:01 (one order of magnitude
higher than in the present work), it might be that the responses
from both experiments are due to the same hydrodynamic mech-
anisms, but balancing different levels of structural damping.

In general, the behavior of the cases with 2 control cylinders
could be divided into two groups. The difference might not be
noticeable from the ŷ=D alone, but requires a close look in the fre-
quency signatures presented in Fig. 4b. Three cases made a group
of distinct response showing f=f 0 following closer the St ¼ 0:2 line
as UR was increased. They were ½dc=D;G=D* ¼ ½0:04;0:15*, [0.06,
0.15] and [0.08, 0.05]. They did not show the highest ŷ=D, but their
frequency signature was rather distinct from the other cases.
Somehow, the size and position of the two control cylinders made
the system increase f=f 0 with UR following the frequency of vortex
shedding. As a result, considerable vibration with ŷ=D % 0:4 to 0.7
were sustained for higher reduced velocities at a clearly distinct
frequency trend. On top of that, one has to bear in mind that such
a low-m&f system may also present a non-negligible residual
vibration due to turbulence buffeting, especially for high flow
speeds.

All other cases, apart form the three identified above, showed
considerable ŷ=D (which increases with UR), but with a periodic
response at a much lower f=f 0 signature, most of the time lower
than f=f 0 ¼ 1. Also, sudden jumps between different levels of dom-
inant f=f 0 suggest a broader spectrum of vibration, with not a sin-
gle branch of f=f 0 dominating over the UR range. For some cases,
f=f 0 was so low that it might indicate a slow lateral drift of the
cylinder.

We believe that the build-up of ŷ=D with increasing UR com-
bined with a low frequency signature suggests a galloping-like
excitation. The most significant cases were ½dc=D;G=D* ¼
½0:06;0:10*; ½0:08;0:10* and ½0:08;0:15*. Of course a detailed analy-
sis of the lift signal would be necessary to identify the phe-
nomenon (what is beyond the scope of this paper). Nevertheless,
inspired by the classical galloping theory presented by Parkinson
[14], it might be that different combinations of dc=D and G=D for
2 control cylinders produced different amounts of lift in phase with
the transverse velocity of the body to overcome the actual level of
f. In a future investigation, visualization of the flow around the
control cylinders will be required to determine if flow regimes of
a different nature were in action.

Turning now to Fig. 4c, CD curves show that all cases with 2 con-
trol cylinders presented the amplification of mean drag during and
beyond the VIV synchronization range, with CD remaining higher
than that measured for the plain cylinder for higher UR. Interest-
ingly, the cases with the highest ŷ=D for the higher UR were not
the ones that presented the highest CD. On the contrary, the three
cases mentioned above (following the vortex-shedding frequency)
presented the lowest mean drag for the widest range of UR. The
highest CD were found for ½dc=D;G=D* ¼ ½0:08;0:05* and the other
two cases governed by that distinct mechanism.

Finally, Fig. 4d does not reveal a distinct behavior that separates
the cases with 2 control cylinders. Perhaps the only thing to high-
light is that the highest bCL were observed for those cases whose
frequency signatures followed the St ¼ 0:2 line for longest. When
the response was tuned in the vortex-shedding frequency, the sys-
tem was able to extract more energy from the flow, thus resulting
in higher bCL.

Table 1
Parameters and variables employed in the present investigation.

Parameter or Variable Symbol Variation Uncertainty
(%)

Number of control cylinders N 0, 2, 4, 8
Diameter of control cylinders dc=D 0.04, 0.06, 0.08 "5
Gap between cylinders G=D 0.05, 0.10, 0.15 "5
Reynolds number Re 5$ 103–5$ 104 "5
Reduced velocity UR 2–20 "5
Mass ratio m& 1.09 "5
Damping ratio f 0.0061 "7

Harmonic amplitude of
displacement

ŷ=D "3

Dominant frequency of
oscillation

f=f 0 "5

Mean drag coefficient CD "3
RMS of lift coefficient bCL

"5
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3.2. VIV response with 4 control cylinders

The responses are considerably different when 4 control cylin-
ders were fitted around the main body; Fig. 5a presents ŷ=D for
all nine variations. In general, the three cases with the smallest
control cylinders (dc=D ¼ 0:04) presented a reduced peak of vibra-
tion when compared to the response of the plain cylinder; ŷ=D was
also considerably reduced by the end of the synchronization range
around UR ¼ 14. It appeared that these three cases were indeed
responding under the influence of VIV. The best case with
½dc=D;G=D* ¼ ½0:04;0:05* reduced the peak ŷ=D by 50%.

When dc=D was increased to 0.06, ½dc=D;G=D* ¼ ½0:06; 0:05* and
½0:06;0:10* presented a suppressed response. But the clear distinct
response was observed for the case ½dc=D;G=D* ¼ ½0:06;0:15*, with

a local resonant peak of VIV at UR % 4, followed by a galloping-like
response characterized by rapidly increasing amplitudes for
UR > 10. The frequency signature for ½dc=D;G=D* ¼ ½0:06; 0:15*, pre-
sented in Fig. 5b, showed that f=f 0 followed a clear dominant trend
below 1 for the entire response. Again, it might be that a specific
pair ½dc=D;G=D* for 4 control cylinders was able to interact with
the separated flow generating lift in phase with the transverse
velocity of the body. This galloping-like mechanism is possible to
occur for non-circular geometries and might have occurred for this
specific case of N ¼ 4 control cylinders.

The best VIV suppression for 4 control cylinders was found for
½dc=D;G=D* ¼ ½0:08;0:05*, with a maximum peak of only ŷ=D ¼
0:25 at the VIV resonance (UR ¼ 4) and ŷ=D < 0:2 for the rest of
the reduced velocity range. In contrast, the case ½dc=D;G=D* ¼

Fig. 3. Validation of the VIV response of a plain circular cylinder with m& ¼ 1:09 and m&f ¼ 0:066: (a) amplitude of displacement, (b) frequency of vibration, (c) mean drag
coefficient and (d) RMS of lift coefficient. Data for comparison is from Khalak and Williamson [5,6], with m&f ¼ 0:013.
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½0:08;0:15* responded with a very distinct behavior, with local
peaks of vibration at UR ¼ 4, 11 and 16. Its frequency signature also
remained below f=f 0 ¼ 1, suggesting that a galloping-like excita-
tion was present but could not be sustained until the highest
reduced velocity.

It is interesting to note in Fig. 5c that almost all cases presented
CD below that for a plain cylinder. Case ½dc=D;G=D* ¼ ½0:06;0:05*,
which presented a good suppression, achieved the lowest mean
drag for most of the reduced velocity range. As expected, the case
½dc=D;G=D* ¼ ½0:06;0:15*, with the highest response, also presented
the highest CD.

3.3. VIV response with 8 control cylinders

First of all, no galloping-like responses were observed for the
systems with 8 control cylinders, as seen in Fig. 6a, probably
because the apparent axial-symmetry of the body is somewhat
recovered with the distribution of more control cylinders. Almost
all cases presented ^y=D under the response curve of the plain
cylinder, with only a few exceptions. Cases with
½dc=D;G=D* ¼ ½0:04;0:10* and ½0:04;0:15* presented the highest
responses, with ŷ=D % 0:4 being sustained for higher UR beyond

Fig. 4. VIV response for a circular cylinder with N ¼ 2 control cylinders: (a)
amplitude of displacement, (b) frequency of vibration, (c) mean drag coefficient and
(d) RMS of lift coefficient.

Fig. 5. VIV response for a circular cylinder with N ¼ 4 control cylinders: (a)
amplitude of displacement, (b) frequency of vibration, (c) mean drag coefficient and
(d) RMS of lift coefficient.
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the synchronization range of the plain cylinder. The frequency sig-
natures for these two cases, shown in Fig. 6b, remained below
f=f 0 ¼ 1, suggesting that a mechanism other than VIV was driving
the vibrations.

The best suppression was achieved by the largest control cylin-
ders, in special by the case ½dc=D;G=D* ¼ ½0:08; 0:10*, that showed
almost no response (in fact, a reduction by 99%) near the VIV res-
onance and minimum ŷ=D < 0:1 for the wider range of UR. This
case, however, did not present the lowest mean drag, which was
increased by 12% when compared to that of a plain cylinder. The
lowest mean drag of all was recorded for the case ½dc=D;G=D* ¼

½0:04;0:05*, as seen in Fig. 6c. Very few cases with 8 control cylin-
ders managed to reduced the mean drag below that of the plain
cylinder for the wide range of UR. Finally, the highest bCL was
achieved by ½dc=D;G=D* ¼ ½0:04;0:10*, apparently responding with
f=f 0 following the frequency of vortex-shedding, as seen in Fig. 6d.

4. Further discussion

As seen above, the responses showed a variety of different
behaviors, making it a rather difficult task to find a general govern-
ing principle with the parameters we had in hand. Sometimes, a
small variation in one of the parameters produced a totally differ-
ent response. In an attempt to find a general geometric parameter
governing the response behavior, one could propose to add the
diameter of the control cylinder to the gap between the walls, thus
creating ðGþ dcÞ=D. This new parameter simply represents the
outermost radial distance of the control cylinders from the wall
of the main cylinder, in a way suggesting how far into the flow
the control cylinders could interfere.

Table 2 presents the parameter ðGþ dcÞ=D calculated for the
nine parametric variations for each N control cylinders. One can
easily note that ðGþ dcÞ=D more than doubles from the first to
the last case. Also, one could expect that small variations in this
parameter, say from ðGþ dcÞ=D ¼ 0:13 to 0.14, would not produce
qualitatively different responses. Indeed, cases ½dc=D;G=D* ¼
½0:08;0:05* and ½0:04;0:10* showed qualitatively similar responses
for N ¼ 2 and 4, but significantly different responses for N ¼ 8. In
summary, simply considering the outermost position of the control
cylinders represented by ðGþ dcÞ=Dwould not explain the complex
hydrodynamic interference by grouping together similar response
curves.

The most interesting general aspect is that all cases reduced
maximum amplitude of vibration at the VIV resonance. Most of
the cases also reduced ŷ=D for most of the synchronization range
(3 < UR < 13). On the other hand, the behavior for higher reduced
velocities, way past the synchronization range, appeared to have
shown a complex phenomenology. Pure VIV, pure galloping-like
and combined VIV and galloping-like excitations all appeared in
the responses for higher values of UR. The configurations with
N ¼ 4 control cylinders, for example presented the most diverse
response for the set of parameters investigated (Fig. 5). At the same
time that they presented the lowest recorded mean drag, they also
produced the highest amplitudes of vibration with the richest fre-
quency signatures. A small variation on the radial position and size
of the control cylinders produced unexpected responses.

The group with N ¼ 2 control cylinders have shown even higher
levels of mean drag, the highest recorded in the investigation.
Apart from the suppression of ŷ=D within the synchronization
range, all cases produced responses higher than that of the plain
cylinder for UR > 8. This behavior can be associated with a
galloping-like excitation, especially if the frequency signature is
taken into account. Korkischko and Meneghini [7] performed
experiments with a similar case with 2 control cylinders with
½dc=D;G=D* ¼ ½0:06;0:07* and m& ¼ 1:8. They reported that the
amplitude of response was completely different when compared
to that of a plain cylinder. In fact, their peak response of

Table 2
Parameter ðGþ dcÞ=D.

dc=D ¼ 0:04 dc=D ¼ 0:06 dc=D ¼ 0:08

G=D = 0.05 0.09 0.11 0.13
G=D = 0.10 0.14 0.16 0.18
G=D = 0.15 0.19 0.21 0.23

Fig. 6. VIV response for a circular cylinder with N ¼ 8 control cylinders: (a)
amplitude of displacement, (b) frequency of vibration, (c) mean drag coefficient and
(d) RMS of lift coefficient.
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ŷ=D % 0:6 at UR ¼ 4 was similar to our case ½0:04;0:15*, for which
the peak amplitude was ŷ=D % 0:7.

Four of our cases presented galloping-like instability: three
cases for N ¼ 2 (½dc=D;G=D* ¼ ½0:08;0:10*; ½0:08;0:15* and
½0:06;0:10*); and one for N ¼ 4 (½dc=D;G=D* ¼ ½0:06;0:15*). Based
on the theory for classical galloping summarized by Parkinson
[14], the position of the fixed control cylinders may have interacted
with the separation points as the cylinders oscillated across the
flow. The arrangement may have broken the body’s axial-
symmetry, generating lift in phase with the body’s transverse
velocity. Consequently, as we have observed, the amplitude of
response presented a rapid increase for increasing flow speeds,
with no sign of decrease, at least not in the range of the
experiments.

For other cases, it appears that the high amplitudes of oscilla-
tions due to galloping are competing with or being disrupted by
the resonant vibrations of VIV. This might be happening for the
case with N ¼ 4 and ½dc=D;G=D* ¼ ½0:08;0:15*, in which galloping
and VIV appear to interchangeably occur along the reduced veloc-
ity range. The peak displacement initially achieved by VIV around
UR % 4 could produce fast-enough vibrations to lead the system
into galloping for the rest of the UR range.

When the cylinder was surrounded by N ¼ 8 control cylinders,
no galloping-like response was observed. Apparently, the evenly
distribution of more control cylinder around the body helped it
to restore its axial-symmetry, at least as far as the main flow struc-
tures are concerned. One should note that galloping is highly
dependent on Reynolds number, free stream turbulence intensity
and other secondary factors, therefore we cannot assert that a
cylinder fitted with 8 control cylinders will never develop gallop-
ing under other flow circumstances. Zdravkovich [22] presented
results of a cylinder fitted with an axial-rod shroud. Several param-
eters were varied in order to find an optimum configuration, such
as the shroud diameter and porosity. The most effective shroud
geometry had dc=D ¼ 1:25 with a 63% porosity, hence this config-
uration was chosen to verify the optimal circumferential distribu-
tion by pulling out the rods. When the body was left with only 11
rods on each size (distributed around"90#), the amplitude of oscil-
lation was higher than that of a plain cylinder and resembled gal-
loping. Our results, together with Zdravkovich [22], confirm that
galloping-like excitation will be very sensitive to the position of
the control cylinders (especially if they are located near the sepa-
ration points), therefore hydrodynamic axial-symmetry must be
pursued.

5. Conclusion

Amplitude of displacement, frequency of oscillations, mean
drag and fluctuating lift coefficients have been measured for a
cylinder surrounded by a polar array of N ¼ 2, 4 and 8 wake-
control cylinders intended to act as VIV suppressors. The response
showed that while some configurations suppressed the flow-
induced oscillations, others enhanced them under a galloping-
like mechanism.

Most of the configurations presented a VIV resonant response
with a reduced amplitude of displacement when compared with
that of a plain cylinder. The best case for response reduction was
the configuration of 8 control cylinders with ½dc=D;G=D* ¼
½0:08;0:10*, which reduced about 99% of the peak amplitude for
the whole range of reduced velocities. Consequently, mean drag
was increased by 12% above the reference value for a plain cylinder
beyond the synchronization range.

In a very brief summary: (i) A polar array of 8 control cylinders
may achieve complete suppression of VIV without leading the sys-
tem into galloping. Suppression is achieved at the cost of increas-

ing the mean drag. (ii) A polar array of 4 control cylinders may
be the most efficient configuration to minimize the mean drag,
but the system may develop severe vibrations combining VIV
and galloping. (iii) The system is very sensitive to the parameters
investigated (N; dc=D and G=D), therefore small geometric varia-
tions in the control cylinders may produce unexpected responses.

It is worth noting that the system approximates an omnidirec-
tional device as the number of equally-spaced control cylinders is
increased. In the limit, we should be able to recover the behavior of
a cylinder fitted with shrouds (or axial rods) with equivalent den-
sity. In the present investigation, the arrangement with 8 control
cylinders is the closest to an axial-symmetric system. Perhaps this
is the reason why the device did not develop a galloping-like insta-
bility. An omnidirectional device would be very interesting for
practical applications in engineering, since the response would
be independent of the incoming flow direction.

Future research should focus on the hydrodynamic mechanisms
that govern the response of the system to flow-induced vibrations.
Visualization of the flow in the near wake and around the control
cylinders should shed light on the flow regimes that produce the
distinct responses observed above. The present investigation also
paves the way for experiments with active-control devices, for
example, with rotating (for example, as discussed by Modi [12])
or vibrating wake-control cylinders.
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a b s t r a c t

The present work investigates the use of a polar array of 8 wake-control cylinders as
a means of suppressing the vortex-induced vibration (VIV) of a larger circular cylinder.
The diameter of the control cylinders and their rotation speed were the main parameters
investigated. Experiments have been performed in water at Reynolds numbers between
5000 and 50,000. The rotating cylinders suppressed the peak amplitude of displacement
by around 70% when compared to that of a bare cylinder. A similar response was obtained
even if the rotation speed of the control cylinders was kept constant in relation to the
flow speed. A specific configuration with 8 non-rotating control cylinders achieved an
even better 99% suppression. As a consequence of reduced vibrations, the fluctuation of
lift and mean drag were not as amplified due to VIV. The results pave the way for further
studies concerning system optimization and support the development of efficient VIV
suppressors and dynamic positioning systems for large floating offshore platforms and
other applications.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Offshore platforms built to explore oil and gas in ultra-deep waters have become large floating units employed in almost
all the processes of drilling, production and storage. Platforms of the mono-column and spar types present hulls in the form
of a circular cylinder or other cylindrical shapes of bluff bodies, as reported by Gonçalves et al. (2010, 2011). Ocean currents
past the hull will not only generate steady drag but also drive the platform into flow-induced motions that may affect the
efficiency of the processes being carried out on the deck. Vibrations may also pose a threat to the structural integrity of the
platform, of its mooring lines and riser pipes underwater (Sagrilo et al., 2009).

This type of flow-induced motion has its origin in the vortex-shedding mechanism of the flow past bluff bodies, which
starts at the interaction of the separated shear layers in the near wake. Alternating vortices generate cyclic fluid loads (lift
and drag) that feed back on the body. If the frequency of vortex shedding is approximate one of the natural frequencies of the
elastic cylinder (f0), the system will be excited into vortex-induced vibrations (VIV) for a wide range of flow speeds. Please
refer to Bearman (1984) and Williamson and Govardhan (2004) for a detailed description of the phenomena involved.

Several strategies have been proposed to suppress VIV by disrupting thewake or avoiding the formation of vortices in the
first place. Zdravkovich (1981) presented an introduction to some of those techniques, while Choi et al. (2008) reviewed
different strategies to control the wake. With the advancement of control theory and its implementation, active strategies
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to suppress VIV appeared with the promise of higher efficiency. From a phenomenological point of view, these techniques
have to deal with very interesting (and complex) problems of unsteady hydrodynamics.

1.1. Flow control with interfering cylinders

It is known that the vortex-shedding mechanism of a circular cylinder can be controlled by the interference of small
cylinders positioned around the circumference of themain body (Strykowski and Sreenivasan, 1990;Hwang andChoi, 2006).
These wake-control cylinders interact with the boundary layer and the separated shear layers disrupting the formation of
vortices that are convected downstream to form the wake. As a consequence, the cyclic hydrodynamic forces feeding back
from the vortex-shedding mechanism are considerably reduced, if not completely suppressed. The mean drag acting on the
body is also reduced if wake suppression is achieved.

Placing a smaller control cylinder upstreamof themain cylinder is also awell-established strategy for drag reduction (Lee
et al., 2004). But Strykowski and Sreenivasan (1990) have shown that if the small control cylinder is now placed within a
defined region in the near wake, the formation of vortices could be effectively suppressed at a Reynolds number of Re = 80.
Previous investigations positioning control cylinders in various arrangements around a bluff body have been performed
through experiments and numerical simulations. Mittal (2001) performed numerical simulations of a static cylinder with
two control cylinders positioned at ±90� in relation to the incoming flow. He found that vortex shedding was completely
suppressed for a few arrangements at low Re.

Active open- and closed-loop control techniques have also received attention by the scientific community (Gad-El-Hak,
2000; Cattafesta and Sheplak, 2011; Schulmeister, 2012). Among them, the moving surface boundary-layer control (MSBC)
method relies on the injection of momentum in the boundary layer by the rotation of small elements placed within or very
near the boundary layer close to the separation points (Modi, 1997). Rotating elements are usually small circular cylinders
placed inside or just above the wall. It is thought that the injection of momentum postpones the effects of the adverse
pressure gradient, moving the separation points to a more advanced position. As a result, the wake becomes narrower and
the recirculation region behind the body reduced. One of the most important control parameters directly associated with
this technique is the ratio between the tangential velocity of the moving surface to the velocity of the free stream (Uc/U).

MSBC can be applied either as an active open- or closed-loop control strategy. Patnaik and Wei (2002) numerically
simulated the flow around a D-section cylinder with MSBC at Re = 200 and 400 and verified a recirculation-free zone in
the wake for Uc/U = 1.25. Muddada and Patnaik (2010) made further developments employing a cylinder fitted with two
simple rotary type mechanical actuators located at 120� from the frontal stagnation point. The effectiveness of the MSBC in
reducing dragwas shownby all cases tested. Mittal andRaghuvanshi (2001) employednumerical simulations to observe that
the control cylinders provided a local favorable pressure gradient in the wake region, thereby locally stabilizing the shear
layers. Following that, Mittal (2001) applied the MSBC to control the flow around a circular cylinder in two-dimensional
numerical simulations at Re = 100 and 10,000. At Re = 100 and Uc/U = 5, the flow achieved a steady state; at Re = 10,000
the wake did not reach a steady state, but it appeared highly organized and narrower when compared to the case without
any control. The effect of the gap between the control cylinders and the wall of the main cylinder at Re = 10,000 was later
investigated by Mittal (2003).

Korkischko and Meneghini (2012) performed an experiment employing MSBC with two wake-control cylinders as a
means to suppress VIV of an isolated cylinder free to oscillate in the cross-flow direction (Re ⇡ 7500). They found that
the two static control cylinders positioned at ±90� were not effective in suppressing VIV of the main body. However, when
they applied enough rotation to the small cylinders, the wake was stabilized and VIV suppressed.

1.2. Objective

MSBC with more than two control cylinders has already been experimentally tested as a means to suppress vortex
shedding of static cylinders as well as VIV of oscillating bodies (Silva-Ortega, 2015). Recently, Silva-Ortega et al. (2014b,
a) have shown that a polar array of 2, 4 and 8 control cylinders equally spaced around a static body may create an effective
device to suppress vortex shedding froma larger circular cylinder at Re = 100. Fundamental parameters (such as the number
of control cylinders, their diameter and their distance from the main body) have been shown to play a significant role in the
wake-control mechanism. Silva-Ortega (2015) also showed that the same arrays of control cylinders would impact the
hydrodynamic loads acting on a static cylinder at Re = 5000–50,000.

In a previous study, we have investigated the flow-induced vibration of a cylinder surrounded by a polar array of 2, 4
and 8 control cylinders that were not rotating (Silva-Ortega and Assi, 2017). That configuration was similar in nature to the
axial-rods suppressors described by Zdravkovich (1981). It was found that, depending on the geometric configuration, the
system could respond with a combination of VIV and galloping. In the present study, we will take the polar array with 8
control cylinders proposed by Silva-Ortega and Assi (2017) to control the wake of a static cylinder and employ it as a means
of suppressing the VIV of a larger circular cylinder. This time, the 8 wake-control cylinders will be rotating (as in the MSBC
technique) and thewhole systemwill be free to respond to the flow excitation in the cross-flow direction. In this experiment,
we expect to probe the parameter space regarding the dynamic response of the system to VIV.
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Fig. 1. Geometrical parameters for the main cylinder with eight control cylinders (figure not drawn to scale).

Fig. 2. Cross view of the experimental setup: elastic rig mounted on the test section.

2. Experimental setup

Experiments have been carried out in the CirculatingWater Channel of NDF (Fluids and Dynamics Research Group) at the
University of São Paulo, Brazil. The water channel has an open test section (0.7 m⇥ 0.9 m⇥ 7.5 m) and good quality flow
can be achieved up to 1 m/s with turbulence intensity of less than 3%.

A rigid section of a smooth circular cylinder was made of an acrylic tube of external diameter D = 100 mm. Two sets
of 8 control cylinders with diameter d were made of acrylic rods and supported by rings attached to the ends of the main
cylinder. Their distribution about the main cylinder is presented in Fig. 1, in which the arrow indicates the direction of the
incoming flow with velocity U . The axes of the control cylinders were parallel to the axis of the main cylinder, spanning the
whole length of the model (immersed length of 700 mm). The diameter of the control cylinders was varied in two steps of
d/D = 0.06 and 0.08, while the gap measured between the wall of the control cylinders and the wall of the main cylinder
was set to G/D = 0.1 in this study (based on the best results obtained by Silva-Ortega and Assi (2017)).

The top of the control cylinders was connected to a pulley system driven by an electric servo motor. All eight cylinders
rotated at the same speed ratioUc/U , whereUc is the tangential velocity on thewall of the control cylinders. As seen in Fig. 1,
control cylinders at the top (starboard) rotated in the clockwise direction, while cylinders at the bottom (port) rotated in the
opposite direction.

Models weremounted on a load cell attached to a sliding frame supported by air bearings, as shown in Fig. 2. A pair of coil
springs provided the restoration force to the system, which was free to oscillate only in the cross-flow direction. An optical
sensor measured the displacement (y) of the cylinder, providing that structural mass and damping were kept to aminimum.
The product between themass ratio (m⇤, calculated as the ratio between the total oscillating mass and themass of displaced
water) and the damping ratio (⇣ , measured as a percentage of the critical damping) wasm⇤⇣ = 0.066. The natural frequency
of the system (f0) as well as the damping ratio were determined during decay tests performed in air.

The only flow variable changed during the course of the experiments was the flow velocity, which altered the Reynolds
number between 5000 and 50,000 (Re = UD/⌫, where ⌫ is the kinematic viscosity of water) and the reduced velocity
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Table 1
Parameters.

1st series 2nd series 3rd series
Number of control cylinders N 8 0, 8
Diameter of control cylinders d/D 0.06, 0.08
Gap between cylinders G/D 0.1
Rotation of control cylinders Uc/U 1–10 0, 2, 2.5, 3 Uc = 0.266 m/s
Reynolds number Re 10,500 5000–50,000
Reduced velocity UR 4.2 2–20
Mass ratio m

⇤ 1.09
Damping ratio ⇣ 0.61%

UR = U/(Df0) in the range of 2 to 20. A summary of all the parameters investigated in the experiments is presented in Table 1.
The dynamic responses to VIV are analyzed across the UR range by comparing the normalized amplitude of displacement
(ŷ/D, where ŷ is the RMS of y times

p
2), the dominant frequency of oscillation normalized by the natural frequency (f /f0),

the mean drag coefficient (CD) and the RMS of the lift coefficient (ĈL). In addition, preliminary tests have been performed
with a bare cylinder (without control cylinders) to serve as reference for comparison.

2.1. Method

As reported by Silva-Ortega and Assi (2017), we have started this VIV research project testing 27 different cases varying
the parameters N , d/D and G/D for a cylinder surrounded by non-rotating control cylinders. Each case was run for a whole
range of reduced velocities, resulting in a series of VIV response curves. Now, in order to investigate the effect of the rotating
cylinders one needs to add the new parameter Uc/U . If Uc/U were to be varied in ten steps, say between 1 and 10, onewould
end up with another 270 cases to test over the same reduced velocity range.

To avoid an exhaustive investigation of the parametric space, our current work took the most effective case for VIV
suppression with non-rotating control cylinders found by Silva-Ortega and Assi (2017) to investigate its behavior for
rotating control cylinders. The chosen configuration had N = 8 control cylinders, d/D = 0.08 (with one extra variation)
and G/D = 0.1. The present investigation was divided into three series of experiments concerning the most significant
parameters expected to govern the phenomenon:

1st series:We chose configurations with d/D = 0.06 and 0.08 to investigate the dependency of the peak response at
the VIV resonance to the rotation speed of the control cylinders. Uc/U was varied in smaller intervals to probe which
rotation speed would produce the most suppression at UR = 4.2.
2nd series: We took the best case for peak suppression found in the first series and varied the whole range of UR

keeping Uc/U constant. Since U was increased to change UR, the actual rotation of the control cylinders (Uc) was also
increased in order to keep Uc/U constant.
3rd series: We set ou to investigate the effectiveness of VIV suppression if the actual rotation speed Uc was kept
constant for the whole range of UR, thus altering the ratio Uc/U for each step of U . For that matter, the value of Uc that
produced the best peak suppression in the first series was employed.

3. Results and discussion

The parametric variation for each series of experiments is also presented in Table 1. We shall now turn to their results.

3.1. 1st series: peak amplitude at UR = 4.2

In addition to the case with d/D = 0.08, one extra variation was tested with a smaller diameter of d/D = 0.06 (both
cases kept a radial separation of G/D = 0.1). Numerical simulations of the flow performed by Silva-Ortega et al. (2014a)
have shown that a rotation speed of Uc/U = 3 was enough to control vortex shedding of a static cylinders for low Re. Based
on that, we varied Uc/U in small intervals from 1 to 9. The reduced velocity was kept constant at UR = 4.2 (equivalent to
Re = 10,500), which corresponded to the point of maximum amplitude for the bare cylinder at the VIV resonance (to be
discussed later).

Fig. 3 presents the peak amplitude of response versus Uc/U for both cases with d/D = 0.08 and 0.06. The lowest value
of [ŷ/D]peak ⇡ 0.2 was found at Uc/U = 2.5 for both cases. For lower and higher rotation speeds the peak response was
considerably increased. Consequently, Uc/U = 2.5 and its neighboring values of Uc/U = 2 and 3 were chosen as the
reference values to proceed to the second series of experiments.
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Fig. 3. Peak amplitude of response varying Uc/U at UR = 4.2 and Re = 10,500.

3.2. 2nd series: VIV response for Uc/U = 2 , 2.5 and 3

A preliminary experiment with a bare cylinder (without surrounding control cylinders) has been performed to validade
the setup and generate the reference data for comparison. Fig. 4 shows the reference case obtained for reduced velocities
up to 20. The results of VIV amplitude of displacement, frequency of oscillation, mean drag coefficient and fluctuating lift
coefficient obtained for the bare cylinder are in good agreement with other experimental results collected by Williamson
and Govardhan (2004), Norberg (2003) and Assi et al. (2013), who also employed the same apparatus. The reference results
for a cylinder with 8 non-rotating control cylinders (Uc/U = 0) have been extracted from Silva-Ortega and Assi (2017).

Fig. 4 shows the amplitude of displacement (ŷ/D), frequency of oscillation (f /f0), mean drag coefficient (CD) and RMS
of lift coefficient (ĈL) for the case with d/D = 0.08 with varying Uc/U versus reduced velocity. The response curve for the
bare cylinder is in clear contrast with the curves of the rotating cylinders (Fig. 4(a)). In general, all rotation speeds managed
to reduce the amplitude of VIV in the initial, upper and lower branches (as defined by Williamson and Govardhan (2004)).
At UR = 4.2, the peak responses match those presented in Fig. 3. (Please note that the data points do not cover the whole
range of UR up to 20. Since the actual rotation speed (Uc) of the control cylinders was increasing wth UR, the motor reached
it maximum rotation speed limiting the experiment to UR ⇡ 12.)

The case with Uc/U = 2.5 presented the lowest response for the widest range of UR, but the other two neighboring cases
also showed similar responses. The striking result, however, came out when the responses were compared with that for 8
non-rotating cylinders: A cylinder surrounded by 8 non-rotating cylinders (Uc/U = 0) appeared to offer considerably better
suppression than the cases with rotating cylinders. For the whole range of UR, the case with non-rotating cylinders rarely
passed ŷ/D = 0.1, while the rotating cylinders reached ŷ/D ⇡ 0.25 during the synchronization range. The non-rotating
wake-control cylinders appear to be more efficient in suppressing VIV, at least for this set of parameters.

The frequency of response presented in Fig. 4(b) clearly shows that the bare cylinder and the cylinder with rotating
cylinders all follow the expected behavior for VIV. The data points representing the dominant f /f0 follow closely the
St = 0.2 line (the inclined line representing the typical Strouhal number for a circular cylinder). The dominant frequency
for Uc/U = 0, on the other hand, shows that the system only oscillated at very low frequencies, associated with slow drifts
at small displacements.

As a consequence of the VIV suppression, CD presented in Fig. 4(c) shows considerably low values for the case with
Uc/U = 0. When the control cylinders are rotating, mean drag is increased above the value found for the bare cylinder,
considerably higher than the mean drag for the case with non-rotating cylinders. Fig. 4(d) also reveals that the rotating
cylinders generate more lift driving the excitation, when compared with the results for the non-rotating cylinders.

The same experiment was repeated for smaller control cylinders with d/D = 0.06, as seen in Fig. 5. Again, the cases with
rotating cylinders showed a considerable reduction of response when compared with that of the bare cylinder. Maximum
response for the case with Uc/U = 2.5 reached ŷ/⇡ 0.25 during the synchronization range. The frequency response, as well
as the curves of CD and ĈL, show a similar behavior.

The unexpected response now appeared for the case with non-rotating control cylinders. Instead of suppressing VIV for
the whole range of UR, the case with slightly smaller control cylinders (d/D = 0.06) presented a peak response of ŷ/D ⇡ 0.5
at the resonance. This is worse than the displacement measured for the cases with rotating cylinders. In fact, it appears that
the VIVmechanism could not be suppressed as before, but only restricted to a shorter range ofUR. Fig. 5(b) shows a dominant
frequency signature over the Strouhal line, indicating that the fundamentalmechanisms are not different fromVIV. In spite of
reducing the peak amplitude of vibration, the rotating cylinders still presented CD higher than that of non-rotating cylinders
for the whole UR range; for most of the time it was also higher than that of a bare cylinder.
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(a) (b)

(c) (d)

Fig. 4. VIV response for 8 control cylinders with d/D = 0.08 at Uc/U = 0, 2, 2.5 and 3: (a) Amplitude of displacement, (b) frequency of oscillation, (c) mean
drag and (d) RMS of lift coefficients.

3.3. 3rd series: VIV response for Uc = 0.266m/s

In the third series, the actual rotation of the control cylinders (Uc) was kept constant independently of the flow speed (U),
thus altering the ratio Uc/U as UR was increased. The value of Uc = 0.266m/s was chosen because it was the actual rotation
speed at the peak-amplitude during the first series of experiments; i.e. Uc = 0.266m/s resulted in Uc/U = 2.5 for UR = 4.2.
Keeping Uc constant resulted in a variation of Uc/U = 5.25–0.52 for the range of UR = 2–20, since both parameters vary
inversely to each other, but linearly with flow speed.

At a constantUc , the reduced velocity range could nowbe extended up toUR = 20. Results for both caseswith d/D = 0.08
and 0.06 are compared with those of the bare cylinder, the non-rotating control cylinders (Uc/U = 0) and the rotating
cylinders with Uc/U = 2.5 discussed in the second series.

The amplitude of displacement presented in Fig. 6(a) reveals that both cases with rotating control cylinders managed
to reduce the VIV response in the synchronization range. But the residual vibration of ŷ/D > 0.2 is still worse than the
suppression achieved by the non-rotating cylinders (Uc/U = 0). (Please note that both curves match at UR = 4.2 in all plots
of Fig. 6, as expected.)

With Uc = 0.266 m/s, UR was extended to 20, revealing a drop in the ŷ/D curve at UR ⇡ 12, marking the end of the
synchronization range (also noticeable in the frequency signature of Fig. 6(b)). It is important to note that the system was
not induced into other types of vibration for higher flow speeds, such as galloping or turbulence buffeting.
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(a) (b)

(c) (d)

Fig. 5. VIV response for 8 control cylinders with d/D = 0.06 at Uc/U = 0, 2, 2.5 and 3: (a) Amplitude of displacement, (b) frequency of oscillation, (c) mean
drag and (d) RMS of lift coefficients.

Mean drag and RMS of lift show the similar pattern seen before. Although the case with Uc = 0.266 m/s presented a
decrease in CD for higher reduced velocities (Fig. 6(c)), it did not reduce drag below the value measured for non-rotating
control cylinders. As expected, CD was below that of a bare cylinder during synchronization, but larger thereafter.

Fig. 7 shows a slight improvement in the response if the control cylinderswith d/D = 0.06 are rotated atUc = 0.266m/s,
when compared with the previous case with d/D = 0.08: the synchronization range is shortened, but the maximum
displacement is kept at the same level of ŷ/D ⇡ 0.35 (Fig. 7(a)).

As happened before, the rotating control cylinders produced better suppression than the non-rotating cylinders (Uc/U =

0), but with the cost of increasing drag for a wider range of reduced velocities (Fig. 7(c)). For UR > 10, the cases with
Uc/U = 0 and Uc = 0.266 m/s were able to reach the lowest values of mean drag recorded for the bare cylinder beyond the
synchronization range (CD ⇡ 1.4).

3.4. Discussion of all three series

As a first general comment, it is important to highlight that the VIV suppression achieved by an array of 8 non-rotating
control cylinders (Uc/U = 0) with d/D = 0.08 was higher than any other case investigated in the present work.
Consequently, mean drag was also reduced to the minimum observed value. Indeed, only by positioning the non-rotating
control cylinders around the main cylinder was enough to achieve an almost 99% suppression of the peak amplitude of
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(a) (b)

(c) (d)

Fig. 6. VIV response for 8 control cylinders with d/D = 0.08 at Uc = 0.266 m/s: (a) Amplitude of displacement, (b) frequency of oscillation, (c) mean drag
and (d) RMS of lift coefficients.

displacement at resonance (Fig. 4). This arrangement, however, proved to be very sensitive to the position and the diameter
of the control cylinders. A small reduction to d/D = 0.06 would make the non-rotating cylinders suppress only roughly 50%
of the peak amplitude of displacement (Fig. 5). This result invites further investigation of the hydrodynamic mechanisms
between the control cylinders and the boundary layer.

Now, when the cylinders (with either d/D = 0.08 or 0.06) were allowed to rotate, the system consistently reached
approximately 70%–75% of VIV suppression at resonance, also becoming less susceptible to small variations in the d/D
parameter. In brief, the rotating cylinders may not provide the very best performance, but certainly a more predictable
suppression.

Differently from the results reported by Korkischko andMeneghini (2012), who employed two rotating control cylinders
at ±90� (d/D = 0.06, G/D = 0.07 and Uc/U = 5–25), our cases with 8 rotating cylinders did not achieve the same level
of VIV suppression and drag reduction. Although Korkischko and Meneghini (2012) applied much higher rotation speeds
to their cylinders, we do not believe that the total rotation (or sum of angular momentum transferred to the flow) is the
only parameter to govern the suppression. The position and size of the control cylinders indeed play a significant role, as
supported by previous studies on the sensibility of wakes (Strykowski and Sreenivasan, 1990; Patino et al., 2015, 2017)
together with our results for Uc/U = 0 (that managed to stabilize the wake with no rotation).

In general, the behavior of the response found when the 8 control cylinders were rotating was qualitatively the same for
all configurations. Since the second series was based on the best results of the first series (Uc/U = 2.5) — for higher and
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(a) (b)

(c) (d)

Fig. 7. VIV response for 8 control cylinders with d/D = 0.06 at Uc = 0.266 m/s: (a) Amplitude of displacement, (b) frequency of oscillation, (c) mean drag
and (d) RMS of lift coefficients.

lower rotation speeds (Uc/U = 2 and 3) the peak amplitude was found to be higher —, we believe that the response curves
for rotating cylinders with Uc/U 6= 2.5 should not produce better results, at least not for this range of Re.

If rotation is to be applied, the question would turn to the optimum rotation speed. The optimum Uc is most certainly a
function of U , since the vortex shedding mechanism by which the cylinders are actuating depends on Reynolds number. But
if it were not necessary to correct Uc for each flow speed, the control strategy for this kind of suppression device would be
significantly simplified. Since this study is not concerned with optimization, we have limited the investigation to keeping a
constant Uc .

As seen in Figs. 6 and 7, keeping a constant actual rotation of Uc = 0.266 m/s (which corresponded to Uc/U = 2.5 at
UR = 4.2) did not change the response significantly. It is possible that an optimized rotation speed would produce better
suppression at the new peak of response (around UR = 7 in Figs. 6(a) and 7(a)), but one is left to wonder if it would be worth
implementing this kind of closed-loop control in a practical application. This is an interesting topic for further investigations.

4. Further discussion and future work

The present investigation showed that the classical axial rods are not a bad suppressor after all, given that their geometry
(density, distribution, etc.) is correct. For certain conditions, a simple array of non-rotating control cylinders in the form of
axial rods might achieve satisfactory suppression. If the operator can live with the difference in peak amplitude between
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Fig. 8. Instantaneous vorticity contours (s�1): d/D = 0.05, G/D = 0.1 and Re = 100.
Source: Reproduced from Silva-Ortega et al. (2014a).

Fig. 9. Detail of the streamlines around the rotating control cylinders of Fig. 8(b). Flow is from left to right; colored by velocity magnitude (m/s). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Reproduced from Silva-Ortega et al. (2014a).

0.25 and 0.5, it might be better to stick to the non-rotating cylinders as far as drag is concerned. Now if vibration is to be
reduced at any drag cost, say to avoid fatigue damage or dynamic loads, then the rotating cylinders could be considered as
an option. In a floating offshore platform with a bluff-body hull (a mono-column or a spar platform, for example), it might
be desirable to mitigate vibration and the dynamic loads associated with it even if the mooring lines are to be loaded with
extra drag.

If the main cylinder were a static body, the rotation of the control cylinders could help to suppress the wake and reduce
loads due to vortex shedding, as shown by Silva-Ortega (2015). But rotating cylinders may not produce the expected result
of VIV suppression with drag reduction if the cylinder is free to respond to the flow (this is true for this range of Re). Again,
this is proof that if a device appears to reduce hydrodynamic loads on a static body it does not necessary mean that it will
make a good VIV suppressor, especially if the system presents lowmass and damping. It might be the case that for a system
with higherm⇤⇣ , a suppressor with 8 rotating cylinders could present a qualitatively different response.

Of course there are infinite possibilities to arrange and drive the rotating control cylinders around the main cylinder. The
present work was never intended to find an optimal solution to the problem, but simply to probe a finite parametric space.
For a serious optimization study this space is so vast that a robust optimization method must be considered to tackle the
problem, especially if each of the control cylinders had an independent Uc . So many possibilities make it a very exciting,
non-linear optimization problem for future investigations.

The most interesting question about the hydrodynamic mechanisms caused by the 8 control cylinders remains unan-
swered. Some light has been shed from numerical simulations of the flow performed by Silva-Ortega et al. (2014a). Fig. 8
compares the results of two-dimensional numerical simulations of the flow around static cylinders with 8 rotating control
cylinders with Uc/U = 0 and 1.5 at Re = 100. Even though Re was significantly lower, it was possible to notice that the
rotating control cylinders not only producedweaker vortices, but a narrowerwakewith an almost doubled vortex-formation
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length. A closer look at the streamlines around the control cylinders on one of the sides (presented in Fig. 9) reveals the
existence of reversed flow near the wall of the main cylinder. This might be causing the global separation point (marked
by a cross on a saddle region of the streamlines) to offset from the wall of the main cylinder in between the third and the
fourth control cylinders. The momentum transferred from the control cylinders might help the flow to better withstand the
adverse pressure gradient, delaying separation.

The interaction between the control cylinders and the boundary layer must be strongly depend on Re, especially for
Re approaching the transition from a laminar to a turbulent regime of the boundary layer. In the present experiments, for
example, wewere not able to evaluate if the control cylinders were immersed or outside of the boundary layer, as suggested
by Silva-Ortega et al. (2014a) for Re = 100. In order to better evaluate the governing hydrodynamic mechanisms at higher
Re, further investigations employing flow visualization and detailed PIV of the near wake and around the control cylinders
are planned in the near future.

Finally, the behavior of thewake for oscillating cylinders under VIV is of particular interest, since the angle of attack of the
incoming flow relative to the control cylinders will vary through the cycle of vibration. It is possible that the relative angle
of attack due to the body’s cross-flow velocity causes the frontal stagnation point to approach one of the control cylinders. If
that occurs, say at an instant of the oscillation cycle, the wake could present unsteady variations in its dynamics. We believe
that an arrangement that produces a control cylinder at the stagnation pointwould break the symmetry of the flow, resulting
in a non-symmetric wake that could result in a steady lift force to one of the sides. This topic should be pursued in future
experiments.

5. Conclusion

Amplitude of response, frequency of oscillations, mean drag and fluctuating lift coefficients were measured for two
configurations of a device made with 8 rotating control cylinders employed to suppress the VIV of a main circular cylinder.
Results were obtained for three different values of the rotation parameter (Uc/U) and, finally, with a constant tangential
velocity (Uc) between Re = 5000 and 50,000.

Both configurations (with d/D = 0.08 and 0.06) reduced the peak amplitude of response in about 70% when compared
with that of a bare cylinder for a rotation speed of Uc/U = 2.5. A similar reduction was found when the tangential velocity
remained constant at Uc = 0.266 m/s across the range of reduced velocities. Nevertheless, as far as VIV suppression and
drag reduction were concerned, the best case overall was found for the configuration with 8 non-rotating control cylinders,
(d/D = 0.08 with G/D = 0.10 and Uc/U = 0), achieving approximately a 99% suppression of the peak displacement at the
VIV resonance.

In general, the RMS of lift was also minimized by all configurations. Measurements have shown that these configurations
with 8 control cylinders do not reduce the mean drag coefficient as much as the case with 2 rotating control cylinders
reported in the experimental investigation of VIV by Korkischko andMeneghini (2012) and in the numerical simulations of a
static cylinder performed by Mittal (2001). In terms of efficiency, the casewith a constant tangential velocity (Uc) performed
better than with a constant rotation ratio (Uc/U) along the reduced velocity range. The peak amplitude of displacement was
not very different between the two cases, but the constant Uc would require less energy to drive the 8 control cylinders as
flow speed was increased.

An explanation for the hydrodynamic mechanisms around the control cylinders and in the near wake is still required.
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A B S T R A C T

Experiments have been carried out with circular cylinders fitted with a suppressor of vortex-induced vibrations
called the Ventilated Trousers (VT). Tests were performed at laboratory scale in a free-surface water channel
with fixed and free-to-respond models in one degree of freedom. The oscillating tests were performed with
elastically mounted cylinders with low mass and damping (m �* < 0.009). Reynolds number varied from 5000 to
25000 and reduced velocity varied between 2 and 15. Tests with fixed models showed that the VT increased the
mean drag and practically eliminated the fluctuating lift force when compared to a bare fixed cylinder. Free-
response tests showed that the VT was able to reduce 60% of the peak amplitude of vibration, thus reducing the
maximum drag compared with that of a bare oscillating cylinder. Three hypotheses are proposed to explain the
physical mechanism underlying the suppression by the VT: local disruption of vortex shedding; three-
dimensional disruption of the near wake; and the increase of hydrodynamic damping.

1. Introduction

The phenomenon of vortex-induced vibration (VIV) may be asso-
ciated with serious damage caused to offshore cables, flexible pipes and
other slender structures such as drilling risers. In the pursuit of viable
solutions, the technological development of novel devices for suppres-
sing VIV has been a current topic in both scientific and industrial
communities. During the last three decades many devices have been
investigated and offered as commercial products, such as helical
strakes, fairings, shrouds, etc. However, following the industry demand
for more efficient, robust and easy-to-install devices, new ideas for VIV
suppressors are still under investigation. Helical strakes, for example,
may be the most widely employed suppression device of them all.
Strakes became sturdy contraptions with the improvement of molded
plastic, but they still reduce VIV with the cost of increasing drag, taking
considerable time to install and occupying large areas on the deck.

In this context, Brown and King (Brown, 2010) created an inter-
esting new device for suppressing VIV of drilling risers called the
“Ventilated Trousers”, or simply VT in this paper. The VT is composed
of a net of flexible cables through which an orthogonal array of bobbins
(with a specific geometry) is fitted. In the words of its creators, the VT
suppressor is “a loose fitting sleeve in the form of a light flexible net
with integral bobbins in a special arrangement. It is omni-directional,
rugged, and made from materials compatible with the offshore
environment” (King et al., 2013). Essentially, the VT is an improve-

ment on the idea of wrapping the drilling riser in a type of flexible cover
able to deform with the flow and mitigate the body response to the
hydrodynamic loads.

The suppression efficiency of the VT has been studied over the last
years with promising results. Brown and King (2008), for example,
performed experiments in a laboratory scale with flexible cylinders at
Re�1.2 ◊ 106, showing a 90% reduction of the VIV peak amplitude of
displacement. (Reynolds number is defined as Re UD �= / , where U is the
flow speed, D is the cylinder diameter and ν is the kinematic viscosity of
water.) So far, all known experiments have been performed either with
flexible pipes or near real conditions at sea, especially regarding the
range of Re3.7 ◊ 10 < < 1.2 ◊ 104 6 and the structural properties of the
risers (Brown and King, 2008; King et al., 2013).

1.1. Objective

Although these results are important for revealing the suppressing
potential of the device, they do not shed much light on the physical
mechanisms by which the VT is able to suppress vibrations. The
present work is part of an investigation to study the interaction
between model and flow at moderate Re and very low damping
conditions. We are concerned with the scientific investigation of the
hydrodynamic and hydroelastic mechanisms that make this type of
suppressor effectively work.

This paper characterizes the VIV response of the VT in idealized
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laboratory conditions, in which all variables were under control and
crucial parameters were reduced to enhance response. The idea was to
test the suppression device in the most pristine condition, indeed
different from the real application in the ocean, but free from
interference that could mask the understanding of the fundamental
physical phenomena.

2. Experimental method

Experiments have been carried out in the free-surface water
channel of NDF – Fluids and Dynamics Research Group – at the
University of Sao Paulo, Brazil. The water channel has a test Section
0.7 m wide, 0.9 m deep and 7.5 m long. The flow speed U is variable up
to 1 m/s, allowing for tests with different values of Reynolds number
with a turbulence intensity less than 3%, obtained from velocity and
turbulence profiles measured with hot-film anemometers by Assi
(2005).

A rigid section of a circular cylinder was attached to a platform on a
1-degree-of-freedom rig, which allowed the model to oscillate freely in
the transverse direction (y), as shown in a cross-sectional view in
Fig. 1. The platform was mounted on air bearings to reduce friction,
thus ensuring very low structural damping and maximum response. A
pair of coil springs was responsible for providing the stiffness of the
system and an optical positioning sensor (employing laser triangula-
tion) measured the displacements with a resolution of 0.2 mm without
adding extra damping.

A load cell installed between the cylinder and the platform
measured instantaneous lift and drag forces acting on the cylinder.
Because the load cell moved with the cylinder, the inertial component
due to the mass of the model being accelerated was subtracted from the
total force measured by the sensor. Details on the manufacturing and
operation of the load cell were presented by Assi (2009). For further
details on the elastic rig, other VIV experiments employing the rig and
information on the facilities please refer to Cicolin et al. (2015, 2014)
and Assi et al. (2013, 2010a, 2010b, 2009). Drag and lift coefficients
have been reduced by dividing the fluid forces measured by the load
cell by �U DL1

2
2 , where ρ is the specific mass of water, D is the external

diameter and L is the submerged length of the cylinder.
Visualization of the flow in the near wake has been performed by

the emission of hydrogen bubbles from a thin wire stretched parallel to
the axis of the cylinder at about D1 upstream and D1 to the side of the
centerline of the wake. A laser sheet illuminated a plane near the region
where the free shear layers separated and rolled up to form vortices. A
camera positioned perpendicular to the laser plane captured a field of
view of almost D4 by D4 in the xz-plane.

The circular cylinder was cut from a perspex tube with an external
diameter of D= 50 mm; the underwater aspect ratio was L D/ = 13.4.

The cylinder top end was attached to the load cell and the bottom end
was closed to keep it watertight. Free-decay tests have been performed
both in air and in water to determine the natural frequency and
damping associated with the models. The natural frequencies were
obtained from the power spectrum of displacement and the damping
parameter from the logarithmic decrement of the decay response
(values will be presented later when discussing the VIV response).
Reduced mass m* (defined as the ratio of total structural mas to the
mass of displaced fluid) and structural damping ζair (defined as a
fraction of the critical damping) were kept to a minimum in order to
enhance the response. All experimental parameters are presented in
Table 1.

The VT device was built with a flexible net of common polymeric
twisted threads. Dozens of bobbins were manufactured out of poly-
meric rods, drilled through and attached to the net. All materials
employed in the construction have been carefully chosen to ensure the
VT was neutrally buoyant when submerged. Fig. 2 illustrates the
assembly as it was ready for tests.

Some considerations must be presented concerning the geometric
parameters of the VT model: The description found in the patent
(Brown, 2010) allows for some variations on bobbin dimensions. The
reference tests presented by Brown and King (2008), however, have
been performed employing a fixed ratio between geometric variables.
To allow for comparison, the same proportions for the bobbins, mesh
size and bobbin distribution found in that report have been kept in the
present work, as shown in Fig. 3. The mesh element width (w), net
perimeter (p) and the ratio between the cylinder and the characteristic
size of the bobbin (d D/ ) were specified.

Previously, Brown and King (2008) verified that a mesh element
width of 5 times the bobbin characteristic dimension (w d= 5 ) resulted
in a more effective VT than one in which w d= 3 . They also reported
that the net perimeter must be between p D= 4 and �D3

2 (or D4.71 ).
Besides that, the patent recommended that the diameter ratio must
vary between d D/ = 0.08 and 0.125. Following this recipe and con-
sidering that the parameters are not completely independent, the
largest possible mesh was built respecting the patent restrictions and
recommendations. The final dimensions of the VT model employed in
the present work are shown in Table 2.

3. Results

Preliminary experiments have been carried out with fixed models in
flowing water in order to measure the hydrodynamic coefficients of
drag (streamwise direction) and lift (cross-flow direction) acting on the
cylinder with and without the VT. The mean drag coefficient (CD)
obtained for the cylinder with and without VT are shown in Fig. 4(a).
The bare cylinder presented C � 1.1D for the whole range of Re, as
expected and in agreement with Zdravkovich (1997). On the other
hand, the VT increased CD by approximately 25% when compared with
that of a fixed bare cylinder, at least in the range

Re10 ◊ 10 < < 25 ◊ 103 3. This result was expected, considering that
the effective diameter of the cylinder with the VT is larger than the
external diameter D of the bare cylinder, thus exposing a larger frontal
area to the incoming flow. (Please note that CD was normalized
employing D for both cases.) But the main observation is that the
complex geometry of the VT increased the loss of kinetic energy to the
wake as the flow passed around the body, at least as far as fixed
cylinders were concerned.

Fig. 1. Cross-section of the water channel showing the cylinder mounted on the elastic
rig.

Table 1
Experimental parameters.

m* fN air (Hz) f f�N N water (Hz) ζair ζwater

Bare cylinder 2.8 0.68 0.58 0.3% 1.6%
Cylinder with VT 2.9 0.66 0.56 0.3% 6.5%
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Fig. 4(b) shows the magnitude of fluctuation of the lift force,
calculated as the RMS of the lift signal. C�L for a bare cylinder was near
0.2, showing considerable dispersion in this Re range. Norberg (2003)
has already determined that such a dispersion occurs at this Re range
due to the sensibility of the boundary conditions. Nevertheless, the
results were in agreement with those obtained by Williamson (1996)
for tests under similar conditions. In contrast with the increase in drag,
the VT managed to almost completely reduce C�L for the range of Re
tested. This finding indicates that the VT indeed acts to considerably
reduce the cyclic fluctuation of lift due to vortex shedding, at least for
fixed cylinders.

The preliminary results obtained for the fixed cylinders do not
guarantee that the VT will remain as effective in mitigating C�L (and
thus suppressing the force excitation) once the cylinder starts to
oscillate. Previous studies have shown that three-dimensional suppres-
sors that are effective in disrupting vortex shedding from fixed bodies,
might not be so for oscillating bodies (for example, Kleissl and
Georgakis, 2011; Owen et al., 2001; Bearman and Brankovic, 2004).
Hence, experiments with free-to-responde models were necessary to
evaluate the behavior of the VT while responding to VIV.

3.1. Cross-flow VIV

Free-to-respond experiments have been performed with cylinders

with and without the VT in the same range of Re as in the fixed tests.
The objective was to characterize the cross-flow VIV response of the
cylinder with VT compared to that of the bare cylinder. The pair of
springs (setting the natural frequency fN of the system) was chosen to
ensure that the whole synchronization range of VIV fitted within the Re
range of the experiment. As mentioned before, m* and ζair were kept to
a minimum in order to enhance the response.

Fig. 5 presents the VIV response of the cylinder with VT compared
to that of a bare cylinder for a wide range of reduced velocity (U Df/ N).
The non-dimensional amplitude of vibration ly D/ (top plot) was
obtained by multiplying the RMS of the displacement signal by 2 ,
thus yielding the equivalent amplitude of a harmonic oscillation. The
non-dimensional dominant frequency of oscillation f f/ N (bottom plot)
was obtained by applying a fast Fourier transform on the displacement

Fig. 2. (a) Details of the VT net with bobbins. (b) VT net fitted around the cylinder. (c) Cylinder with VT mounted on the rig and ready for tests in water.

Fig. 3. Geometric properties of the VT suppressor: (a) bobbin dimensions (b) mesh arrangement and (c) cross-section view of the model.

Table 2
Model parameters.

Cylinder diameter D 50 mm
Bobbin characteristic dimension d 5.8 mm D0.11
Mesh element width w 29 mm d5
Net perimeter p 232 mm D4.64
Submerged length L 670 mm D13.4
VT dry mass 161 g
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data. (Please remind that fN was determined for the cylinder immersed
in water.)

The bare cylinder presented a typical VIV response, in agreement
with the results obtained by Williamson and Govardhan (2004). The
peak response amplitude occurred atU Df/ � 5N , when the frequency of
vortex shedding resonated with the natural frequency of the system. At
around this point, f f/ N crossed the line representing f f/ = 1N and
remained close to the natural frequency of the system until the end of
the synchronization range. For U Df/ > 12N the response died out,
marking the end of the VIV synchronization range. Please note that a
residual vibration of insignificant amplitude and frequency near to the
natural frequency remained for higher reduced velocities (higher Re)
due to turbulence buffeting.

At first sight, it is evident that the cylinder with the VT presents a
suppressed response when compared to that of a bare cylinder. One
may note that the displacement response curve for the VT actually “fits
inside” the typical VIV curve for the bare cylinder, thus showing a
reduced amplitude and synchronization range. The upper and lower
branches of vibration, clearly identified for the bare cylinder, have now
disappeared with the VT. A reminiscence of the upper branch still holds
the peak amplitude of vibration at ly D/ � 0.4 close to U Df/ = 5.5N ,

resulting in a 60% reduction when compared with that of the bare
cylinder. Interestingly the frequency signature of the cylinder with the
VT is fairly similar to that of the bare cylinder, except for small
variations due to differences in fN water of both systems.

Fig. 6 compares examples of the time series of displacement for
roughly 60 cycles of vibration (t is time) for a bare cylinder and a
cylinder with VT during the VIV synchronization range. It becomes
clear that both responses are indeed harmonic, each with a distinct
dominant frequency for the entire sample. At U Df/ = 6N , in which the
bare cylinder oscillated in the upper branch of response, the maximum
y D/ of the cylinder with VT was not only less than half of that of the
bare cylinder, but also the envelope of displacement presented less
variations in time. At U Df/ = 9N , near the end of the synchronization
range, both envelopes became equally well behaved.

Drag measurements obtained during the VIV experiments are
shown in Fig. 7(a). As expected, the mean drag coefficient of the bare
cylinder increased significantly during the synchronization range,
reaching C � 3D when the cylinder oscillated with the largest displace-
ment. As the amplitude decreased towards the end of synchronization,

Fig. 4. Force coefficients for fixed models versus Re: (a) mean drag and (b) RMS of fluctuating lift. Key: •bare cylinder, � cylinder with VT.

Fig. 5. Displacement (top) and frequency (bottom) responses versus reduced velocity for
the cylinders under VIV. Key: •bare cylinder, � cylinder with VT.

Fig. 6. Examples of time series of displacement during the VIV response for a bare
cylinder (gray line) and a cylinder with VT (black line).
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drag was restored to C � 1D , very close to the value found for the fixed
cylinder. These results are in good agreement with those obtained by
Williamson (1996) for similar tests. The cylinder with the VT showed
the same behavior, presenting a maximum value when the displace-
ment amplitude was the largest, then decreasing as the amplitude
became smaller until it reached the value measured for a fixed cylinder
with VT for U Df/ > 12N . It is worth noting that the maximum value of
C � 2D was almost 30% lower than that found for the bare cylinder. But
after the synchronization range, CD approximated to 1.4, which was
practically the same value found for the fixed model, but larger than the
CD of a bare cylinder.

RMS of lift coefficient presented in Fig. 7(b) shows thatC�L of a bare
cylinder increased up to approximately 3.7 during VIV resonance, at
U Df/ � 5N , when there was maximum energy transfer from the flow to
the system. As the reduced velocity increased, C�L decreased reaching
values close to zero when the synchronization ended. As expected,
there was a strong relationship between C�L and ly D/ , as explained by
Williamson (1996). The RMS of lift coefficient of the cylinder with the
VT followed a similar trend as that for the bare cylinder, but with
values significantly lower. A maximum value of C� � 1.5L was only 40%
of that of the bare cylinder, showing that the VT is capable of reducing,
to a certain extent, the magnitude of the fluctuating force exciting the
cylinder also during VIV.

A detailed view of the frequency signature of the phenomenon is
presented in Fig. 8. The top plot presents the VIV response as a
reference. The middle plot presents color contours representing the
power spectrum of displacement, highlighting the dominant frequen-
cies ( f f/ N) versus reduced velocity. The bottom plot, presents a similar
power spectrum, this time for the lift force acting on the body, in which
the dominant frequency of lift ( f f/C NL ) is noticeable. The highest peak in
the spectrum for each reduced velocity resulted in the points plotted
before in Fig. 5. Refer to Assi (2009) for details on how these plots have
been made.

The f f/ N spectrum for the bare cylinder (Fig. 8(a)) shows the typical
frequency signature for the VIV response. A single branch of dominant
frequency remained near the natural frequency of the system during
the lock-in range. Both displacement and lift showed the same
signature, as expected. After the end of lock-in, for U Df/ > 12N , the
cylinder presented minute vibrations due to turbulence buffeting and
f f/C NL followed the St = 0.2 line (indicated by the inclined solid line on
the plot).

The frequency signature for the cylinder with VT (Fig. 8(b)) was
essentially the same, with a single frequency branch dominating along
the synchronization range. However, outside the lock-in range, we did

not see a significant component of f f/C NL following the St = 0.2 (not
even when the flow was more energetic at U Df/ > 12N ), but a broader
lift spectrum instead. This explains the lower values of C�L measured
for a fixed cylinder and presented before in Fig. 4(b). While the three-
dimensional geometry of the VT might be efficient in disrupting vortex
shedding from fixed cylinders, a coherent wake may reappear as the
cylinder is excited into cross-flow oscillations near its natural fre-
quency.

4. Discussion on the hydrodynamic mechanisms

The preliminary tests with fixed models revealed important features
of the behavior of the VT suppressor. The increase in mean drag was
not a surprise, since the installation of the VT around the cylinder
simply increases the effective frontal area facing the incoming flow. The
complex geometry of the net and bobbins also increased the surface
area of the system, resulting in stronger separated flow around the net
and bobbins as well as increased friction losses.

In another recent work (Cicolin and Assi, 2017) we have observed
that the VT increases the vortex-formation length in the near wake. We
argued that “the longer formation length found for the VT is respon-
sible for a decrease in the fluctuating lift feeding back to excite the
cylinder into VIV.” Particle-image velocimetry (PIV) measurements of
the wake, reproduced here in Fig. 9, reveled that “while most of the
flow is separated from the outer surfaces of the bobbins, the entrain-
ment of flow that permeates the VT mesh bleeds through to feed the
near wake region, extending the vortex-formation length and increas-
ing the base pressure.” This mechanism, which interferes with the two-
dimensional formation of vortices, was attributed to the peculiar
geometry of the bobbins working like a shroud.

On the other hand, it was rather unexpected that the VT managed to
reduce the RMS of lift to almost zero for the whole range of Re, hence
we conclude that the VT successfully acted to weaken the vortex-
excitation force. Considering that hydrodynamic loads were measured
as an integral force at the top of cylinder, it is reasonable to hypothesize
that the VT could either eliminate the sectional lift force, or uncorrelate
it along the span of the cylinder. This is a clear indication that the
three-dimensional geometry of the VT suppressor is important for its
effectiveness.

In order to investigate three-dimensional flow structures along the
span, flow visualization employing hydrogen bubbles has been per-
formed for a fixed cylinder with and without VT at Re=7800. A curtain
of bubbles was released from a thin wire and illuminated by a laser
sheet on the xz-plane, parallel to the axis of the cylinder. Figs. 10–12

Fig. 7. (a) Mean drag and (b) RMS of lift coefficients versus reduced velocity for the cylinders under VIV. Key: • bare cylinder, � cylinder with VT.
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compare the three-dimensional wake structures along the span created
by the VT with that of a bare cylinder.

Fig. 10 presents two examples of the three-dimensional wake
structure downstream of a bare cylinder (the cylinder walls are
represented by thick lines, while the center is marked by a dot-dashed
line). A clear vortex filament parallel to the axis of the cylinder is seen

at its maximum extension. The estimated vortex-formation length is
seen to be around D1 and D2 downstream of the cylinder center, which
is in good agreement with other values found in the literature for this
Re range, including the value of 1.5 measured by Cicolin and Assi
(2017) for Re=9000 and reproduced in Fig. 9.

The flow structures in the wake of a cylinder with VT are shown in
Fig. 11. Distinct three-dimensionalities associate with the bobbins are
visible in the near wake, specially for the first D2 downstream of the
cylinder center. The formation of a coherent vortex filament is not seen
to be occurring within the plane illuminated by the laser sheet, which
agrees with Cicolin and Assi (2017), who measured a vortex-formation
length of 5.31 for Re=9000 (Fig. 9(b)). A detailed view of the flow
around the VT is seen in Fig. 12, confirming that complex three-
dimensional flow structures generated at the scale of the bobbins
dominate the flow in the near wake. We believe these flow structures
enhance flow entrainment and mixing of the free shear layers,
disrupting the formation of an organized vortex wake.

In essence, we believe that (i) the shrouding effect acting on the
two-dimensional level proposed by Cicolin and Assi (2017) combined
with (ii) the three-dimensional disruption of the near wake by the
bobbins are the hydrodynamic mechanisms that weaken the vortex-
shedding excitation force that drives VIV.

Nevertheless, other secondary effects might also be playing a role in
reducing the response of a cylinder with VT. The decay tests performed
in air and in water raised another important aspect associated with the
VIV response. Although both cylinders were designed to present the
same level of structural damping (ζair), the VT increased the hydro-
dynamic damping of the system when submerged: ζwater for the
cylinder with VT is almost 5 times higher than that of the bare cylinder.
This is due to the viscous loss of energy as the cylinder oscillates in still

Fig. 8. Amplitude of displacement (top) and power spectra of displacement (middle) and lift (bottom) for both models.

Fig. 9. Phase-averaged vorticity contours (s�1) in the near wake of (a) a bare cylinder
and (b) a cylinder with VT. Re=9000. Reproduced from Cicolin and Assi (2017).
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water. Of course the interaction of the oscillating cylinder with its own
wake will change its perception of the fluid loads (Vandiver, 2012, refer
to), yet it is reasonable to think that the VT is likely to present lower
amplitudes of vibration due to its increased non-linear hydrodynamic
damping. A considerable number of works (Vikestad et al., 2000;
Blevins, 2001, for example) show that the VIV response is very
sensitive to damping, especially at low mas ratios.

Consequently, we believe that the suppression efficiency of the VT
in real applications out in the ocean may be higher than that observed
in this laboratory experiment performed in idealized conditions with
low mass and damping. In real conditions at sea, structural damping
reaches values ten times higher, while hydrodynamic damping may
also be increased due to higher-Re and higher-turbulence effects. In
spite of increasing drag for non-oscillating models, the VT reduces drag
when the maximum amplitude of vibration occurs. All facts combined
make the VT an attractive solution as far as hydroelasticity is concerned
(not to mention other criteria regarding storage and installation).

5. Conclusion

The cross-flow VIV response of a cylinder with VT was character-
ized through the synchronization range for Re=2 ◊ 103 to 25 ◊ 103 and
reduced velocities up to 15. Our main conclusion in the present work is
that the VT suppressor is capable of reducing the VIV peak amplitude
of displacement in 60%, with an increase of about 25% in drag, when
compared to a bare cylinder under VIV. This was achieved for idealized
conditions in the laboratory: at moderate Reynolds number, low mass
ratio and extremely low-damping systems.

Experiments with fixed models also confirmed that a cylinder with
VT presents reduced RMS of lift, but increased drag when compared to
a bare cylinder. While the three-dimensional geometry of the VT might
be efficient in disrupting vortex shedding from fixed cylinders, a
coherent wake may reappear as the cylinder is excited into cross-flow
oscillations. Only a small lift force is required for that to occur with
low-mass-damping systems under VIV.

Results helped us raise three hypotheses to explain the physical
mechanism underlying the suppression by the VT: (i) local disruption
of the two-dimensional vortex shedding mechanism and the formation
of the wake; (ii) global changes in the three-dimensional flow structure

Fig. 10. Visualization of the near wake of a fixed bare cylinder. Two instants. Flow is from left to right. Re=7800.

Fig. 11. Visualization of the near wake of a fixed cylinder with VT. Two instants. Flow is from left to right. Re=7800.

Fig. 12. Detail of the flow structures around the VT. Flow is from left to right. Re=7800.
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along the span of the cylinder caused by the flow around the bobbins;
and (iii) the increase of hydrodynamic damping caused by the VT.
Future works should try to isolate parameters to verify whether one or
a combination of mechanisms is responsible for the suppression.

Finally, we would like to highlight that idealized experiments in
laboratory scale are designed to allow for the control of the funda-
mental parameters involved in the investigation, thus shedding light on
the physical mechanisms being studied. We cannot fully predict how
the VT would behave in real applications at much larger scales. We can
make reasonable assumptions knowing that Reynolds number, turbu-
lence intensity, structural damping and other parameters will be
significantly different. Data collected from large-scale field tests cannot
be directly compared to the results presented in this paper without
such considerations being made.
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Hydrodynamic loads on a circular cylinder surrounded by two, four and
eight wake-control cylinders
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A B S T R A C T

The hydrodynamic loads of mean drag and fluctuating lift are presented for a circular cylinder fitted with 2, 4 and
8 wake-control cylinders positioned around its circumference. The device is fitted around the body to interact
with the flow in the near wake and control vortex shedding. The efficiency regarding lift suppression and drag
reduction has been investigated for nine different cases varying the diameter of the control cylinders and their
relative gap from the wall. All cases have been compared with the hydrodynamic forces of a plain cylinder. The
configuration with 4 control cylinders, gap ratio of G=D ¼ 0:05 (G is the gap between the control cylinders and
the main cylinder of diameter D) and diameter ratio of d=D ¼ 0:06 (d is the diameter of the control cylinders)
produced the lowest drag when compared to all other configurations: mean drag coefficient was 0.75, approxi-
mately 50% lower than that of a bare cylinder. Experiments have been conducted in a free-surface water channel
at moderated Reynolds numbers between 5000 and 50,000.

1. Introduction

The periodic shedding of vortices downstream of a bluff body gen-
erates cyclic hydrodynamic loads that feed back on the body. Fluctuating
lift will be at the frequency (fs) in which vortices are shed in the wake,
while drag will be at double that frequency (2fs). With time, the cyclic
loads may cause structural problems to the body, such as fatigue damage,
a special concern for slender structures as riser pipes and submarine
cables. Flexible structures with a bluff shape may be excited by this pe-
riodic load and respond with considerable oscillations. The motion of the
structure interacts with the flow and develop into what is called vortex-
induced vibrations (VIV).

Mitigating vortex shedding and VIV are important issues for many
engineering applications, ranging from aeroacoustic problems in aviation
to the vibration of a drilling riser in offshore exploration. Hence, the
scientific community and the industry are constantly pursuing the
development of new methods to control the wake and design novel VIV
suppressors (devices attached to the body to mitigate the damaging ef-
fects of the vibration).

Wake-control mechanisms can be classified as passive or active sys-
tems (Choi et al., 2008), with the latter considering both open-loop and
closed-loop control systems. Zdravkovich (1981) presents several
passive-control devices, classifying them into three categories according

to the way they affect the vortex-shedding mechanism: (i) Surface pro-
trusions, which affect separation lines and/or separated shear layers:
they involve helical strakes, wires, fins, studs, or spheres, among others.
(ii) Shrouds, that affect the entrainment layers around the body. The
perforated shroud and the axial rods are two examples. (iii) Near-wake
stabilizers, that affect the switch of the confluence point. Fairings and
splitter plates, which prevents communication between the opposing
shear layers of the wake, are common examples. These passive methods
require no external energy supply and they act primarily disrupting the
formation and development of an organized wake of vortices.

Among the various solutions for passive vortex-shedding and VIV
suppression, the helical strakes are one of the most commonly used in air
and water flows (Bearman and Brankovic, 2004; Korkischko and Mene-
ghini, 2010). But despite the proven efficiency of the strakes in reducing
fluctuating lift, they increase the mean drag (Korkischko and Meneghini,
2011; Zdravkovich, 1981), which is undesirable in a great number of
applications.

Placing a smaller control rod upstream of the main cylinder is a well-
established strategy for drag reduction (Lee et al., 2004). Strykowski and
Sreenivasan (1990) proved that if the small control cylinder is otherwise
placed within a defined region in the near-wake (downstream) of the
main cylinder, the wake could be effectively suppressed at a Reynolds
number of Re ¼ 80. Suppression of the vortex street is associated with
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damping the instability in the near-wake region. In their investigation,
the ratio between the diameter of the control cylinder to the diameter of
the main cylinder varied between d=D ¼ 1=3 to 1/20. They also showed
that wake suppression is the most efficient when the small control cyl-
inder is placed roughly around 1D downstream of the cylinder center and
1D to the side of the centerline of the wake for d=D ¼ 0:05 to 0.07. Their
experimental and numerical results also indicate that this region of
effectiveness strongly depends on Re and d=D. For Re ¼ 80 to 300, Kuo
et al. (2007) showed detailed flow structures revealing the primary
mechanism that led to significant lift and drag reduction without
completely suppressing the shedding of a vortex street.

Zdravkovich (1981) presented results of an axial-rod shroud,
following the concept that the shroud should break-up the flow into a
large number of small vortices. Axial rods were fitted about the circular
cylinder and several parameters were varied in order to find an optimum
configuration for VIV suppression: the number of rods (varied between 4
and 218, defining the shroud porosity), the distance of the rods to the
wall of the cylinder (gap) and their circumferential distribution. Tests
were performed in a water channel and in a wind tunnel for
Re " 103–105. The most interesting result, as far as suppression was
concerned, was obtained for a porosity of 63% (39 rods) when the rods
were positioned with a gap of G=D " 0:25 from the cylinder wall. But
most surprisingly was the fact that the best suppression was achieve
when the rods were not evenly distributed around the cylinder, but
grouped close to the near wake, leaving an unshrouded portion (of about
90 degrees of the circumference) facing the free stream.

More recently, control of the wake of a cylinder with rotating control
cylinders has been investigated experimentally (Korkischko and Mene-
ghini, 2012) and numerically (Mittal, 2001; Silva-Ortega et al., 2014b).
In a recent study, Silva-Ortega and Assi (2017) reported on VIV experi-
ments performed with the same control cylinder discussed in the present
work acting as VIV suppressors. They found that the best VIV suppressor
was “composed of 8 control cylinders and mitigated 99% of the peak
amplitude of vibration when compared to that of a plain cylinder; mean
drag was increased by 12%”. They also concluded that “a polar array of 4
control cylinders was the most efficient configuration to minimize the
mean drag, but the system developed severe vibrations combining VIV
and a galloping-like response”.

The objective of the present work is to investigate a method of sup-
pressing the vortex wake of a circular cylinder employing a passive
control strategy. A rigid section of a circular cylinder of diameter D is
surrounded by a polar array ofN ¼ 2, 4 and 8 smaller control cylinders of
diameter d, equally spaced about the circumference and separated by a
gap G from the wall of the main cylinder. The ratios d=D and G=D are the
control parameters of the experimental investigation. As seen above,
previous results found in the literature indicate that there are many other
significant parameters apart from the number and size of the control
cylinders. Therefore, we have conducted an experimental investigation
trying to probe the domain of only a few of those governing parameters.

The diameter of the control cylinders (d) was varied in three steps
around the size of the smaller cylinders reported by Strykowski and
Sreenivasan (1990). Since the vortex-formation length tends to be
reduced by an increase in Re, the region of effective wake control pre-
sented by Strykowski and Sreenivasan (1990) for Re ¼ 80 should be
brought much closer to the base of the cylinder for our Re range. Inspired
by the work of Zdravkovich (1981), the gap between the control cylin-
ders and the wall of the main cylinder (G) was also varied in three steps.
In the present parametric study neither the main cylinder nor the control
cylinders were allowed to move or respond to the flow, so the efficiency
of the wake-control method was evaluated by measuring the hydrody-
namic loads acting on the body.

2. Experimental method

Experiments have been carried out in the recirculating water channel

of NDF (Fluids and Dynamics Research Group) at the University of S~ao
Paulo, Brazil. The water channel has a free-surface test section which is
0.7 m wide, 0.9 m deep and 7.5m long. Good quality flow can be ach-
ieved up to 1.0m/s with turbulence intensity less than 3%. This labo-
ratory has been especially designed for experiments with flow-induced
vibrations. For further details the apparatus, validation and information
on the facilities please refer to Assi et al. (2013, 2010a, 2010b).

A rigid section of a circular cylinder was made of a perspex tube of
external diameter D ¼ 100mm with a smooth surface. Two, four or eight
identical control cylinders were made of perspex rods and supported by
rings attached to the ends of the main cylinder. The distribution of the
control cylinders about the main cylinder is presented in Fig. 1, in which
the arrow indicates the direction of the incoming flow. The position of
the N control cylinders was chosen so that they were equally spaced
around the main cylinder, but keeping a symmetric distribution in rela-
tion to the streamwise axis, with no cylinder at the frontal stagnation
point.

The axes of the control cylinders were parallel to the axis of the main
cylinder, spanning the whole length of the model (immersed length of
L ¼ 700mm). Two extra supporting rings were installed at L=3 and L2=3
positions to hold the control cylinders in place and prevent them from
vibrating by reducing their free span. The control cylinders did not
present significant deflections nor vibrations due to their own VIV in the
course of the experiments. The diameter of the control cylinders was
varied in three steps of d=D ¼ 0:04, 0.06 and 0.08. The gap measured
between the wall of the control cylinders and the wall of the main cyl-
inder could be set to G=D ¼ 0:05, 0.10 and 0.15. The angular distribution
of the control cylinders was kept constant for all cases while varying d=D
and G=D. The models were the same employed by Silva-Ortega and Assi
(2017).

Models were mounted on a especially built load cell (developed by
Assi, 2009), rigidly attached to the frame of the test section to deduce the
instantaneous and time-averaged hydrodynamic forces on the cylinder
model. An illustration of the experimental setup is presented in Fig. 2. A
summary of all the parameters investigated in the experiment is pre-
sented in Table 1, adding up to 27 different experimental configurations.
In addition, preliminary tests have been performed with a bare cylinder
(without control cylinders) to serve as a reference for comparison. The
only flow variable changed during the course of the experiments was the
flow velocity U, which alters the Reynolds number (Re ¼ UD=ν, based on
the diameter D of the bare cylinder and the viscosity of water ν) between
5000 and 50,000.

3. Results

Measurements of lift and drag were made for each of the 27 config-
urations presented above. Results for a bare cylinder in the range Re ¼
5;000 to 50,000 are presented as a reference and for validation. This Re
range falls in the subcritical regime in which transition to turbulence
occurs in the separated shear layers and a considerable scatter of lift and
drag is found in the literature (Zdravkovich, 1997). The mean drag co-
efficient (CD) and the RMS of the lift coefficient (bCL) are presented for a
bare (or plain) cylinder in Fig. 3. In Fig. 3a, mean drag for the plain
cylinder remains roughly around CD " 1:4, not too far but higher than
the curve presented by Zdravkovich (1997), who summarized results
from various sources.

It is worth highlighting that, in the present experiments, the top end
of the cylinder pierced the free surface of the water, hence a small frac-
tion of the drag is due to the generation of waves. The Froude number
(Fr ¼ U=

ffiffiffiffiffiffi
gD

p
, where g is the acceleration of gravity) was rather small,

varying between Fr ¼ 0:05 and 0.5 for a constant ratio of Reynolds
number to Froude number of Re=Fr " 105. Chaplin and Teigen (2003),
whomeasured the wave-resistance drag on a bare cylinder piercing a free
surface at Re=Fr ¼ 2:79# 105, concluded that an increase in drag due to
the formation of waves is only significant for Fr around 1 and should not
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occur for the Fr < 0:5, which is the case in the present experiments.
Other effects, due to free stream turbulence intensity (Bell, 1983) or

cylinder aspect ratio (Zdravkovich et al., 1989), for example, may
contribute to change the mean drag from the canonical value expected
for a two-dimensional body. Nevertheless, since all models have been
measured under the same condition, the current value of CD for a plain
cylinder will be taken as a reference for comparison in this study.

Fig. 3b compares the RMS of lift to the data collected by Norberg
(2003). In our study, the overall force acting on the cylinder was
measured with a load cell positioned on the top. Due to
three-dimensional flow effects, bCL " 0:3 differs from that expected for a
two-dimensional section of the cylinder. Norberg (2003) analyzed
several experimental and numerical results at different conditions and

Fig. 1. Geometrical parameters for the main cylinder with
(a) two, (b) four and (c) eight control cylinders. Flow
approaching in the direction of the arrow.

Fig. 2. Experimental setup: cylinder control cylinders
mounted on the load cell.

Table 1
Parameters for the present investigation.

Number of control cylinders N 0, 2, 4, 8

Diameter ratio of the control cylinders d=D 0.04, 0.06, 0.08
Gap ratio between cylinders G=D 0.05, 0.10, 0.15
Reynolds number Re 5# 103 to 5# 104

Froude number Fr 5# 10$2 to 5# 10$1
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proposed an expression to convert three-dimensional lift (bcL) into
sectional lift (bcL), taking into account Re and the aspect ratio of the body.
Therefore, Fig. 3b also presents the corrected bcL " 0:4, as proposed by
Norberg (2003), which is in good agreement with the results collected in
the literature.

Tests with N ¼ 2, 4 and 8 control cylinders with different diameters
(d=D), were performed for the same Re range of the bare cylinder. For
each configuration, CD and bCL were measured for 36 equally spaced
values of Re as flow speed was increased. In order to evaluate the force
coefficients, the cylinder diameter (D), was employed as a standard
dimension for all configurations. It is known that the effective external
diameter of the system is slightly different depending on the distribution,
diameter and gap of the control cylinders for each case. Silva-Ortega and
Assi (2017) suggested the use of the combined parameter ðGþ dÞ=D,
simply representing the “outermost radial distance of the control cylin-
ders from the wall of the main cylinder, in a way suggesting how far into
the flow the control cylinders could interfere.” In the present study,
ðGþ dÞ=D varied between 0.09 and 0.23. However, as far as hydrody-
namic forces are concerned, the frontal area of the model did not change
as G was increased for each d. Also, variations in d only slightly changed
the frontal area. Therefore, we believe the main body's diameter (D) is
the most representative dimension to non-dimensionalize the hydrody-
namic loads so that they could be compared against each other for each
case.

Results are presented in three sets, grouped by the diameter of the
control cylinders.

3.1. Control cylinders with d=D ¼ 0:04

CD for all cases with d=D ¼ 0:04 is shown in Fig. 4a. Apart from the
lowest values of Re, the behavior of each case is quite clear. All cases with
2 control cylinders (2 cyl.) presented CD higher than that of the bare
cylinder, with the case G=D ¼ 0:15 showing the highest CD " 1:8. The
cases with 4 control cylinders (4 cyl.) presented the highest variations,
with the great majority of points falling below CD for the bare cylinder.
The case G=D ¼ 0:05, in special, presented the lowest CD " 0:8 of all
cases for most of the Re range. All cases with 8 control cylinders (8 cyl.)
presented values below CD for the bare cylinder; also showing the smaller
dispersion within the group.

Fig. 4b shows bCL for all cases with d=D ¼ 0:04. Like before, all cases
with 2 control cylinders tend to show bCL higher than that of the bare
cylinder. Cases with 4 control cylinders tend to show bCL below the value
for the bare cylinder. But more importantly, cases with 8 control cylin-
ders showed the lowest values of bCL for the Re range, with the cases
G=D ¼ 0:05 and 0.10 presenting the RMS of lift very close to zero.

(Please note that the limits of the vertical axes in all figures were kept
the same to allow for direct qualitative comparison between all figures in

the paper.)

3.2. Control cylinders with d=D ¼ 0:06

Fig. 5a shows CD for all cases with d=D ¼ 0:06. At first sight, one may
realize that the larger diameter of the control cylinders has increased CD

for all cases. For most cases this might be due to the increase of the
effective diameter of the body. While all cases with 2 control cylinders
produced the highest CD, all cases with 8 control cylinders now fall in the
middle, but still with CD below that for the bare cylinder. With the lowest
CD, now appears the group with 4 control cylinders, with the case G=D ¼
0:05 showing the lowest CD " 0:75 for most of the Re range.

Results of bCL in Fig. 5b are not very different. All cases with 2 control
cylinders produce the highest RMS of lift, above the value for the bare
cylinder. On the other hand, all cases with 4 and 8 control cylinders
managed to reduce bCL below that of a bare cylinder for most of the Re
range, highlighting cases 8 cyl. with G=D ¼ 0:15 and 4 cyl. with G=D ¼
0:05 that produced almost zero bCL.

3.3. Control cylinders with d=D ¼ 0:08

Finally, Fig. 6a presents CD for cases with d=D ¼ 0:08. With the
largest control cylinders, almost all cases presented CD roughly equal or
higher than that of the bare cylinder. The exception was the group with 4
control cylinders, which showed CD " 1 for most of the Re range. This
time, the cases with 4 control cylinders and G=D ¼ 0:05 and 0.10 pre-
sented the lowest CD.

The RMS of lift shown in Fig. 6b follows the same behavior seen
before, with all cases with 2 control cylinders showing higher bCL than
that of the bare cylinder. Again, cases with 4 and 8 control cylinders
reduced bCL considerably, with cases N ¼ 8 with G=D ¼ 0:10 and N ¼ 4
with G=D ¼ 0:05 reaching almost zero bCL.

4. Discussion

It is easy to get confused with so many response curves considering
the variations in all three parameters: N, d=D and G=D. The first general
consideration to be made is that the position of the control cylinders in
relation to the flow is indeed very important. The three parameters
combined work to alter the influence of the control cylinders over the
near wake, not to mention their influence over the flow before it sepa-
rates from the body.

For example, for the case with N ¼ 2, it is believed that the control
cylinders are interfering with the flow near the separation points, since
they are positioned at (90∘ in relation to the incoming flow. With 4
control cylinders, we can still suppose that the rear cylinders (located at

Fig. 3. (a) Mean drag coefficient and (b) RMS of lift coefficient versus Re for the bare cylinder. Results compared to Zdravkovich (1997) and Norberg (2003).
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(135∘) interact with the separating flow and/or the separated shear
layers in the near wake, but the front cylinders (located at(45∘) are most
likely interacting with the attached boundary layers. The same must be
happening with N ¼ 8: while cylinders positioned at (22:5∘ and (67:5∘

are most likely interacting with the boundary layer, cylinders at (112:5∘

are located very near the natural separation points, while cylinders at
(157:5∘ might be interacting with the near wake. This is supported by
the flow visualization provided by the numerical simulations performed
by Silva-Ortega et al. (2014a,b) at Re ¼ 100.

The cases with 2 control cylinders have shown a behavior similar to
that observed by Mittal (2001), who performed numerical simulation of
the flow past a circular cylinder at Re ¼ 104, with d=D ¼ 0:05 and
G=D ¼ 0:075. In their case, the numerical simulations allowed for a
better understanding of the flow. In our study, among all experiments,
the cases with N ¼ 2 consistently appeared as the worst arrangement to
suppress bCL and reduce CD. It actually increased drag above the value for
a bare cylinder. On the other hand, the cases with 4 control cylinders
with diameters d=D ¼ 0:06 and 0.08 presented a considerable reduction

of bCL with the lowest CD.
Recently, motivated by the work of Strykowski and Sreenivasan

(1990), Patino et al. (2015) performed flow sensibility analysis of the
flow to study the effects of wake control with small cylinders located
around the main cylinder with d=D ¼ 0:06 and G=D ¼ 0:07 at Re ¼ 47.
Changing the position of a single control cylinder around the main cyl-
inder, they found that the wake became stable when the control cylinder
was positioned at 0∘–50∘, 135∘–225∘ and 310∘–360∘, thus inhibiting the
formation of vortices. Please note that their study suggested an effective
control of the wake with control cylinder positioned at the front and at
the back of the main body.

Of course the sensibility analysis conducted by Patino et al. (2015)
was focusing at an extremely low Re, at the beginning of the hydrody-
namic instability that leads to the formation of the vortex wake. Never-
theless, leaving the difference of Re aside, we cannot ignore the fact that,
in our work, only the cases with N ¼ 4 and 8 have cylinders located
within the regions highlighted by Patino et al. (2015). Those cases were
precisely the ones to present the most reduction in bCL and CD. It is worth

Fig. 4. (a) Mean drag coefficient and (b) RMS of lift
versus Re for 2, 4 and 8 control cylinders with d=D ¼ 0:04
and varying gap.
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noting that the case with 8 control cylinders is the closest to an omni-
directional system tested in this investigation, even though with discrete
elements positioned 45∘ apart. Needless to say that an omnidirectional
device would be very interesting for practical applications in
engineering.

Finally, considering only the diameters of the control cylinders, cases
with d=D ¼ 0:06 have shown a slight advantage in reducing bCL and CD

over the other cases. Interestingly, d=D ¼ 0:06 was not the smallest nor
the largest of the tested diameters. Finally the G=D parameter showed the
lowest influence on the results when compared to the effect of d=D andN.
All this could tell us that there is an optimum value of d=D to suppress the
wake and it would probably be dependent on Re, the distribution of
control cylinders and weakly dependent on G=D (within the range of this
investigation).

The current investigation does not provide information on the hy-
drodynamic interaction of the bodies, only presented the hydrodynamic
loads experienced by the cylinder. Future studies should investigate the
flow to look for the physical mechanisms in action. It is widely accepted
that if the wake is controlled and the shedding of vortices is eliminated

the bluff body will not only generate considerably less drag but will also
become invulnerable to vortex-induced vibrations.

5. Conclusion

We have presented the hydrodynamic loads of mean drag (CD) and
fluctuating lift (bCL) for a circular cylinder fitted with N ¼ 2, 4 and 8
control cylinders positioned around its circumference. The efficiency
regarding the mitigation of bCL and reduction of CD was investigated for
27 different cases varying the diameter of the control cylinders (d=D) and
their relative distance from the wall G=D). All cases have been compared
with the hydrodynamic forces of a plain cylinder.

Cases with N ¼ 4 and 8 appeared to perform much better than the
cases with 2 control cylinders. This might not be directly related to the
total number of control cylinders (N), but instead with the actual position
of the cylinder around the main body. Having learnt from previous in-
vestigations (Strykowski and Sreenivasan, 1990; Patino et al., 2015), we
believe the position of the control cylinders is crucial to the way they
interfere with the flow to control the wake. For a future optimization

Fig. 5. (a) Mean drag coefficient and (b) RMS of lift
versus Re for 2, 4 and 8 control cylinders with d=D ¼ 0:06
and varying gap.
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study, the angular distribution of the control cylinders must be investi-
gated with a much smaller step than the one we have employed in this
work (especially when compared with the small variations performed in
the d=D and G=D parameters).

The configuration with 4 control cylinders with G=D ¼ 0:05 and
d=D ¼ 0:06 produced the lowest drag when compared to all other con-
figurations: CD " 0:75, approximately 50% lower than that of a bare
cylinder. For the configuration with 8 control cylinders with d=D ¼ 0:04,
all G=D ratios showed an average CD " 1, which corresponds to a 33%
reduction. Only the configurations with 2 control cylinders showed a
10% increase in drag, with CD " 1:66 on average.

There is no guarantee that a fixed cylinder with low bCL will not
oscillate due to VIV once it is free to respond, especially if a low mass-
damping system is concerned. However, a suppressor that produces
low bCL in a fixed condition might produce a system with low VIV
response, if not get VIV suppressed altogether. Not coincidentally, the

case with N ¼ 8, d=D ¼ 0:08 and G=D ¼ 0:10 that presented one of the
lowest bCL in the present work, was also the most successful in sup-
pressing VIV in the work of Silva-Ortega and Assi (2017). Future work in
this topic will also consider the rotation of the control cylinders, as we
explore active-control methods.

Finally, the wave interaction between the control cylinders and the
main cylinder produced rather interesting patterns that sometimes
appeared to increase and other times to reduce the height of the waves
being formed. The wave interaction between the various configurations
of control cylinders and its effect on drag or VIV were not properly un-
derstood. Based on the principle that there might be an arrangement of
control cylinders to suppress the formation of a vortex wake, it is possible
that an arrangement of interacting control cylinder could be able to
mitigate the formation of surface waves. This questions certainly appears
as an interesting topic for future research.

Fig. 6. (a) Mean drag coefficient and (b) RMS of lift
versus Re for 2, 4 and 8 control cylinders with d=D ¼ 0:08
and varying gap.

M. Silva-Ortega, G.R.S. Assi Ocean Engineering 153 (2018) 345–352

351

322



Acknowledgments

MSO is grateful to CAPES Brazilian Ministry of Education. GRSA ac-
knowledges the support of FAPESP (2011/00205-6, 2014/50279-4),
CNPq (306917/2015-7) and the Brazilian Navy.

References

Assi, G., Bearman, P., Kitney, N., Tognarelli, M., 2010a. Suppression of wake-induced
vibration of tandem cylinders with free-to-rotate control plates. J. Fluid Struct. 26,
1045–1057.

Assi, G.R.S., 2009. Mechanisms for flow-induced vibration of interfering bluff bodies. Phd
thesis. Imperial College London.

Assi, G.R.S., Bearman, P.W., Carmo, B.S., Meneghini, J.R., Sherwin, S.J., Willden, R.H.J.,
2013. The role of wake stiffness on the wake-induced vibration of the downstream
cylinder of a tandem pair, 3 J. Fluid Mech. 718, 210–245.

Assi, G.R.S., Bearman, P.W., Meneghini, J.R., 2010b. On the wake-induced vibration of
tandem circular cylinders: the vortex interaction excitation mechanism, 10 J. Fluid
Mech. 661, 365–401.

Bearman, P.W., Brankovic, M., 2004. Experimental studies of passive control of vortex-
induced vibration. Eur. J. Mech. B Fluid 23, 9–15.

Bell, W., 1983. Turbulence vs drag—some further considerations. Ocean Eng. 10 (1),
47–63.

Chaplin, J., Teigen, P., 2003. Steady flow past a vertical surface-piercing circular cylinder.
J. Fluid Struct. 18 (3), 271–285.

Choi, H., Jeon, W.-P., Kim, J., 2008. Control of flow over a bluff body. Annu. Rev. Fluid
Mech. 40, 113–139.

Korkischko, I., Meneghini, J.R., 2010. Experimental investigation of flow-induced
vibration on isolated and tandem circular cylinders fitted with strakes. J. Fluid Struct.
26 (4), 611–625.

Korkischko, I., Meneghini, J.R., 2011. Volumetric reconstruction of the mean flow around
circular cylinders fitted with strakes. Exp. Fluid 51, 1109–1122.

Korkischko, I., Meneghini, J.R., 2012. Suppression of vortex-induced vibration using
moving surface boundary-layer control. J. Fluid Struct. 34, 259–270.

Kuo, C.-H., Chiou, L.-C., Chen, C.-C., 2007. Wake flow pattern modified by small control
cylinders at low Reynolds number. J. Fluid Struct. 23, 938–956.

Lee, S.-J., Lee, S.-I., Park, C.-W., 2004. Reducing the drag on a circular cylinder by
upstream installation of a small control rod. Fluid Dynam. Res. 34 (4), 233–250.

Mittal, S., 2001. Control of flow past bluff bodies using rotating control cylinders. J. Fluid
Struct. 15 (2), 291–326.

Norberg, C., 2003. Fluctuating lift on a circular cylinder: review and new measurements.
J. Fluid Struct. 17, 57–96.

Patino, G., Silva-Ortega, M., Gioria, R.S., Assi, G.R.S., Meneghini, J.R., 2015. Investigation
of circular-cylinder VIV passive-control device using flow sensitivity analysis. In:
Bifurcations and Instabilities in Fluid Dynamics. BIFD2015, France.

Silva-Ortega, M., Assi, G., 2017. Flow-induced vibration of a circular cylinder surrounded
by two, four and eight wake-control cylinders. Exp. Therm. Fluid Sci. 85, 354–362.

Silva-Ortega, M., Orselli, R.M., Assi, G., 2014a. Control of rotating cylinders as
suppressors of vortex-induced vibration of a bluff body. In: Proceedings of
SOBENA2014 the 25th Congress of the Brazilian Society of Naval Architects.
SOBENA.

Silva-Ortega, M., Orselli, R.M., Assi, G., 2014b. Control of vortex shedding of a circular
cylinder with two and four small rotating cylinders. In: Proceedings of EPTT2014 the
XI Spring School of Turbulence and Transition. ABCM.

Strykowski, P.J., Sreenivasan, K.R., 1990. On the formation and suppression of vortex
shedding at low Reynolds numbers. J. Fluid Mech. 218, 71–107.

Zdravkovich, M., 1981. Review and classification of various aerodynamic and
hydrodynamic means for suppressing vortex shedding. J. Wind Eng. Ind. Aerod. 7,
145–189.

Zdravkovich, M.M., 1997. Flow Around Circular Cylinders: Fundamentals, vol. 1. Oxford
University Press, New York.

Zdravkovich, M.M., Brand, V.P., Mathew, G., Weston, A., 1989. Flow past short circular
cylinders with two free ends. J. Fluid Mech. 203, 557–575.

M. Silva-Ortega, G.R.S. Assi Ocean Engineering 153 (2018) 345–352

352

323



Journal of Fluids and Structures 80 (2018) 1–21

Contents lists available at ScienceDirect

Journal of Fluids and Structures

journal homepage: www.elsevier.com/locate/jfs

Vortex-induced vibration of a wavy elliptic cylinder
Gustavo R.S. Assi a,*, Peter W. Bearman b

a
Dept. of Naval Arch. & Ocean Eng., University of São Paulo, São Paulo, Brazil

b
Department of Aeronautics, Imperial College, London, UK

a r t i c l e i n f o

Article history:

Received 20 September 2017
Received in revised form 19 December 2017
Accepted 22 February 2018
Available online 8 March 2018

Keywords:

Flow-induced vibration
Suppression
Drag reduction
Seal whiskers

a b s t r a c t

This paper shows that three-dimensional separation lines on a wavy cylinder may be
correlated by the lateral movement of the body responding to flow-induced excitations.
Vortex-induced vibration (VIV) of a wavy elliptic cylinder is investigated by mean of
experiments in a water channel in the range of Reynold number between 1,500 to 15,000.
Results are compared with those for a plain circular cylinder of equivalent diameter with
a combined mass–damping parameter of 0.018. Curves of displacement and frequency of
vibration showed that the hydroelastic mechanism that drives the wavy cylinder into VIV
is not different from that of a plain cylinder. Detailed decomposition of the fluid forces
supports this conclusion. The reason for such similar behaviour is the correlation of the
sinuous separation lines as the wavy cylinder starts to oscillate. Flow visualization reveals
that the three-dimensional surface of the wavy cylinder affects the formation of vortices
in the near wake, generating streamwise and cross-flow vorticity associated with the
wavelength of the surface. However, once the cylinder is free to respond to VIV, moving
in the cross-flow direction, coherent vortex filaments once more dominate the near wake.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The suppression of vortex-induced vibration (VIV) of bluff bodies with low mass and damping poses a technological
challenge faced by many engineering applications. The hydroelastic mechanisms behind the phenomena also generates
interesting questions from a scientific point of view. Many different techniques have been proposed to mitigate VIV
by controlling the formation of vortices in the near wake. Some methods interfered with the two-dimensional (2D)
mechanism of vortex shedding (refer to Assi et al., 2009, 2010a, 2014; Silva and Assi, 2017, for examples), interrupting
the communication of the separated shear layers as proposed by Gerrard (1966). Others promoted three-dimensional (3D)
characteristics of the wake, either by breaking down the dominant vortical features in the near wake or by disrupting
the coherent formation or vortices along the span (for example, Cicolin and Assi, 2017). Zdravkovich (1981) presented an
interesting overviewofmanyof these techniques,while Rashidi et al. (2016) present a brief reviewof a fewmore recent ideas.

The helical strake is themost common device employed by the offshore industry to suppress VIV of riser pipes. Normally,
the geometry of the strakes presents three helical blades starting at 120� apart with a common pitch of 5 diameters and a
blade height of 20% of the diameter, as seen in Fig. 1(a). As will become clearer, strakes with high blades are required for
systems with lowmass and damping, which is typical of light elastic structures immerse in water. Elastic structures that are
heavy in relation to the displacedmass of fluid (for example, chimneys or bridge cables exposed to wind) are normally fitted

* Correspondence to: NDF Research Group –Dept. Eng. Naval e Oceânica, Escola Politécnica da Universidade de São Paulo, Av. Prof Mello Moraes 2231,
05508-030, São Paulo - SP, Brazil.
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URL: http://www.ndf.poli.usp.br (G.R.S. Assi).
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. Cylinders with three-dimensional surfaces: (a) straight cylinder with helical strakes, (b) sinuous cylinder, (c) cylinder with bumps, (d) cylinder with
rings, (e) linear-wave cylinder, (f) sine-wave cylinder, (g) helical elliptic cylinder.

with smaller strakes. Helical strakes suffer from an intrinsic problem: while high blades are required to suppress VIV from
light structures, they increase drag considerably.

Some researchers have investigated 3D devices other than helical strakes as ameans to suppress VIV;we shall recall some
of these works in the next section. However, it is worth highlighting now that even though some 3D geometries reduced
drag by suppressing vortex shedding from fixed bodies, none has achieved the desired combination of VIV suppression with
drag reduction, at least not for systems with low mass and damping.

In the present paper we present an experimental investigation of a 3D cylinder shaped as a wavy elliptic cylinder in an
attempt to reduce VIV without incurring an unwanted drag penalty. This study will show that the wavy cylinder does not
eliminate VIV but it reveals interesting information about the physical mechanisms occurring during the fluid–structure
interaction of elastically-mounted 3D bluff bodies.

1.1. Suppression of vortex shedding of fixed cylinders

A relatively simple way to create a slender cylinder with a wavy geometry is by curving its axis in a sinuous path without
changing the cross section, as shown in Fig. 1(b). Owen et al. (2000) and Ahmed (2010), for example, have investigated the
flow past a sinuous cylinder of this type. Although this curved body does not have a straight axis, the behaviour of the flow
separating from the sinuous geometry shows hints of what will happen for 3D bluff bodies with straight axes and varying
cross sections.

Owen et al. (2000) performed visualization of the flow at Re = 100 that revealed the intricatewake structures developing
from sinusoidal separation lines. Three-dimensional vortex loops appeared correlated with the characteristic wavelength of
the geometry. A large periodic variation in the wake structure along the span produced wide wakes at troughs and narrow
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wakes at peaks, resulting in the disruption of a regular Kármán wake (Owen et al., 1999). A large reduction of 47% in the
mean drag was observed compared to that of a 2D circular cylinder. The numerical simulations performed by Darekar and
Sherwin (2001) on a square cross-section cylinder with a wavy axis, also at Re = 100, revealed that a rich 3D wake induced
by the geometry of the body already exists at low Reynolds numbers. Even though their sinusoidal cylinder had a square
cross section, they observed the formation of hairpin vortices similar to those found in the wake of a sphere at low Re.

The model investigated by Ahmed (2010) was slightly different and only presented a single curved section at mid length.
The surface topology of the separated flow could be associatedwith the direction of the incoming flow in relation to a convex
or concave configuration of the cylinder. Variations of node, saddle and mixed node–saddle flow attachments produced
different 3D flow structures in the near wake. A symmetric shedding of vortices (that had also been observed by Owen et al.,
2000) was observed with a saddle type of attachment by Ahmed (2010).

It should be noted that, unlike the geometries to be investigated in this paper, a sinuous cylinder does not present
a straight axis. Consequently, the possibility of practical applications for pipes and cables is reduced because it cannot
accommodate a straight circular cylinder passing along its centre. In order to allow for this, Owen et al. (2001) reproduced
the external waviness on the surface by attaching hemispherical bumps along the span of a plain cylinder. In order to make
it an omnidirectional device (one that does not depend on the direction of the incoming flow) they distributed the bumps
in a helical pattern around the cylinder, as seen in Fig. 1(c). The model now presents a nearly elliptical cross section at the
bumps, which follows a discontinuous helical pattern along the span. As a result, vortex shedding was disrupted by the 3D
shape of the body and themean drag was reduced to Cx ⇡ 0.9, roughly a 25% reduction when compared to that of their plain
cylinder at Re around 50,000.

While the smooth bumps emulated the waviness of the sinuous cylinder, others have fitted discrete elements to alter
the diameter of the body. For example, Nakamura and Igarashi (2008) investigated modifications in the diameter by fitting
‘‘cylindrical rings along its span at an interval of several diameters’’, thus creating the discrete 3D geometric disturbance seen
in Fig. 1(d). Rather than observing nodal and saddle attachments associatedwith the curvature, they verified the formation of
separation bubbles near the rings that also produced 3D perturbations in the near wake. The rings induced the formation of
vortex loops, resulting in pressure recovery on the rear of the ring. Fluctuating lift acting on the bodywas reduced compared
to a plain cylinder and a 15% reduction in the mean drag was recorded (Re varying from 3000 to 38,000).

Bumps and rings have in common a fundamental wavelength associatedwith their axial distribution along the span. Both
Owen et al. (2001) and Nakamura and Igarashi (2008) were able to vary the pitch of their bumps and rings in order to show
that there exist optimal configurations to enhance 3D wake disruption and minimize drag.

In an attempt to generate a continuous surface, the discrete ringsmay be replaced by a linearwave, i.e. creating increasing
and decreasing conical slopes along the span with a characteristic wave length (or pitch), as seen in Fig. 1(e). A geometry of
this type, with a pitch of about 2 diameters, has been investigated by Zhang et al. (2016) by means of numerical simulations
of the flow at Re = 5000. They found that the ‘‘elongated vortex recirculation length led to a larger value of base pressure’’,
which produced a consequent drag reduction of 7%when compared to that of a plain cylinder. In the same study, Zhang et al.
(2016) experimentedwith another 3D shapemodification by smoothing out the sloped cylinder into a continuous sinusoidal
surface with variable circular cross section, as seen in Fig. 1(f). A further reduction in drag was achieved, with Cx reduced
by 11% when compared to that of a plain cylinder. (Out of curiosity, Zhang et al. (2016) also investigated a variation of the
cylinder with rings, but its performance regarding drag reduction was worse then the others.)

1.2. Wavy cylinders

The experiments of Lee andNguyen (2007) investigated awavy cylinderwith varying circular cross sectionswith different
wavelengths (as seen in Fig. 1(f)) in the range of Re = 104. They also observed that the width of the wake expanded
downstream of saddle points and shrunk downstream of node points. Flow visualization revealed strong three-dimensional
flow structures related to the geometry of the body. Overall, the vortex formation region was elongated and the vortex-
induced fluctuations were suppressed, reducing drag acting on the cylinder by 22% compared with that of a plain cylinder.
Zhang et al. (2005) performed PIV measurements of the wake of a similar body at Re = 3000 and noted that such strong
three-dimensional flow structures dominate the wake as far as 5 diameters downstream, with a maximum effect at around
3 diameters downstream of the body. They concluded that organized streamwise vortices with alternating positive and
negative vorticity were observed along the span of the wavy cylinder. ‘‘They suppress the formation of the large-scale
spanwise vortices and decrease the overall turbulent kinetic energy in the near-wake’’ (Zhang et al., 2005).

New et al. (2013) performed a very detailed study mapping the near wake of wavy cylinders with circular cross section
with time-resolved PIV at Re = 2700. Varying the wave height and length, they concluded that the presence of streamwise
vortices associated with saddles and nodes make the near wake less susceptible to other external interferences in the flow,
such as aspect ratio and end conditions. They also observed three-dimensional flow structures being more prominent at 3
diameters downstream of the body.

The numerical simulations performed by Lam and Lin (2009) at Re = 100 showed that there might exist optimal values
of wave length and height to control the 3D wake and the related drag reduction. For their range of Re the largest drag
reductions were achieved for wavelengths between 2.5 and 6 diameters. They noted that the variation of the 3D separation
lines along the span resulted in the ‘‘development of a three-dimensional free shear layer with periodic repetition along
the spanwise direction. The three-dimensional free shear layer of the wavy cylinder is longer and more stable than that of
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the circular cylinder, and in some cases the free shear layer even does not roll up into a mature vortex street behind the
cylinder’’. As a consequence, drag and lift are significantly reduced.

Experiments conducted by Lam et al. (2004b) at Re = 3000 to 9000 characterized the dominant features of the near
wake of a wavy cylinder. They also concluded that the average vortex formation length of a wavy cylinder is longer than
that of a plain cylinder at the same Re. ‘‘For the wavy cylinder, the wake on the saddle plane has a longer vortex formation
region and a more rapid reverse flow, as well as being wider than that on the nodal plane. It was deduced that the free shear
layers shed from the points near the saddles extend along the spanwise direction, while the shear layers near the nodes
contract’’. As a result, the wake of a wavy cylinder shows more incoherent structures due to enhanced turbulent mixing.
Their measurements were confirmed by visualization of these flow structures at Re = 600.

Ahmed and Bays-Muchmore(1992) performed experiments in a wind tunnel and in a water channel (Re = 20,000) to
measure the pressure coefficients around wavy cylinders with various wavelengths (as seen in Fig. 1(f)). ‘‘Integration of the
pressure data revealed greater sectional drag coefficients at the geometric nodes than at the geometric saddles’’. They also
related the formation of streamwise vortices near the nodes with the sinuous three-dimensional separation lines along the
wavy cylinder.

In the wind tunnel experiments performed by Lam et al. (2004a), pressure measurements of mean and fluctuating loads
were made for three wavy cylinders at Re around 104. A maximum 20% drag reduction was observed for the wavy cylinder
when compared with that of a plain cylinder. Fluctuating lift was also considerably reduced, indicating that such a geometry
could possibly result in VIV suppression. The most interesting result, however, came from measurements of the vortex
shedding frequency at various positions along thewavy cylinder. The authors verified that the Strouhal numbers near saddles
and nodes are essentially the same. In fact, Strouhal number was found to be approximately 0.2, the same value measured
for a plain cylinder.

So far, all the above works dealing with the formation of the wake of a wavy cylinder agreed that the 3D wavy surface of
the body significantly modifies the near-wake structure. The vortex-formation length is extended increasing base pressure
(thus reducing drag) and the formation of streamwise vortices (with varying intensities) near the nodes is always observed.
Similar wake structures are found not only for wavy cylinders with a circular cross section, but also for elongated bodies
with wavy trailing edges, as exemplified by Cai et al. (2008) and others.

A very interesting 3D geometry was investigated by Kim et al. (2016), which they called a ‘‘helically twisted elliptic
cylinder’’ (seen in Fig. 1(g)), by means of numerical simulations of the flow below Re = 3900. The lowest recorded drag,
23% lower than that of a plain cylinder, was obtained for a twisted cylinder with a wavelength of 3.5 diameters. The authors
stated that ‘‘the lift fluctuation was zero due to a complete suppression of vortex shedding in the wake’’.

Jung andYoon (2014) also investigated the flowabout a helical cylinderwith an elliptic cross section employing numerical
simulations at Re = 3000. They also found considerable reduction in drag by 13% of that of a plain cylinder, with an almost
complete elimination of fluctuating lift. This performance was 5% better than that of a similar wavy cylinder with circular
cross section (Fig. 1(f)). They verified that the shear layers of the twisted cylinder are more elongated than those of the plain
and wavy cylinders, ‘‘and vortex shedding from the twisted cylinder is considerably suppressed’’. As expected to occur for a
plain cylinder, they noted that the vortex-formation length of the twisted elliptic cylinders was also reduced with increases
in Re.

All previous works mentioned so far have dealt with fixed bluff bodies, i.e. cylinders that were not free to respond to the
flow excitation nor forced into oscillatory motion by an external source. The effective reduction of the mean drag of a fixed
cylinder with 3D surface is indeed very useful for practical applications in engineering. However, the fact that fluctuating
lift was reduced in most cases (sometimes even claimed to have been completely eliminated) does not guarantee that the
cylinder will not respond to vortex-induced vibrations. A few researchers attempted to apply cylinders with smooth three-
dimensional surfaces to suppress VIV. We shall turn to their work next.

1.3. Vortex-induced vibration

A good device to mitigate fluctuating lift of a fixed cylinder is not necessarily a good device to suppress VIV of a
cylinder that is free to respond to the flow. It is well known that the complex fluid–structure interaction happening with
an oscillating bluff body may produce a completely different wake when compared to that of a fixed condition (Bearman,
1984). Consequently, the fluid loads exciting a free-to-respond body might also be very different. As it happens for a plain
cylinder, the three-dimensional modes occurring in the wake of a fixed circular cylinder described byWilliamson (1996) are
drastically altered once the cylinder is oscillating, as shown in the works of Blackburn (1998), Hover et al. (2004) and Gioria
et al. (2007).

Kleissl and Georgakis (2011), for example, experimented with cylinders with several 3D surfaces as a means to reduce
flow-induced vibrations of cables employed in suspension bridges. They found that a wavy-cylinder cover did not increase
the mean drag on a cable, but the wavy cylinder could be susceptible to fluidelastic instabilities when Reynolds number
approached the critical value associated with the ‘‘drag crisis’’.

Owen et al. (2001) and Bearman and Brankovic (2004) performed VIV experiments fitting a circular cylinder with the
bumps presented in Fig. 1(c). They measured the dynamic response of an elastically mounted cylinder with one degree of
freedom in the cross-flow direction. Owen et al. (2001) experimentedwith bumps of various sizes and spacings on a cylinder
with a variable mass–damping parameter (m⇤⇣ will be properly defined later). For Re = 1650 to 7500 and m

⇤⇣ = 0.036,
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Fig. 2. Lateral and frontal views of a section of a harbour seal whisker showing its 3D-wavy surface.
Source: Adapted from Hanke et al. (2010).

they observed a peak amplitude of displacement at the VIV resonance of approximately 0.62 diameters, equivalent to a
25% reduction from the peak response of a plain cylinder. Now, once the mass–damping parameter was increased the peak
amplitude of responsewas significantly reduced. All of their bumps achieved a complete suppression of VIV form⇤⇣ > 1.5. At
this level of mass and damping a plain cylinder would still be expected to vibrate with displacements of about 0.1 diameters.
Their sinuous cylinder also achieved similar results, being able to suppress VIV form⇤⇣ > 1.0. Owen et al. (2001) concluded
that ‘‘when the body is flexibly mounted it is able to detect a very weak force fluctuation’’ at the resonant frequency; the
excitation increases as the response increases.

In the experiments of Bearman and Brankovic (2004) the VIV response of a cylinder fitted with bumps was compared to
that of a cylinder fitted with helical strakes (height of 12% of the diameter and pitch of 5 diameters). Reynolds number was
up to 104 and the combined mass–damping parameter was around m

⇤⇣ = 0.006. While the plain cylinder reached a peak
response of 0.9 diameters, the cylinder with bumps reduced the peak vibration by 28% and the straked cylinder by 44%. The
height and pitch of the bumps and strakes were comparable, suggesting that the sharp-edged surface of the strakes is indeed
required to improve the degree of suppression of VIV.

Very recently, Zhang et al. (2017) performed numerical simulations at Re = 5000 of the VIV of a wavy cylinder with
circular cross sections (a geometry similar to that of Fig. 1(f)). They concluded that their wavy cylinder presented an
‘‘impressive flow control efficacy in the static configuration’’, with Kármán vortices being ‘‘almost eliminated by the span-
wise waviness’’ of the body. However, once the ‘‘the wavy cylinder was allowed to move in the transverse direction, the
typical ‘lock-in’ phenomenon still occurred’’.

1.4. Wavy elliptic cylinders in nature

Recently, Beem and Triantafyllou (2015) published an interesting paper on an experimental investigation of the flow-
induced vibration of harbour seal whiskers. The seal whisker has a 3D shape that resembles a flattened wavy cylinder. The
greater axes of the cross-sectional ellipses are all on the same plane, thus producing a more streamlined geometry to the
cross flow approaching from one direction rather then the other orthogonal direction. Hanke et al. (2010), who inspired
the geometry employed by Beem and Triantafyllou (2015), presented a clear view of the three-dimensional geometry of
the whisker, reproduced here in Fig. 2. Details on the morphology of seal whiskers, data on their mechanical properties and
information on animal behaviour are presented by Ginter et al. (2010), Rinehart et al. (2017) and Hans et al. (2014), among
others referred by them.

The natural whisker presents an interesting feature: the undulation of the leading edge (regarding the streamlined
direction of the flow) is slightly out of phase with the undulation of the trailing edge. This combination of three-dimensional
features produces a bluff body with many of the features discussed above: (i) a curved axis, (ii) waviness in two orthogonal
directions (cross-flow), (iii) varying elliptical cross-sections and (iv) smooth surface. Hanke et al. (2010) concluded by
experimental and numerical studies of the flow that the seal whiskers ‘‘possess a specialized undulated surface structure...
that effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced
by the shedding of vortices’’. They also added that ‘‘the dynamic forces on harbour seal whiskers are, by at least an order of
magnitude, lower than those on sea lion whiskers, which do not share the undulated structure’’.

Beem and Triantafyllou (2015) explained how the geometry of the whisker is relevant to capture minute fluctuations in
the wake present in the upcoming flow, helping the seal to navigate while tracking down its prey. They highlighted that the
3D geometry of the whisker is essential to enhance its ability to sense small pressure fluctuations in the water by allowing it
to be induced intowake-induced vibrations (Assi et al., 2010b, 2013)without toomuch of a drag penalty. In otherwords, they
showed how the whisker ‘‘could slalom among the vortices of the oncoming wake’’, making it an efficient sensor. When pure
VIV was considered with the flow approaching the streamlined direction of the whisker a minimal response was measured,
with a maximum amplitude of displacement of only 0.15 diameters in the cross-flow direction.
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Fig. 3. Wavy elliptic cylinder. The angle of attack ↵ represents a positive rotation around the z axis.

1.5. Objective

In the present study we investigate the flow structure of the near wake and the cross-flow response to vortex-induced
vibration of an elliptic wavy cylinder with low mass and damping. The present geometry, illustrated in Fig. 3, shows an
elliptical cross section with sinusoidal waviness in both x and y directions. In essence, the geometry is of the same nature as
the wavy cylinder with varying circular cross sections discussed above (Fig. 1(f)). Nevertheless, the elliptical cross-section
produces a geometry with more intense three-dimensional effects along the span.

The current investigation has been developed in the context of finding novel suppressors for the vortex-induced vibration
of slender bluff bodies with lowmass and damping. Because a successful result of VIV suppression was not achieved (as will
be seen in the discussion that follows), we left the data aside with no immediate interest inmaking it public. However, when
the study by Beem and Triantafyllou (2015) on the flow-induced vibration of seal whiskers was publishedwewere surprised
by the remarkable similarity between the surface geometries of the seal whisker and that of the elliptical wavy cylinder we
had tested years before. We then realized that the results that had been forgotten for a few years could have been useful
as a reference for the VIV response for Beem and Triantafyllou (2015), thus we brought it to light motivated by the topic of
bioinspired fluid mechanics.

2. Method

Experiments were performed in the Department of Aeronautics at Imperial College London, UK. Tests were carried out
in a free-surface water channel with a test section 0.6 m wide, 0.7 m deep and 8.0 m long. The side walls and bottom of
the section were made of glass, allowing a complete view of the models for flow visualization. Flow speed U approaching in
the x direction was continuously variable up to 0.6 m/s. The maximum free-stream turbulence intensity mapped across the
section was around 3% for the range of Reynolds number of the experiments. A cross-sectional diagram of the test section
showing the experimental apparatus is shown in Fig. 4.

An elliptic wavy cylinder was 3D-printed in ABS plastic; the external surface was smoothed and painted black to improve
contrast during flow visualizations. Fig. 5 presents the geometrical details of themodel. The nominal diameter of the cylinder
was D = 50 mm, defined as the average of the larger (60 mm) and the smaller (40 mm) diameters of the reference ellipse,
hence the sinusoidalwave heightwas 10mm, or 20% of the nominal diameter. Thewavelength (also called pitch)was P = 5D
and the maximum elliptical ratio of 1.5 occurred at the saddle plane (elongated in the x direction) and at the node plane
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Fig. 4. Cross view of the test section.

Fig. 5. Dimensions of the wavy cylinder. Flow is in the x direction. WL means water line.

(elongated in the y direction), marked by the dashed lines at station 0 and P/2 in Fig. 5. The three-dimensional sinusoidal
variation between the ellipses resulted in circular cross sections in between the saddles and the nodes at 1/4 and 3/4 of one
pitch. The submerged length of the cylinder was L = 13D and the geometric blockage ratio was 8.3%.

The rigid cylinderwas connected to a load cellmeasuring the total instantaneous lift and drag acting on the body. The load
cell was attached under an elastic rig supported by two long carbon-fibre tubes sliding through air bearings. The systemwas
free to respond to the flow excitation in the cross-flow (y) direction only; displacementsweremeasured by an optical sensor.
The mass ratio, calculated as the ratio between the total structural mass to the mass of displaced fluid, wasm⇤ = 2.6. A pair
of coil springs provided the stiffness of the system. The natural frequency of oscillation (f0) as well as structural damping
were determined during decay tests performed in air, hence not taking into account hydrodynamic effects. The structural
damping ratio was kept to a minimum value of ⇣ = 0.7%, calculated as a percentage of the critical damping during decay
tests performed in air. The resultant combined mass–damping parameter wasm⇤⇣ = 0.018.
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Fig. 6. Mean drag measured for fixed and oscillating cylinders.

The only flow variable changed during the course of the experiments was the flow velocity U , which altered both the
Reynolds number between 1.5 ⇥ 103 and 1.5 ⇥ 104 (Re = UD/⌫, where ⌫ is the kinematic viscosity of water and D is the
nominal diameter) and the reduced velocity (U/Df0) in the range of 2 to 16. The dynamic response to VIVwas analysed across
the reduced velocity range by comparing the normalized amplitude of displacement (ŷ/D, where ŷ is the RMS of y times

p
2)

and the dominant frequency of oscillation normalized by the natural frequency (f /f0). Fluid forces and other parameters
derived from them have been calculated from the measurements obtained with the load cell. A plain circular cylinder with
the same D, mass and damping parameters has also been tested to provide a reference response for VIV.

Since the elliptic wavy cylinder is not axisymmetric, experiments with two orientations regarding the incoming flow
have been performed, as illustrated in Figs. 3 and 5. First the larger axis of the ellipse at the saddle plane was aligned with
the direction of the flow, defining an angle of attack of ↵ = 0� in relation to U . A second configuration was obtained by
rotating the cylinder by 45� around the z axis, resulting in ↵ = 45�. Results for both configurations are compared with those
for a plain cylinder in the next section.

2.1. Flow visualization

In the present experiment, visualization of the flow bymeans of fluorescent dye has been performed by painting the front
of themodelwith a solution of rhodamine, alcohol and corn syrup. Dissolved dye convected by the flowwas illuminatedwith
ultra-violet light and laser sheets. This technique allowed for a clear visualization of the separation lines along the surface
of the body, but the dye tracers quickly diffused as soon as they reached the more turbulent regions of the wake.

In order to highlight the flow features in the near wake, flow visualization was also performed by means of hydrogen
bubbles emitted by the electrolysis of water from two thin wires stretched parallel to the vertical axis of the cylinder. The
wireswere placed at about one diameter upstreamof the body and slightly off the centreline of thewake.When the cylinders
were oscillating, the lateral position of the wires was adjusted more to the side, so that a curtain of bubbles would reach the
body during vibration. This technique allowed for visualization of the three-dimensional vortex structures present in the
wake for about a distance of 7 cylinder diameters downstream.

Both techniques were performed at a Reynolds number of 3000 for ↵ = 0� and 45�, in which the wake is already fully
three-dimensional (also near the peak response of VIV). While a good understanding of the flow features was obtained
by observing the flow in the water channel, recorded images and movies were not of sufficient graphical quality to be
reproduced in this paper. Therefore, the dominant flow features in the near wake are illustrated by means of the sketches
and diagrams originated from careful observation by the naked eye while the experiments were running.

3. Results and discussion

The first series of experimentswas performedwith fixed cylinders by restricting themovement of the elastic rig. The total
drag coefficient, obtained by non-dimensionalizing the total drag force by 1

2⇢U
2
DL, employed the nominal diameter D. The

mean part of the total drag coefficient (Cx) is presented in Fig. 6. Themean drag for the reference plain cylinder varied around
Cx = 1.04 for the Re range of the experiment, with a maximum value of Cx = 1.21 and a minimum of 0.81, which are in
agreement with other works in the literature (Zdravkovich, 1997, for example). Other effects, due to free stream turbulence
intensity (Bell, 1983) or cylinder aspect ratio (Zdravkovich et al., 1989), for example, may contribute to change the mean
drag from the canonical value expected for a two-dimensional body. Nevertheless, since all models have been measured
under the same condition, this value of Cx for a plain cylinder will be taken as a reference for comparison.
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(a)

(b)

Fig. 7. (a) Amplitude of displacement and (b) dominant frequency of vibration versus reduced velocity.

The wavy cylinder at ↵ = 0� presented a lower mean drag for the same conditions, with a consistent reduction by 12.5%
throughout the Re range when compared with the Cx of the plain cylinder. The wavy cylinder at ↵ = 45�, on the other
hand, presented an increase of Cx of about 7% when compared with that of the plain cylinder. In relation to the ↵ = 0�

configuration, Cx for ↵ = 45� was increased by an average of 22%.
One should bear in mind that Cx was calculated using the nominal diameter D of the body. While both the plain cylinder

and the wavy cylinder at ↵ = 0� have the same frontal area, the wavy cylinder at ↵ = 45� presents a projected frontal area
increased by around 1%. If the increase in the effective diameter is taken into account in calculating Cx, the mean drag of the
wavy cylinder at ↵ = 45� would still be roughly at the same level. Therefore, the significant drag reduction experienced by
the wavy cylinder at ↵ = 0� is indeed of a hydrodynamic nature, and not simply due to an area change. As far as the flow is
concerned, the three-dimensional effects of the surface affecting the near wake are not as pronounced at ↵ = 45� as they
were at ↵ = 0�. In other words, the elliptic wavy cylinder at ↵ = 45� ‘‘appears less three-dimensional’’ to the flow. For the
sake of comparison, we shall keep all hydrodynamic coefficients in the present work non-dimensionalized by the nominal
diameter D.

Bearman and Owen (1998) and others cited above attributed the drag reduction to the increase of base pressure created
by the 3D shape of the separation lines. Flow visualization supporting this idea will be discussed later in this paper.

3.1. Response to vortex-induced vibration

The response to VIV has been determined by increasing the flow speed (U) and keeping all other parameters constant.
Fig. 7(a) presents the harmonic amplitude of displacement for the whole range of reduced velocities tested. The typical
response of a plain cylinder was characterized by a build-up of vibration during the synchronization range between
U/Df0 ⇡ 3 and 11. Amaximum response of ŷ/D = 0.82 has been observed at the peak of resonance in the upper branch. The
dominant frequency of oscillation, presented in Fig. 7(b), shows the departure of the frequency curve from the St = 0.2 line
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towards f /f0 = 1 during the synchronization range, also called the lock-in range. These results are in good agreement with
many other results presented in the literature regarding the cross-flow VIV of rigid cylinders with low mass and damping
(Bearman, 1984; Williamson and Govardhan, 2004, for example). When comparing the current results with others in the
literature, please bear in mind that the synchronization range might be shifted to lower reduced velocities because f0 was
measured in air and not in still water.

Fig. 7 also presents the VIV response for the two configurations of the wavy cylinder. There is no significant difference
between the responses of the wavy cylinder at ↵ = 0� and 45� in Fig. 7(a). The width of the synchronization range for the
wavy cylinders is just slightly reducedwhen comparedwith that of the plain cylinder and the peaks of response at resonance
reach ŷ/D = 0.87 and 0.93 for ↵ = 0� and 45�, respectively. The frequency signatures seen in Fig. 7(b) are also very similar
to that of the plain cylinder.

Even though the wavy cylinder at ↵ = 0� presented a considerably lower mean drag than the wavy cylinder at ↵ = 45�,
their responses to VIV are practically identical. If fact, as far as the response is concerned, both wavy cylinders behaved very
similarly to the plain cylinder, suggesting that the hydroelastic phenomena driving the oscillations (i.e. the interaction of
the oscillating cylinders with an organized Kármán wake) are the same in nature and comparable in intensity.

When both wavy cylinders were held fixed, differences in the flow structures contributed to increased drag for ↵ = 45�

and reduced drag for↵ = 0�. Now that the cylinders are oscillating, it appears that there is no difference in the hydrodynamic
effects occurring for thewavy cylinders from the plain cylinder. As seen in Fig. 6, even themean drag during VIV followed the
same behaviour for all three cases.Wewill argue that the different flow structures found for the three fixed bodies (especially
concerning the 3D separation lines) are made the same when the bodies start to oscillate in the cross-flow direction.

3.2. Fluid forces

The hydroelastic system, allowing for displacements only in one degree of freedom in the y-axis, can be modelled by

mÿ + cẏ + ky = Cy(t)
1
2
⇢U2

DL, (1)

y(t) = ŷ sin(2⇡ ft), (2)

where y, ẏ and ÿ are respectively the displacement, velocity and acceleration of the body and Cy(t) is the time-dependent
force coefficient in the cross-flow direction.

Following Bearman (1984), y(t) of a cylinder under VIV may be expressed by the harmonic response of a linear oscillator,
with ŷ and f respectively representing the harmonic amplitude and frequency of oscillation. The fluid force and the body
response oscillate at the same frequency f , which is usually close to the natural frequency of the system for large-amplitude
oscillations under a steady-state regime of VIV. According to this ‘harmonic forcing and harmonic motion’ hypothesis the
lift coefficient can be divided into a time-average term Cy and a transient term modelled as a sine wave with amplitude Ĉy.
Hence

Cy(t) = Cy + Ĉy sin(2⇡ ft + �), (3)

where � is the phase angle between the displacement and the fluid force. For body excitation to occur, the phase angle
between displacement and fluid force must be between � = 0� and 180�. A phase angle equal either to 0� or 180� means
that no energy is transferred from the fluid to the structure to excite any vibration.

Figs. 8 and 9 show examples of the time series of instantaneous displacement (y/D) and lift coefficient (Cy) measured for a
few cycles of oscillation of the wavy cylinders at four different reduced velocities. Again, there are no significant differences
between ↵ = 0� and 45�. In both cases, one may note a very well behaved harmonic curve of displacement in response to
an also well behaved lift curve. For reduced velocities below the resonance peak at U/Df0 ⇡ 5, y and Cy appear to be almost
in phase. For reduced velocities beyond the resonance peak, y and Cy appear to be almost out of phase. Nevertheless, it is
evident that both y and Cy have the same dominant frequency, thus supporting the use of the harmonic models proposed
above.

Fig. 10(a) presents the RMS of the lift coefficient (C̃y) for the wavy cylinders compared with that of the plain cylinder.
The similarity between the three curves is remarkable. The range of increased C̃y of the plain cylinder corresponding the
synchronization range of VIV is matched by the wavy cylinders. The intensities of C̃y are also of comparable values.

In the present work, � is estimated directly from the measurements of displacement and lift, by calculating

� = arccos R(y,Cy), (4)

between both signals, where R(y,Cy) is the coefficient of cross-correlation between y and Cy. Bearman (1984) states that ‘‘It is
clear that the phase angle � plays an extremely important role. The amplitude response does not depend on Ĉy alone but on
that part of Ĉy in phase with the body velocity. Hence, measurements of the sectional fluctuating lift coefficient on a range of
stationary bluff-body shapes will give little indication of the likely amplitudes of motion of similar bodies flexiblymounted’’.

Fig. 10(b) presents � versus reduced velocity for the three cases. The phase shift corresponding to the system passing
through resonance is experienced in the same way by all three models. Please bear in mind that residual vibrations beyond
the synchronization range (for U/Df0 > 11) are due to turbulence buffeting; they present small amplitudes near the natural
frequency, hence � is not properly defined because the harmonic assumption does not hold there anymore.
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(a)

(b)

(c)

(d)

Fig. 8. Colour online. Time series of displacement (continuous line) and lift coefficient (dashed line) for a wavy cylinder at ↵ = 0� .

As shown by Khalak and Williamson (1999) and others for plain cylinders with low m
⇤⇣ , the shift of almost 180� in �

is associated with a change in the mode of vortex shedding. That is to say that the response of the structure is strongly
dependent on the vortex shedding mechanism, and vice versa, within the synchronization range. This emphasizes the
importance of the phase angle between y and Cy in transferring energy into the system to sustain different regimes of VIV.

Fig. 11 presents the power spectra of the normalized frequency of oscillation (f /f0) and the frequency of the lift force
(fCy/f0) for the wavy cylinder at ↵ = 0� and 45� versus reduced velocity. The darker shades represent peaks of the power
spectra, normalize by the value of the maximum peak at each reduced velocity. The dominant frequencies for each reduced
velocity are marked with symbols, hence symbols in Figs. 11(a) and 11(c) representing f /f0 are those shown in Fig. 7(b).

For both ↵ = 0� and 45�, f /f0 showed a pretty clear signature with a single dominant frequency for the whole of the
synchronization range. The spectra of fCy/f0 also showed a clear signature, with only a broader spectrum at U/Df0 ⇡ 6, near
the transition from the upper to the lower branch of VIV. Thismight be associatedwith the intermittent or chaotic transitions
between branches, as suggested by Khalak andWilliamson (1999) to be occurring for plain cylinders, but one cannot bemore
conclusive only with the available data. For U/Df0 > 11, beyond the synchronization range, the excitation presented amuch
broader spectrum, especially for ↵ = 45�, with the dominant fCy/f0 reaching the St = 0.2 line. The response, on the other
hand, appears with dominant f /f0 near the natural frequency, an indication of turbulence buffeting.

These results concerning the response and the driving force (Figs. 7 and 10) already offer evidence to show that the wavy
cylinder is simply responding to VIV, driven by the same mechanism as a plain cylinder. However, in order to support this
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(a)

(b)

(c)

(d)

Fig. 9. Colour online. Time series of displacement (continuous line) and lift coefficient (dashed line) for a wavy cylinder at ↵ = 45� .

hypothesis and provide data for the comparison with future investigations, we shall briefly discuss other parameters to
highlight the physical principles behind the excitation.

Fig. 12(a) presents the Cy cos�, the part of the lift coefficient in phase with the body acceleration that takes the form of
a fluid-dynamic inertia, therefore closely related to the actual frequency of oscillation. As expected to occur for the plain
cylinder, Cy cos� found a peak at the VIV resonance followed by negative values corresponding to the lower branch. The
behaviour observed for the two wavy cylinders was not different.

In the review presented by Williamson and Govardhan (2004), an ‘‘effective added mass’’ coefficient is defined by

CEA =
1

2⇡3

Cy cos�

ŷ/D

✓
U

Df

◆2

. (5)

CEA represents the variation of the effect of the added mass of fluid with the response, taking into account not only the lift
term in phase with the acceleration of the body, but also the amplitude and frequency of the response for each reduced
velocity. As seen in Fig. 12(b), the effective added mass for the wavy cylinders is comparable to that observed for the plain
cylinder under VIV.

Obviously, if Cy cos� and CEA were derived directly from C̃y and �, which presented similar trends for the three models,
one should not expect different behaviours between them in the results of Fig. 12. Nevertheless, Fig. 12 offers clear evidence
that the effect due to the added mass of fluid in not significantly different for the wavy cylinder when compared with the
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(a)

(b)

Fig. 10. (a) RMS of lift coefficient and (b) phase angle between lift and displacement.

plain cylinder. We conclude that, once the cylinders are oscillating, the three-dimensional surface of the wavy cylinder
cannot produce any significant different fluid-dynamic effect than that produced by the movement of a plain cylinder.

Fig. 13(a), presenting the lift term in phasewith the body velocity, also supports that conclusion. Cy sin� takes the form of
a ‘‘negative fluid-dynamic damping’’, injecting energy into the system to sustain the vibrations. Results for thewavy cylinder
are very similar to those of the plain cylinder. The energy transferred from the flow to the body in one cycle of oscillation is
defined by

E = ⇡
ŷ

D
Cy sin�, (6)

and presented in Fig. 13(b) against reduced velocity. Wemay conclude that the hydroelastic mechanism exciting the elliptic
wavy cylinders into vibration is indeed the same as the one that excites the plain cylinder into VIV.

Now, if the excitation coming from the flow is the same in both cases (either with a plain or with our wavy cylinders),
the dominant flow structures in the near wake should be similar between the two cases too. As mentioned in the literature
review presented in the introduction, we know that the 3D surface of the wavy cylindermay disrupt the near wake of a fixed
body (changing the separation lines, thus reducing drag). But it seems that once the body is free to oscillate, the dynamics of
the wake is affected in such a way that the dominant mechanism is roughly the same for the plain cylinder and for the wavy
cylinders.

We shall now turn to investigate the dominant flow structures of these cases by describing flow visualizations of the near
wake.

4. Three-dimensional wake structure

As mentioned before, the near wake of a wavy cylinder is affected by the 3D shape of the surface. Most of the time, the
characteristicwavelength of the surface appears in the dominant flow structures developing in the nearwake. The separation
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(a) (b)

(c) (d)

Fig. 11. Colour online. Power spectra of the frequency of oscillation (f /f0) and the frequency of the lift force (fCy/f0) versus reduced velocity.

lines on both sides of the bluff body are affected by the 3D shape of the surface, interfering with the behaviour of the free
shear layers which alters the width and length of the near wake. The axial-type of vortex filaments that characterize the
Kármán wake may still be the dominant flow feature, but longitudinal vortices appear at regular intervals related to the
wavelength of the body geometry. This was observed to occur for various types of wavy cylinders and other bluff geometries
with sinusoidal surfaces.

4.1. Fixed cylinder at ↵ = 0�

Fig. 14 illustrates possible 3Dpatterns observed in the nearwake of a fixedwavy cylinder.When the bodywas notmoving,
the separation line presented a very three-dimensional shape following the saddle and node curvatures of the surface. The
separation lines are represented in Fig. 14 by a solid black line along the body. The separation was delayed near the saddle
regions and advanced near the nodes, extending or reducing the reach of the free shear layers before they rolled up to form
coherent vortices.

Sometimes, the axial vortex filaments (z-vorticity, aligned with the axis of the body) appeared well correlated along
the span for various cycles of vortex shedding, as illustrated in Fig. 14(a). An undulation of the vortex filaments at the
characteristic wavelength of the surface was noticeable, with streamwise vortices appearing at regular intervals further
downstream (these are represented by curled black lines), but still a coherent vortex filament was visualized. Other times,
as illustrated in the example of Fig. 14(b), the axial vortex filament on one side appeared uncorrelated along the span, which
also resulted in stronger three-dimensional vortices in the x and y direction in the wake (represented by the curled lines).
Still at other times, as illustrated in Fig. 14(c), for a few shedding cycles, the axial vortex filaments appeared to be ‘‘broken’’,
alternating shorter and longer vortex-formation lengths associated with the saddle and node regions of the body. Much
stronger three-dimensional vortices appeared in the wake, contributing to dissipate the bubbles rather quickly.

In summary, the coherent axial vortex filaments could take many disturbed shapes, but always followed the wavelength
characteristic of the surface of the body. As a general rule, axial vortices generated near the nodes were formed closer to
the base of the cylinder, while vortices generated near the saddles were developed further downstream. Vortices in the
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(a)

(b)

Fig. 12. (a) Lift coefficient in phase with body acceleration and (b) effective added mass coefficient.

x direction were observed to form near the node regions. As a consequence, vortical structures in the y direction were
intensified further downstream in the turbulent wake, which is rich in three-dimensionalities. This is in good agreement
with the observations of Lam et al. (2004b) and Zhang et al. (2005). The wake pattern illustrated in Fig. 14(a) was the most
common, sustained during most of the shedding cycles.

The reader should bear in mind that the representation of vortices in Figs. 14 and 15 are simply an illustration to
emphasize the dominant features of the wake. Obviously, vortex filaments cannot end in the fluid and vortex sheets cannot
be abruptly interrupted as the image may suggest. The impression of a discontinuity between the vortex filaments is not
real; the intricate 3D structures of smaller scales are too complex to be detailed in these flow sketches. Our objective with
these artworks is to emphasize the correlation between the separation lines and possible dominant flow structures observed
in the wake.

4.2. Oscillating cylinder at ↵ = 0�

Once thewavy cylinderwas allowed to oscillate under VIV, thewake patternwas considerably changed. Fig. 15(a) repeats
the illustration of the dominant wake structure for a fixed wavy cylinder as a reference. The same pattern was only observed
to occur for very small responses, below ŷ/D = 0.1, therefore only occurring at U/Df0 less than 2.5 or greater than 11 (even
though visualization was difficult at higher Re). The separation lines were closely sinusoidal (represented by a solid black
line on the surface), following the saddle and node curvatures in the cross-flow and streamwise directions, as illustrated.

As the response increased slightly above ŷ/D = 0.1 for U/Df0 = 3, the lateral movement of the cylinder started to affect
the separation lines, as seen in Fig. 15(b). As their shape became less sinusoidal (represented by a dashed black line), the
axial vortex filaments in the near wake straightened up. Vortices in the x and y directions were reduced in strength.

Finally, in Fig. 15(c), as the response reached its maximum value of ŷ/D = 0.8 for U/Df0 ⇡ 5, the separation lines became
fully correlated along the span, featuring an almost perfect straight line along the wavy surface (dashed black line). The axial
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(a)

(b)

Fig. 13. (a) Lift coefficient in phase with body velocity and (b) energy transferred from flow to structure during one cycle of vibration.

(a) (b) (c)

Fig. 14. Examples of three-dimensional wake patterns for a fixed wavy cylinder.

339



G.R.S. Assi, P.W. Bearman / Journal of Fluids and Structures 80 (2018) 1–21 17

(a) (b) (c)

(d) (e)

Fig. 15. 3D wake patterns: (a) static wavy cylinder, (b) wavy cylinder at low ŷ/D, (c) wavy cylinder at high ŷ/D, (d) oscillating plain cylinder. (e) Sketch of
separation lines on a wavy cylinder.

vortex filaments recovered a degree of correlation that resembled that seen for the vortex filaments of an oscillating plain
cylinder, illustrated in Fig. 15(d) for comparison. Consequently, the wake structure became closely two dimensional, with
no sign of a characteristic wavelength appearing in the distribution of streamwise vortices.

As summarized in Fig. 15(e), it appeared that only a small lateral movement of the wavy cylinder was necessary for
the sinusoidal separation lines found on the fixed body to correlate along the span. The 3D flow structures induced by the
waviness of the surface were thus replaced by a coherent wake of almost parallel vortex filaments.

4.3. Sectional wake patterns for ↵ = 0�
and 45

�

What happened for a wavy cylinder at ↵ = 45� was not very different. As one can now imagine, if the lateral oscillation
is able to recorrelate the separation lines over the wavy surface, the variation of angle of attack should not be an obstacle.
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(a)

(b)

(c)

Fig. 16. Sectional wake patterns for fixed and oscillating cylinders: (a) plain cylinder, (b) wavy cylinder at ↵ = 0� , (c) wavy cylinder at ↵ = 45� .

Fig. 16(a) presents a simple diagram illustrating the vortex-shedding mechanism of a plain circular cylinder. This will serve
as a reference to compare wake width and vortex-formation length.

Fig. 16(b) illustrates the vortex-shedding mechanism for a fixed and an oscillating wavy cylinder at ↵ = 0� drawn at 2D
planes along the span. For a fixed cylinder, the wakewas narrower and longer at the saddle (station 0) andwider and shorter
at the node (P/2). The circular section at P/4 represents the transition from one pattern to the other. It was near this region,
although a bit closer to the node, that the streamwise vortices appeared (represented by curled dashed lines). If the cylinder
was oscillating, as seen in the diagram to the right, the wake regained its correlation and very little difference was noticed
between flow structures near saddle and nodes (maybe only a small variation in wake width), but a considerable variation
in the vortex-formation length. The same features were observed by Wang and Liu (2016), who performed time-resolved
particle-image velocimetry of the flow around a seal whisker with similar wavy morphology.

For the wavy cylinder at ↵ = 45�, illustrated in Fig. 16(c), the same pattern was observed with only minor variations
occurring between the saddle and the node. Now that the fixedwavy cylinder faced the flow at an incidence angle at stations
0 and P/2, the wake at these regions was slightly inclined following the more elongated shape of the elliptic cross section.
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However, once the body started to oscillate (as seen on the right), the angle of incidence was barely noticed by the flow and
a spanwise correlated wake appeared once more.

5. Final remarks

The differences in curvatures between saddles and nodes are more accentuated for elliptical cross sections and could
intensify the 3D characteristics of the wake that favour drag reduction. We have verified the observations of Bearman and
Owen (1998), who stated that reductions in drag can be achieved when the separation lines on a fixed bluff body are forced
to be sinuous. However, once the body started to oscillate in the cross-flow direction, the separation lines on the sides of
the wavy cylinder straightened up, recovering the shedding of vortices forming a wide Kármán wake. This observation is
in agreement with the findings of Zhang et al. (2017), who performed numerical simulations for a free-to-oscillate wavy
cylinder with circular cross sections. As shown by Blackburn (1998), the lateral oscillation has a tendency of straightening
up the separation lines of a plain cylinder.

In general,we suggest the sameoccurs for a three-dimensional cylinder if the 3D features of the surface are not sufficiently
pronounced to hold the sinuous separation lines in place. As a consequence, the elastic body will be able to pick up even the
minute excitation from the flow acting near its resonant frequency, thus enhancing the response. If the level of mass and
damping in the system is high enough, the initial excitation resulting from sinuous separation lines might not be strong
enough to overcome the loss of energy due to damping, thus vibration will not develop. But for systems with a low mass–
damping parameter, an initial perturbation may result in a large enough lateral movement that could in turn realign the
separation lines.

This shows that the physical mechanisms driving the VIV of the wavy cylinder are not different in nature from those
occurring with the plain cylinder. Response curves and a detailed analysis of fluid forces discussed above support that
conclusion. When the bodies are oscillating, the separation lines for the wavy cylinder recover a less 3D shape, similar to
that on a plain cylinder.We argue that sharp 3D perturbations are required to hold the separation lines in a 3D shape. Helical
strakes, for example, have distinctively pronounced features in the form of sharp helical blades. It is very difficult for the flow
to modify the 3D separation lines fixed by the high blades. Small vibrations would not be enough. If the height of the strake
is not high enough, it might be that a small lateral movement of the body results in a roughly straight separation line on the
side. Therefore, significantly higher strakes are required to suppress VIV of low mass–damping system (immersed in water,
for example) than of high mass–damping systems (immersed in air, such as chimneys and cables). But if the strakes are
high enough, the separation lines follow the shape of that sharp geometry, interfering with the flow. The setback, however,
is the amount of drag generated. In order to hold the 3D separation lines along the span, the larger strakes will generate
considerably more drag.

Therefore we argue that a combination of VIV suppression and significant drag reduction is very difficult to be achieved
(if not impossible) for low mass–damping systems. Smooth three-dimensional surfaces that would generate considerably
less drag (such as the present wavy cylinder) are not efficient in fixing the sinuous separation lines required to reduce the
excitation. Sharp-edged surfaces might still hold the separation lines under small lateral movements, but they increase drag
as a consequence.

On the other hand, this hydroelastic behaviour might be useful for the seals whose whiskers have a very similar
geometry, as reported by Beem and Triantafyllou (2015). Out of the synchronization range of VIV the whisker would present
insignificant vibration with minimal drag. However, once the whisker is triggered to vibrate – say by turbulence buffeting
or by a sudden pressure fluctuation in the upstream flow coming from the wake of a swimming fish – the initial movement
would be enough to cause the realignment of the separation lines, enhancing the response. Thismechanismwould produce a
drag-efficient whisker with augmented capacity to respond with flow-induced vibrations to perturbations in the upcoming
flow.

Of course the dynamic response of a seal whisker would be different from that observed for this idealized case with a
rigid cylinder. The whisker would probably present higher mass and structural damping than our cylinder. Also, the flexible
whisker would be deflected by the flow as a cantilever beam, responding with vibrations in both inline and cross-flow
directions (not to mention the possibility of higher modes of vibration). Nevertheless, we hope that our data acquired in an
idealized experiment with a rigid wavy cylinder with lowmass and damping responding in one degree of freedomwill help
the study of marine mammals and support the development of other bioinspired applications.

6. Conclusion

From the present experimental investigation we can conclude that a wavy cylinder with the level of three-dimensional
surface variation proposed herein developed vortex-induced vibrations with the same behaviour seen for a plain cylinder
with equivalent diameter. A fixed wavy cylinder indeed presented reduced drag when compared to a plain cylinder (an
average reduction of about 12.5%). The modified regions of an elongated wake with substantial 3D flow features increased
the base pressure and improved the performance as far as drag is concerned.

The 3D features of the elliptical wavy cylinder are more prominent than those of a wavy cylinder with circular cross
section (of equivalent mean diameter). However, once the body responded in the cross-flow direction, the separation lines
of the wavy cylinder straightened up, recovering a wide Kármán wake. We conclude that the three-dimensional separation
lines on awavy cylinder were correlated by the lateral movement of the body responding to flow-induced excitations, hence
the hydroelastic mechanism that drives the wavy cylinder into VIV is not different from that of a plain cylinder.
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a b s t r a c t

The present work investigates the suppression of vortex shedding of a circular cylinder
of diameter D surrounded by a polar array 8 rotating wake-control cylinders of a
considerably smaller diameter d/D = 0.05. A numerical approach was employed to
simulate the laminar flow at a Reynolds number of 100. The governing equations
were discretised by the finite volume method for a two-dimensional computational
domain. The main varying parameter was the rotation speed of the control cylinders,
measured as a fraction of the incoming flow speed. A controlled wake (one without
alternating vortices) was achieved when the tangential velocity at the surface of the
control cylinders was greater than 3 times the free stream velocity. A significant
reduction of the overall drag coefficient and mitigation of the unsteady hydrodynamic
forces acting on the system were observed as rotation was increased. Given enough
rotation, a negative mean drag (thrust) was achieved. The power spent to rotate the 8
control cylinders appeared to be higher than the power-loss associated with the mean
drag of a bare cylinder. While still working with an active, open-loop control system,
this investigation supports the development of a closed-loop wake-control device for
offshore applications.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that bluff bodies immersed in a flow will develop a periodic wake of alternating vortices (called the
Karman street) shed from the separated shear layers and convected further downstream (Bearman, 1984). Control over
the vortex-shedding phenomenon has been investigated for decades, gaining special attention after a general physical
mechanism for the formation of vortices was proposed by Gerrard (1966). Mostly aiming at reattaching the separated flow
or removing the periodicity of the wake, researchers have proposed various techniques to achieve wake control. Some of
these appeared as fairings (attempting to streamline the flow around the body), while others came about as interesting
contraptions attached or installed around the bluff body to interact with the separated shear layers (for example, Assi
et al., 2009, 2010).

It is widely accepted that if the wake is controlled and the shedding of vortices is eliminated the bluff body will not
only generate considerably less drag but may also become invulnerable to vortex-induced vibrations (VIV). The present
investigation is motivated by the development of novel solutions to suppress VIV from slender bluff structures without
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causing excessive drag (perhaps achieving drag reduction) and producing useful forces for dynamic positioning. In the
present work, however, we shall refer only to the suppression of the vortex-shedding mechanism as a step towards the
suppression of VIV. For reviews on the topic, please follow Zdravkovich (1981) or the recent compilation of Rashidi et al.
(2016).

Passive wake-suppression methods rely on modifications of the bluff body geometry to affect the formation and
shedding mechanism of vortices (Choi et al., 2008). They require no external energy supply to the fluid–structure
system and have a much simpler implementation, which favours their use over the active methods in most engineering
applications. In an effort to study a passive control device by employing interfering control rods, Strykowski and
Sreenivasan (1990) have reported that the vortex shedding past a circular cylinder can be controlled over a limited
range of Reynolds number (Re) by the proper placement of a smaller control rod close to the main cylinder. Wu et al.
(2012), Jimenez-Gonzalez and Huera-Huarte (2017) and Silva-Ortega and Assi (2017a, 2018) went on to investigate the
passive suppression of VIV of circular cylinders by fitting multiple control rods around their circumference.

Active open- and closed-loop control techniques have received extensive attention by the scientific community (Gad-
El-Hak, 2000; Cattafesta and Sheplak, 2011; Schulmeister, 2012; Silva-Ortega and Assi, 2017b), as they can be directly
applied or inspire the development of more efficient passive control methods. Among the great variety of active control
methods, themoving surface boundary-layer control (MSBC) technique relies on the injection of momentum in the boundary
layers of the body by rotating small elements placed within or very near the boundary layers around the separation
points (Modi, 1997). Rotating elements are usually small circular cylinders placed inside or just above the wall. It is
believed that the injection of momentum postpones the effects of the adverse pressure gradient generated by the geometry
of the bluff body, moving the separation points to a more advanced position. As a result, the wake becomes narrower
and the recirculation region behind the body is suppressed or drastically reduced. One of the most important control
parameters directly associated with the injection of momentum is the ratio between the tangential velocity of the moving
surface and the flow velocity (Uc/U).

MSBC can be applied as an active open- or closed-loop control. Patnaik and Wei (2002) numerically simulated the
flow around a D-section cylinder with MSBC at Re = 200 and 400 and verified a recirculation free zone in the wake
for Uc/U = 1.25. Muddada and Patnaik (2010) made further developments to this control strategy, employing a cylinder
fitted with two simple rotary type mechanical actuators located at 120� from the frontal stagnation point. The effectiveness
of the MSBC in reducing drag was shown in all tested cases. Mittal and Raghuvanshi (2001) verified this phenomenon
employing a numerical approach and observed that two control cylinders provided a local favourable pressure gradient
in the wake region, thereby locally stabilising the shear layers. Following that, Mittal (2001) applied the MSBC to control
the flow around a circular cylinder in two-dimensional numerical simulations at Re = 100 and 10,000. At Re = 100 and
Uc/U = 5, the wake was suppressed; at Re = 10,000 the wake did not reach a steady state, but it appeared highly
organised and narrower when compared to the case without any control. The effect of the gap between the control
cylinders and the wall of the main cylinder at Re = 10,000 was later investigated by Mittal (2003). Recently, Schulmeister
et al. (2017) performed experiments at Re = 47,000 that showed considerable drag reduction for two rotating control
cylinders strategically located around the main body. Their numerical simulations at Re = 500 revealed interesting details
of the reattachment of the flow around the control cylinders.

Korkischko and Meneghini (2012) performed an experiment employing MSBC with 2 control cylinders as a means to
suppress VIV of an isolated cylinder mounted on an elastic base with one degree of freedom in the cross-flow direction.
VIV suppression was achieved given enough rotation of the control cylinders. Later, Zhu et al. (2015) performed numerical
simulations of VIV in two degrees of freedom employing 2 rotating control cylinders for Re between 1,000 and 6,500; in
another study (Zhu and Gao, 2017), the effect of the rotation direction was investigated. Recently, MSBC with more than
2 control cylinders has also been tested as a means to suppress vortex shedding of static cylinders as well as VIV of
oscillating bodies in the experiments performed by Silva-Ortega and Assi (2018).

2. Objective

The present study investigated if a polar array of 8 rotating wake-control cylinders of a smaller diameter d, equally
spaced about a main circular cylinder of a larger diameter D and positioned away from the main cylinders’s wall (as defined
in Fig. 1), was able to control the wake and suppress vortex shedding. This is part of a wider investigation that started with
2 and 4 control cylinders, not discussed here for brevity, but reported in Silva-Ortega and Assi (2017a, 2018). From those
previous works, the arrangement with 8 control cylinders started to present useful characteristics of an omnidirectional
device.

The gap (G/D) separating the control cylinders from the main cylinder and the rotation speed of the control cylinders
(Uc/U , defined as the ratio between the tangential velocity on the wall of the control cylinders to the speed of the incoming
flow) were the main parameters of the investigation: Uc/U varied between 0 and 6, while G/D = 0.1 and d/D = 0.05
were kept constant. Other works have considered variations in these parameters as well (Silva-Ortega, 2015). As seen in
Fig. 1, the control cylinders at the top rotate in the clockwise direction, while the control cylinders at the bottom rotate
in the counter-clockwise direction. The system is considered an open-loop, active MSBC device.

The investigation was conducted by means of two-dimensional numerical simulations of the flow at Re = 100
(Re = UD/⌫, based on the free stream velocity U , the diameter D of the main cylinder and the viscosity ⌫ of the fluid).
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Fig. 1. Geometrical parameters for the main cylinder with eight wake-control cylinders. Flow approaching in the direction of the arrow; direction
of rotation is marked on each cylinder.

3. Numerical method

Numerical simulations of the flow have been carried out employing the commercial code ANSYS Fluent (version
13.0). The flow was governed by the Navier–Stokes equations, which were considered here as incompressible and two-
dimensional. The unsteady Navier–Stokes equations for the conservation of mass and momentum in the integral form
were given by

Z

S

Eu.EndS = 0 (1)

and
Z

⌦

@⇢Eu

@t
d⌦+

Z

S

⇢Eu(Eu · En)dS=
Z

S

�
�pEn

�
dS+

Z

S

(⌧ · En)dS, (2)

where the viscous stress tensor for Newtonian fluid was

⌧ = µ

�
rEu + rEu

|�
�

2
3
(r · Eu)I

�
. (3)

In the equations above, Eu is the flow speed, p the static pressure, ⇢ is the specific mass of fluid, µ is the dynamic viscosity, t
is the time, ⌦ represents the control volume of the system and S denotes its external surfaces, whose outward unit normal
is En.

The equations were discretised by a cell-centred finite-volume method. The fluid domain was divided into a large
number of discrete control volumes by means of a computational mesh. The resulting discretised equations were solved
sequentially based on an implicit pressure-based scheme. In order to deal with the pressure–velocity coupling, the
pressure-based algorithm PISO was employed due to its efficient iterative method for unsteady problems, the scheme
is fully described in Versteeg and Malalasekera (2007).

In order to obtain the pressure on the faces of the control volume, an interpolation scheme based on a ‘‘staggered’’
control volume arrangement was employed (known in Fluent as PRESTO, PREssure Staggering Option). The staggered-grid
scheme procedure is also described in Versteeg and Malalasekera (2007). An upwind second-order spatial differencing
method was applied for the convective terms (Barth and Jespersen, 1989) and the diffusive terms were discretised by
a central differencing scheme. The solution was time-advanced using an implicit second-order accurate scheme that
employed three time levels incorporated within the PISO algorithm (Versteeg and Malalasekera, 2007). All the equations
were solved iteratively, for a given time-step, until the convergence criterium was met: all residuals for each algebraic
equation were less than 10�4 and 20 internal iterations per time step.

3.1. Computational domain

The cylinders were surrounded by a rectangular computation domain with upstream, lateral and downstream bound-
aries located respectively at 8D, 8D and 30D from the centre of the main cylinder, as shown in Fig. 2. The size of the
computational domain was verified so that the flow around the cylinder was not too much influenced by the boundaries.
It is well known that the size of the domain influences Strouhal number and other hydrodynamic coefficients (Behr et al.,
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Fig. 2. The wider numerical domain (left) and a detail of the mesh around the control cylinders (right).

Table 1

Comparison of drag and lift coefficients.

St CD ĈL

Present work 0.175 1.401 0.227
Blanchard et al. (2019) 0.170 1.392 0.242

1995). Nevertheless, the size of the employed domain was considered a good balance between computational costs and
accuracy of the physical phenomenon. Numerical domains of a similar size or smaller have been successfully employed
by Mittal (2001), Young et al. (2001) and Goodarzi and Dehkordi (2017) to investigate analogous problems.

The two-dimensional, finite-volume mesh (with 89,310 cells) was fine enough to resolve the details of the flow near
the walls. A structured finite-volume mesh was employed close to the main cylinder and the small cylinders. Mesh-
convergence tests have been carried out until a suitable final mesh was found. (Details of this validation exercise will not
be reported here for brevity.) Simulations run for enough time to gather at least six cycles of vortex shedding in a fully
developed wake.

A no-slip condition was specified for the velocity on the surface of all bodies and free-stream values were assigned
to the velocity at the upstream boundary. On the upper and lower boundaries, the component of velocity normal to and
the component of the stress vector along these boundaries were prescribed to be zero. At the downstream boundary, an
outflow boundary condition was employed, which prescribes all variables’ normal gradient to zero.

The direction of the incoming flow and the direction of the rotation of the control cylinders are marked in Fig. 1. The
control cylinders were distributed so that there would be no control cylinder positioned at the frontal stagnation region,
thus avoiding any asymmetry of the flow around the body. (Future work should concentrate on that arrangement.) The
rotation speed (Uc/U) of the control cylinders was imposed at each case being simulated. Coefficients of lift (CL) and drag
(CD) were determined by integrating the pressure field and viscous forces on the walls around the main cylinder and the
control cylinders. The force coefficients per unit length were normalised by 1

2⇢U
2
D, always in reference to the diameter

D of the main cylinder (even if the body in question was a small control cylinder).

4. Results and discussion

4.1. Reference: a bare cylinder

The flow around a bare cylinder (without control cylinders) at Re = 100 was simulated in order to validate the
numerical model and domain as well as to serve as a reference for comparison. From the time series of lift and drag
coefficients shown in Fig. 3(a), a steady state regime of vortex shedding was achieved after 70 non-dimensional time
units from the beginning of the simulation. The steady-state Strouhal number (defined as St = fsD/U , where fs is the
frequency of vortex shedding), the mean drag coefficient (CD) and the fluctuation of the lift coefficient (ĈL, calculated as
the root mean square of lift) are presented in Table 1 in comparison with another two-dimensional numerical simulation
from the literature. These values were also in good agreement with Meneghini et al. (2001), Norberg (2003), Rajani et al.
(2009) and Muddada and Patnaik (2010).

Fig. 3 also presents the vorticity field and streamlines downstream of the bare cylinder for an instant once the periodic
regime of vortex shedding had been established. A typical Karman vortex street – with two single vortices shed per cycle –
is clearly identified from the vorticity contours, while the region of separated flow at the base of the cylinder is highlighted
by the streamlines.

4.2. With rotating control cylinders

The rotating control cylinders were placed close enough to the wall to interact with the boundary layer of the main
cylinder, but not necessarily immersed in it. Fig. 4 illustrates the velocity profiles of the flow around the bare cylinder,
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Fig. 3. (a) Time series of CL and CD , (b) instantaneous vorticity contours and (c) streamlines for the flow around a bare cylinder.

Fig. 4. Details of the velocity profile in the boundary layer around the bare cylinder (coloured by velocity magnitude; key in Fig. 3). Flow is from
left to right.

highlighting the shear profile in the boundary layer and the eventual locations and diameter of the control cylinders
(marked by the corresponding circles at G/D = 0.1).

The rotation of the control cylinders (Uc/U) was increased in steps. At the beginning of the simulation (tU/D = 0),
Uc/U was set to 0. Once a steady state regime of vortex shedding had been reached, the simulation would be left to run for
several cycles of vortex shedding before the parameter was changed to the next step Uc/U = 1. Once more, after several
cycles of stablished vortex shedding, Uc/U was increased to the next step, and so on, until Uc/U = 6. Following this
method, a transient regime appeared after each change in Uc/U , the convergence time was reduced, but each simulation
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Fig. 5. Time series of CL and CD for a cylinder with 8 rotating control cylinders. Coefficients measured on the main cylinder alone.

carried information from the previous state. This procedure, also employed by Mittal (2001), produced the time series of
CD and CL presented in Fig. 5, where the dashed lines mark the transitions in Uc/U .

Fig. 6 presents the instantaneous vorticity contours and the corresponding streamlines for the flow around a cylinder
with 8 rotating control cylinders for Uc/U = 0 to 6. At Uc/U = 0 the wake pattern looked similar to that of a bare
cylinder, as shown in Fig. 3, except that the presence of the 8 non-rotating control cylinders made the wake wider than
that of the bare cylinder.

Reynolds number based on the diameter of the control cylinders was Rec = 5, which was below the typical value
of Rec = 46 from which shear layer instability should trigger the onset of vortex shedding for the individual control
cylinders. Therefore, no independent vortex-shedding was observed from the control cylinders, hence the vortex wake
was produced by the main and the control cylinders combined as a single body.

As shown by the streamlines, the region of separated flow (associated with the recirculation bubble) downstream of the
main cylinder was reduced as Uc/U was increased. The strength of convected vortices also decreased as Uc/U increased at
the same time that the vortex formation length was increased, showing that the separated shear layers were interacting
further downstream to generate a weaker wake. Eventually for Uc/U � 3, the interaction between the separated shear
layers was so much reduced that no alternating vortex shedding was noticed in the wake downstream of the main cylinder.
This was also accompanied by a narrowing of the wake and a consequent increase in Strouhal number.

4.3. Fluid forces

The suppression of the wake as Uc/U was increased was followed by changes in the fluid forces acting on the body,
which was evident from the time series of CL and CD measured on the main cylinder alone (Fig. 5). The RMS of fluctuating
lift coefficient decreased as the rotation of the control cylinders was increased. A periodic fluctuation of CL was clear for
Uc/U between 0 and 2, but disappeared for Uc/U � 3 when vortex shedding was completely suppressed.

The drag coefficient followed the same behaviour. The mean drag coefficient was found to be CD = 2.1 for Uc/U = 0,
higher than that experienced by an isolated cylinder, since the presence of the static control cylinders contributed to the
enhancement of the wake and increased drag on the main cylinder. CD was reduced as the wake got weaker for higher
Uc/U . The minimum CD ⇡ 0.4 (with ĈL ⇡ 0) was obtained for Uc/U = 5, which was much lower than the CD = 1.4 found
for the bare cylinder (Fig. 3(a)). For the highest Uc/U = 6, the system reached the lowest drag recorded at CD ⇡ 0.37
(considerably below that of the bare cylinder), but a local minimum value may still be waiting ahead.

Fig. 7(a) presents the mean drag coefficient (CD) compared with the reference CD = 1.40 for that of the bare cylinder.
White symbols refer to coefficients measured on the main cylinder alone, while black symbols refer to the system as a
whole (main cylinder plus wake-control cylinders). When CD was measured on the whole system (black symbols) a very
interesting behaviour stood out: for higher Uc/U the whole system was able to achieve considerably less drag than the
main cylinder alone. In fact, for the case at Uc/U = 6 the mean drag was even found to be negative (CD ⇡ �0.1). The
interaction of the rotating control cylinders with the flow past the main body generated force in the opposite direction
of the incoming flow. While the main cylinder was always under positive drag, the force on the control cylinders can
balance or overtake that of the main body, generating a net negative drag (a small propulsion, or thrust) for the whole
system.

So far, it is impossible to conclude if the total CD will continue to drop for higher rotation speeds. But the fact that
the rotating cylinders were not only able to reduce but to overcome the overall drag of the system is quite remarkable.
Nevertheless, we conclude that the negative term of the total drag was indeed coming from the rotating control cylinders.

Now turning to the absolute mean lift coefficient in Fig. 7(b). Since the cylinders on opposite sides of the body were
rotating at opposite directions – and since positive CL is defined in the cross-flow direction pointing upwards in Fig. 1 –

350



G.R.S. Assi, R.M. Orselli and M. Silva-Ortega / Journal of Fluids and Structures 89 (2019) 13–24 19

Fig. 6. Instantaneous vorticity contours (left column) and corresponding streamlines (right column) of the flow around a cylinder with 8 rotating
control cylinders (Uc/U = 0 to 6). Coloured by vorticity and velocity magnitude, respectively.

we shall consider the absolute value of lift. Fig. 7(b) presents lift also divided in two terms: for the main cylinder alone
and for the absolute portion acting on the control cylinders (therefore |CL|).
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Fig. 6. (continued).

As expected, the main cylinder alone presented CL ⇡ 0 due to the symmetry of the flow. (Any difference from zero
was due to not having an integer number of cycles while taking the average of the time series.) The control cylinders,
on the other hand, appeared to sum up a rather high value of |CL|, which increased continuously with Uc/U . The four
control cylinders on the top side of the main cylinder produced a net lift pushing upwards; the four control cylinders
on the bottom side produce a net lift of the same magnitude pushing downwards. For this reason, |CL| is presented in
Fig. 7(b) as referring to the mean value of the cylinders on each side of the main body. If both terms were to be added,
the net lift on the top side would cancel out the net lift on the bottom side, hence the total lift experienced by the whole
system would also be CL ⇡ 0, as seen in Fig. 7(b).

It was shown that the 8 wake-control cylinders were indeed experiencing a considerable amount of fluid forces, either
to generate negative drag or to generate lift pointing away from the centreline of the wake. A control strategy could take
advantage of this net lift by rotating only the control cylinders on one side of the body, for example, to produce lift to
maneuver the system. More advanced control strategies could consider the independent rotation of the control cylinders
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Fig. 7. (a) Mean drag and (b) absolute mean lift for the case with 8 control cylinders.

Fig. 8. Contribution of each control cylinder to the total (a) drag and (b) lift of the system.

to generate a useful force in a desired direction. To pave the way, we shall now investigate the contribution of each control
cylinder independently.

4.4. Force acting on each control cylinder

Fig. 8 presents the mean drag and mean lift coefficients measured for each of the 8 control cylinders around the main
body for various rotation speeds. The angular position (✓ ) of the control cylinders is that shown in Fig. 1.

When Uc/U = 0 none of the control cylinders experienced negative drag (Fig. 8(a)). But as soon as they started to
rotate some of the control cylinders contributed with negative drag, especially those located at the front of the body
(between the ±90� dashed lines) where the flow had not yet separated. For the highest Uc/U = 6 the control cylinders
located at the front produced so much negative drag that they were able to balance off the positive drag experienced
by the other control cylinders and the main cylinder. It becomes clear that the control cylinders located at ±67.5� were
the ones that contributed the most to reduce the total drag of the system. The next cylinders downstream, located at
±112.5�, interacted with the separated shear layers and produce positive drag for most cases.

Fig. 8(b) presents the contribution of each cylinder towards lift. It is clear that all cylinders on the top side of the
body produced positive lift (pointing upwards), while all cylinders on the bottom side produce negative lift. The control
cylinders located at ±67.5� were the ones with the strongest lift, reaching |CL| ⇡ 1.2 for the highest rotation of Uc/U = 6.

Finally, Fig. 9 presents the resultant force in terms of a vector diagram for each of the 8 control cylinders for Uc/U = 0
to 6. The resultant vector for the forces measured on the main cylinder alone are also presented as a black arrow at the
centre of the main body. The grey arrow represents the resultant vector for the system as a whole.

At Uc/U = 0 the control cylinders generated positive drag, except for the cylinder immersed in the recirculation region
of the near wake. Adding that to the drag of the main cylinder results in the highest value of CD experienced by the system.
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Fig. 9. Resultant force coefficients (shown as vector diagrams) on each control cylinder, main cylinder alone (black arrow) and the system as a
whole (grey arrow). Direction of the flow is from left to right.

As Uc/U was increased the drag of the main cylinder was gradually reduced, and drag on the control cylinders (especially
on those at the front) became negative, reducing CD of the whole system until it got negative for UC/U = 6.

As vortex-shedding was eliminated for Uc/U � 3 the direction of the resultant vectors of the control cylinders did
not change much, but they only increased their magnitude with increasing rotation speed. Such a large lift-to-drag ratio
could prove to be useful for other control applications such as dynamic positioning of offshore floating units.

4.5. Driving power

One final important question regards the amount of energy spent to rotate the control cylinders compared with the
energy saved due to drag reduction. Following the model for energy efficiency proposed by Shukla and Arakeri (2013),
the power Pn needed to rotate a single control cylinder at a tangential velocity Uc is that required to overcome the total
effect of shear stresses on its wall, which is integrated around the diameter d, hence

Pn = Uc

d

2

Z 2⇡

0
⌧✓c d✓c, (4)

where ⌧✓c is the local shear stress on the wall of the control cylinder. Adding up the contributions of all the N control
cylinders results in

CN =

NX

n

Pn

⇢U3D/2
, (5)

the coefficient of power spent to rotate all the control cylinders of a system at the same tangential velocity Uc .
Finally, the total power-loss coefficient

CPL = CD + CN (6)

of the system is simply obtained by adding the total drag of the system (CD) to the energy spent to rotate the N control
cylinders (CN ). In general terms, the power-loss coefficient is a means to evaluate the energy efficiency of the system
regarding the amount of energy spent to drive the control cylinders and the energy lost due to the drag the system
generates.

Fig. 10 presents CPL decomposed in CN and CD as a function of Uc/U . As expected, for non-rotating control cylinders
(Uc/U = 0) all the power-loss of the system was due to drag, which was slightly higher than that experienced by a
bare cylinder. As rotation speed was increased, an increasing fraction of the power was lost to the rotation of the control
cylinders, but the resulting reduction of the overall CD dominates the behaviour of CPL.

Coincidentally or not, it is interesting to note that the condition for the suppression of vortex shedding (shaded area
in Fig. 10) is somewhat related to when CN is greater than CD. Nevertheless, the minimum CPL for when suppression is
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Fig. 10. Decomposition of the power-loss coefficient (CPL). Area shaded in grey represents when vortex shedding was suppressed. The horizontal,
dashed lines represent CD = 1.4 for a bare cylinder.

achieved (at Uc/U = 3) is still greater than the mean drag for a bare cylinder, at least for this specific condition of Re,
G/D, d/D, etc.

As examples, consider two applications: (1) If the objective is to suppress the fluctuating forces caused by vortex
shedding with minimal energy input, Uc/U would be set around 3. (2) But if the objective is to minimise drag (or maybe
generate useful thrust) at the cost of spending more energy, than the user would set higher rotation speeds.

5. Final remarks

Two-dimensional simulations of the flow offer a simplified view of the phenomena occurring in the wake, which is
indeed much more complex and rich in three-dimensionalities, as carefully exposed by Williamson (1996). A parametric
investigation, however, would be extremely expensive in terms of the computational effort required to model the three-
dimensional flow at higher Re (Assi et al., 2018, for example). Therefore, simplified simulations still hold their place as a
powerful and feasible tool to understand the hydrodynamic mechanisms at the beginning of the instabilities (Re = 100).
Perhaps the most useful point in the present study is that it helps us to formulate the correct questions concerning wake
stability and flow control in such a simple geometry, but with too many parameters in hand.

Now, thinking in terms of practical applications (especially related to offshore and wind engineering), there are
situations in which fitting 8 control cylinders is better (or actually necessary) than fitting only 2 or 4. If the direction
of the incoming flow is not known or changes with time, for example, a system with 8 control cylinders would appear
to be ‘‘more omnidirectional’’ to the flow than the previous cases. Of course a case with 16 control cylinders would
be hypothetically even ‘‘more omnidirectional’’ (keeping this term with quotation marks as omnidirectionality is not
quantifiable), but that would be just another step in one of the significant parameters.

Of course there are infinite possibilities to arrange the rotating control cylinders around the main cylinder. The present
work was never intended to find an optimal solution, but simply to be a parametric study. (Refer to Patino et al. (2015)
and Meliga et al. (2014) for good optimisation studies regarding the location of interfering control cylinders.) Our initial
restriction, however, was to reduce the number of geometric parameters for axisymmetric arrays of control cylinders.
The universe of parameters for an optimisation study is so vast that a robust optimisation method must be considered to
tackle the problem. With as many significant parameters identified in this work (N , d/D, G/D, Uc/U , angle of incidence
in relation to the upcoming flow) as those not concerned in the investigation (control cylinders do not need to have the
same diameter, or to be equally spaced, or to rotate at the same speed and direction, or to be at same distance from the
centre...), one may see the possibilities are endless, making it a very exciting, non-linear problem for someone focusing
on optimisation.

6. Conclusion

In the present work, the flow control past a circular cylinder surrounded by 8 rotating wake-control cylinders has been
studied by means of numerical simulations at Re = 100. The control cylinders were able to suppress the vortex shedding
mechanism of the main cylinder for rotations greater than Uc/U = 3.

Drag on the system was reduced as a consequence of the elimination of the Karman vortex street, but it appeared
that a local minimum was not reached yet within the range of this investigation. Mean drag experienced by the control
cylinders can be negative and, for higher rotation speeds, stronger in magnitude than the positive drag experienced by
the main body. Indeed, the lowest drag of CD ⇡ �0.1 was observed for Uc/U = 6. It s not clear if CD tends toward a
minimum value or will it keep decreasing with increasing rotation speeds. On the other hand, the power spent to rotate
the 8 control cylinders appear to be higher than the power loss associated with the mean drag of the bare cylinder.

The control cylinders also experience high lift, what can be useful if a control strategy requires to control the lateral
force on the body. Such forces originate in the interaction of certain control cylinders with the attached boundary layers.
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The two-dimensional computations set an upper bound on the control effectiveness of the rotating cylinders. It is
expected that the actual behaviour of such open-loop control strategies will depend significantly on three-dimensional
effects and Reynolds number (among other factors). Future numerical and experimental investigation should concentrate
on that.
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A B S T R A C T

The Ahmed body is one of the most studied 3D automotive bluff bodies and the variation of its slant angle of the
rear upper surface generates different flow behaviours, similar to a standard road vehicles. In this study we extend
the geometrical variation to evaluate the influence of a rear underbody diffuser which are commonly applied in
high performance and race cars to improve downforce. Parametric studies are performed on the rear diffuser
angle of two baseline configurations of the Ahmed body: the first with a 0! upper slant angle and the second with
a 25! slant angle. We employ a high-fidelity CFD simulation based on the spectral/hp element discretisation that
combines classical mesh refinement with polynomial expansions in order to achieve both geometrical refinement
and better accuracy. The diffuser length was fixed to the same length of 222 mm similar to the top slant angle that
have previously been studies. The diffuser angle was changed from 0! to 50! in increments of 10! with an
additional case considering the angle of 5!. The proposed methodology was validated on the classical Ahmed
body considering 25! slant angle, found a difference for drag and lift coefficients of 13% and 1%, respectively. For
the case of an 0! slant angle on the upper surface the peak values for drag and negative lift (downforce) coefficient
were achieved with a 30! diffuser angle, where the flow is fully attached with two streamwise vortical structures,
analogous to results obtained from [1] but with the body flipped upside down. For diffuser angles above 30!, flow
is fully separated from the diffuser. The Ahmed body with 25! slant angle and a diffuser achieves a peak value for
downforce at a 20! diffuser angle, where the flow on the diffuser has two streamwise vortices combined with
some flow separation. The peak drag value for this case is at 30! diffuser angle, where the flow becomes fully
separated.

1. Introduction

Among the standard automotive bluff bodies in literature, the most
studied one is the Ahmed body, firstly proposed by Ahmed (Ahmed et al.,
1984). It is based on the geometry designed by Morel (1978), with the
main dimensions highlighted in Fig. 1. The proposed geometry of the
Ahmed body aims to reproduce the main features of road vehicles, such
as the frontal stagnation, ground effect and well-defined separation
points.

The most emblematic characteristic of the Ahmed Body is a angled
upper back section with fixed length, here referred as slant, on the upper
rear portion, allowing the simulation of different automotive body styles.
According to (Huminic and Huminic, 2010), it has been shown that the

flow over the slanted surface back section is dependent on specific
inclination angle. Two critical angles, at 12.5! and 30! have been
observed, in which the flow structure changes significantly, and where a
change of curvature of the drag coefficient is also evident. For angles
below 12.5!, the airflow over the slant remains fully attached before
separating from the model when it reaches the rear of the body. The flow
from the angled section and the side walls produces a pair of counter
rotating vortices, which then persist downstream.

For angles between 12.5! and 30!, the flow over the slant becomes
highly complex. Two counter-rotating lateral vortices are shed from the
sides of the angled section with increased size, which affects the flow
over the whole back end, specially the previously existing three-
dimensional wake. These vortices are also responsible for maintaining
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attached flow over the rest of the angled surface up to a slant angle of 30!,
and it has been shown that they are extended up to half of the length of
the model beyond the trailing edge, as discussed in (Strachan et al., 2007)
and (Lienhart and Becker, 2003). Close to the second critical angle, a
separation bubble is also formed over the inclined slant. The flow sepa-
rates from the body, but re-attaches before reaching the vertical back
section.

Above a 30! slant angle, the flow over the or slant is fully separated.
However there is a weak tendency of the flow to turn around the side of
the model, as a result of the relative separation positions of the flow over
model top and those over the slant side edges. When the flow is in this
state, a near constant pressure is found across that region. To characterize
all three flow configurations here discussed, representative slant angles
are commonly used in literature with 0! (or squared-backed), 25! and
35◦.

The first experimental study on Ahmed Body (Ahmed et al., 1984)
was with static floor conditions, considering a Reynolds number Re ¼
4.29 # 106 based on its full length. In this study, results for the drag
coefficient were obtained for different slant angles, ranging from 0! to
40!, in increments of 5! with an additional measurement at 12.5!. Due to
limitations on the wind tunnel setup, only drag force measurements and a
few flow visualization test were performed. In order to better understand
the flow phenomena and turbulence structures around the model, a
complementary study was performed by (Lienhart and Becker, 2003)
using laser Doppler anemometry (LDA), hot-wire anemometry (HWA)
and static pressure measurements.

Aiming to reproduce realistic road conditions and understand the
phenomena associated to flow fields close to the ground, the authors of
(Strachan et al., 2007) performed an Ahmed Body wind tunnel test using
moving ground and acquired both the aerodynamic forces and the flow
characteristics by employing time-averaged LDA. The flow conditions
were also slightly different from the ones used on Ahmed’s first test, since

Fig. 1. Ahmed body schematic drawing. The upper slant length of 222 mm is fixed, independent of its inclination angle ϕ.

Fig. 2. Normalized V velocity on a squared-back Ahmed Body at x/L ¼ 0.048.
Reproduction from (Strachan et al., 2007).
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it had a Reynolds number of Re ¼ 1.7 # 106. Nevertheless, similar flow
behaviour were observed on the slant, despite the quantitative results
being slightly different. One of the most interesting features found in this
flow visualization results is the lower vortex system, a pair of vortices
that appears close to the ground interface, which were absent in the
fixed-ground studies. According to (Strachan et al., 2007), this could be
attributed to the interference caused by the four studs used to support the
model on the floor. Fig. 2 illustrates this phenomenon on an Ahmed Body
with a squared-back.

An important development in automotive industry directly associated
with the flow near the ground is the introduction of underbody diffusers,
initially for high performance race vehicles with relatively low ground
clearance. By providing a smoother transition from the underbody flow
to the base of the car body, the strength of the rear wake can be reduced,
contributing to drag reduction. In addition, it was found that at slightly
inclined angles, the underbody diffuser also increases the downforce
generated, assisting the acceleration and handling.

To explore detailed features of the near-ground vortices, and to
examine the potential benefits of implementing underbody diffusers, we
propose a series of computational studies considering same simulation
conditions as the experiment from (Strachan et al., 2007), with moving
ground. The Ahmed bodies used in the study are the squared-back and
the slant angle of 25!, representing respectively estate
car/station-wagons (attached flow) and performance cars (vortex gen-
eration with flow detachment). The length of the underbody diffuser is
set to be the same as the classic Ahmed body slant length, with angles
ranging from 10! to 50!, in increments of 10!. An additional case also
considers a diffuser angle of 5!, a setting commonly found in racing ve-
hicles. This study focus essentially on the aerodynamic quantities on the
Ahmed body, as well as, on the flow structures on its geometry, such as
the vortices on the slant and diffuser.

CFD has become an underpinning technology for most automotive
companies to reduce development times and costs. Since the Ahmed
Body is a widely studied bluff body, it has become a test case to validate
new CFD codes, specially for applications in the automotive industry.
Lower vortices observed by (Strachan et al., 2007) were not present in
CFD simulation studies with fixing studs modelled. They were first
observed by (Krajnovi!c and Davidson, 2004), where an Ahmed Body with
slant angle of 25! was simulated without the fixing studs. Nevertheless,
the location where these vortices are generated and possible interactions
with underbody components were not highlighted.

We utilise a high fidelity spectral/hp element method simulation
using under-resolved direct numerical simulation (uDNS) also known as
implicit large eddy simulation (iLES) ((Grinstein et al., 2007)). The
spectral/hp elemental method combines the advantages of higher accu-
racy and rapid convergence from the spectral (p) methods, while main-
taining the flexibility of the classical finite element (h) complex meshes,
allowing unsteady vortical flows around geometries to be effectively
captured. We present the validation of the proposed numerical meth-
odology on the classical Ahmed body with 25! slant angle, as in the study
of (Buscariolo et al., 2020). The Ahmed body with 25! slant angle,
although in the pre-critical regime, still poses a challenge for most CFD
codes due to the complex flow physics, however, it is a well-established
test configuration, as performed by (Lienhart and Becker, 2003) and
(Strachan et al., 2007).

Most computational studies on the Ahmed Body employ simplified
Reynolds Averaged Navier-Stokes (RANS) solution. This approach is very
reliable for simple stable flow problems, however it is not suitable to
correctly predict unstable phenomena around complex geometries. In the
study by (Krajnovi!c and Davidson, 2004), for the first time for an Ahmed
Body, a LES methodology was used yielding solutions of higher flow
details, especially for the critical slant angle of 25!. A major limitation of
running LES or detached eddy simulation (DES) for this kind of geometry
is the requirement of high mesh resolution, with considerably higher
simulation cost and time.

The latest achievements in the high-fidelity turbulence models

around an Ahmed body are found mainly for the slant angle of 25! and
are summarized in the compilation work of (Serre et al., 2013) in which a
comparative analysis of recent simulations, conducted in the framework
of a French-German collaboration on LES of Complex Flows at Reynolds
number of 768,000. The study offers a comparison between results ob-
tained with different eddy-resolving modelling approaches: three clas-
sical h-type method (LES with Smagorinsky model and wall function
(LES-NWM), Wall-resolving LES with dynamic Smagorinsky model
(LES-NWR), and DES with shear stress tensor (DES-SST) and one spectral
element method implicit LES with spectral vanishing viscosity
(iLES-SVV). The iLES-SVV simulation in (Serre et al., 2013) work was
conducted in various two-dimensional planes along the span-wise di-
rection, and subsequently constructed into three-dimensional flow fields
(commonly known as 2.5D simulation). Considering the drag coefficient,
both LES-NWR and DES-SST overestimated the value in around 16%; the
LES-NWM presented a difference around 6%, which presented the best
agreement. The iLES-SVV model better modelled the flow behaviour
compared to previous models, however the drag difference was around
44%

A new Improved Delayed DES (IDDES) methodology, an enhance-
ment of the Delayed DES (DDES), is proposed by (Guilmineau et al.,
2018) to solve the flow around the Ahmed body. The study presents a
comparison between quantitative and qualitative results obtained with
different methodologies previously presented with this newly proposed
methodology. The IDDES case is the one that most closely correlates the
flow behaviour and structures with experimental reference. However,
results of the aerodynamic quantities are different, such as the drag co-
efficient with approximately 27% difference from same experimental
reference.

2. Ahmed body equipped with rear underbody diffuser

Bluff bodies equipped with rear underbody diffusers are being studied
by several researchers, especially from the automotive industry, to
maximise the performance of the vehicle. The study of (Cooper et al.,
1998) identified three important characteristics on a body underbody
diffuser. The first is a diffuser pumping effect, which occurs once the
outlet of the diffuser is set as the base pressure of the body, as identified
by (Jowsey, 2013). The diffuser recovers pressure along its length,
considering continuity and applying an inviscid, steady argument of
constant total pressure using Bernoulli’s equation implies that the
diffuser inlet pressure should be reduced, causing a suction effect. The
second characteristic is the interaction with the road, in which as the
ground clearance between the floor and the underbody becomes smaller,
flow velocity in that region increases and pressure drops, following the
same continuity and Bernoulli’s equation. The third characteristic is the
angled upsweep, which generates vortices on the diffuser up to a certain
critical angle, creating an upwash of the flow, aiding flow attachment and
increasing downforce.

Complementing the work of (Cooper et al., 1998), (Senior and Zhang,
2001) investigated a new bluff body equipped with a diffuser which
extended over 41% of the body length and with inclination angle of 17!

and endplates in different ground heights. The result was the identifi-
cation of four distinct regions of diffuser performance, all related to the
model ground height. The first region from non-dimensional ride height
h/H, where h is the distance from the body to the ground and H is the
total height of the body, is defined from 0.76 to 0.38 and is defined as
downforce enhancement, region where the flow on the diffuser is sym-
metric with some separation on the diffuser inlet. The second region,
referred as maximum downforce, from h/H 0.38 to 0.22, with similar
flow behaviour as the first region, except for the formation of a separa-
tion bubble at the center of the diffuser. The third and fourth regions are
referred both as the downforce reduction from h/H 0.22 and low
downforce region from h/H 0.16. The third region is characterized by a
sudden drop of downforce performance and the fourth region shows that
further ground height reduction causes the downforce to be reduced and
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this fact is explained by an asymmetric and separated flow behaviour at
the diffuser inlet.

With substantial literature on the diffusers, such as the works from
(Cooper et al., 1998) and (Senior and Zhang, 2001), we notice that each
study has employed different bluff body geometries, that have not been
previously studied without a diffuser. The work of (Huminic and
Huminic, 2010) was the first to propose a computational study of dif-
fusers on an Ahmed body with slant angle of 35! with similar conditions
of (Strachan et al., 2007) study. This body style has a quasi-2D behaviour
and a combination of five diffuser lengths with eight different angles
were evaluated to predict drag and lift coefficients. The flow physics was
not fully evaluated and no conclusions were found mainly due to the
nature of the averaged flow solution employed on the study. Following
the previous work (Huminic and Huminic, 2012), present a similar study,
considering the Ahmed body with slant angle of 35! with a rear under-
body diffuser, wheels and wheelhouses.

The work of (Moghimi and Rafee, 2018) performed an experimental
and numerical study on an Ahmed body equipped with diffuser. Both
experiments and simulations were performed at a low Reynolds number
of Re ¼ 9.31 # 104 considering a 10% scale half Ahmed body with slant
angle of 25!. This study offers an experimental reference, however due to
the model scale factor being extremely reduced compared to other ex-
periments, the geometry becomes more sensitive to surface imperfec-
tions, introducing an additional source of error in the measurements. The
Reynolds number is also reduced compared to other Ahmed body
experimental references.

A common point on the literature presented considering the Ahmed
body with diffusers is the use of CFD simulations. The CFD simulations
for all references presented employ the RANS methodology combined
with the k$ ω SST turbulence model and no reference using high-fidelity
CFD solutions on the Ahmed body with diffuser were previously
presented.

The geometry of the diffuser is proposed without the use of endplates.
By evaluating the Ahmed Body equipped with a rear underbody diffuser
without endplates, we also offer an interesting and simple test case,
especially for the squared-back case, as it can be evaluated using a regular
Ahmed body which has been flipped upside-down.

3. uDNS/iLES simulations using spectral/hp element method

For both Ahmed body styles with diffuser, we performed implicit LES
simulations based on a spectral/hp element approach. Classical h-type
method is based on dividing the domain into non-overlapping elements
of the same type, similar as in the Finite Element Method (FEM), offering
geometric flexibility, a key factor for many complex industrial cases. To
improve the accuracy of the solution, the mesh characteristic length (h) is
reduced in order to capture smaller flow features, generating a finer
mesh, with larger element density of the same type. The p-type method
focus on improving results by increasing the degree of the polynomial
expansion used to approximate the solution on each element on a fixed
mesh, with the desirable property of exponential convergence. The

spectral/hp element method used in this work combine both spatial ap-
proximations (h and p) in order to have a methodology flexible enough to
handle complex geometries and providing high-fidelity solutions, such as
LES and DNS with enhanced convergence properties. A summary of the
methods is illustrated in Fig. 3.

The flow solution for the cases in this work is obtained by using the
incompressible Navier-Stokes solver with a velocity correction scheme as
proposed by (Guermond and Shen, 2003). The elliptic operators were
discretised using a classical continuous Galerkin (CG) formulation and all
this formulation is encapsulated in the open source package Nektarþþ
(Cantwell et al., 2015).

In this work we adopt an equivalent of the Taylor Hood approxima-
tion, approximating the velocity by continuous piecewise quadratic
functions and the pressure by continuous piecewise linear functions.-
Therefore we use one higher polynomial order for velocity than the
pressure. The polynomial order for velocity is also referred to as the
simulation expansion order in this study.

For simulations with higher Reynolds numbers (105 and above), such
as the cases presented here, the flow is typically only marginally
resolved, which means that the ratio of subgrid scale (SGS) and resolved
dissipation is relatively small. Such a marginal resolution can lead to
numerical instabilities related to wave interaction and wave trapping. To
reach a stable solution, we employ both dealiasing and spectral vanish
viscosity (SVV) stabilization techniques.

The aliasing errors related to the Navier-Stokes equations appears
when handling its quadratic non-linearity term by using the Gauss inte-
gration orders Q similar to the solution polynomial order P. This is usu-
ally present in simulations considering under-resolved turbulence, such
the iLES, which leads to a significant error increment in high-frequency
modes of the solution and typically cause the simulations to diverge.
To avoid the aliasing errors, we employed a quadrature order consistent
with the polynomial order and non-linearities of the equation. In areas of
non-linear geometry deformation we also have to be mindful of geo-
metric aliasing (aliasing arising from geometric mapping). We refer the
interested reader to (Mengaldo et al., 2015) for more details.

High-order methods present low numerical diffusion, as discussed by
(Karniadakis and Sherwin, 2013) and simulations with marginal spatial
resolution become numerically unstable, especially in the presence of
turbulence at high Reynolds numbers, condition in which most of engi-
neering problems are. The spectral-vanishing viscosity (SVV) is a tech-
nique that adds artificial dissipation to the smallest scales of the solution
and this modern strategy has been proven to effectively stabilise the
simulation.

The main idea of SVV consists in expanding the Navier-Stokes
Equations to include an artificial dissipation operator, leading to:

∂u
∂t

¼ $ðu 'rÞu$rpþ νr2uþ SVV ðuÞ ð1aÞ

r ' u ¼ 0 ð1bÞ

and the original operator SVV is:

Fig. 3. Schematic explanation illustrating how finite element (h) and spectral methods (p) combine to form the spectral/hp element method.
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SVV ðuÞ ¼ ε
XNdim

i¼1

∂

∂xi

!
Q*

i
∂u
∂xi

"
(2)

with Ndim being the spatial dimension of the problem, ε a constant co-
efficient, and * representing the application of the filter Qi through a
convolution operation.

For the SVV operator in this study, we run the simulation using a
novel CG-SVV scheme with DGKernel as proposed by (Moura et al.,
2017). The fundamental idea of this implementation is based on the
fixing of the P!eclet number, which can be understood as a numerical
Reynolds number based on local velocity and mesh spacing. This is
achieved by making the viscosity coefficient of the SVV operator pro-
portional to both a representative velocity and a local mesh spacing.
Once the P!eclet number is the same for the domain, the authors in
(Moura et al., 2017) proposed a SVV kernel operator for CG methods that
mimics the properties of DG-based discretisation where there is natural
damping of high frequency and reflected waves. In this approach the
dissipation curves arising from spatial eigenanalysis of CG of order PN are
matched to those of DG with order PN $ 2. Matching both curves offers
benefits such as the numerical stability of simulations at very high Rey-
nolds number.

4. Numerical methodology validation on the classical Ahmed
body geometry

In this simulation study, we use a coordinate system with X as the
streamwise direction, Y as the vertical direction and Z as the spanwise
direction. The Ahmed body model is positioned with its back end on the
coordinate X ¼ 0 and at a distance h of 50 mm from the ground (Y ¼ 0).
The wind tunnel test section size is defined with same dimensions as the
experiment from (Strachan et al., 2007) 1660 mm # 2740 mm, keeping
the same blockage ratio. Air flow inlet is positioned at X¼$2L and outlet
at X ¼ 2L with a total X length of 4L. With such reduced wind tunnel,
special outflow boundary condition is necessary to avoid interference on
the flow and numerical instabilities. The outflow condition selected is the
high-order outflow condition, proposed by (Dong et al., 2014), in order
to avoid wave reflections back to the domain.

The Reynolds number for all simulated cases is Re ¼ 1.7 # 106, based
on the Ahmed body total length L of 1044 mm. With this Reynolds
number value and by imposing moving ground condition, we aim to
reproduce similar conditions employed by (Strachan et al., 2007).

The high-order meshes for all cases presented in this work were
generated by the mesh generator module of Nektarþþ: NekMesh
((Turner, 2017)). The pipeline to create a high-order mesh starts by
designing the geometries for the computational simulations on a Com-
puter Aided Design (CAD) software, exported in STEP format. Subse-
quently, we generate a linear mesh using a classical h-type method.
Linear mesh generation on NekMesh also incorporates an optimisation
step to avoid irregular and low quality elements once the surface mesh is

projected into its 3D form using the CAD surface.
Once the linear mesh was generated, the next step is to convert it into

a high-order mesh which is geometry conforming. The generation of the
high-order mesh requires the addition of extra points to represent the
polynomial discretisation (with order PM), which are added along the
curved edges, CAD surface geometry and in the interior of the domain.
The processes then follows by the generation of a macro boundary layer
on user-defined wall surfaces together with volumetric high-order mesh
on rest the domain. The final operation on the mesh generation is the
macro boundary layer split, by using the isoparametric approach as
proposed by the authors of (Moxey et al., 2015) considering boundary
layer inputted parameters.

The boundary conditions for the computational study were set as
follows and shown on Fig. 4:

● Ahmed bodies with diffuser are set as wall with no-slip condition;
● A half model of the geometry is used;
● Symmetry condition imposed at Z ¼ 0;
● Free-slip condition imposed at tunnel walls;
● Uniform velocity profile at the inlet;
● High order outflow condition at the outlet (as proposed by (Dong

et al., 2014));
● A moving ground condition on the floor with speed U in the X di-

rection, as used by (Strachan et al., 2007);
● Convergence criteria for pressure is 1 # 10$6 and for the velocity

components 1 # 10$8;

Simulations were performed for 7 convective time units (CTU), which
can be understand as the free stream flow that has been advected over a
surface or reference point for a total length of 7L. The convergence
criteria was set to a maximum variation of 1 # 10$6 for pressure and 1 #
10$8, in order to minimize numerical error. Due to the use of half sym-
metric model, this study focus mainly on aerodynamic quantities, such as
the lift and drag coefficients and flow structures on the slant and close to
the body. The use of half symmetric Ahmed body was previously vali-
dated against full geometry by (Buscariolo, 2020). Under similar
boundary conditions, solution and meshing configurations, the
maximum difference in the aerodynamic quantities was 2%.

Considering the numerical methodology validation, as performed by
(Buscariolo et al., 2020), we are focusing on the classical Ahmed body
geometry, selecting the slant angle of 25!. Two different mesh configu-
rations in terms of h-refinements are proposed, defined as Original and
Refined meshes, based on the boundary layer setup of a total length of
0.022L (macro boundary layer), which is further divided into 10 layers
with a growth rate of 1.6. The possibility of evaluating two different
meshes in terms of elements resolution complements the polynomial
order PN. The choice of parameters for refinements zones and boundary
layer was based on automotive industry guidelines. For the mesh reso-
lution, the study aimed to have similar number of DOFs of a
Wall-Modelled LES simulation for the most refined case and further

Fig. 4. Boundary condition setup.
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coarsening the mesh to evaluate its impact on the aerodynamic behav-
iour of the body.

This validation study also proposes the evaluation of three high-order
meshes for both Original and Refined cases, considering the first PM of 4th
order, as previous reference studies from (Turner et al., 2017). In addi-
tion to previous reference, we propose increasing the polynomial reso-
lution of the curved elements PM to both 5th and 6th order. Within this,
the study aims to evaluate the influence of different high-order poly-
nomials for the boundary layer mesh element curvature, when using
relatively coarse meshes. Two refinement zones are applied for all
Ahmed body simulations. The first refinement zone is created over the
Ahmed Body full length, referred as Ahmed body refinement, ranging
from 0.3 L before and 0.3 L after the end of the body. The second
refinement, referred as wake refinement is applied on the wake region,
intercepting the first region in $0.3 L before the end of the body, to 1.3 L
after the end of the body. The wake refinement and overlap with smaller
elements are applied in order to fully capture the flow phenomena in the
separation region. Mesh refinement regions considering the Original
mesh are illustrated in Fig. 5 on the plane Z ¼ 0.

The Original mesh is generated with a total number of elements NEL
for half model around 94,000 h-type mesh elements, where around
14,000 are prismatic elementsNP and 80,000 are tetrahedra elementsNT.
The mesh configuration parameters on NekMesh, typically found in the
automotive industry, are presented below in function of L.

● Min length hmin ¼ 0.01 L;
● Max length hmax ¼ 0.2 L;
● Ahmed Body refinement zone length ¼ 0.05 L;
● Wake refinement zone length ¼ 0.03 L;

For the Refined mesh, the number of elements generated NEL for half
model is around 335,000 h-type mesh elements, where around 35,000
are prismatic elements NP and 300,000 are tetrahedra elements NT. Mesh
parameters are presented as follow:

● Min length hmin ¼ 0.0075 L;
● Max length hmax ¼ 0.2 L;
● Ahmed Body refinement zone length ¼ 0.035 L;

● Wake refinement zone length ¼ 0.02 L;

Once the six high-order meshes are generated, high fidelity numerical
simulations are performed, using the implicit LES simulations based on a
spectral/hp element method. The selected is the Nektarþþ open source
software for all simulations. The solution on each element is approxi-
mated by a high-order polynomial and three different polynomial ex-
pansions PN are selected: PN ¼ 4th, 5th and 6th order. These are applied
for each of the six meshes, in total eighteen cases evaluated. The total
number of degrees of freedom (DOFs) of each case, in order to have a
comparison with low-order solutions, is presented in Table 1, with
numbers indicating in millions of DOFs and (-A) refers to Original mesh
and (-R) to Refined mesh.

An important aspect to mention is that the mesh order PM and solu-
tion order PN are independent and values of both can be freely combined.
Higher order of the PM polynomial are used to improve the reproduction
of complex surfaces by curving the elements, whereas PN adds more DOFs
to the solution.

4.1. Ahmed body drag and lift coefficient validation results

We now compile quantitative results for the nine combinations of
high-order meshes with polynomial expansions for the Originalmesh (-A)
and additional nine cases for the Refinedmesh (-R) in total eighteen cases.

Fig. 5. Plane view Z ¼ 0 indicating the location of the refinement boxes on the Ahmed body model for the Original mesh case. The Ahmed body refinement region is
indicated in yellow and the wake refinement region is indicated in black. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Table 1
Resolution of the proposed simulations, showing total number of DOF (in
Million) for each case evaluated, at different polynomial expansions accuracy PN.

PN ¼ 4 PN ¼ 5 PN ¼ 6

Original Mesh (-A) PM ¼ 4 2.16 3.85 6.24
PM ¼ 5 2.16 3.85 6.24
PM ¼ 6 2.16 3.85 6.24

Refined Mesh (-R) PM ¼ 4 7.40 13.13 21.21
PM ¼ 5 7.40 13.13 21.21
PM ¼ 6 7.40 13.13 21.21

Table 2
Drag and lift averaged RMS and RMSE coefficients for the Original and Refined
meshes considering evaluated PM and PN high-order, comparing with experi-
ments from (Strachan et al., 2007).

Simulation
Case

CD CL Difference Difference CD CL

RMS RMS Drag % Lift % RMSE RMSE

NM44-A 0.416 0.140 40 $50 0.1202 0.1637
NM45-A 0.386 0.090 29 $68 0.0913 0.2384
NM46-A 0.386 0.090 29 $68 0.0912 0.2386
NM54-A 0.322 0.270 8 $3 0.0299 0.1043
NM55-A 0.312 0.286 5 2 0.0157 0.0325
NM56-A 0.313 0.285 5 2 0.0163 0.0339
NM64-A 0.276 0.267 $8 $5 0.0230 0.0544
NM65-A 0.251 0.260 $16 $7 0.0474 0.0225
NM66-A 0.260 0.279 $13 $1 0.0393 0.0096

NM44-R 0.395 0.249 33 $11 0.0976 0.0712
NM45-R 0.395 0.250 33 $11 0.0975 0.0695
NM46-R 0.395 0.251 33 $10 0.0977 0.0693
NM54-R 0.279 0.291 $6 4 0.0200 0.0212
NM55-R 0.275 0.287 $8 2 0.0237 0.0211
NM56-R 0.280 0.295 $6 5 0.0195 0.0397
NM64-R 0.258 0.285 $13 2 0.0405 0.0371
NM65-R 0.255 0.255 $14 $9 0.0436 0.0710
NM66-R 0.258 0.282 $13 1 0.0452 0.0519

Experiment 0.298 0.280
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The first number following the term NM refers to PN and the second
number refers to the PM employed to the case. A summary is presented on
Table 2 for the Root Mean Square (RMS) and Root Mean Square Error
(RMSE) drag and lift coefficients obtained in all simulations. For the
coefficients of drag and lift, results were averaged from the 5th to the 7th
CTU, as the results using PN ¼ 4 start to have a more stable profile.

In order to better visualize the results of both drag and lift coefficient
from the Original and Refined mesh cases, we present the averaged
quantities (dotted line) with minimum and maximum deviation
comparing with experimental results (dashed line) from (Strachan et al.,
2007). The drag coefficient summary is presented in Fig. 6 and the lift
coefficient summary in Fig. 7.

The results for the aerodynamic quantities indicate that for a
simplified geometry such as the Ahmed body, once passing a threshold
value, further increasing the mesh order has small influence on the re-
sults. For this type of bluff bodies, most of the relevant flow structures are
generated from sharp edges of the geometry, such as the slant. The only
curved surface is the frontal stagnation, where we see enhancements on
capturing the curvature as the PM increases. We select to have the highest
high-order mesh resolution (PM ¼ 6th order) as our reference for cur-
vature mesh for flow structure results to be presented and further
application on the diffuser test cases, as also employed by (Buscariolo
et al., 2019) and similar automotive studies. This study also highlights
that for the Originalmesh case, we observe similar values for drag and lift
coefficients for PM¼ 5 and PM¼ 6. It indicates that further increase on PM
will not affect results. On the Refined mesh case, drag coefficient values

are similar for every PM, however the lift coefficient improves as PN for
the solution increases.

When analysing numerical results, the outcome for the best numerical
methodology are between Original and Refined meshes with PN ¼ 5 and
PN ¼ 6 resolution, respectively for drag and lift coefficients. A point to
consider is that for PN ¼ 5, we noticed that increasing the h-refinement
from Original to Refined, the result changed from over-predicted to under-
predicted. Results for drag considering PN ¼ 6 resolution maintained
similar value for both meshes, indicating consistency.

In terms of flow structure comparison, we point out that the main
reference used for the aerodynamic quantities (Strachan et al., 2007) has
an upper support over the body to allow the moving ground condition,
which the upper support contributions for the drag forces being empir-
ically deducted from the obtained total value. However, the influences on
flow features will still remain, possibly leading to weaker vortices over
the slant when comparing to results without the support. Following the
findings of (Strachan et al., 2007) that the upper strut can interfere with
the vortices’ intensity, we are comparing aerodynamics flow visualiza-
tion with results from (Lienhart and Becker, 2003) (without strut),
similar as this work. We present a comparison of the normalized U on the
plane ZY at X/L ¼ 0.077 in Fig. 8, aiming to compare wake structures in
the flow.

Analysing the flow, Refined mesh with PN ¼ 5 and PN ¼ 6 cases
qualitatively closely correlate to experimental results, with better defi-
nition of flow structures and larger contour spectrum. Especially for PN ¼
6 resolution, capturing similar shape of the experimental reference.

The main conclusion here presented is that the minimum resolution
for this mesh setup to reproduce similar features and aerodynamic

Fig. 6. Drag coefficient comparison for Original and Refined mesh cases,
considering proposed high-order meshes and polynomial basis.

Fig. 7. Lift coefficient comparison for Original and Refined mesh cases, consid-
ering proposed high-order meshes and polynomial basis.
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quantities is the Refined configuration combined with 6th high-order
mesh (PM ¼ 6) and polynomial expansion of 6th order accuracy (PN ¼
6). The Refined configuration combined with polynomial expansion of
6th order accuracy leads to yþ ) 1 over the body walls, giving support to

previous statement and is applied to the all further simulations in this
study.

In order to justify the reliability of the aerodynamic quantities results
of the selected resolution, we applied the method proposed by (Islam
et al., 2017) and further applied by (Luckhurst et al., 2019). Drag and lift
coefficient data was resampled to remove the statistical dependence in
the unsteady signal, between the 5 to 7 CTU, shown in Fig. 9.

Considering the resampled data for both drag and lift coefficients, the
receding average of was generated with a 95% confidence interval and
presented in Fig. 10. It indicates that significance of the autocorrelation is
removed and the data from 5 to 7 CTUs is statiscally independent.

Fig. 8. Comparison of normalized streamwise velocity U between experiments of (Lienhart and Becker, 2003) (top) and computational simulations on plane ZY at X/L
¼ 0.077.

Fig. 9. Autocorrelation for the re-sampled unsteady drag and lift coefficient.

Fig. 10. Receding average with 95% confidence intervals.
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The results here presented are also in accordance with current liter-
ature on the use of LES solutions on the Ahmed body in terms of the drag
coefficient, ranging from 6% to 16%, according to (Serre et al., 2013)
studies, but showing great agreement in terms of lift coefficient. Un-
certainties of the experiment might also explain the gap between
computational results, such as the use of the upper strut. The strut in-
fluence on the drag coefficient results of (Strachan et al., 2007) is
approximately 15% when compared to the study of (Graysmith et al.,
1994). This study also highlights improvements in terms of also
capturing correct flow structures and intensities. From previous reference
of spectral methods applied to this bluff body, there is a reducing from
44% ((Serre et al., 2013) to 13% on the drag coefficient value.

5. Simulation of the Ahmed body with diffuser

With the numerical methodology validated on the classical Ahmed
body, the following step is the application on a new variant of the Ahmed
body equipped with underbody diffuser. Diffuser length DL is set to be at
a fixed value, which is the same as the upper slant length SL of 222 mm,
regardless of the inclination angle changes. The influence of the diffuser
is evaluated in two variants of the classical Ahmed body: 0! slant (or
squared-back) and 25! slant angle, as illustrated in Figs. 11 and 12. The
diffuser angle evaluated for was changed from 0! to 50! in increments of
10! with an additional case considering the angle of 5!.

All simulation cases were performed based on the methodology
established on previous chapter and in the study of (Buscariolo et al.,
2020), considering Refined mesh parameters, with 6th high-order mesh
(PM ¼ 6) and polynomial expansion of 6th order accuracy (PN ¼ 6),
corresponding to the NM66-R case on the validation study. The

volumetric mesh also incorporates the two refinement zones (Ahmed
body and wake refined) previously and illustrated for each body style in
Fig. 13.

With this simulation setup using a polynomial expansion for the so-
lution PN ¼ 6, we are able to increases the resolution of the solution by
converting a relatively coarse mesh with 250,000 (h-type equivalent)
elements into 19.8 million degrees of freedom (DOF) per variable.
Boundary conditions and Reynolds number for the simulation cases with
diffuser are the same applied for the numerical methodology validation
study and following the work of (Strachan et al., 2007).

5.1. Results

The key findings of the study are presented as follows. We initially
present a comparison of drag and lift coefficients for both Ahmed body
styles when the diffuser angles changes. Both quantities are averaged
from the 5th to the 7th convective length where we assure to have a fully
converged physical solution. Flow structures comparison for the planes
X/L ¼ 0 and X/L ¼ 0.096 and wall shear stress lines are both averaged
from the same period and presented in order to complement the findings.

5.1.1. Drag coefficient results
Drag coefficient results with both Ahmed body slant angles are pre-

sented in Fig. 14. Ahmed body squared back results indicate that the drag
coefficient initially rises as the diffuser angle increases, reaching the
maximum value at the diffuser angle of 30!. The rising drag trend sud-
denly breaks for diffuser angles higher than 30!, where results for further
angles are similar to the diffuser with 20! inclination. Such behaviour
indicates similar trends as earlier verified in studies on Ahmed body slant

Fig. 11. Schematic drawing of the Ahmed body squared-back equipped with rear underbody diffuser.

Fig. 12. Schematic drawing of the Ahmed body with slant angle of 25! equipped with rear underbody diffuser.
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angle variations of (Ahmed et al., 1984), (Lienhart and Becker, 2003) and
(Strachan et al., 2007). The drag breaking point for the diffuser angle is
similar to slant angle which is an indication of flow structure change on
the diffuser region and is further discussed below. We conclude that any

diffuser added to the Ahmed body squared back has a penalty in terms of
drag performance.

The drag coefficient results for Ahmed body with 25! slant angle
show different trend from the squared back case. Applying the diffuser
with angles of 5!, 10! and 20! angle leads to drag reduction with the
optimum angle at 10!. For the other diffuser angles, the drag coefficient
recovers to a similar value of the Ahmed body with 25! slant angle
without a diffuser. We also notice that the drag performance enhance-
ment region might be related to flow behaviour change on the diffuser
region, which is further presented. Diffuser application has no negative
impact on drag coefficient for this Ahmed body style.

5.1.2. Lift coefficient results
Lift coefficient values for both Ahmed body cases at different diffuser

angles are presented in Fig. 15. When analysing the lift coefficient results
for the Ahmed body squared back, downforce enhancement is obtained
as the diffuser angle increases from 0!, reaching maximum downforce
value at 30!. The downforce trend breaking phenomenon is observed for
diffuser angles higher than 30!, similar as observed for the drag coeffi-
cient. For diffuser angles higher than 30!, downforce force values are
similar to the diffuser of 5!, indicating saturation of downforce
enhancement with this diffuser geometry.

Ahmed body with 25! slant inclination lift coefficient results shows
similar trend of previous squared-back results. We’ve noticed the positive
lift on the baseline case without diffuser, which might compromise
gripping on performance and race cars. By implementing the diffuser,
downforce performance starts to increase, where the first proposed
diffuser angle of 5! take the lift coefficient to equilibrium. Downforce
increment is noticed until the diffuser angle of 20!, where the maximum
performance is reached. The diffuser loses its performance for diffuser
angle of 30! and above, where the first has performance similar to the 5!

whereas the 40! and 50! diffusers have similar performance as the
baseline.

Fig. 13. Mesh refinement regions on both Ahmed bodies squared back (up) and with slant angle of 25!. Refinement region highlighted in yellow is defined as the
Ahmed Body refinement and region highlighted in black is defined as Wake Refinement. (For interpretation of the references to colour in this figure legend, the reader
is referred to the Web version of this article.)

Fig. 14. Drag coefficient comparison for Ahmed Body squared-back (blue line)
and 25! slant inclination (orange line) considering standard configuration and
evaluated diffuser angles: 5!, 10!, 20!, 30!, 40! and 50!. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 15. Lift coefficient comparison for Ahmed Body squared-back (blue line)
and 25! slant inclination (orange line) considering standard configuration and
evaluated diffuser angles: 5!, 10!, 20!, 30!, 40! and 50!. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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5.1.3. Flow features analysis
Comparative results for the flow structures found on the Ahmed body

equipped with a diffuser are now presented and discussed. The com-
parisons are presented at two planes, one at X/L ¼ 0, where the back end
of the Ahmed body is placed and one downstream at X/L ¼ 0.096, in

order to evaluate how the flow structures develop as they separate from
the body. Contours of Q-criterion, U (streamwise) and V (vertical) ve-
locities are provided for the inspection planes, aiming to identify flow
structures and define its interactions with the rear wake. We also provide
a flow topology comparison on the diffuser surface by plotting averaged

Fig. 16. Contours of Q-Criterion for the Ahmed body squared-back considering diffuser angle of 5! (DA5), 10! (DA10), 20! (DA20), 30! (DA30), 40! (DA40) and 50!

(DA50) for planes X/L ¼ 0 and X/L ¼ 0.096.
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Fig. 17. Contours of normalized streamwise velocity U for the Ahmed body squared-back considering diffuser angle of 5! (DA5), 10! (DA10), 20! (DA20), 30! (DA30),
40! (DA40) and 50! (DA50) for planes X/L ¼ 0 and X/L ¼ 0.096.
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Fig. 18. Contours of normalized vertical velocity V for the Ahmed body squared-back considering diffuser angle of 5! (DA5), 10! (DA10), 20! (DA20), 30! (DA30), 40!

(DA40) and 50! (DA50) for planes X/L ¼ 0 and X/L ¼ 0.096.
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wall shear stress lines from the 5th to the 7th convective length, same
period as the flow quantities and aerodynamic forces. Results for the
Ahmed body squared-back are firstly presented, followed by the Ahmed
body with 25! slant angle with all plane views observed from down-
stream. We define the simulation cases by the abbreviation of diffuser
angle, DA, followed by the inclination angle so diffuser angle of 30! is
defined as DA30.

5.1.4. Ahmed body squared back with diffuser
The first consideration of Fig. 16(a) shows a vortex arising from side

of the diffuser up to the angle of 30!. The vortex intensity and core size
increase as the diffuser angle becomes more inclined. A wake structure
can also be noticed for the DA30 case, indicating that there is separated
flow on the diffuser. Similar flow behaviour is observed on the classical
Ahmed body slant variation experiment for slant angles ranging from
12.5! to 30!. For diffuser angles above 30! only a few structures are
observed, such as weak vortices on the lower part of the body, near the
floor. This is an indicative of fully separated flow, however the Q-Crite-
rion image alone is not conclusive.

Moving to plane X/L ¼ 0.096, shown Fig. 16(b), the main difference
noticed is on DA30 case where the diffuser vortex has merged with the
rear wake. We observed that the diffuser vortex in DA5, DA10 and DA20
cases are weaker and shifting both upwards and in the spanwise direction
towards the centre plane.

Flow separation is observed for DA40 and DA50 case on plane X/L ¼
0. The large negative velocity area shown in Fig. 17(a) indicates that the

flow is already separated at the outlet of the diffuser. The slight higher
drag for DA50 is explained by a more intense contour of negative U ve-
locity when comparing to DA40. The negative velocity area on DA30 at
mid-span, shows a combination of flow separation with vortex genera-
tion. With both flow features, the DA30 case can characterized as a highly
energetic flow.

Flow structures evolution is presented in Fig. 17(b), reaching the
plane X/L ¼ 0.096. Low velocity zones are observed on the rear vertical
portion of the body, with a different contour position for DA30. The
DA30 shifts the base wake upward as it moves to a inner spanwise di-
rection. The diffuser vortex intensity is probably the main cause of this
translation and V velocity results are next presented to complement the
explanation the this phenomenon.

From normalized vertical velocity V contours in Fig. 18, we extract
the diffuser vortex rotation direction. The diffuser vortex rotates anti-
clockwise, as the most inner spanwise vortex component has positive
vertical velocity and the outer negative. Vertical velocity contour for
DA30 on plane X/L ¼ 0.096 explain the wake moving upwards on the
spanwise direction from Fig. 17(b). A strong positive vertical velocity
zone is observed at the mid-span behind both the diffuser and back of the
Ahmed body.

Averaged wall shear stress lines for the diffuser cases evaluated are
next presented. The bottom view of the diffuser, with flow direction
coming from the top are shown in Fig. 19. We define the diffuser inlet as
the top of the diffuser, and diffuser outlet as the bottom.

Analysing results in Fig. 19, we observe different flow behaviours on

Fig. 19. Wall shear stress lines (black) on the diffuser surface for the Ahmed body squared-back considering the proposed diffuser angles: 5! (DA5), 10! (DA10), 20!

(DA20), 30! (DA30), 40! (DA40) and 50! (DA50), bottom view, incoming flow direction from top.
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the diffuser surface, detailed as follows. The DA5 and DA10 cases have
the diffuser vortex influencing the diffuser surface up to the mid-span.
There is a clearly defined separation area at the diffuser inlet, respon-
sible for the pumping effect observed by (Cooper et al., 1998). The flow
keeps attached on the diffuser surface until reaching the diffuser outlet. A
combination of both separated flow on the diffuser surface and diffuser
vortex is observed for the DA30 case. The diffuser vortex size increases,
reaching almost mid-span distance at the diffuser outlet, while fully
separated flow is also observed on the diffuser surface.

The pattern evident in DA20 is a combination of the DA30 and DA10
diffuser flow regimes. There is indication of the diffuser vortex, with
defined separation area at the diffuser inlet followed by a small recir-
culation bubble due to flow separation. The flow then reattaches and
follow this pattern until reaching the diffuser outlet. Considering the
more extreme diffuser angles (DA40 and DA50), had no previous refer-
ences, however the low performance is expected. Results show a chaotic
behaviour on their surfaces due to the separated flow and a recirculation
zone is observed at the diffuser outlet.

Bottom view of the Ahmed body squared-back at different diffuser
angles showing iso-contours of Q-Criterion (QCrit ¼ 100) are presented
in Fig. 20. The lower side vortex is shifting in the inner spanwise direc-
tion for DA5 up to DA30.

5.1.5. Ahmed body 25! slant inclination with diffuser
We now analyse flow structures found for the Ahmed body with slant

angle of 25! equipped with underbody diffuser. On the upper part of the
body, the slant vortex is clearly defined in all diffuser angles evaluated.
As presented for previous case, contours of Q-Criterion for planes X/L ¼
0 and X/L ¼ 0.096 are shown in Fig. 21. The diffuser vortex appears on
DA5, DA10 and DA20 together with an additional small intensity vortex
on the plane X/L¼ 0. The diffuser vortex has similar intensity and size as

the slant vortex in the DA20 case. The other three diffuser cases, DA30,
DA40 and DA50 indicate no evidence of the diffuser vortex but only the
same lower side vortex, originated on the frontal part of the Ahmed body.
Further downstream on plane X/L ¼ 0.096, the vortical system have
moved inward in the spanwise direction on the first three cases. The last
three cases indicate that the lower side vortex gets weaker as it moved
downstream.

Contours of normalized U for both X/L ¼ 0 and X/L ¼ 0.096 planes
are presented in Fig. 22. On plane X/L ¼ 0, we observe that the velocity
countour on the upper slant changes as the diffuser angle becomes more
inclined until the case DA20. The three other cases from DA30 to DA50
however, have similar velocity profiles. We conclude that the diffuser
influences the flow over the upper slant whenever we have evidences of
the diffuser vortex. From observation of the first Ahmed body case, we
have indication of attached flow for diffuser angle up to 20!, whereas for
higher angles, a significant wake contribution can be seen from the fully
separated flow from the diffuser.

Moving downstream, normalized U velocity on plane X/L ¼ 0.096
shows the evolution of the turbulent wake and vortices. Base pressure
turbulent wake with the slant and diffuser vortices are the main struc-
tures seen on cases DA5 and DA10. The U velocity contours on this plane
for the DA20 case shows a very small negative velocity zone, indicating
an energetic wake, together with the slant and diffuser vortices moving
downstream. On DA30 case, wake profile and vortical system is similar to
DA40 and DA50, except by the fact of a distortion on the lower outer area
of the diffuser. At this point, the flow distortion could be caused by a
vortical flow structure and further plots will provide evidences to confirm
this assumption.

Normalized vertical velocity V is presented in Fig. 23 where we
observe similar contour on the slant as presented by the experimental
reference of (Lienhart and Becker, 2003) on plane X/L ¼ 0. When ana-
lysing the diffuser area, two vortices are identified at similar spanwise
coordinates but different heights on DA5 case. From bottom to top, the
lower side vortex and the diffuser vortex are in the same region, however
it is not possible to assure they are merging at this point. Only the diffuser
vortex is observed for DA10 and DA20 with anti-clockwise rotation di-
rection. The case considering diffuser angle at 30! (DA30) also has an
indication of two vortices, however only the lower side vortex (bottom)
can be confirmed at this point. For the DA40 and DA50 cases, the lower
side vortex has similar intensity in both case and a slightly different V
velocity distribution on the diffuser, with higher velocities in the most
inclined diffuser.

Analysing plane X/L ¼ 0.096, the inner spanwise component of the
slant vortex is shifting downwards, once this flow structure starts to
interact with the wake. On the diffuser area of DA5, the pair of vortices is
merged into one single structure, with high V velocity on the positive
component of the new merged vortex. DA10 and DA20 cases maintain
only one single diffuser vortex structure highlighted, moving slightly up
and into the spanwise direction. The DA30 case still maintain the lower
side vortex in similar position as in plane X/L ¼ 0 and the additional
structure does not behave as a vortex. The diffuser wake structure is still
similar on DA40 compared to DA50, where the main difference relies on
a low velocity zone at the mid-span of the diffuser, caused by the inter-
ference of slant vortex on the diffuser wake.

Wall shear stress lines on the surface of each diffuser case evaluated
are presented in Fig. 24. This analysis follows similar terminology and
setup as presented for the Ahmed body squared-back.

The flow structure on the diffuser indicates a vortex touching the
diffuser surface up to angle of 20! (DA20) and separated flow from DA30
onward. We identified three flow behaviour on the diffuser surface as the
previous Ahmed body squared-back, detailed as follows. The DA5 and
DA10 cases have the side diffuser vortex touching the diffuser surface
together with a separation area at the diffuser inlet. The flow remains
attached on the surface until reaching the outlet. Separated flow on the
diffuser surface and diffuser vortex is observed in the DA20 case, with a
partial reattachment at the outlet. The last three diffuser angles of 30!

Fig. 20. Iso-contours of Q-Criterion (QCrit ¼ 100), coloured by U, of the bottom
view of the Ahmed body squared-back. The following proposed diffuser angles
are presented: 5! (DA5), 10! (DA10), 20! (DA20), 30! (DA30), 40! (DA40) and
50! (DA50).
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Fig. 21. Contours of Q-Criterion (QCrit ¼ 100) for the Ahmed body with slant angle of 25! considering diffuser angle of 5! (DA5), 10! (DA10), 20! (DA20), 30!

(DA30), 40! (DA40) and 50! (DA50) for planes X/L ¼ 0 and X/L ¼ 0.096.
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Fig. 22. Contours of normalized streamwise velocity U for the Ahmed body with slant angle of 25! considering the proposed diffuser angles: 5! (DA5), 10! (DA10),
20! (DA20), 30! (DA30), 40! (DA40) and 50! (DA50) for planes X/L ¼ 0 and X/L ¼ 0.096.
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Fig. 23. Contours of normalized vertical velocity V for the Ahmed body with slant angle of 25! considering the proposed diffuser angles: 5! (DA5), 10! (DA10), 20!

(DA20), 30! (DA30), 40! (DA40) and 50! (DA50) for planes X/L ¼ 0 and X/L ¼ 0.096.
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(DA30), 40! (DA40) and 50! (DA50) have a fully separated flow all over
the diffuser surface.

Flow structures on the bottom view for the Ahmed body with slant
angle of 25! considering different diffuser angles are presented in Fig. 25.
From the iso-contours of Q-Criterion (QCrit ¼ 100) coloured by U, we
observe the same lower side vortex behaviour shifting inwards in the
spanwise direction. The lower vortex shifting only happens with the
existence of the diffuser vortex, from DA5 to DA20 in this case.

6. Conclusions

A parametric study on the effect of diffusers is conducted on the
Ahmed body at two slant cases: squared-back and 25! angle. The diffuser
length is fixed with the same dimension of the slant and cases are eval-
uated at a Reynolds number of Re ¼ 1.7 # 106 with moving ground
condition. Diffuser angles considered range from 10! to 50! in in-
crements of 10!, including one additional angle of 5! for both cases. The
numerical methodology employed in this study was validated on the
classical Ahmed body geometry, where it was found good agreement in
terms of flow structures and the difference of 13% and 1% for respec-
tively drag and lift coefficient against experiments. The application of the
spectral/hp element method also allowed to have a high-fidelity solution
from a relatively coarse mesh. Further increments on the resolution by
increasing the solution polynomial order PN are possible, keeping the
same mesh structure, which is highly desirable for comparative purposes.

The study extended the knowledge on plane diffusers by showing the
flow behaviour on a well-established bluff body when the downforce
generation by the diffuser is not effective anymore. The interaction of the
lower side vortices with the flow structures on the diffuser region due to
the absence of endplates is an interesting phenomenon.

Ahmed body squared-back results indicate two different flow be-
haviours. The first is observed in diffuser angles from 5! up to 30!,
indicating that downforce increment leads to higher drag coefficient.
Flow structure for this regime is composed of a lateral vortex with fully
attached flow on the diffuser surface for diffusers up to 20!. The critical
angle has similar structure considering the same diffuser vortex however
the flow is partially separated on the diffuser surface. The second flow
regime is found for diffuser angles higher than 30! where downforce
increment efficiency is lost, and the flow is fully separated on the diffuser
surface.

On the Ahmed body with 25! slant angle, downforce increases while
the drag coefficient is reduced for diffuser angles up to 20!. Maximum
downforce is observed at 10!. The flow structure is composed of the
diffuser vortex and attached flow on the diffuser surface, however only
for the 5! and 10! diffuser angles. The diffuser vortex is present in the 20!

case but the flow is mostly separated. Similar to the squared-back case,
the highest drag coefficient value is observed for the 30! angle, and flow
on the diffuser surface is fully separated from this case onward.

The downforce enhancement provided by the diffuser is connected to
the presence of the diffuser vortex on the lower portion of the body. As

Fig. 24. Wall shear stress lines (black) on the diffuser surface for the Ahmed body with slant angle of 25! considering the proposed diffuser angles: 5! (DA5), 10!

(DA10), 20! (DA20), 30! (DA30), 40! (DA40) and 50! (DA50), bottom view, incoming flow direction from top.
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the diffuser vortex disappear and the flow becomes fully separated, only
small downforce increments are observed. Before the diffuser flow sep-
arates, the effect of an increment in the diffuser angle aims to increase the
intensity of the diffuser vortex, which is associated with an increase in
downforce. We therefore conclude that an efficient diffuser needs to have
a coherent diffuser vortex present.

The flow topology on the diffuser surface is also modified by the
diffuser angle changes, from attached flow to separated flow both in the
presence of the diffuser vortex. At this point, the most efficient diffuser
angle in terms of downforce presents diffuser vortex and separated flow
as its flow structure.

The diffuser is a passive device that is influenced by the base-pressure
region. Results of the aerodynamic quantities show that although
following similar trends, the downforce increment is higher for the
Ahmed body squared-back, which has higher base-pressure region and
also offsets by 10!, the most efficiency diffuser angle when compared to
the Ahmed body with 25! slant angle.

The drag coefficient follows the opposite trends for each Ahmed body
due to different flow structures on the upper slant. Considering the cases
where the diffuser is most efficient, and the flow on the diffuser surface
changes from attached to separated, there is a drag increment. This drag
increment is very small for the Ahmed body with 25! slant angle but
approximately 45% for the Ahmed body squared-back for a downforce
increment of approximately 7%.

We conclude that the diffuser performance is connected to the body
geometry and the highest downforce increment is reached once the flow
structure is composed by the diffuser vortex and separated flow. For the
overall aerodynamic performance, the drag coefficient should be
considered in order to select the best diffuser angle.
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Abstract

We present an experimental investigation on the e↵ectiveness of unconventional geometries of

serrated helical strakes to suppress the cross-flow vortex-induced vibrations (VIV) of a circular

cylinder with low mass and structural damping. The VIV responses of five models of strakes are

compared with that of a bare cylinder at moderate Reynolds numbers: one continuous helical

strake, two serrated strakes and two inverted strakes. While the conventional strake suppressed

88% of the peak amplitude of response with a 48% drag reduction, the most e�cient serrated strake

reduced the peak amplitude of vibration by 95% producing 54% less drag than a bare cylinder.

When the models were not allowed to respond to VIV they all increased drag in relation to that of

bare cylinder. We verified that simply inverting the local angle of attack of the individual blades

in relation to the helical pitch of the strake did not produce a favourable result in terms of VIV

suppression, but reduced drag and fluctuating lift on a fixed body. Visualization of the flow around

the blades helped to clarify the hydrodynamic mechanisms governing flow separation in the near

wake, disrupting the formation of coherent vortices and reducing VIV.

Keywords: Vortex-induced vibration, suppression, drag reduction, helical strakes

1. Introduction

The vibration induced by the external flow past slender structures poses a problem to subma-

rine and o↵shore cables, flexible pipes, drilling and production risers and other light and elastic

Email address: g.assi@usp.br (Gustavo R.S. Assi)
1Double-degree student between University of São Paulo and Politecnico di Milano.

Preprint submitted to Ocean Engineering January 27, 2021

378



structures exposed to sea currents. The excitation has its origin in the shedding mechanism of

alternating vortices occurring in the wake of blu↵ bodies, so the hydroelastic phenomenon is called

vortex-induced vibration (VIV). The vibration of risers is typical problem for the o↵shore indus-

try. Flexible lines exposed to vibrations for a long time may be damaged by structural fatigue

(Tognarelli et al., 2008), but the amplification of drag due to the vibration of the body is also of

considerable concern, since it increases static and dynamic loads at the joints, platform and other

fixtures.

One way to mitigate the e↵ects of VIV is the installation of suppressors along the riser, or at

least on the length of the line where currents are most intense. Helical strakes and fairings, for

example, have been widely employed by the industry as VIV suppressors (Taggart and Tognarelli,

2008). On one hand, significant VIV suppression of light structures requires wider strakes, which

increases drag. Fairings, on the other hand, tend to be more e�cient in suppression as far as drag is

concerned, but may su↵er from hydroelastic instabilities (Assi et al., 2014) and di�culties related

to their transportation, installation and maintenance. With the improvement of the moulded

plastic industry, helical strakes and fairings have indeed become sturdy contraptions, but they still

take considerable time to install and occupy large areas on the deck. Other devices based on the

disruption of the wake by interfering control surfaces (as explored by Silva-Ortega and Assi (2017),

for example) may su↵er from the same problem.

During the last decades many devices have been investigated and o↵ered as commercial prod-

ucts. Following the industry’s demand for more e�cient, robust and easy-to-install devices, the

technological development for suppressing VIV has been under pursuit by both the scientific and

industrial communities. Inspired by the conventional helical strakes, many have investigated other

variations of this family of three-dimensional VIV suppressors (Korkischko and Meneghini, 2010).

While some have invested in new geometries to reduce the drag penalty, others have focused on

the robustness and ease of installation of the devices. New shapes, sizes and installation methods

appeared on the market. However, as far as o↵shore helical strakes are concerned, it appears that

a su�cient height of the blades (with the consequent drag increase) is required to promote the ap-

propriate three-dimensional flow interaction in the near wake to disrupt the formation of coherent

vortices and suppress VIV.

Among so many di↵erent geometries of strakes (many achieved by empirical variations) there
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remains the scientific question on the fundamental fluid-structure interaction behind the suppres-

sion. This paper is part of a wider investigation on the physical mechanisms behind the suppression

of flow-induced vibrations by means of helical strakes. By proposing small variations on the ge-

ometry of helical strakes, we hope to shed new light on the intricate hydrodynamics behind this

device.

Objective

Starting with the geometry of a conventional helical strake, we have divided the continuous

blades into smaller, serrated blades. On a second step, the local angle of attack of each individual

blade segment was altered, without changing the helical pitch of the device. Five models of strakes

have been tested and their responses to VIV compared to that of a bare cylinder (BC).

2. Method

2.1. Strake models

Five strake models in total have been prepared for the present experimental investigation,

as presented in figure 1. The conventional continuous helical strake (CS) was inspired by the

commercial strakes available for the o↵shore industry. It presents three continuous blades helically

wrapped around a bare cylinder — also known as a “three-start strake” — with a pitch of P/D = 5

and a blade height of h/D = 0.2. The CS will serve as a reference for the others.

The unconventional devices are variations of the helical strake with serrated blades in which

the local angle of the blade segments have been varied in relation to the helix of the strake. Since

the pitch was set to P/D = 5, the inclination of the curved helix in relation to the axis of the

cylinder is 30�, as seen in figure 2. The first serrated model was named serrated 30-strake (S30)

and has been designed simply by sectioning the helical blades of the continuous strake in smaller

segments hence the orientation of the segments follow the trajectory of the helix, thus keeping the

same 30� angle with the axis of the cylinder. In the second serrated model, each individual blade

segment was twisted in relation to original helix, increasing the local angle to 45�, thus producing

the serrated 45-strake (S45).

As presented in figure 3a, the span of a single blade segment was b1 = D/3, thus one full pitch

of 5D contained 15 blade segments. The small segment had a trapezoidal geometry, with a longer
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(a) CS (b) S30 (c) S45 (d) I30 (e) I45

Figure 1: Models of helical strakes: (a) CS continuous strake; (b) S30 serrated 30-strake; (c) S45 serrated 45-strake;

(d) I30 inverted 30-strake; (c) I45 inverted 45-strake.

30° 30°30°30°30°

45°

-30°
-45°

Figure 2: Orientation of blades (from left to right): CS, S30, S45, I30 and I45. The dashed line marks the pitch

orientation and the continuous line marks the orientation of the blade segment.
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b1

b2

h

(a) (b)

Figure 3: (a) Dimensions of the “unwrapped” blade segments for the serrated strakes. (b) Detail of the S45 model.

root and a tapered tip defined by b2 = D/4. The blade thickness was t = h/6. Lengths b1 and b2

were inspired on some commercial devices o↵ered to the o↵shore industry.

The last pair of strakes was designed by inverting the orientation of each blade segments so

that the blades were orthogonal to the pitch helix. Inverting the serrated blades presented above,

two models have been created: the inverted 30-strake (I30) and the inverted 45-strake (I45) with

blade angles of �30� and �45�, respectively, in relation to the cylinder axis. A detailed view of

the inverted blades is presented in figure 2. Again, P/D, h/D, b1 and b2 were kept the same for

all models.

The idea behind the unconventional geometries of inverted strakes was to transfer momentum

from the incoming flow to the spanwise direction in two di↵erent ways: (i) following the conventional

pitch line and (ii) following the new angle of the individual blades. Our objective is to produce a

more complex three-dimensional interaction in the near-wake region, disrupting vortex shedding.

All three models had the same core diameter of D = 60mm (also the diameter of bare cylinder

used as reference) and the same underwater length of L/D = 11.7, corresponding to at least 2 fully

submerged pitch lengths. The strakes were 3D-printed out of ABS plastic in the shape of rings

that could be easily fitted around the core cylinder, as illustrated in figure 3b for the S45 model.
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Figure 4: Lateral (left) and cross-sectional (right) view of a helical strake in the test section of the recirculating water

channel.

Table 1 summarises the geometrical parameters of the strakes.

2.2. Experimental setup

In order to determine the dynamic response to VIV, experiments have been carried out in the

recirculating water channel of NDF Fluids and Dynamics Research Group at the University of São

Paulo, Brazil. The water channel has a free-surface test section which is 0.7m wide, 0.9m deep and

7.5m long. Good quality flow can be achieved up to 1.0m/s with a free-stream turbulence intensity

less than 3%.

Cylinder models were mounted on a one-degree-of-freedom elastic rig built by Assi (2009) espe-

cially for experiments on flow-induced vibration. A cross-view of the experimental setup installed

in the water channel is presented in figure 4. The rig consists of two long carbon-fibre pipes sliding

through four air-bearings. The light structure allowed for displacements only in the cross-flow

direction with very low structural damping. A pair of coil springs provided the necessary sti↵-

ness to the system and optical sensors measured the cross-flow displacement without adding extra

damping. The reference bare cylinder and the other strake models were attached at the top end to

a load cell designed to measure the instantaneous hydrodynamic loads on the submerged bodies.

The only flow variable changed during the course of the experiments was the flow velocity U ,

which altered the Reynolds number (Re = UD/⌫, based on the diameter D of the bare cylinder and
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Table 1: General parameters for the present investigation.

Bare-cylinder diameter D 60mm

Underwater span L 11.7D

Helical pitch P 5D

Blade height h D/5

Blade-segment span b1 D/3

Blade-segment length b2 D/4

Blade thickness t h/6

Reynolds number Re 5 ⇥ 103 to 5 ⇥ 104

Froude number Fr 5 ⇥ 10�2 to 5 ⇥ 10�1

the viscosity of water ⌫) between 5,000 and 50,000. Froude number (Fr = U/
p

gD < 0, 5, where

g is the acceleration of gravity) was verified to be very low and wave e↵ects have been neglected

following Chaplin and Teigen (2003).

The reduced velocity U/(fND) was defined by the natural frequency of the system (fN ) deter-

mined by decay tests performed in still water. As expected, the natural frequencies of the models

with strakes were slightly lower than that of the bare cylinder. As a reference, the structural damp-

ing factor of ⇣ = 0.53% (expressed as a fraction of the critical damping) was determined for the

bare cylinder during similar decay tests performed in air, which also provided the natural frequency

measured in air (f0). The ratio of the total mass of the system to the mass of the displaced water

was m
⇤ = 0.58 for all models, thus producing a mass-damping factor of m

⇤
⇣ = 0.0031 for the bare

cylinder. Mass and damping were intentionally kept to a minimum to promote high-amplitude

vibrations.

A summary of all the geometric and flow parameters investigated in the present experiment is

presented in table 1. Table 2 presents some dynamic parameters for each specific model, where

f0 and fN are the natural frequencies determined in air and in still water, respectively, ⇣ is the

structural damping from decay tests performed in air and ⇣w is the cross-flow damping obtained

from a decay test in still water.
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Table 2: Dynamic parameters for the specific models.

Key Model m
⇤

f0 (Hz) fN (Hz) ⇣ (%) ⇣w (%) m
⇤
⇣

BC bare cylinder 0.58 0.68 0.58 0.53 2.40 0.0031

CS continuous strake 0.63 0.65 0.49 1.22 8.75 0.0077

S30 serrated 30-strake 0.61 0.65 0.50 0.75 6.89 0.0046

S45 serrated 45-strake 0.62 0.65 0.50 0.75 7.55 0.0046

I30 inverted 30-strake 0.61 0.65 0.51 0.85 7.58 0.0052

I45 inverted 45-strake 0.62 0.65 0.51 0.65 7.05 0.0040

3. VIV response and hydrodynamic loads

3.1. Reference models: BC and CS

Preliminary VIV (vortex-induced vibration) experiments were performed with a bare cylinder

(BC) to serve as a reference for comparison. Throughout this work, the “harmonic amplitude of

vibration” ŷ/D was obtained by taking the RMS (root-mean square) of displacement and multi-

plying it by
p

2. The VIV response, presented in figure 5a, shows the three branches of response

along the reduced velocity axis that are typical of low mass-damping structures. A peak amplitude

ŷ/D = 0.80 was observed for the resonance at U/(fND) ⇡ 5. The VIV synchronisation range oc-

curred between U/(fND) = 3 and 12, agreeing with Assi et al. (2010a); Williamson and Govardhan

(2004) and others in the literature.

The bottom plot of figure 5a shows f/fN , the dominant frequency of oscillation normalised by

the natural frequency of the system. The dashed line represents the frequency of vortex shedding

associated with a Strouhal number of 0.2. The lighter and darker shades of red behind the symbols

represent the peaks of the normalised spectra of vibration for each reduced velocity. The narrow

peaks are hidden behind the symbols during the lock-in range, but the broader spectra are notice-

able after the end of the synchronisation for U/(fND) > 12 (please refer to Assi et al. (2013) for

further details on this technique).

Figure 5b presents the VIV response of the continuous strake (CS) model, which kept the

amplitude of displacement below ŷ/D = 0.10 for the entire range of reduced velocity. The maximum

response was observed past the resonance region around U/(fND) = 11 and is associated with
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(a) BC bare cylinder (b) CS continuous strake

Figure 5: Amplitude of displacement (top) and dominant frequency of oscillation (bottom) for the reference models.

(a) Mean drag coe�cient (b) RMS of lift coe�cient

Figure 6: Hydrodynamic loads for the reference models (BC and CS).
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turbulence bu↵eting rather than VIV. The frequency signature (bottom plot) shows vibrations

occurring predominantly around the natural frequency of the system (f/fN ⇡ 1), which is typical

of a broad-spectrum bu↵eting excitation Blevins (1990). The CS managed to suppress 88% of the

peak amplitude of displacement, as summarised in table 4.

Drag and lift were measured for all models for comparison. Figure 6 presents the mean drag

coe�cient (CD) and the RMS of lift coe�cient (CLrms) for the reference BC and CS models during

the VIV response and for a fixed model (not allowed to respond). The amplification of drag

during the VIV synchronization range was identified for the BC, reaching CD = 2.92 at the peak

of response and then dropping down to the levels of a fixed cylinder after the synchronization

for U/(fND) > 12. Taking an average of mean drag for all reduced velocities resulted in an

average hCDi = 1.00 represented by the dashed lines repeated in all figures. While a small average

hCLrmsi = 0.074 was observed for the fixed BC, the amplified fluctuation of lift occurred during

synchronization and reached a maximum of CLrms ⇡ 2.3 at resonance. The reference hydrodynamic

loads measured for the BC are in good agreement with other measurements presented in the

literature (Norberg, 2003).

The suppression of the VIV response produced by the CS was accompanied by the mitigation

of mean drag and fluctuating lift during the synchronization range. In fact, both CD and CLrms

approximate during the VIV response followed closely the curves for the fixed models. While

the hCLrmsi for the CS was below that of the BC, the average hCDi represented a 52% increase

(marked by the dot-dashed lines in figure 6). VIV suppression with consequent drag increase is

a typical behaviour of continuous strakes, as shown by Korkischko and Meneghini (2011a), Assi

et al. (2010b) and others.

3.2. Serrated strakes: S30 and S45

The serrated S30 model appeared as the most e�cient device concerning VIV suppression

and drag reduction. The maximum amplitude of displacement, presented in figure 7a, was below

ŷ/D = 0.04 for the entire range of reduced velocities. A resonant peak of response was not observed

and any residual vibration recorded for U/(fND) > 10 is likely to be due to weak turbulence

bu↵eting. The frequency signature produced a much broader spectrum without a clear trend for

the dominant frequency, suggesting that the serrated blades at that specific angle make the device

less susceptible to bu↵eting.

10
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(a) S30 serrated 30-strake (b) S45 serrated 45-strake

Figure 7: Amplitude of displacement (top) and dominant frequency of oscillation (bottom) for the serrated strakes.

(a) Mean drag coe�cient (b) RMS of lift coe�cient

Figure 8: Hydrodynamic loads for the serrated strakes (S30 and S45).
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(a) I30 invertred 30-strake (b) I45 inverted 45-strake

Figure 9: Amplitude of displacement (top) and dominant frequency of oscillation (bottom) for the inverted strakes.

Even though the S45 model was also quite e↵ective in suppressing VIV, a small peak of ŷ/D =

0.11 was observed at U/(fND) ⇡ 8. The frequency signature of the response suggests that this

model was either more susceptible to turbulence bu↵eting or a local resonance occurred around

that reduced velocity. A clear trend of dominant frequency close to f/fN = 1 corresponding to

the local increase in displacement.

As far as hydrodynamic loads are concerned, shown in figure 8a, both serrated strakes managed

to suppress VIV generating less drag than a fixed bare cylinder. In fact, the S45 device produced

an average drag for the entire range of reduced velocities of hCDi = 1.26, which corresponds to

only a 26% drag increase in reference to a fixed BC.

When fluctuating lift is analysed (figure 8b) the S45 produced an expected amplification of

CLrms = 0.19 related to that local peak of response between U/(fND) = 6 and 10. But the S30

presented insignificant fluctuations of lift, with both fixed models producing CLrms curves below

the level obtained for the CS and well below that of the BC.
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(a) Mean drag coe�cient (b) RMS of lift coe�cient

Figure 10: Hydrodynamic loads for the inverted strakes (I30 and I45).

3.3. Inverted strakes: I30 and I45

The inverted strakes make up the novel devices proposed in this investigation. The original

hypothesis was that the inverted angle of the blades would disrupt the formation of vortices and

suppress VIV without a considerable drag penalty. That was not verified, as seen in figure 9. Both

I30 and I45 models presented a considerable peak of response within a clear synchronization range,

reaching a maximum ŷ/D = 0.47 and 0.44, respectively. The peak VIV suppression was only 45%

at best when compared with that of a BC. The frequency signature for both devices also showed

that a typical VIV excitation was governing the response; turbulence bu↵eting was not observed.

Since I30 and I45 did not suppress VIV, an amplification of drag was expected, as verified in

figure 10a. But when both models were held fixed, CD was below that of a fixed CS for most of

the reduced velocity range, with the I45 model producing the smallest average drag of hCDi = 1.16

for the entire range of U/(fND), only a 16% increase in referent to the fixed BC.

The lift coe�cients presented in figure 10b confirmed the expected amplification of CLrms during

the synchronization range of VIV. But an average hCLrmsi of only 0.04 measured for the I30 device

showed a 45% reduction regarding the fluctuation of lift for the bare cylinder. One could suggest

that the inverted strakes, while not the most e↵ective VIV suppressor for this low mass-damping

structure, might be a good option to mitigate fluctuating loads on static bodies without producing

too much drag. Reduction of wake-generated noise might also make an interesting application,
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Table 3: Average drag and lift coe�cients for fixed models.

Model hCDi drag increase hCLrmsi lift reduction

Fixed BC bare cylinder 1.00 ref. 0.074 ref.

Fixed CS continuous strake 1.52 52% 0.035 53%

Fixed S30 serrated 30-strake 1.27 27% 0.035 53%

Fixed S45 serrated 45-strake 1.26 26% 0.033 55%

Fixed I30 inverted 30-strake 1.36 36% 0.041 45%

Fixed I45 inverted 45-strake 1.16 16% 0.052 30%

Table 4: Summary of VIV results.

Model (ŷ/D)max suppression CD at (ŷ/D)max drag reduction

BC bare cylinder 0.80 ref. 2,92 ref.

CS continuous strake 0.10 88% 1.52 48%

S30 serrated 30-strake 0.04 95% 1.33 54%

S45 serrated 45-strake 0.11 86% 1.26 57%

I30 inverted 30-strake 0.47 41% 1.96 33%

I45 inverted 45-strake 0.44 45% 1.88 36%

especially if the tonal noise generated by vortex shedding is to be avoided. As seen in table 3,

which presents a summary of averaged drag and lift coe�cients for the fixed models, the CS

continuous strake produces the highest drag for a static body, increasing the average drag in 52%

and reducing the RMS of fluctuating lift in 53% when compared with that of a bare cylinder.

Serrated devices also reached the same level of hCLrmsi reduction, with much less drag penalty; the

S45 serrated strakes, for example, reduced hCLrmsi in 55% with only a 26% increase in hCDi for a

fixed body.

Finally, table 4 presents the summary of results for all testes models, showing the recorded

CD at the peak amplitude of response (ŷ/D)max. The serrate strake S30 was highlighted as the

most e�cient in suppressing VIV (95% reduction of peak amplitude) and reducing drag (54%

peak-drag reduction) when compared to the peak-response of the bare cylinder. The serrated
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strake S45 produced an even greater drag reduction (57% less peak-drag than the BC), but the

peak-amplitude of displacement was slightly higher than the S30.

It is reasonable to speculate that the same hydrodynamic e↵ect that made the serrated strakes

generate less drag than the continuous strake (as seen for the static models, for example) may have

caused the serrated systems to produce less hydrodynamic damping in the cross-flow direction,

thus increasing the amplitude of VIV response (see table 2). However, this was not observed. In

fact the serrated geometry of the blades promotes enhanced mixing in various length-scales in the

wake (this will be discussed in the next section on flow visualization), keeping the hydrodynamic

damping at the same level as the CS. Because the serrated strakes are as e↵ective as the CS in

suppressing the VIV response, the average drag is not amplified by the formation of a wider wake

due to the cross-flow vibration.

4. Flow visualization

Visualization of the flow structures in the near wake of the cylinders have been performed in

recirculating water in the Noah Flume at the California Institute of Technology (GALCIT). The

model was not allowed to respond to VIV, but held fixed at the centre of the test section. A thin

stainless steel wire was stretched upstream of the model, across the test section and parallel to

the axis of the cylinder. A constant electric current flowing through this cathode wire released a

stream of tiny hydrogen bubbles, convected downstream by the water flow. The position of the

electrolysis wire was set so that the curtain of bubbles reached the helical strakes near the blades.

A sheet of green laser light was employed to illuminate the bubbles on a plane parallel to the

axis of the cylinder and o↵set almost 1D from the centreline of the wake. Photography taken

perpendicular to the illuminated plane revealed the coherent flow structures along the span of

the cylinder (shown in figures 11, 13 and 15, to be discussed later). Changing the orientation of

the camera and flooding the test section with white light made it possible to investigate in more

detail the three-dimensional flow structures around the blades and near the recirculation region

downstream of the models (shown in figures 12, 14 and 16, to be discussed later).

This may sound nostalgic, but when so many sophisticated techniques to quantify flow fields

are available to the researcher, one should not disregard simple, qualitative techniques that can

o↵er so much insight on the dynamics of the flow around complex structures. The elementary
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(a) Bare cylinder.

(b) CS continuous helical strake.

Figure 11: Flow visualization with hydrogen bubbles for the bare cylinder (reference) and the continuous helical

strake. Re = 9.4 ⇥ 103.

flow visualizations with dye, bubbles and other tracers are often neglected over other expensive

techniques, such as volumetric PIV (particle-image velocimetry) for example. But sometimes

simple flow visualization is precisely what is needed to clarify our understanding on the behaviour

of three-dimensional vortical structures.

Figure 11a presents a longitudinal view of the wake of a bare cylinder illuminated with laser;

this will serve as a reference to evaluate the wake patterns in the wake of the various helical strakes.

The cylinder model can be seen behind the curtain of bubbles near the left edge of the images.

Reynolds number is 9.4 ⇥ 103 and the flow direction is from left to right. It is possible to see the

formation of vortices on one side of the model at two di↵erent moments in time, with a coherent

vortex tube parallel to the axis of the cylinder. The flow in the near wake is fairly organised and
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Figure 12: Detail of flow visualization with hydrogen bubbles for the continuous helical strake. Re = 9.4 ⇥ 103.

strong three-dimensionalities only appear after the vortex tube is shed and convected by the flow.

The vortex formation length for the bare cylinder was qualitatively estimated at approximately

1.6D, which is in good agreement with Norberg (1987); Unal and Rockwell (1988); Cicolin and

Assi (2017) for this Re range.

A similar visualization is presented in figure 11b for the near wake of the continuous helical

strake (CS). The most striking di↵erence compared to the wake of the bare cylinder is the absence of

a coherent vortex tube being formed close to the body (the vortex-formation length is considerably

increased). The near wake is more turbulent, dominated by small-scale three-dimensional vortices

that promote mixing of the separated shear layers near the body. A periodic flow structure is

observed along the span at a wavelength of P/3 (i.e. the pitch length divided by the number

of helices that make the strake). The continuous helical blades promote the separation of the

flow at fixed points around the body, also inducing momentum downward along the axis of the

cylinder (momentum is induced upwards on the other side of the body), disrupting the interaction

between the shear layers and consequent formation of vortices. The detailed visualization presented

in figure 12 clearly shows the separation line along the continuous blade. These observations are

supported by the measurements of Korkischko and Meneghini (2011b), who presented a volumetric

reconstruction of the near wake of a straked cylinder employing stereo PIV.

Now, figure 13 presents the near-wake visualization for the cylinder with serrated strakes. The

spanwise wavelength of P/3 is clearly identifiable for both both S30 and S45 models. But distinct

flow structures with a smaller scale related to the b1 dimension of the blade segment are clearly

seen. The vortex-formation length is increased beyond the reach of the laser plane, so no coherent
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(a) S30 serrated 30-strake.

(b) S45 serrated 45-strake.

Figure 13: Flow visualization with hydrogen bubbles for the serrated helical strakes. Re = 9.4 ⇥ 103.
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(a) S30 serrated 30-strake.

(b) S45 serrated 45-strake.

Figure 14: Detail of flow visualization with hydrogen bubbles for continuous and serrated strakes. Re = 9.4 ⇥ 103.
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vortex tube is found in the near wake. The main di↵erence between the two serrated models is in

the level of mixing near the separation lines. While figure 13a for the S30 model reveals stronger

coherent vortices, the wake shown in figure 13b is smoother. Based on the detailed visualizations

presented in figures 14a and 14b one might infer that the S30 serrated blades that encounter the

incoming flow at a higher angle of attack (60� = 90� �30�) produce more local separation then the

serrated blades of the S45 model (twisted at 45�).

In general, the CS, S30 and S45 models (those in which the orientation of the blades followed

the helix line) presented the same behaviour of fixing the separation line along the intended helices

around the cylinder, inducing momentum along the span and disrupting the formation of vortices in

the near wake. The main di↵erence between them was related to the scales of the three-dimensional

vortex structures they induced after the flow had separated, which is associated with the energy

dissipated in the process.

The inverted strakes I30 and I45, on the other hand, produced a di↵erent result over the

separated flow, as presented in figure 15. The inverted blades increased the level of mixing in

the near wake, generating strong turbulent flow downstream of the body. The P/3 wavelength

was still visible in the flow structures along the cylinder span, but the near wake seemed more

dominated by stronger vortices associated with the dimensions of the individual blade segments

rather than by the periodic flow typical of helical strakes. Figures 15a and 15b show that no

coherent vortex tubes were found in the near wakes of the bodies. But perhaps the most interesting

flow visualization was observed in detail on the flow around the inverted blades, presented in

figure 16. The blades of model I30, with greater angle of attack in relation to the incoming

flow, produced strong separation with clear regions of recirculation behind the blade segments

(figure 16a). The I45 inverted blades, by contrast, appeared more streamlined to the incoming

flow, allowing for more streamwise momentum to be injected into the near wake (figure 16b).

With carefully performed flow visualization it was possible to identify the dominant flow struc-

tures in the near wake of the five models of strakes. Compared to the wake of the bare cylinder,

none produced coherent vortex tubes near the bodies. While the wake of the serrated strakes

(S30 and S45) were dominated by flow structures associated with the P/3 wavelength, the flow

downstream of the inverted strakes (I30 and I45) was dominated by smaller scales associated with

the dimensions of the blade segments (b1 and b2).
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(a) I30 inverted 30-strake.

(b) I45 inverted 45-strake.

Figure 15: Flow visualization with hydrogen bubbles for the inverted helical strakes. Re = 9.4 ⇥ 103.
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(a) I30 inverted 30-strake.

(b) I45 inverted 45-strake.

Figure 16: Detail of flow visualization with hydrogen bubbles for the inverted strakes. Re = 9.4 ⇥ 103.
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5. Conclusion

We have evaluated the e↵ectiveness of five unconventional serrated helical strakes to suppress

the cross-flow VIV of a circular cylinder with low mass and structural damping. While the con-

ventional continuous strake suppressed 88% of the peak amplitude of response with a 48% drag

reduction, the most e�cient serrated strake (S30) reduced the peak amplitude of vibration by 95%

producing 54% less drag than a bare cylinder. When the models were held fixed in the flume (not

allowed to respond to VIV) they all increased drag in relation to the average drag of a fixed bare

cylinder. The serrated strake (S45) achieved a 55% reduction in fluctuating lift with only a 26%

drag penalty.

We verified that simply inverting the local angle of attack of the individual blades in relation

to the helical pitch of the strake (producing the two inverted models) did not produce a favourable

result in terms of VIV suppression. Perhaps the inverted blades annihilate the e↵ect that the

continuous blades produce in the near wake, allowing for the formation of more coherent vortices

in the near wake to drive VIV (even though the inverted blades did produce more mixing and

turbulence in the near wake when compared to the e↵ect of the continuous strake).

This paper is part of an ongoing research work to investigate the physical mechanisms behind

helical strakes and clarify their e↵ect in suppressing VIV. The controlled experiments at moderate

Reynolds numbers and with only a single degree of freedom (cross-flow direction) provided a good

database to compare the behaviour of the di↵erent systems depending on the geometric parameters

of blade continuity, segment angle and direction. Good insight was obtained for future optimisation

of this promising family of helical strakes. Even though only a couple of models of each type have

been tested, it became clear that varying the geometry of the blades can produce an optimised

device as far as suppression and drag reduction are concerned.

Visualization of the flow around the blades helped to clarify the intricate hydrodynamic mech-

anisms governing flow separation and the injection of flow structures at various length-scales in the

near wake, disrupting the formation of coherent vortices and reducing the excitation that drives

VIV. We observed that the continuous strake is important to hold the helical separation line around

the body while the cylinder is oscillating. The serrated strakes may also provide this kind of control

of the separation line while allowing for more momentum to flow into the near wake. However,

when this helical characteristics is lost—say by too much spacing between the serrated blades—
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that separation line recorrelates along the span and the VIV excitation restarts. We verified that

the inverted strakes were not able to sustain this king of control as did the serrated and continuous

devices. Interestingly, the same level o fluctuating lift was observed for a fixed cylinder equipped

with serrated and with inverted strakes, confirming that the loss of helical continuity (characteristic

of the inverted strakes) allowed for a correlated excitation once the cylinder started to oscillate

transversally.

Finally, from another perspective, the novel concept of the inverted strakes was not completely

ine↵ective. Considering static blu↵ bodies, the inverted strakes were able to reduce fluctuating

loads with a minimal drag penalty. This might be rather interesting for static structures or even

for the field of aeroacoustics and flow-induced noise.
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The development of the flow around a circular cylinder with a smaller diameter control
rod in close proximity is the subject of this paper. It has long been known that this
is an e↵ective way to attenuate regular vortex shedding leading to reductions in its
adverse e↵ects on blu↵ body flow. The aim of this study is to improve understanding
of the ways the control rod a↵ects the near wake flow including how it influences the
positions of boundary layer separation. Experiments were carried out in a water channel
to measure lift and drag forces and PIV was employed to obtain detailed information on
flow structure. The values of important properties were fixed as follows: Reynolds number
20,000; ratio of cylinder and control rod diameters 10:1; centre to centre distance between
main cylinder and control rod 0.7D, where D is main cylinder diameter. The adjustable
parameter was the angular position of the rod, ✓, which was varied between 90� and 180�

from the front stagnation line. Lift and drag forces were measured separately for the main
cylinder and the control rod. A new method for identifying flow states is introduced using
PIV to interrogate the instantaneous flow velocity in the gap between the main cylinder
and the control rod. Similarly to previous studies, three stable flow states were observed
together with a bi-stable state. The bi-stable state is very sensitive to the control rod
angle with a small change of ±1� being su�cient to change the flow state.

1. Introduction

Understanding the flow around blu↵ bodies has been a long-standing challenge in fluid
mechanics. Due to the variety of flow phenomena and the wide range of applications
such as pipelines, o↵shore risers, masts etc., the circular cylinder has been the object of
extensive study for many decades. The fundamentals of vortex formation and shedding,
wake characteristics and fluid loading are detailed in the works of Roshko (1954), Gerrard
(1966) and many others and in reviews by Bearman (1984), Williamson (1996) and
Zdravkovich (1997). The majority of applications occur in a range of Reynolds number
(Re) where, resulting from an interaction between the cylinder’s free shear layers, regular
vortex shedding develops. Vortex shedding is responsible for increased time-mean drag
and the generation of oscillatory drag and lift forces. In practical situations the unsteady
forces can excite a circular cylinder into vortex-induced vibrations, possibly leading
to structural failure. In order to mitigate such e↵ects, a range of passive and active
devices have been developed which in one way or another interfere with the instability
mechanism leading to vortex shedding. Choi et al. (2008) published a comprehensive
review of methods to control blu↵ body flow, classifying them according to how control
is achieved. This paper addresses a control method that can be found in their category,
”Control based on local/global instability”. The method was pioneered by Strykowski

† Email address for correspondence: m.marangon-cicolin18@imperial.ac.uk/mmcicolin@usp.br
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Figure 1. Coordinate system

Figure 2. Positions of the control rod in the range 90� 6 ✓ 6 180� for di↵erent cases found in
the literature.

& Sreenivasan (1990) and involves placing a small diameter control cylinder in or close
to a free shear layer separating from a significantly larger main cylinder. They found
that the presence of the control cylinder in an appropriate position has the e↵ect of
suppressing the absolute instability in the near wake that initiates vortex shedding. This
finding generated much interest but complete suppression of vortex shedding was only
obtained up to a Reynolds number of 100. Subsequent research showed that at higher
Reynolds numbers the careful placing of a control cylinder has the e↵ect of reducing
drag coe�cients and lowering the levels of unsteady forces due to vortex shedding. This
finding encouraged further research into seeking the optimum size and position for a
control cylinder where it has the most beneficial e↵ect.

Key variables a↵ecting the flow around a fixed circular cylinder with a control cylinder,
here called a control rod, are illustrated in Figure 1. Besides the main cylinder Re, the
flow depends on the position of the rod, R

0
/D and ✓, and the ratio between the diameters

of the control rod, d, and the main cylinder, D. Figure 2 is a compilation of past studies
with one control rod for 90� 6 ✓ 6 180�, d/D < 0.33 and for a range of Re between
60 and 65,000. It shows the positions of control rods in the various studies illustrating
the wide range of R

0
/D that has been investigated. The results of Dipankar et al. (2007)

and Mittal & Raghuvanshi (2001) agree with the findings of Strykowski & Sreenivasan
(1990), and they found vortex shedding suppression for low Re and for similar values of
d/D. Still in the range Re < 100 and for a smaller diameter of d/D = 0.02, Yildirim et al.
(2010) did not observe complete vortex suppression, but found a significant attenuation
of vortex strength. Dalton et al. (2001) performed numerical simulations in the range
100 6 Re 6 3 000 and with d/D = 0.1, only observing complete suppression of vortex
shedding at Re = 100. For Re = 3 000, they reported a drag reduction of approximately
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25% when R
0
/D = 1.2 and ✓ = 160�. The fluctuating lift was also decreased, in their

case by almost 85%. These results confirmed that there is a significant Re dependency on
the optimal position where the rod should be located. This was reinforced by the results
of Cicolin et al. (2018), where the control rod was kept at a fixed position (R0

/D =
1.4, ✓ = 135�) and Re was varied. It completely suppressed vortex shedding at Re = 70,
attenuated the fluctuating forces at Re = 200 and had little e↵ect at Re = 1 000. At
moderate values of Re = 12 500 in the sub critical range, Bingham et al. (2018b) adopted
a di↵erent approach and used an evolutionary algorithm to home in on the position of
the control rod that minimised fluctuating lift on the main cylinder. The extensive area
they covered for placing a control rod is shown shaded in Figure 2. They concluded that
fluctuating lift could be reduced by 90% using a control rod with d/D = 0.125, placed
at R

0
/D = 1.31 and ✓ = 116�.

However, not all research on this topic has been limited to a circular cylinder as the blu↵
body. Parezanovic & Cadot (2012) performed a comprehensive study of the sensitivity of
the wake past a D-shaped cylinder with one control rod. Their study included control rod
diameters in the range d/H = 0.04�0.12 ,where in this case H is the height of the base of
the body. A significant di↵erence between this study and many previous ones is that the
separation points on the main body are not free to move. Nevertheless, they identified
a number of flow states that have characteristics with some similarities to those found
with a circular cylinder as the main body. According to the position of the control rod,
they separated their results into di↵erent states. Sakamoto & Haniu (1994) visualised
the flow in the wake of a circular cylinder with a single control rod using smoke and
identified 5 di↵erent flow patterns. Their sketches of the flow indicate the importance of
the proximity of the control rod to a free shear layer separating from the main cylinder.
Returning to Parezanovic & Cadot (2012), they sketched four flow patterns in the wake
of their D- shaped body with a single control rod. Their near wake configurations are
entitled: external flow, outer shear, mid-shear and inner shear. The descriptions relate
to the positions of the control rod relative to a free shear layer. Common to both of
these studies, they found states that were bi-stable. Parezanovic et al. (2015) extended
research on the D-shaped body to obtain more information on the bi-stability they had
observed.

The present experiment-based investigation complements previous studies by providing
further insight into the quintessential case of a circular cylinder with a single control
rod. The main emphasis is on the fluid mechanisms involved rather than optimising the
e↵ectiveness of this form of flow control. The Reynolds number, Re = 20 000 was in the
sub-critical range, well away from both the low Re regime and the onset of the drag crisis.
In order to reduce the number of possible variables the diameters of the main cylinder
and the control rod were fixed, as was the distance between their centres. Previous works
showed that when the rod and the cylinder have di↵erent orders of magnitude, the size
of the rod is less relevant to the system’s physics than its position, so we kept the ratio
between the rod and the cylinder fixed, d/D = 1/10. Past studies also revealed that there
is a relationship between Re and the sensitive regions for actuation. As Re increases, the
positions where the rod most a↵ects the system gets closer to the cylinder. Besides, If
the control rod is close to the cylinder surface the more likely there will be interactions
with the cylinder boundary layer, hence R

0
/D was fixed at 0.7 giving a gap between

the surfaces of the cylinder and control rod equal to 0.15D. The important parameter
that was varied was the angular position of the control rod, ✓, measured from the front
stagnation line and moved from 90� to 180�. This range of control rod angle was chosen
as it is common to a number of previous studies as shown in figure 2.

As found by previous authors, the influence a control rod has on the flow field around
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a blu↵ body depends on how the development of the shear layers separating from the
body are a↵ected by the presence of the control rod. With a single control rod it is the
shear layer separating from the same side of the body as the rod that plays the most
important role. By changing the angular position of the rod, the approaching shear layer
has several possible paths. It may pass above the control rod or take a route between
the cylinder wall and the control rod. Possibly the most challenging case is when the
control rod is directly in the path of the shear layer and descriptions such as cutting and
splitting the shear layer can be found in the literature. When the control rod is outside
the path of the shear layer it is exposed to an approaching flow with a velocity of a similar
magnitude to that of the main cylinder. In our experiments the ratio of the diameters of
the control rod and main cylinder, d/D, was fixed at 0.1 indicating a Red for the control
rod of approximately 2000, which is well above the threshold for vortex shedding.

Following the Introduction there is a detailed section on the Experimental Arrangement
and Methodology. Mean lift and drag forces were measured separately on the main
cylinder and the control rod as well as on the combined system of main cylinder and
control rod. The fluctuating forces were also measured but not separately for the control
rod. Extensive PIV measurements were made and post processed using an optimal mode
decomposition (OMD) based ’smart filter’ in order to have a clearer picture of the
flow states and to be able to locate separation. In the Results and Discussion section
a diagnostic tool is presented that is used to identify the various flow states including a
bi-stable state. Each state is described in detail calling on both the force and PIV data
as well as animations derived from PIV. This is followed by the Conclusions section that
lists new findings on the influence imposed on the flow around a circular cylinder by a
control rod.

2. Experimental Arrangement and Methodology

Experiments were carried out in the recirculating water channel of the Department of
Aeronautics at Imperial College London. The facility has a 0.6 m square test section and
the length is 8.2 m. For all experiments the flow velocity was set at 0.4 m/s and at this
speed the turbulence intensity is approximately 1.5% at the position of the test cylinder.
A thorough characterisation of the freestream turbulence in this facility, including its
two-point correlation can be found in Baj & Buxton (2017). The Froude number in these
experiments was Fr = U1/

p
gH ⇡ 0.16. Based on the studies of Reichl et al. (2005)

and Bingham et al. (2018a), for Fr < 0.3, we did not expected an influence of surface
deformations on the flow dynamics. Two main sets of experiments were carried out: one
was to measure hydrodynamic forces and the other was to investigate flow fields using
PIV. The key properties relating to the experiments are provided in Table 1 and the
symbols used are depicted in figure 1.

2.1. Force Measurements

For measuring forces the cylinder was attached to a load cell that was fixed above the
water level. The load cell was an ATI Gamma IP68-SI-65-5 Force Transducer, capable
of acquiring forces up to 65 N in the x- and y-directions with a resolution of ±0.012 N.
The main cylinder was an acrylic tube with a diameter of 50 mm and a wetted length of
485mm, giving an aspect ratio of 9.7. Its upper end was connected directly to the load
cell. In order to minimise end e↵ects at the lower end of the cylinder an end plate was
fixed to the floor of the flume. The distance between the floor and the end plate was 75
mm and this is larger than the thickness of the boundary layer, which at this position was
found to be approximately 35 mm. The gap between the cylinder and the end plate was
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D 50 mm
d 5 mm 0.1D

R
0 35 mm 0.7D

✓ 90� � 180�

U1 0.4 m/s
Re = DU1

⌫ 20 000
Red = dU1

⌫ 2 000

Table 1. Properties of models and experiments common to all campaigns

kept less than 1 mm. The control rod was a carbon fibre tube with an outer diameter of
5 mm. Forces were acquired for two di↵erent arrangements for mounting the control rod,
as shown in figure 3. In configuration 1, the rod’s upper end was fixed in the outer shield
of the load cell, whereas the lower end was fixed to the end plate. In this way, the load
cell acquired the forces acting on the main cylinder only. In configuration 2, the rod was
attached to the cylinder through two rings, allowing the load cell to acquire the forces
acting on the combined system, i.e. the two bodies together. In both configurations, the
end supports for the control rod kept the distance between it and the main cylinder
constant along its length. The supports could be rotated around the cylinder, enabling
di↵erent angular positions of the control rod to be set. The supports and the control
rod were designed such that the deflection of the rod under hydrodynamic loading was
negligible. The main quantities relating to the force measurements are given in Table
2, where facq is the data acquisition rate, Tacq is the acquisition time and �✓ is the
increment for changing ✓.

The forces on the main cylinder were found from measurements made in configuration
1 and their dimensionless forms are given by:

C
Cylinder

D,L =
F

Conf.1
D,L

1
2⇢U2

1DLc
(2.1)

where su�xes D, L refer to the drag and lift forces, respectively. We term the component
of the hydrodynamic force acting in the x-direction to be the drag and the component
acting in the y-direction to be the lift.The force coe�cients for just the control rod were
obtained by the di↵erence between the time-mean forces in configurations 2 and 1:

C
Rod

D,L =

�
F

Conf.2
D,L � F

Conf.1
D,L

�

1
2⇢U2

1DLc
(2.2)

In addition to time-mean force coe�cients, coe�cients of the fluctuating forces acting
on the cylinder and cylinder plus control rod were also found. However, it was not possible
to deduce the fluctuating forces on the control rod and only its time-mean coe�cients
could be found.

2.2. PIV Measurements

For PIV measurements the main cylinder was attached at its lower end to an acrylic
disc with a diameter of 350 mm which acted as an e↵ective end plate. The gap between
the floor of the flume and the disc was fixed at 50mm so that it was above the flume’s
boundary later. The top end of the main cylinder was attached to a square plate partially
immersed in the water, as illustrated in Figure 4. The control rod was fixed to the
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ROD

CYLINDER

END PLATE

LOAD CELL

Figure 3. Arrangement of the system for
force measurements. Configuration acquiring
the forces on the combined system (right) and
only on the main cylinder (left).

Lc [mm] 485 (9.7D)
facq [Hz] 200
Tacq [s] 200

✓ 90� � 180�

�✓ 5�

Table 2. Properties of
the force measurements
experiments

cylinder with supports similar to those used for the force measurements so as to keep
the gap constant and to allow di↵erent angles to be set. The top and bottom plates
were transparent to allow image recording, as shown in figure 4. As also illustrated in
figure 4, PIV data were acquired at a plane located near the middle of the cylinder. The
illumination source was a high-speed Litron LDY304 Nd:YLF laser, which operated at a
constant frequency of 1400 Hz. An optical system formed by mirrors and lenses directed
the laser beam through the channel’s glass walls. The flow was seeded with polyamide
particles with an average diameter of 7 µm. The acquisition of images was obtained using
two cameras, one looking from the top of the model and the other from the bottom. Each
camera was a Phantom v641 model with maximum resolution of 2460 ⇥ 1600 px and
internal storage memory for 5700 images at the highest resolution. In order to capture
simultaneously di↵erent scales of the flow, each camera focused on a di↵erent field of
view (FoV), set by two lenses (Nikkon 70 mm f=2:8 and 105 mm f=2:8). The cameras
operated at di↵erent acquisition rates, and their synchronization with the laser pulses
was controlled through an external pulse generator Stanford DG645.

The PIV measurements were also carried out at a flow velocity of 0.4 m/s, yelding
Re = 20 000. The angular position of the control rod (✓) was varied from 90� to 140�

with a 5� step between consecutive cases and an average error of ±1�. For each run, the
flow was established by accelerating the flume from still water up to the desired velocity,
and the acquisition started after the stabilization of the flow. Table 3 summarises the
main properties of the PIV set-up. The cameras acquired images in di↵erent regions of
the flow for the same time period Tacq, which covered approximately 70 cycles of vortex
shedding from the main cylinder. For certain cases, an additional run was recorded over
a longer time period and with a 5 times lower acquisition frequency. Camera 1 focused
on a field of view that captured a large part of the near wake, while Camera 2 focused on
two narrow strips (acquired in di↵erent runs), capturing smaller scales at an acquisition
frequency higher than Camera 1. The main purpose of recording with Camera 2 was to
provide longer time series. Figure 5 illustrates the Field of View of each camera.

The images were pre-processed and the flow fields calculated using the commercial
software DaVis 8.4. The frequency of acquisition facq was set to be high enough to capture
at least twice the frequencies of vortex shedding of the main cylinder and the control
rod. Initially a Gaussian filter was applied to the PIV data followed by the subtraction
of the mean local intensity with side 3 px. Every pixel then had its intensity confined
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Figure 4. Arrangement of model, cameras and laser sheet in the flume.

CAMERA 2

FIELD OF VIEW
(FoV)

CAMERA 1

Figure 5. Field-of-view (FoV) for each
camera

Camera 1 Camera 2

facq [Hz] 70 14 200 40
Tacq [s] 42.83 214.1 42.83 214.3

Nacq 3000 8575
�t [µs] 1428 714
IW [px] 16 12
WO [%] 75 75
�x [mm] 1.88 0.75
FoV [px] 2400 ⇥ 1400 400 ⇥ 2000

Table 3. Properties of the PIV
experiments

between a minimum of 0 and a maximum of 2000 counts. These processes were carried
out in order to smooth the image, mitigate the interference of the image background and
prevent vector contamination by high intensity peaks. Flow fields were calculated using a
standard multi-pass cross correlation method. The first step had a one pass, 50% window
overlap (WO) and a 48 px interrogation window (IW) for all cases. The second and final
pass had a di↵erent configuration for each camera. The main properties are presented
in Table 3, including the number of images (Nacq), the time interval between adjacent
images (�t) and the spatial resolution (�x). As for post processing, a Universal Outlier
Detector filter (Westerweel & Scarano 2005) with size 5 ⇥ 5 px was applied to remove
spurious vectors. For each case, the total number of replaced vectors was lower than 1%
of the total.
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(a) (b)

(c) (d)

Figure 6. Instantaneous vorticity fields (a) bare cylinder and (c) case ✓ = 110�; and fields to
which the smart OMD-based filtering has been applied: (b) bare cylinder and (d) case ✓ = 110�.

2.2.1. Post processing

The processed velocity fields exported from DaVis had high spatial resolution, even
those with the largest FoV. Each instantaneous field contained information on both coher-
ent structures and fine-scale turbulent fluctuations. Since our main interest is focused on
the former, we needed to process the velocity fields again in order to remove fluctuations
less relevant to the large-scale dynamics of the system. The process adopted was a “smart
filter”, understood as a filter capable of removing highly damped fluctuations regardless
of their frequency or energy content. This is a key factor since the vortex shedding
induced by the control rod is expected to be one order of magnitude higher in frequency
than that of the main cylinder. Whilst these fluctuations are not especially energetic,
they are dynamically important. We employed Optimal Mode Decomposition (OMD),
which is a method proposed by Wynn et al. (2013) as a generalization of the Dynamical
Mode Decomposition, first proposed by Schmid (2010). The algorithm used was based
on that provided by Wynn et al. (2013) and is further described in Appendix A. An
example of the previous application of such an OMD-based “smart filter” to turbulent
velocity data is given in Rodŕıguez-López et al. (2016). Figure 6 shows two examples of
vorticity fields reconstructed using OMD: one is for the bare cylinder (the main cylinder
without a control rod) and the other for a case with the cylinder and control rod. All
instantaneous velocity and vorticity fields presented hereafter were processed using the
same procedure. Time series and power spectra of velocity, however, were calculated from
the original un-filtered fields.
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(a) Definition of P and vt(P ). (b) ✓ = 110�, State I.

(c) ✓ = 115�, State I. (d) ✓ = 120�, State II.

(e) ✓ = 125�, State II. (f) ✓ = 130�, bi-stable case.

(g) ✓ = 135�, State III. (h) ✓ = 140�, State III.

Figure 7. Time series of vt(P ) for di↵erent values of ✓.

3. Results and Discussion

The placement of a rod in the range 90� 6 ✓ 6 180� causes significant changes in the
development of the wake. Based on the flow characteristics, and in common with previous
researchers, angular positions are divided into groups associated with particular flow
states, including one which is a bi-stable case. In order to identify the states, PIV was
used to measure the tangential velocity component of the flow nearest to the mid point,
P, of the gap between the cylinder and the control rod, vt(P ) .This velocity proved to be
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(a) State I - ✓ = 110�

(b) State II - ✓ = 120�

(c) State III - ✓ = 140�

Figure 8. Instantaneous vorticity (left) and velocity (right) fields for each of the three
stable dynamical states characterised in this work. Their development can also be seen in the
supplementary videos.

very useful as a diagnostic tool. Figure 7(a) illustrates how the velocity is defined, and
time series of vt(P ) are shown in the other plots in Figure 7. In order to link flow states
to the velocity traces, reference will be made to Figure 8(a) which shows instantaneous
vorticity and velocity fields for the 3 stable states observed in our investigation.

For 90� 6 ✓ 6 115� the time-mean value of vt(P ) is close to the free stream velocity
and the fluctuating component has a dominant frequency equal to the shedding frequency
of the main cylinder. Examples of the flow in this state, State I, are shown in Figure 8(a),
and it is characterised by the formation of distinct wakes, developed by the main cylinder
and the control rod. Both wakes shed vortices but with very di↵erent frequencies and
length scales. Moving to ✓ = 120� and ✓ = 125�, an intense jet appears in the gap between
the cylinder and the control rod, with vt(P )/U1 ⇡ 1.3 and it is relatively steady, as seen
in Figures 7(d) and 7(e). This jet is a dominant feature of State II, as observed in Figure
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8(b). The third stable state, State III, was identified for ✓ = 135� and ✓ = 140�. In this
state the average value of vt(P ) is close to zero, as shown in Figures 7(g) and 7(h). The
cylinder boundary layer separates su�ciently far upstream of the control rod for the free
shear layer to pass above it, leaving point P within the cylinder’s recirculation zone. This
state is illustrated in Figure 8(c) and is characterized by the development of a vortex
street wake, similar to the bare cylinder case. The velocity trace plotted in Figure 7(f)
for ✓ = 130� shows vt(P ) varying over the range 0 � 1.5. and it is very di↵erent to those
for the 3 stable states.This is an example from the state showing bi-stability.

Measurements of the variation of hydrodynamic force coe�cients with ✓, are shown
in Figure 9 together with an indication of the ranges of ✓ occupied by the flow states
introduced above. The forces acting on the cylinder without a control rod, the bare
cylinder, were measured first to serve as reference data. The results are a mean drag
coe�cient, CD = 1.10, a coe�cient of fluctuating lift, C

0
L = 0.27 and a Strouhal number,

St = 0.194. These values are in close agreement with data to be found in works by
Zdravkovich (1997) and Norberg (2003). It should be noted that as well as Reynolds
number the free stream turbulence level has an e↵ect on circular cylinder flow. For the
parameters used in our investigation, Re = 20 000 and a free stream turbulence level of
1.5%, Fage & Warsap (1929) reported a similar value of mean drag coe�cient. Note that
fluctuating forces are computed as the root-mean-square values acting on the full span.
In Figure 9, the bare cylinder values are denoted by a solid dark line.

With the control rod in place the mean lift and drag coe�cients acting on it are also
presented in Figure 9(b), but note that all coe�cients are calculated using the diameter
of the main cylinder (D) and the free stream velocity. This makes it easier to compare
the relative contributions of the main cylinder and control rod to the overall forces. With
the addition of a control rod it can experience lift and drag forces on itself as well as
influencing the forces acting on the main cylinder. Hence the total mean force coe�cient
has been calculated separately for the main cylinder and control rod. Mean drag, lift and
total force coe�cients for the combined system of cylinder and control rod are shown in
Figure 9(c).

In State I, comparing with the bare cylinder, the cylinder has a lower drag coe�cient,
a small but positive mean lift coe�cient, a similar level of fluctuating lift and a Strouhal
number increasing with increasing ✓, but consistently lower than the bare cylinder case.
The control rod in State I is exposed to a velocity greater than the free stream velocity
and, depending on ✓, its drag ranges between 9% and 14% of the main cylinder’s drag.
Its lift force is negative and acts to o↵set a small amount of the lift on the main cylinder.
Moving to State II, the mean drag on the cylinder falls by about 10% with respect to
the reference case, however the mean lift increased so dramatically that the magnitude of
the mean of the total hydrodynamic force acting on the cylinder was higher than for the
reference case. The coe�cient of fluctuating lift dropped to a minimum of C

0
L ⇡ 0.05 at

✓ = 120�, indicating an attenuation of vortex shedding and/or a reduction in its spanwise
correlation. The corresponding power spectrum of the lift force did not have a prominent
peak in the frequency range normally associated with vortex shedding, but scattered
values in the range 0 < fd/U1 < 0.2. The control rod exhibited positive values of both
lift and drag in State II . For State III the control rod is in the range 135� 6 ✓ 6 180�

which places it in the recirculation region of the near wake of the main cylinder. The
mean drag coe�cient acting on the main cylinder and the Strouhal number, have similar
values to those of the bare cylinder. The mean lift coe�cient was small and positive with
values less than 0.1. As a result, the magnitude of the mean total force coe�cient acting
on the main cylinder was little di↵erent to the drag coe�cient of the bare cylinder. With
the control rod in the recirculation zone it experienced small negative drag and lift forces.
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(a) (b)

(c)

Figure 9. (a) RMS of the fluctuating Lift force on the cylinder (top) and their relative
Power-Spectral Density (bottom) for the cases 90� 6 ✓ 6 180�. The solid lines represent the RMS
and the peak St of C0

L for the bare cylinder case, respectively. (b) Average hydrodynamic force
coe�cients over the cylinder (top) and the control rod (bottom). (c) Average hydrodynamic force
coe�cients over the combined system. The solid grey line represents the mean drag coe�cient
of the bare cylinder case.
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(a) � = 0 (b) � = ⇡
2

(c) � = ⇡ (d) � = 3⇡
2

Figure 10. Vortex shedding cycle for the case ✓ = 110�, which is representative of State I.
Vorticity fields are calculated from the smart-filtered velocity fields. Re = 20 000.

It was in this state that the highest value of fluctuating lift on the main cylinder was
recorded with C

0
L ⇡ 0.34 . These 3 flow states and the bi-stable case are analysed in more

detail in §3.1 to §3.4 and compared with findings of previous investigators.

3.1. State I

State I was observed for the cases with the control rod in the range 90� 6 ✓ 6
115�. Its main feature is the formation and interaction of the distinct wakes of the main
cylinder and the control rod. Downstream this interaction results in a vortex street
similar to that formed by a bare cylinder. The two shear layers from the main cylinder
developed di↵erently with the upper shear layer passing between the control rod and
the main cylinder, as shown in Figure 10. The sequence of instantaneous fields (and the
supplementary video) show that the upper boundary layer remains attached beyond the
point where the gap between the two bodies is a minimum, up to a separation angle
✓sep > ✓. The positions of the mean separation points, for various values of ✓, are shown
in Figure 11. Close agreement was found between separation points obtained from time
mean streamline patterns and from the mean tangential velocity component vt measured
at about 0.9 mm from the cylinder surface, separation being identified as the angular
position at which vt = 0.

The upper and lower boundary layer separation angles are shown plotted in figure
12 together with the cylinder drag coe�cients for the range of ✓ from 90� to 135�.
It is interesting to note that there is very little variation in the lower separation angle
across the range of control rod placements. In contrast, separation of the upper boundary
layer changes over a wide range of angles. In State I, Figure 10 indicates that during a
vortex shedding cycle the negatively signed vorticity of the cylinder’s upper separated
shear layer interacts with vortices shed from the control rod. Comparing with the bare
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(a) Bare Cylinder. (b) ✓ = 90�, State I. (c) ✓ = 110�, State I.

(d) ✓ = 115�, State I. (e) ✓ = 120�, State II. (f) ✓ = 125�, State II.

Figure 11. vt fields for the cases bare cylinder and 90� 6 ✓ 6 125�. The separation point (✓sep)
was estimated using both the mean streamlines patterns and the tangential velocity vt. It is
estimated that ✓sep is accurate to within ±2�.

Figure 12. Variation of mean drag coe�cients and separation points with ✓ (for which PIV
data was available). The solid lines represent the mean drag coe�cient and separation point of
the bare cylinder case

cylinder case, this results in increased di↵usion of the shear layer with negative vorticity.
The interaction of the cylinder’s top shear layer with the wake of the control rod can be
readily observed in the supplementary video.

It is known for a bare cylinder that if ✓sep moves further round its surface this results in
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a drag reduction, due to increased pressure recovery ahead of the separation points and
hence an increase in the base pressure. This is illustrated in Figure 12 where an increase in
the upper surface separation angle is accompanied by a reduction in the drag coe�cient,
and vice versa. In state I we found that if the characteristic length used in the definition
of drag coe�cient was changed from D to D

0, where D
0 is the vertical distance between

the upper and lower separation points, a drag coe�cient of 1.14 resulted, regardless of
the control rod angle. It suggests that separation of the upper boundary layer is directly
influenced by the adverse pressure gradient caused by the presence of the control rod. It
should be noted that the upper boundary layer separates at an angle beyond the position
of the control rod. This is compatible with the flow locally speeding up in the gap between
the cylinder surface and the control rod and then decelerating. Studies have been carried
out by Parezanovic & Cadot (2012) and Sakamoto et al. (1991) into the e↵ect of control
rods on the flow around blu↵ bodies with fixed separation points. In these cases there
will be some variations in the flow mechanisms compared with our experiments where
substantial changes in separation position are observed.

Figure 9(b) shows that for all values of ✓ comprising State I there is a positive lift
force on the cylinder and a negative lift force on the control rod. The signs of these
forces are consistent with the upper cylinder boundary layer remaining attached until
just beyond the control rod. In State I figure 7 shows that the gap flow has a marked
unsteady component due to vortex shedding from the main cylinder, see Figure 8(a) and
the supplementary video.

It is observed that the frequency of vortex shedding in State I is lower than that
found for the bare cylinder (Figures 9(a) and 14). Figure 13 shows comparisons of mean
velocity and vorticity fields between the bare cylinder and the case ✓ = 110�. A number
of factors influence the shedding frequency including the distance between the separated
shear layers and the flow velocity at their outer edges. Gerrard (1966) established that in
addition the Strouhal frequency is influenced by both the vortex formation length and the
lateral di↵usion of vorticity within the shear layers. He quantified di↵usion by defining a
di↵usion length related to shear layer thickness and argued that the greater the di↵usion
length the longer it takes for a vortex to form and hence the lower the Strouhal number.
Also he reasoned that the longer the vortex formation length the greater the di↵usion
length as the shear layer has further to di↵use ahead of vortex formation. Considering a
bare circular cylinder over a large Re range, it is found that where the drag coe�cient falls
it is accompanied by a rising Strouhal number, and vice versa. With a circular cylinder a
reduction in drag coe�cient is associated with the separation points moving further round
the surface and the near wake becoming narrower. Roshko (1954) developed the concept
of a universal Strouhal number by using the velocity at the edge of the shear layers at
separation as the characteristic velocity and the distance between the shear layers as the
characteristic length. For a circular cylinder his analysis supports the finding that as the
distance between the shear layers reduces the Strouhal number increases.

Within State I, the Strouhal number and drag coe�cient behave in a similar way to the
bare cylinder with the increase in the separation angle with increasing control rod angle
leading to a reduction in drag and an increase in vortex shedding frequency. With the
control rod at ✓ = 90� the value of the drag coe�cient for the main cylinder is very close
to that for the bare cylinder but in Figure 14a the Strouhal number is significantly lower.
Searching for a reason for this we followed previous researchers and made measurements
of the vortex formation length. Earlier measurements have been based on a hot-wire
traverse along the centre-line of the wake to find the position of the maximum value of
the RMS of the longitudinal component of fluctuating velocity. We processed our PIV
data to reproduce what a hot-wire probe would have measured. For the bare cylinder the
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vortex formation length was 1.29 D and this is in good agreement with published data
(Szepessy & Bearman 1992) and with the control rod at ✓ = 110� it increases to 1.68 D.
Also the PIV data showed a thickening of the upper separated shear layer from the
main cylinder caused by interaction with the control rod’s wake. According to Gerrard
(1966), together these changes will increase the di↵usion length, leading to a reduction
in the shedding frequency. However, for ✓ = 90� the vortex formation length rather than
increasing reduced slightly from the bare cylinder value. In the literature vortex formation
lengths have mainly been presented for blu↵ bodies that do not generate a mean lift force.
Since in the presence of lift the cylinder wake is deflected at an angle to the free stream
velocity this brings into question how vortex formation lengths should be defined. Since
lift coe�cients as large as 0.6 were generated in some cases it was decided not to present
further measurements of vortex formation length. Parezanovic & Cadot (2009) point out
the di�culty of predicting the vortex shedding frequency of a blu↵ body using stability
theory when separation points are free to move, such as on a circular cylinder. Using the
wake of a bare circular cylinder as the base flow, the introduction of a control rod cannot
be considered as a small perturbation if there are changes in boundary layer separation
positions.

Sakamoto & Haniu (1994) carried out experiments with a control rod at Re = 65 000
and varied ✓ between 0� and 180� to find angular positions where the control rod was
most e↵ective at reducing fluid forces. In the range of control rod angles we classify as
State I they also found that the Strouhal number at ✓ = 90� was below the value for the
bare cylinder. Also throughout the range of ✓ in State I the shedding frequency increased
with increasing ✓ but remained below the value for the bare cylinder. They do not include
reasons for this behaviour. States similar to State I can be found in the literature, for
example the ’Free Stream’ case reported by Bingham et al. (2018a) at Re = 9,500 with
the control rod at R

0
/D = 1.85 and with ✓ = 142�. Compared with their bare cylinder

the mean drag coe�cient dropped by 8% . As expected the Strouhal number increased
and in their case it rose by almost 5% indicating an interaction between the shear layer
and the control rod and a change in where separation occurs.

Parezanovic & Cadot (2012) performed a study with a blu↵ body with fixed separa-
tion points, a D-shaped cylinder. They present sketches of 4 flow fields they observed
depending on the position of the control rod. Their ’Outer Shear’ (OS) configuration is
the closest to our State 1 with a reduction in drag due to an increase in base pressure.

It is interesting to note that in the low Re study by Strykowski & Sreenivasan (1990),
the rod’s wake did not develop vortex shedding, which would have made the interaction
with the main cylinder shear layer di↵erent from the present study. Figure 15 shows in
State I the spectrum of v

0 along the line x/D = 1.0. The peaks in fD/U1 ⇡ 0.2 and
fD/U1 ⇡ 2.4 are due to the periodic vortex shedding of the main cylinder (fD) and
the control rod (fd), respectively. Besides these, two other clear frequency signatures
appeared, at fd ± fD with a well defined spatial arrangement, as the highest frequency
(fd+fD) resides between the wakes of the main cylinder and the control rod and the other
(fd � fD) resides closer to the control rod’s wake. Baj & Buxton (2017) investigated the
interactions between wakes produced by a multi-scale array of blu↵ bodies and identified
the same spectral signature with the same spatial arrangement at the intersection of
di↵erent-sized wakes. Although the geometries and Re were di↵erent, the similarity
between the spectra and their spatial configuration is remarkable, which suggests that
the physical phenomena behind the interaction is also similar. They reported that these
frequencies fd ± fD are associated to secondary modes, which are the result of nonlinear
interactions between the primary shedding modes in close proximity to one another.
These modes play an important role in feeding kinetic energy to the residual turbulent
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(a) (b)

(c) (d)

Figure 13. Mean velocity fields, where the gray points mark max(v02/U2
1), for the cases (a)

bare cylinder and (c) ✓ = 110� which is typical for State I. Mean vorticity fields for the cases
(b) bare cylinder and (d) ✓ = 110�.

(a) (b)

Figure 14. Comparison of the spectra between State I and the bare cylinder: (a) v at the
point of max(v2/U2

1) and (b) Lift coe�cient.

fluctuations (understood as u
00 in the triple decomposition of a turbulent velocity field

u = u + ũ + u
00 in which ũ corresponds to the periodic component of the fluctuating

velocity). These residual fluctuations in turn are responsible for the majority of the
dissipation of turbulent kinetic energy during such multi-scale wake interactions.

3.2. State II

State II was observed for control rod angles ✓ = 120� and 125�. Its major feature
is that separation of the upper boundary layer moves substantially further round the
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(a) (b)

Figure 15. Spectra along x/D = 1.0 for the case ✓ = 90� (a). The dark lines represent the
signatures of the vortex shedding of the main cylinder (fD) and the control rod (fd), as well as
the secondary modes (fd ± fD), showing their spatial distribution. (b) Spectrum at the point
(x/D; y/D) = (1.0; 0.77) where the four modes coexist.

(a) � = 0 (b) � = ⇡
2

(c) � = ⇡ (d) � = 3⇡
2

Figure 16. Vortex shedding cycle for the case ✓ = 125� which is representative of State II.
Vorticity fields calculated from the smart-filtered velocity fields. Re = 20 000

cylinder, as show in Figures 11(e) and 11(f). With the rod placed at ✓ = 120� and 125�,
✓sep = 173� and 182�, respectively. The relatively high speed flow that develops between
the control rod and the cylinder surface acts to energise the cylinder boundary layer which
remains attached for a considerable distance. It is possible that transition to turbulent
flow occurs in the main cylinder upper boundary layer leading to the delayed separation,
but this could not be verified. The behaviour of the flow is an example of the Coandă
e↵ect and such a fully attached jet would not form on a blu↵ body with fixed separation
points. However, the study by Parezanovic & Cadot (2012) on a D-shaped body revealed
a related phenomenon whereby a straight jet penetrated into the near wake, replenishing
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(a) (b)

Figure 17. Mean velocity fields, where the solid line is the contour ū/U1 = 0 and the grey
diamonds represent the points where v0/U1 is maximum. (a) ✓ = 120�, and (b) ✓ = 125� which
are both representative of State II.

(a) (b)

Figure 18. Comparison of the spectra between State II and the bare cylinder. (a) Spectra
evaluated at the max(v02/U2

1) point for each case; (b) Spectra of lift force. .

(a) (b)

Figure 19. Time series of the forces of bare cylinder and cases in State II. (a) Lift and (b)
Drag.
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fluid removed by entrainment by the free shear layers. In a diagram they show the jet
entering the near wake just ahead of their control cylinder. As in our experiments this
results in a reduction in drag. Following the large movement in the position of the upper
separation point on the circular cylinder, the drag coe�cient, CD decreased to ⇡ 0.98,
which is a reduction of 11% below that of the bare cylinder, whereas CL increased to
⇡ 0.55 . These changes result in the magnitude of the mean overall hydrodynamic force
acting on the main cylinder being greater than the drag force acting on the bare cylinder.
This highlights the danger of considering only the change in the mean drag when using
a control rod as a passive flow control device. However, in State II the control rod is
e↵ective in reducing fluctuating forces due to vortex shedding. The RMS of the lift force
on the main cylinder decreased significantly, especially for ✓ = 120� where C

0
L ⇡ 0.05,

which is more than 80% lower than for the bare cylinder.
In this State, as well as a large change in the flow around the main cylinder, there is

also a substantial change in the control rod’s wake when compared with State I. As a
result, the time mean forces acting on the rod change. For ✓ = 125�, CD ⇡ 0.02, which
is more than 80% lower than the expected value of 0.1 if the rod was exposed to just a
free-stream. When considering these values note that all coe�cients for the control rod
have the main cylinder diameter, D, as the representative length scale. The lift force on
the rod changes from being negative in State I to positive in State II with a lift to drag
ratio close to 1.0.

Figure 16 shows a cycle of vortex shedding and illustrates how four shear layers interact
to form the combined system’s wake. Following separation of the upper boundary layer
on the main cylinder it reaches the separated shear layer from the bottom of the cylinder
in the vicinity of (x/D, y/D) ⇡ (0.75, �0.5). The jet flow draws down the lower shear
layer from the control rod such that it also follows the contour of the main cylinder. The
mixing of these three shear layers results in one di↵used shear layer with positively signed
vorticity. The drawing down of the lower shear layer from the control rod causes a very
broad near wake to form with a large region of low speed flow. It is assumed that the
resulting pressure recovery in the wake of the control rod is responsible for its large drag
reduction. The upper shear layer originating from the control rod with negatively signed
vorticity interacts with the di↵used lower main cylinder shear layer with positive vorticity
to initiate vortex shedding. Visually the vortices forming in the combined system’s wake
appear weaker than those in State I which is compatible with the reduction in fluctuating
lift.

Figure 17 presents the mean velocity fields for two cases in State II. As discussed
above, the most striking features are the strong jet formed between the bodies and the
long region of near stagnant fluid in the wake of the control rod. Figures 11(e), 11(f), 16
and 17 clearly show that the upper boundary layer on the main cylinder remains attached
up to ✓sep ⇡ 180� . In contrast, the lower boundary layer separates at ✓sep ⇡ 100�. This
marked asymmetry in the separation locations is responsible for the large mean lift
coe�cient which, as shown Figure 9 , is unique to State II. It is interesting to observe
that in Figure 17 there is a very large di↵erence between the sizes of the two recirculation
zones. Whereas in State I we discussed the flow in terms of the wakes of two blu↵ bodies,
in State II the configuration appears closer to a single body with a passage through it
that supplies fluid to the near wake resulting in a drag reduction.

Figure 18(a) shows spectra of v
02

/U
2
1 at the point in the wake where it is maximum

and also shows spectra of C
0
L. The spectral peaks for State II cases are lower with respect

to the bare cylinder case , particularly for ✓ = 120�. The flow patterns close to the rear of
the main cylinder for ✓ = 120� and ✓ = 125�, shown in Figures 8(b) and 16 respectively,
are similar but show di↵erences a short distance further downstream. For ✓ = 125�
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(a) � = 0 (b) � = ⇡
2

(c) � = ⇡ (d) � = 3⇡
2

Figure 20. Vortex shedding cycle for the case ✓ = 135� which is representative of State III.
The vorticity fields are calculated after the application of the OMD-based smart-filter to the
velocity fields. Re = 20 000.

there is evidence of regular vortex shedding while for ✓ = 120� the wake structure is
less well organised and there is mixing of opposite sign vorticities. Figure 8(b) shows this
mixing leads to lateral di↵usion of the shear layers and an apparent lack of regular vortex
shedding. This is also displayed in the supplementary video for this case. The spectra
plotted in Figure 18(a) and 18(b) confirm the weakening of regular vortex shedding in
State II as the angle of the control rod is reduced. They are also compatible with the
observation that the lowest value of C

0
L was found in State II for ✓ = 120�. It is interesting

to note in Figure 19(a) that the time series of lift for ✓ = 120� has a weak fluctuation
at a frequency close to the vortex shedding frequency for the bare cylinder. Hence, it
cannot be concluded that vortex shedding has been totally suppressed but rather it has
been substantially weakened.

In State II the main cylinder’s upper boundary layer appears to pass between the
cylinder and the control rod and if there was a free shear layer there is no evidence of
it impacting on the control rod. A related State found in the literature is the Type D
case reported by Sakamoto & Haniu (1994) at Re = 65 000. By measuring the time-
averaged pressure distribution around the main cylinder they were able to identify a
short separation bubble at the position on the cylinder closest to their control cylinder.
Due to the presence of the shadow of the control rod it was not possible in our study to
confirm for State II from PIV that a short separation bubble formed but the possibility
cannot be dismissed.

3.3. State III

State III is characterised by the control rod being positioned within the recirculation
zone of the main cylinder and is found to occur for ✓ > 135� up to ✓ = 180�. The
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(a) Bare cylinder (b) ✓ = 135�, State III.

Figure 21. vt fields for the cases of (a) bare cylinder and (b) ✓ = 135� which is representative
of State III. The separation point (✓sep) for each case was defined as described in the text.

(a) (b)

Figure 22. Mean velocity fields, where the gray points square define max(v02/U2
1), for the

cases (a) ✓ = 135� and (b) ✓ = 140�.

prominent feature of State III is the von Kármán vortex street formed by the interaction
between shear layers shed from the main cylinder in a form very similar to the bare
cylinder case. Figure 20 shows a cycle of vortex shedding for the combined system with
the control rod at ✓ = 135�. The upper shear layer from the main cylinder passes above
the control rod. After which it is drawn into the near wake and forms a vortex as it
interacts with the separated shear layer originating from the boundary layer on the lower
half of the main cylinder thereby forming a vortex street. In the figure, due to the shadow
formed above the main cylinder, it is not possible to follow the path of the upper shear
layer to the control rod. Evidence that the majority of the negative sign vorticity in the
upper shear layer has originated from the main cylinder is provided by the absence of
vorticity of significant strength and opposing sign being shed from the lower half of the
control rod. The reason for this is that the control rod is situated in a recirculation region
where the fluid velocity is very low, as indicated in figure 7(g).

In State III the upper separation point on the main cylinder does not vary as signifi-
cantly as in the previous two states. Figure 21 shows that with ✓ = 135� the separation
points remain close to those for the bare cylinder, ✓sep ⇡ 100�. The position of the
upper separation point could not be measured for the other angles in State III due to
the presence of the shadow of the rod in the PIV fields. However, we assume that the
separation positions will not vary significantly for ✓ > 135� since as the angle increases
the control rod moves further from the upper shear layer. This would explain why the
force coe�cients in State III remain relatively close to the values for the bare cylinder
case .
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(a) State bi-stable - A vt(P )/U1 ⇡ 0.1

(b) State bi-stable - B vt(P )/U1 ⇡ 1.0

Figure 23. Instantaneous vorticity fields and streamline patterns for ✓ = 130�: (a) bi-stable - A
and (b) bi-stable-B. Switching between the states can be be viewed in the supplementary video.

The main e↵ects due to the presence of the control rod in State III are related to
changes in the near wake. Figures 22 show the time-averaged velocity fields for the cases
associated with State III. The recirculation length was extended in both cases when
compared to the flow around the bare cylinder; it increased from 1.25 D to 1.75 D and
1.39 D for the cases ✓ = 135� and 140�, respectively.

For ✓ > 140�, the control rod had a limited e↵ect on the development of the shear
layer and hence on the wake as a whole. These results suggest that the primary e↵ect of
the control rod in this State III is to divert the top separated shear layer, thereby forcing
the interaction further downstream relative to the bare cylinder. As for the control rod
it is notable that it has a negative drag for all ✓ values tested, indicating that it is in a
reversed flow within the near wake. As an interesting consequence, the total drag of the
combined system, i.e. cylinder and control rod, is lower than for the bare cylinder for all
cases investigated in State III.

3.4. Bi-stable case

Figure 7 reveals that states I, II and III yield distinctive time series for vt(P ), with a
well-defined mean value and frequency of oscillation. Figure 7(f) shows vt(P ) with the
control rod at ✓ = 130� and it is clear that its characteristics are quite di↵erent to those for
the other states. The trace switches between high (vt(P )/U1 ⇡ 1) and low (vt(P )/U1 ⇡
0) velocity at time intervals that are significantly longer than those associated with the
vortex shedding. Figure 23(a) presents an instantaneous vorticity field for ✓ = 130� at
a time instant for which vt(P )/U1 ⇡ 1 whilst figure 23(b) presents an instantaneous
vorticity field in which vt(P )/U1 ⇡ 0.1. It is clear that there is a fundamentally di↵erent
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(a) (b)

Figure 24. Force measurements at ✓ = 130�. (a) time series and (b) Power spectral densities.

(a) First run (b) Second run

Figure 25. Time series and Probability Density Function of vt (top) and time duration of the
two states in the bi-stable case (bottom). (a) first run and (b) second run, which is five times
longer.

flow structure at the two time instants and the case ✓ = 130� is a bi-stable case. Non-
stable flow configurations have also been found in previous literature on controlling blu↵
body wakes with control rods. Sakamoto & Haniu (1994) (Re = 65 000) observed a
tri-stable case (in which their type D flow pattern resembles the current State II) and
Parezanovic et al. (2015) identified a bi-stable phenomenon in the flow over a D-shaped
cylinder with a leeward control rod.

We will refer to the bi-stable states as Bi-stable A (vt/U1 ⇡ 0) and Bi-stable B
(vt/U1 & 1.0). For Bi-stable A the combined wake of cylinder and control rod develops
a von Kármán vortex street. The vorticity field has features in common with those in
State III. When Bi-stable A switches to Bi-stable B the velocity at point P between
the main cylinder and control rod increases significantly and a jet forms between the
two bodies. When this happens the upper boundary layer on the main cylinder finally
separates close to ✓sep ⇡ 180�, after which it interacts strongly with the separated shear
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(a) (b)

Figure 26. Comparison of spectra between the two runs. (a) Power Spectral Density of vt and
(b) Spectra of v0 at the point (x/D; y/D) = (1.5; 0).

layer originating from the bottom of the cylinder. This means that Bi-stable-B is visually
similar to State II. Close inspection of the streamline pattern in Figure 23(b) indicates
the possible presence of a short separation bubble forming on the main cylinder at an
angular position close to that of the control rod. As previously stated, Sakamoto & Haniu
(1994) observed a short separation bubble in their type D flow pattern at Re = 65 000
whereas we are working at Re = 20 000. However, the geometric parameters in the two
studies are quite similar and it is plausible that the closeness of the control rod to the
main cylinder surface plays an important role in the formation of a separation bubble.
It is proposed that the reason for the switching back and forth between Bi-stable states
A and B is due to the formation and breakdown of a short separation bubble.

Previous studies have noted that placing the control rod in close proximity to the
separating shear layer is very favourable for reduction of both drag and fluctuating lift.
As highlighted by figure 9 the overall hydrodynamic force (on both the main cylinder
and the combined system) is a minimum for the case ✓ = 130�. For the cylinder only,
the drag is slightly higher than in State II but the mean lift drops significantly from
CL ⇡ 0.5 in State II to CL . 0.1 in the bi-stable case, yielding a total force coe�cient
of ⇡ 0.99, more than 10% lower than for the bare cylinder. Dalton et al. (2001) found
the greatest reduction of mean drag and fluctuating lift when the rod was placed in
the middle of the shear layer (R0

/D = 1.2; ✓ = 160�; Re = 3 000) and Bingham et al.
(2018a) reported a drag reduction of 15% and attenuation of the RMS of lift of 66% for
a rod placed in the middle of the shear layer, although further away from the cylinder
(R0

/D = 1.5; ✓ = 155�; Re = 9 500). The wake patterns in those cases were stable and
visually similar to State Bi-stable-B, however in the present case Bi-stable B was never
observed in stable isolation, only as one of two bi-stable states for ✓ = 130�. The time
series and spectra of the forces over the main cylinder are presented in figure 24. The
main peaks in the spectra at fD/U1 ⇡ 0.2 are related to vortex shedding, that occurs
for both states. No characteristic frequency of switching could be observed in the signal
as there is no distinct peak at a frequency lower than the vortex shedding. As for the rod,
the average net force is very close to zero in the bi-stable case (

��CD

�� <
��CL

�� < 0.01),
as seen in figure 9(b). Since we did not measure the forces directly on the rod, there is
no information about instantaneous values. Based on the average values, however, we
consider that the level of the forces on the rod at Bi-stable A is similar to State III,
producing negative drag and lift while State Bi-stable-B produces positive drag and lift,
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similarly to State II. We conclude that the switching between states is hence responsible
for the minimal mean force magnitude on the rod.

In order to acquire data on the switching process between bi-stable states, a second
run was carried out with an acquisition period 5 times longer than the first. Whilst these
two runs were acquired in nominally the same configuration (✓ = 130�) the apparatus
was assembled from scratch for both runs, yielding a small uncertainty in the precise
angular position of the control rod. Figures 25(a) and 25(b) show the Probability-
Density-Functions (PDFs - top right hand plots) of the time series of vt(P ) (top left hand
plots) for the two runs. Both runs exhibit bi-stable behaviour with vt(P ) varying from
lower velocities, which characterise Bi-stable-A, to high velocities typical of Bi-stable-B.
However, the distribution of velocities for the two runs is di↵erent. The first run has a
modal peak at vt(P ) ⇡ 1.2 whereas the distribution of the second is concentrated around
vt(P ) ⇡ 0. A threshold of vt(P )/U1 = 0.6, which is equidistant from the modes of
the PDFs for the first and second runs, was thus defined to delimit Bi-stable state A
and Bi-stable state B. The time series were divided into periods during which the flow
resided in a particular state before switching. In total N switches of state were recorded
and these are displayed in the bottom plots of figures 25(a) and 25(b). In particular, the
flow’s residence time in a particular bi-stable state before switching is denoted by the
grey bars. The blue lines show the cumulative mean residence times of the flow in each
state, plotted on the right-hand axes. In the first run, the flow started in Bi-stable B for
a period of ⇡ 20U1/D and then switched to Bi-stable state A, where it remained for
a period approximately ⇡ 10U1/D and so on. In total, the flow switched 12 times in
the first run and 43 times in the second run. Considering Ts = 1/fs as the period of one
cycle of vortex shedding for the bare cylinder, the mean residence time in Bi-stable A
was approximately 0.6Ts in the first run and approximately 3Ts in the second run. The
mean residence time in Bi-stable B was approximately 1.5Ts in the first run and 0.4Ts

in the second run.
From the PDFs and switching statistics we conclude that despite a nominally identical

configuration of ✓ = 130� the two runs are biased towards di↵erent bi-stable states and
the dynamics of the residence times/switching between the states behave di↵erently for
each run. Further, we note that the mean residence time in the bi-stable states converges
for both runs. Thus, we infer that the flows of the first and second runs are fundamentally
di↵erent and not simply the result of unconverged statistics or unrepresentative sampling
during the shorter of the two experimental runs. Considering that the system has a setting
angle error of about ±1�, the position of the rod was likely subtly di↵erent between the
two runs. This reveals the high level of sensitivity of the flow in the Bi-stable case
✓ = 130�. This high level of sensitivity to the precise angular position of the control rod
makes this configuration an ideal test case for high-fidelity computational fluid dynamics.

Figure 26(a) shows the spectra of vt(P ) for the two runs. In spite of their di↵erent
time series, the spectra are quite similar, as no distinct frequency associated to state
switching was found for any run. Instead, we observe that the spectra have close to a �2
slope at low frequencies. This is consistent with the rapid transitions between bi-stable
states, resembling a step, having a random nature to their occurrence which gives rise
to a low-frequency cut-o↵ in the spectrum with a �2 power law (Grandemange 2013).
The spectra obtained from the time series of v at (x/D; y/D) = (1.5; 0) revealed that the
intensity of vortex shedding was higher in the second run, and its associated frequency
was lower for the first run. These spectra can be explained by the observation that during
the short run the flow spent more time in State Bi-stable-B, in which the vortex shedding
process is weaker and its frequency lower than in State Bi-stable-A, which is similar to
State III.
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4. Conclusions

Experiments were performed in a water channel on a circular cylinder with a control
rod attached. The angular position of the rod was varied from ✓ = 90� to 180� while
the Reynolds number of the circular cylinder was kept constant at Re = 20 000. the
other parameters held constant were the centre to centre spacing between the cylinder
and the control rod, R

0
/D = 0.7, and the ratio of diameters of the control rod and the

cylinder, d/D = 0.1. Flow field measurements were made using PIV and fluid forces were
obtained for the cylinder and the control rod. By measuring forces separately on the
control rod valuable information was obtained about the local flow field to supplement
the PIV data. In common with previous investigations, several distinct flow regimes were
observed depending on the angular position of the control rod . Three stable flow states
were identified in addition to a bi-stable case and it was observed that compared to the
bare cylinder, changes in the positions of boundary layer separation took place. Some
particularly large changes in separation angle were noted for the boundary layer on the
same side of the cylinder as the control rod giving rise to substantial lift forces. A new
method was devised to identify the various flow states. Using PIV, the component of
the flow velocity normal to a line between the centres of the cylinder and control rod
was recorded at the mid-point of the gap between the bodies. Each flow state was found
to have a characteristic value of the ratio of the local mean velocity to the free stream
velocity and a distinctive variation of velocity with time.

State I, ✓ = 90� to 115�, is characterised by the formation of individual vortex street
wakes from the cylinder and control rod. In common with other states there was very little
movement of the separation position of the boundary layer on the side of the cylinder
opposite to the control rod. In this state separation of the upper boundary layer moved to
just beyond the angular position of the control rod. There was no significant change in the
drag of the main cylinder but it developed a small lift force. In State II, ✓ = 120� to 125�,
there is a large delay in the separation of the cylinder boundary layer and an energetic jet
forms that follows the contour of the main cylinder. While there is a reduction of about
10% in the drag coe�cient, a mean lift coe�cient of about CL ⇡ 0.55 develops. As a result
of the high lift the total mean force acting on the combined body of cylinder and control
rod is greater that the mean drag on the bare cylinder. However,fluctuating lift was
substantially reduce for ✓ = 120�, with the RMS of lift force fluctuations decreasing by
more than 80% due to the weakening of vortex shedding. Over the range 135� 6 ✓ 6 180�,
the control rod remains within the recirculation zone of the main cylinder and this is
the main characteristic of State III. The separation points and the drag coe�cient are
close to those of the bare cylinder and with the control rod in the recirculation zone it
experiences a small negative drag force.

A finding regarding the flow structure is that the free shear layer arising from separation
of the upper boundary layer on the cylinder is deflected by the control rod and not split
as observed by other investigators, where the control rod was placed relatively further
from the main cylinder. In State I the free shear layer passes between the cylinder and
the control rod whereas in State III the free shear layer passes over the control rod. In
State II the boundary layer appears to remain attached until well after passing below
the control rod, in a manifestation of the Coandă e↵ect.

A bi-stable case exists for ✓ = 130� where the flow switches between Bi-Stable A,
with characteristics very close to State III and Bi-Stable B, where there is delayed final
separation, similar to State II. It was found that a small change in the control rod’s
angular position, of about ±1�, would influence the time the flow was in one or other of
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Bi-Stable states A and B. Further research is required to confirm that the instability is
due to the formation and bursting of a separation bubble.

5. Acknowledgements

We gratefully acknowledge support of the RCGI Research Centre for Gas Innovation,
hosted by the University of Sao Paulo and sponsored by FAPESP São Paulo Research
Foundation (2014/50279-4) and Shell Brasil, and the support of ANP Brazil’s National
Oil, Natural Gas and Biofuels Agency through the R&D levy regulation. M.M.Cicolin is
thankful for the support of CNPq (201176/2018-1).

6. Declaration of Interests

The authors report no conflict of interest.

Appendix A. OMD Decomposition

Dynamic mode decomposition (DMD) relies on the basic idea that there is a linear
dependency, approximately constant throughout the sampling period, between successive
velocity-field snapshots, that can be written as:

vn+1 = Avn,

A 2 Rp⇥p (A 1)

where vn is an arbitrary snapshot having length denoted by p, which corresponds to the
total number of vectors in the PIV vector field, and A represents the underlying linear
system. The DMD algorithm estimates the dynamic properties of A and its successful
adaptation relies on having a su�ciently large ensemble of snapshots. Optimal mode
decomposition (OMD) estimates the properties of A by replacing it with its low rank
form LMLT and solving an optimisation problem for both L and M . For a series of N

snapshots, the problem becomes:

min
��[v2, ...,vN] � LMLT[v1, ...,vN�1]

��2

LLT = I, L 2 Rp⇥r
, M 2 Rr⇥r (A 2)

The OMD eigenvalues (�⇤) are then defined as:

�
⇤
n =

log �n(M)

�tacq
(A 3)

where �n(M) are the eigenvalues of the matrix M and �tacq = 1/facq is the period
between two consecutive velocity fields. There is one OMD mode associated with each
�
⇤
n:

�
⇤
n = Lzn (A 4)

where Lzn is an eigenvector corresponding to the eigenvalue �n(M). A low-order model
(LOM) representation of the velocity fields is then given by:
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vLOM =
rX

n=1

cn �
⇤
n e

�⇤
n (A 5)

where cn are the coe�cients associated with the OMD modes. Further details about
OMD/DMD methods can be found in Wynn et al. (2013) and its use to extract coherent
modes in flows forced simultaneously by multiple blu↵ bodies at multiple di↵erent length
scales in Baj et al. (2015). The low order representation of the velocity fields using OMD
fields can be seen as a “smart” dynamical filter, as it keeps the structures more relevant
to the dynamics of the flow regardless of their energy content, i.e the velocities are not
filtered in relation to their size or time scale but considering their dynamic relevance to
the flow.
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