Cálculo I - Lista 7: Integrais II

Prof. Responsável: Andrés Vercik

1. Use o teorema fundamental do calculo para achar a derivada da função.

a)
$$g(x) = \int_0^x \sqrt{1 + 2t} \, dt$$

b)
$$g(x) = \int_{1}^{x} \ln t dt$$

c)
$$g(y) = \int_2^y t^2 sent dt$$

d)
$$g(u) = \int_{-1}^{u} \frac{1}{x + x^2} dx$$

e)
$$g(x) = \int_{r}^{2} \cos(t^2) dt$$

f)
$$g(x) = \int_{x}^{10} tg\theta d\theta$$

g)
$$g(x) = \int_{2}^{1/x} arctgtdt$$

h)
$$g(x) = \int_0^{x^2} \sqrt{1 + r^3} dr$$

i)
$$y = \int_3^{\sqrt{x}} \frac{\cos t}{t} dt$$

$$j) \quad y = \int_{1}^{\cos x} (t + sent) dt$$

k)
$$y = \int_{1-3x}^{1} \frac{u^3}{1+u^2} du$$

1)
$$y = \int_{e^x}^0 sen^3 t dt$$

2. Use teorema fundamental do calculo para calcular a integral, ou explique o porquê não existe.

a)
$$\int_{-1}^{3} x^{5} dx$$

b)
$$\int_{2}^{8} (4x+3)dx$$

c)
$$\int_0^4 \sqrt{x} dx$$

$$d) \int_{1}^{2} x^{-2} dx$$

e)
$$\int_0^4 (1+3y-y^2)dy$$

f)
$$\int_0^1 x^{\frac{3}{7}} dx$$

g)
$$\int_{1}^{2} \frac{3}{t^4} dt$$

h)
$$\int_{-1}^{1} \frac{3}{t^4} dt$$

i)
$$\int_{3}^{3} \sqrt{x^5 + 2} dx$$

j)
$$\int_{\pi}^{2\pi} \cos\theta d\theta$$

k)
$$\int_{-4}^{2} \frac{2}{x^6} dx$$

$$1) \quad \int_{1}^{4} \frac{1}{\sqrt{x}} dx$$

m)
$$\int_{\pi/4}^{\pi/3} sent dt$$

n)
$$\int_0^1 (3 + x\sqrt{x}) dx$$

o)
$$\int_{\pi/4}^{\pi} \sec^2 \theta d\theta$$

$$p) \int_1^9 \frac{1}{2x} dx$$

$$q) \int_{\ln 3}^{\ln 6} 8e^x dx$$

r)
$$\int_{8}^{9} 2^{t} dt$$

s)
$$\int_{-e^2}^{-e} \frac{3}{x} dx$$

t)
$$\int_{1}^{\sqrt{3}} \frac{6}{1+x^2} dx$$

u)
$$\int_0^{0.5} \frac{3}{x} dx$$

3. Calcule as seguintes integrais:

a)
$$\int_0^2 f(x)dx$$
, onde $f(x) = \begin{cases} x^4 & se \ 0 \le x \le 1 \\ x^5 & se \ 1 \le x \le 2 \end{cases}$

b)
$$\int_{-\pi}^{\pi} f(x)dx$$
, onde $f(x) = \begin{cases} x & se & -\pi \le x \le 0 \\ senx & se & 0 \le x \le \pi \end{cases}$

4. Ache a derivada da função:

a)
$$g(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$

b)
$$g(x) = \int_{tgx}^{x^2} \frac{1}{\sqrt{2+t^4}} dt$$

c)
$$y = \int_{\sqrt{x}}^{x^3} \sqrt{t} \operatorname{sen} t dt$$

d)
$$y = \int_{\cos x}^{5x} \cos(u^2) du$$

5. Encontre a área das seguintes regiões.

a)
$$y = x + 1$$
, $y = 9 - x^2$, $x = -1$, $x = 2$

b)
$$y = senx$$
, $y = e^x$, $x = 0$, $x = \frac{\pi}{2}$

c)
$$y = x$$
, $y = x^2$

d)
$$y = x^2$$
, $y = x^4$

e)
$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, $x = 2$

f)
$$y = 1 + \sqrt{x}$$
, $y = \frac{(3+x)}{3}$

$$g) \quad y = x^2 \quad y^2 = x$$

h)
$$y = x$$
, $y = \sqrt[3]{x}$

i)
$$y = 4x^2$$
, $y = x^2 + 3$

j)
$$y = x^3 - x$$
, $y = 3x$

k)
$$y = x + 1$$
, $y = (x + 1)^2$, $x = -1$, $x = 2$

1)
$$y = x^2 + 1$$
 $y = 3 - x^2$, $x = -2$, $x = 2$

m)
$$y^2 = x$$
, $x - 2y = 3$

n)
$$y = \frac{1}{x}$$
, $x = 0$, $y = 1$, $y = 2$

o)
$$x = 1 - y^2$$
, $x = y^2 - 1$

p)
$$y = \cos x$$
, $y = \sec^2 x$, $x = -\frac{\pi}{4}$, $x = \frac{\pi}{4}$

q)
$$y = \cos x$$
, $y = \sin 2x$, $x = 0$, $x = \frac{\pi}{2}$

r)
$$y = \sin x$$
, $y = \sin 2x$, $x = 0$, $x = \frac{\pi}{2}$

s)
$$y = \cos x$$
, $y = 1 - \frac{2x}{\pi}$

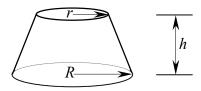
t)
$$y = |x|$$
, $y = x^2 - 2$

u)
$$y = x^2$$
, $y = \frac{2}{(x^2+1)}$

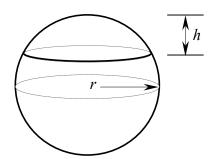
v)
$$y = \sin \pi x$$
, $y = x^2 - x$, $x = 2$

- 6. Encontre o volume do sólido obtido pela rotação da região limitada pelas curvas dadas em torno dos eixos especificados. Esboce a região, o sólido e um disco típico ou arruela.
 - a) $y = x^2$, x = 1, y = 0; ao redor do eixo x.
 - b) $y = e^x$, y = 0, x = 0, x = 1; ao redor do eixo x.
 - c) $y = \frac{1}{x}$, x = 1, x = 2, y = 0; ao redor do eixo x.
 - d) $y = \sqrt{x-1}$, x = 2, x = 5, y = 0; ao redor do eixo x.
 - e) $y = x^2$, $0 \le x \le 2$, y = 4, x = 0; ao redor do eixo y
 - f) $x = y y^2$, x = 0; ao redor do eixo y
 - g) $y = x^2$, $y^2 = x$; ao redor do eixo x.
 - h) $y = \sec x$, y = 1, x = -1, x = 1; ao redor do eixo x.
 - i) $y = x^{2/3}$, x = 1, y = 0; ao redor do eixo y.
 - j) y = x, $y = \sqrt{x}$; ao redor do eixo y.
 - k) $y = x^2$, y = 4; ao redor de y=1.
 - 1) $y = x^4$, y = 1; ao redor de y=4.
 - m) $y = \frac{1}{x}$, y = 0, x = 1, x = 3; ao redor de y=2.
 - n) $x = y^2$, x = 1; ao redor de y=-1.
 - o) y = x, x = 1; ao redor de x=1.
 - p) y = x, $y = \sqrt{x}$; ao redor de x=2.
 - q) $y = x^2$, $x = y^2$; ao redor de x=-1.
 - r) y = x, y = 0, x = 2, x = 4; ao redor de x=1.
- 7. Escreva, mas não calcule, uma integral para os valores dos sólidos obtidos pela rotação da região limitada pelas curvas dadas e ao redor das retas especificadas.
 - a) $y = \ln x$, y = 1, x = 1; ao redor do eixo x.
 - b) $y = \sqrt{x-1}$, y = 0, x = 5; and redor do eixo y.
 - c) y = 0, $y = \sin x$, $0 \le x \le \pi$; ao redor de y=1.

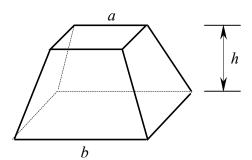
- d) y = 0, $y = \sin x$, $0 \le x \le \pi$; ao redor de y=-2.
- e) $x^2 y^2 = 1$, x = 3; ao redor de x=-2.
- f) 2x + 3y = 6, $(y-1)^2 = 4 x$ ao redor de x=-5.
- 8. Encontre o volume do sólido descrito.
 - a) Um tronco de cone circular reto de altura h, raio da base inferior R e raio de base superior r.



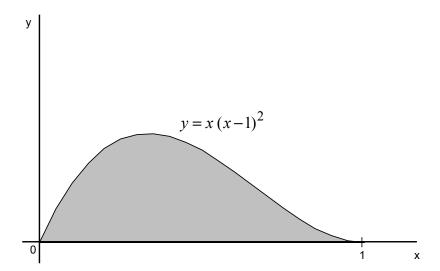
b) Uma calota de uma esfera de raio r e altura h.



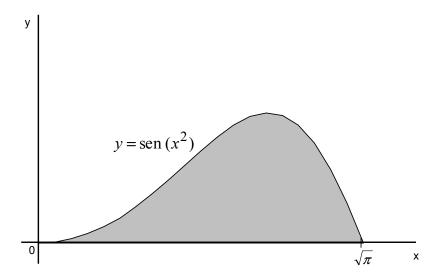
c) Um tronco de pirâmide com base quadrada de lado b, topo quadrado de lado a e altura h.



9. Seja S o sólido obtido pela rotação da região mostrada na figura ao redor do eixo y. Explique por que é inconveniente fatiar para obter o volume V de S. Esboce uma casca cilíndrica típica de aproximação. Qual é a circunferência e a altura? Use cascas para encontrar o volume V.



10. Seja S o sólido obtido pela rotação da região mostrada na figura ao redor do eixo y. Esboce uma casca cilíndrica típica, e encontre sua circunferência e altura. Use cascas para encontrar o volume de S. Você acha que esse método é preferível ao fatiamento?



- 11. Use o método das cascas cilíndricas para achar o volume gerado pela rotação ao redor do eixo *y* da região limitada pelas curvas dadas. Esboce a região e a casca típica.
 - a) y = 1/x, y = 0, x = 1, x = 2
 - b) $y = x^2$, y = 0, x = 1
 - c) $y = e^{-x^2}$, y = 0, x = 0, x = 1
 - d) $y = x^2 6x + 10$, $y = -x^2 + 6x 6$
 - e) $y^2 = x$, x = 2y
- 12. Seja V o volume de um sólido obtido pela rotação ao redor do eixo y da região limitada por $y = \sqrt{x}$ e $y = x^2$. Encontre V pelos métodos de fatiamento e cascas cilíndricas. Em ambos os casos, desenhe um diagrama para explicar o seu método.
- 13. Use o método das cascas cilíndricas para encontrar o volume do sólido obtido pela rotação da região limitada pelas curvas dadas ao redor do eixo *x* . Esboce a região e a casca típica.
 - a) $x = 1 + y^2$, x = 0, y = 1, y = 2
 - b) $x = \sqrt{y}, x = 0, y = 1$
 - c) $y = x^2$, y = 9
 - d) $y^2 6y + x = 0$, x = 0
 - e) $y = \sqrt{x}$, y = 0, x + y = 2
 - f) x + y = 3, $x = 4 (y 1)^2$
- 14. Use o método das cascas cilíndricas para achar o volume gerado pela rotação de região limitada pelas curvas dadas ao redor dos eixos especificados. Esboce a região e uma casca típica.
 - a) $y = x^2$, y = 0, x = 1, x = 2; and redor de x = 1
 - b) $v = x^2$, v = 0, x = -2, x = -1; ao redor do eixo y
 - c) $y = x^2$, y = 0, x = 1, x = 2; and redor de x = 4
 - d) $y = 4x x^2$, $y = 8x 2x^2$; ao redor de x = -2
 - e) $y = \sqrt{x-1}$, y = 0, x = 5; ao redor de y = 3
 - f) $y = x^2$, $x = y^2$; ao redor de y = -1

15. Escreva, mas não calcule, uma integral para o volume de um sólido obtido pela rotação da região limitada pelas curvas dadas ao redor dos eixos especificados.

a)
$$y = \ln x$$
, $y = 0$, $x = 2$; ao redor do eixo y

b)
$$y = x$$
, $y = 4x - x^2$; ao redor de $x = 7$

c)
$$y = x^4$$
, $y = sen(\pi x/2)$; ao redor de $x = -1$

d)
$$y = 1/(1+x^2)$$
, $y = 0$, $x = 0$, $x = 2$; ao redor de $x = 2$
e) $x = \sqrt{\sin y}$, $0 \le y \le \pi$, $x = 0$; ao redor de $y = 4$

e)
$$x = \sqrt{\sin y}$$
, $0 \le y \le \pi$, $x = 0$; and redor de $y = 4$

f)
$$x^2 - y^2 = 7$$
, $x = 4$; ao redor de $y = 5$

16. A região limitada pelas curvas dadas é girada ao redor dos eixos especificados. Ache o volume do sólido resultante por qualquer método.

a)
$$y = x^2 + x - 2$$
, $y = 0$; ao redor do eixo x

b)
$$y = x^2 - 3x + 2$$
, $y = 0$; ao redor do eixo x

c)
$$y = 5$$
, $y = x + (4/x)$, ao redor de $x = -1$

d)
$$x = 1 - y^4$$
, $x = 0$; ao redor de $x = 2$

e)
$$x^{2} + (y-1)^{2} = 1$$
; ao redor do eixo y

f)
$$x^2 + (y-1)^2 = 1$$
; ao redor do eixo x

17. Encontre o valor médio da função no intervalo dado.

a)
$$f(x) = x^2$$
, $[-1, 1]$

b)
$$f(x)=1/x$$
, [1, 4]

b)
$$f(x)=1/x$$
, [1, 4]
c) $g(x)=\cos x$, [0, $\pi/2$]

d)
$$g(x) = \sqrt{x}$$
, [1, 4]

e)
$$f(t) = te^{-t^2}$$
, [0, 5]

e)
$$f(t) = te^{-t^2}$$
, $[0, 5]$
f) $f(\theta) = \sec \theta t g \theta$, $[0, \pi/4]$

g)
$$h(x) = \cos^4 x \operatorname{sen} x$$
, $[0, \pi]$

h)
$$h(r) = 3/(1+r)^2$$
, [1, 6]

18. i) Encontre o valor médio de f no intervalo dado. ii) Encontre c tal que $f_{m\acute{e}d} = f(c)$. iii) Esboce o gráfico de f e um retângulo cuja área é a mesma que a área sob o gráfico de f.

a)
$$f(x)=4-x$$
, [0 2]

b)
$$f(x) = e^x$$
, [0, 2]

- 19. Use a fórmula do comprimento de arco para encontrar o comprimento da curva $y = 2 3x, -2 \le x \le 1$. Verifique sua resposta notando que a curva é um segmento de reta e calculando seu comprimento pela fórmula da distância.
- 20. Use a fórmula do comprimento de arco para achar o comprimento da curva $y = \sqrt{4 x^2}$, $0 \le x \le 2$. Verifique sua resposta notando que a curva é um quarto de círculo.
- 21. Ache o comprimento de arco da curva dada do ponto A ao ponto B.
 - a) $y^2 = (x-1)^3$; A(1, 0), B(2, 1)
 - b) $12xy = 4y^4 + 3$; $A\left(\frac{7}{12}, 1\right)$, $B\left(\frac{67}{24}, 2\right)$
- 22. Calcule o comprimento da curva

a)
$$y = \frac{1}{3}(x^2 + 2)^{3/2}$$
, $0 \le x \le 1$

g)
$$y = \ln(1 - x^2)$$
, $0 \le x \le \frac{1}{2}$

b)
$$y = \frac{x^2}{2} - \frac{\ln x}{4}$$
, $2 \le x \le 4$

$$h) \quad y = \ln x, \qquad 1 \le x \le \sqrt{3}$$

c)
$$y = \frac{x^4}{4} + \frac{1}{8x^2}$$
, $1 \le x \le 3$

i)
$$y = \cosh x$$
, $0 \le x \le 1$
j) $y^2 = 4x$, $0 \le y \le 2$

d)
$$x = \frac{1}{3}\sqrt{y}(y-3)$$
, $0 \le y \le 9$

$$k) \quad y = e^x, \qquad 0 \le x \le 1$$

e)
$$y = \ln(\sec x)$$
, $0 \le x \le \pi/4$

$$l) \quad y = \ln \left(\frac{e^x + 1}{e^x - 1} \right), \qquad a \le x \le b, \quad a > 0$$

- f) $y = \ln(\sin x)$, $\pi/6 \le x \le \pi/3$
- 23. Monte, mas não avalie, uma integral para a área da superfície obtida pela rotação da curva ao redor do eixo dado.
 - a) $y = \ln x$, $1 \le x \le 3$; eixo x
 - b) $y = \operatorname{sen}^2 x$, $0 \le x \le \pi/2$; eixo x
 - c) $y = \sec x$, $0 \le x \le \pi/4$; eixoy
 - d) $y = e^x$, $1 \le y \le 2$; eixo y

24. Calcule a área da superfície obtida pela rotação da curva ao redor de eixo x.

a)
$$y = x^3$$
, $0 \le x \le 2$

b)
$$y^2 = 4x + 4$$
, $0 \le x \le 8$

c)
$$y = \sqrt{x}$$
, $4 \le x \le 9$

d)
$$y = \frac{x^2}{4} - \frac{\ln x}{2}$$
, $1 \le x \le 4$

e)
$$y = \operatorname{sen} x$$
, $0 \le x \le \pi$

f)
$$y = \cos 2x$$
, $0 \le x \le \pi/6$
g) $y = \cosh x$, $0 \le x \le 1$

g)
$$y = \cosh x$$
, $0 \le x \le 1$

h)
$$2y = 3x^{2/3}$$
, $1 \le x \le 8$

i)
$$x = \frac{1}{3}(y^2 + 2)^{3/2}$$
, $1 \le y \le 2$

j)
$$x = 1 + 2y^2$$
, $1 \le y \le 2$

25. A curva dada é girada ao redor do eixo y. Calcule a área da superfície resultante.

a)
$$y = \sqrt[3]{x}$$
, $1 \le y \le 2$

b)
$$y = 1 - x^2$$
, $0 \le x \le 1$

c)
$$x = e^{2y}$$
, $0 \le y \le \frac{1}{2}$

d)
$$x = \sqrt{2y - y^2}$$
, $0 \le y \le 1$

e)
$$x = \frac{1}{2\sqrt{2}} (y^2 - \ln y), \quad 1 \le y \le 2$$

f)
$$x = a \cosh(y/a)$$
, $-a \le y \le a$