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VOICE LEADING 

IN SET-CLASS SPACE 

Joseph N. Straus 

Introduction to Transformational Voice Leading 

Figure 1 shows four pairs of chords and says something about the 
voice leading between Chord X and four versions of Chord Y. Chords X 
and Y? (Figure la) are identical?the pitches of the first chord are retained 
in the second. If we were to think of this progression transformationally, 

we might say that pitch transposition at To maps the first chord onto the 
second and thus maps each note in the first chord onto a corresponding 
destination in the second. These transformational mappings and the registral 
lines coincide, as each pitch in the first chord moves 0 semitones to its 
destination in the second. 

In the second pair of chords (Figure lb), one of the voices moves by 
semitone (G4-G?4) while the others remain stationary. This voice lead 

ing would be generally understood as smooth. If we think of this progres 
sion transformationally, we would say that the relevant transformation is 

fuzzy-To, a transformation that deviates in some measurable way from a 

strict, crisp-To.1 The asterisk in the example denotes the fuzziness of the 
T The voice that does not participate in the actual transposition, the soprano 
Journal of Music Theory, 49:1 
DOI 10.1215/00222909-2007-002 ? 2008 by Yale University 

45 

This content downloaded  on Wed, 6 Mar 2013 16:22:43 PM
All use subject to JSTOR Terms and Conditions



lb 
X 

le 
X 

J ttX 

ld 
X 

m m 
G4 

A3 

-G4 

-A3 

-E3 

Ti 

G4 

A3 

E3 

-G#4 G4?"--A#4 
+2 

A3-B3 

-E3 E3 
+2 

-F#3 

(1) 
*Tf2 

(1) 
*T2 

(1) 

Figure 1. Transformational voice leading via transposition and fuzzy 
transposition in pitch and pitch-class space 

in this case, deviates from the others by a semitone. That amount of 

deviation, defined as the offset number, is given in parentheses below the 

transposition number.2 The voice leading thus involves minimal offset. As 
in Figure la, the transformational voice leading (i.e., the mappings 
induced by a transformation) and the registral lines coincide. 

In Figure lc, the second chord in the pair (Y3) is transposed up two 
semitones from its position in the previous progression (Y2). As a result, 
the voice leading from X to Y3 is *T+2. The offset number remains 1, 
because the soprano still deviates by only one semitone from the prevail 
ing transformation. This voice leading is no longer smooth, because all 
of the voices are moving by two or three semitones, but it still involves 

minimal offset. The progression does not involve actual, crisp transposi 

tion, but it is maximally uniform; that is, it comes as close as possible to 

being an actual transposition, deviating by only one semitone of offset.3 
In this sense, the transformation in Figure lb is also maximally uniform 
(as well as smooth). Once again, the transformational voices (mappings) 
and the registral lines coincide. 

In Figure Id, the two chords are no longer related by pitch transposi 
tion, but only by more abstract pitch-class transposition. *T2 maps Chord 

X onto Chord Y4, sending A onto B and E onto Ft, and also, with one 

pitch-class semitone of offset, sending G onto At (motion by three semi 
tones instead of the prevailing two). The transformational voice leading 
takes place in pitch-class space, mapping the pitch classes of X onto 
those of Y4. These pitch-class mappings need not coincide with the regis 
tral lines, and this example involves voice crossing (i.e., the pitch-class 
voices cross in pitch space). The voice leading is still maximally uniform 
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(approaches as nearly as possible an actual transposition), but the unifor 

mity is felt in pitch class rather than in pitch space. 
Given the octave dislocations and the voice crossings in Figure Id, is 

it still possible to understand the two chords as related by (fuzzy) trans 
position, to apprehend the mappings that result, and to retain a sense of 

them as voices, despite their lack of coincidence with the registral lines? 
The answer will depend on the musical context and the interests of the 
listener. Without too much difficulty, one might attend to the perfect 
fourth at the bottom of the first chord and listen for its projection into the 
second chord, with the lower note of the fourth moving up two semitones 
and the upper note of the fourth moving up an octave plus two semitones. 

It is also possible, although obviously more difficult, to imagine that the 
A? at the bottom of Chord Y4 results from a transposition of G up two 
semitones to A, which is then moved down two octaves and minimally 
displaced onto Att?the relevant ear training would involve hearing the 
progression of Figure Id in relation to the progression of Figure lc. We 
might say that the relatively straightforward progression of Figure lc is 
elaborated by octave displacement in Figure Id. Or, conversely, we might 
say that the more abstract pitch-class relations of Figure Id are realized 
concretely, in pitch space, in Figure lc. Either way, the music of Figure 
Id permits us to retain a meaningful sense of transformational voice lead 

ing and transformational voices. 

Figure 2 presents four more pairs of chords. The actual, registral voice 
leading of the first two chords (Figure 2a) is smooth, with A5 and E3 

z, 
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Figure 2. Transformational voice leading via inversion and fuzzy 
inversion in pitch and pitch-class space 
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retained as common tones while G4 moves a pitch semitone to Ftt4. Think 
ing about the progression transformationally, we would note that the two 

chords are related by actual pitch inversion?the second is the inversion, 
in pitch space, of the first?and say that the inversion that exchanges A5 
and E3 also sends G4 onto F?4. This transformational voice leading is not 
smooth, because the mappings involve an exchange of tones, traversing 

large distances, rather than the simple retention of tones. The transforma 

tional voice leading calls our attention to an exchange of roles between 

A5 and E3: the pitch that was fourteen semitones away from the middle 
note in one chord is fifteen semitones away from it in the other, and vice 
versa. The registral lines move smoothly; the transformational voices 

capture the sense of inversional exchange between the chords. One can 

imagine the inner-voice G-Fl as defining an axis of symmetry around 
which A5 and E3 balance. Alternatively, one can imagine A5 and E3 as 
defining a frame within which F#4 balances G4. Within this frame, G4 
creates a slight asymmetry that is rectified by the appearance of the bal 
ancing Fjt4. If we assume an underlying desire for balance, we might say 
that the A5-E3 frame presses the G4 to move to Ftt4. That sense of a 

motion toward inversional balance is captured by the proposed transfor 

mational voice leading. 

Compared to this progression, the slightly altered progression in Fig 
ure 2b (the F?4 in Chord Zl becomes F4 in Chord Z2) involves fuzzy 
inversion, with the deviant voice offset by a semitone from the prevailing 
inversion. This voice leading thus involves minimal offset. It is maximally 

balanced', that is, it approaches as nearly as possible an actual inversion, 

deviating by only one semitone.4 In this context, the F4 acts as a kind of 
"blue" Ftt4, deviating by a semitone from the note that would create strict 
inversional symmetry. 

In Figure 2c, Chord Z3 is transposed down four semitones with respect 
to Chord Z2. The inversion has changed accordingly, but the degree of 
offset is still 1. Now Dl?4 substitutes for the inversionally desirable D4, a 
deviation of one semitone. 

With Figure 2d, we shift from pitch space to pitch-class space and 
from pitch inversion to pitch-class inversion. Chord Z4 has the same pitch 
classes as Chord Z3 but is represented in two cases by octave-related 

pitches. The pitch-class mappings induced by the inversion (described 
either as lc or I9) are identified by the index number (sum) created by the 

mapped pitch class. The sum that connects G to Dl? deviates by a semi 
tone from the sum that connects A and E to C and F. To put it in a slightly 
different way, the same inversion that balances A against C also balances 
E against F, but G and D\? deviate by a single semitone from also balanc 

ing on that axis. 

As a result, the voice leading in Figure 2d also involves the minimal 
offset of one semitone from a straight inversion at I9. The pitch-class 
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mappings in this case are identical with the registral lines, although this 
need not be the case. As with the transformational voice leading induced 
by transposition, inversional voice leading in pitch-class space can also 

lead to crossed voices in pitch space. The ear training required to hear the 
transformational voices operating in Figure 2d involves hearing it in rela 
tion to Examples 2a, 2b, and 2c. In those examples, the transformational 

voice leading did not coincide with the registral lines: the mappings 
involved traversing large distances and crossing in pitch space. In Figure 

2d, the inversional near-symmetry exists only in pitch-class space, but 

the transformational voices now coincide with the registral lines. 

In Figures 1 and 2, the chords labeled X all contain pitch classes 
[E, G, A], a member of set-class 3-7 [025]. The chords labeled Y2,Y3,Y4, 

Z2, Z3, and Z4?[E, Gf, A], [Ft, At, B], [E, F, A], and [C, Db, F]?are all 
members of set-class 3-4 [015]. We might generalize that any member of 
set-class [025] has the potential to move to any member of set-class [015] 
via *T or *I with the minimal offset of one semitone. The progression 
from a member of set-class [025] to a member of set-class [015] can thus 
always be interpreted as either maximally uniform or maximally bal 
anced (deviating from strict T or I by one semitone). More simply and 
directly, we might say that set-class [025] and set-class [015] are related 
by minimal offset voice leading. 

When we say that [015] and [025] are connected by minimal offset 
voice leading, we mean that for any pitch-class set in [015], there will be 
a pitch-class set in [025] to which it can be connected by smooth voice 
leading, with one pitch class moving by semitone while the others are 
retained as common tones (as in Figure lb). Furthermore, we mean that 

every pitch-class set in [015] can be connected to every pitch-class set in 
[025] by *T or *I with an offset of one semitone (as in Examples lc, Id, 

2b, 2c, and 2d). Still more generally, we mean that whatever pitch class 
functions as the "1-element" or occupies the "1-position" within set-class 

[015] will be understood to move onto whatever pitch class functions as 
the "2-element" or occupies the "2-position" within set-class [025].5 In 

this sense, the voice leading between set-classes involves the mapping of 

corresponding functions or elements, just as the voice leading between 
pitch-class sets involves the mapping of pitch classes and the voice lead 
ing between pitch sets involves the mapping of pitches. 

At the level of the set-class, voice-leading uniformity and balance con 

verge with voice-leading smoothness. If two pitch-class sets are related by 
*T or *I with minimum offset, then the set-class to which the sets belong 

will be related smoothly. As with [025] and [015], one element moves by 
the minimal distance while the others remain unchanged. 

The minimal offset voice leading between [015] and [025], or between 
any two set-classes, may be realized with varying degrees of explicitness 
in the relationships among pitch-class sets belonging to those set-classes, 
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and the relationships among the pitch-class sets may themselves be real 

ized with varying degrees of explicitness in the relationships among the 
pitch sets that represent them. A smooth connection between set-classes 

entails a maximally uniform or maximally balanced voice leading among 
the pitch-class sets belonging to the set-classes. Conversely, a maximally 
smooth or balanced voice leading between pitch-class sets entails a 
smooth, parsimonious connection between the set-classes to which they 

belong. These relationships among set-classes and pitch-class sets con 

strain any possible pitch realization. Specifically, they provide a limit to 
the degree of smoothness obtainable in pitch space. For example, if two 
set-classes are related by voice-leading offset of 2 (and thus any sets 

within the set-classes are related by *T or *I to within an offset of 2), 
there can be no pitch realization that requires less than two pitch semi 
tones of displacement from strict pitch transposition or pitch inversion. 

Proximate, minimal-offset voice leading between set-classes repre 
sents a potential that pitch-class sets and pitch sets may realize to a 

greater or lesser extent; the relations among set-classes act as a deep, 
abstract constraint on the relations among the pitch-class sets and pitch 
sets that they comprise. Because of their power as deep-level potentials or 

constraints on transformational voice leading among pitch-class sets, the 

voice-leading relationships among set-classes merit further exploration. 
In recent years, a number of theorists have begun to imagine and 

describe particular kinds of voice-leading spaces for set-classes.6 Within 

these spaces, set-classes are related parsimoniously?those that are related 

smoothly, with relatively little semitonal offset, are located in close prox 
imity, while those that are related by relatively high levels of voice-leading 
exertion are more widely separated. 

Building on earlier work, in this article I construct a parsimonious 
voice-leading space for set-classes. Within this space, each set-class occu 

pies a determinate location (normally defined by its prime form) and lies 
a fixed distance from the others (with distance measured by the amount of 
semitonal adjustment required to transform one into the other). Within this 
space, it becomes possible to interpret atonal harmonic progressions, 

including progressions among sets belonging to different set-classes. The 
result is an analytically practical approach to atonal harmony and voice 
leading. 

A Parsimonious Voice-Leading Space for Set-Classes 

A voice-leading space that contains all of the set-classes must neces 

sarily be multidimensional. Specifically, the dyads can be modeled in one 
dimension, the trichords in two, the tetrachords in three, the pentachords 
in four, and the hexachords in five dimensions. The larger set-classes may 

be understood to occupy the same positions within the space as their 
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Figure 3. A parsimonious voice-leading space for dyad classes 

smaller complements. Multidimensionality creates serious problems for 
conceptualization, visualization, and representation. 

The approach taken here attempts to solve those problems by display 
ing the set-classes in tiers, with voice-leading connections both within a 
tier and between tiers. The tiers consist of rows and columns and are them 
selves gathered into stacks, which combine to form complexes of stacks. 
In this way, a five-dimensional space that contains set-classes of cardinal 
ity 1 through 6 can be grasped with relative ease. Essentially, I will be 
offering two- and three-dimensional slices and chunks of the underlying, 

multidimensional master space. This simplified rendering will make it 
possible to infer significant harmonic and voice-leading relationships from 
the position of the set-classes within the space and to explore those rela 
tionships analytically in musical compositions. 

Within the integrated, five-dimensional space described here, all set 
classes are given determinate locations fixed by a six-place location vec 
tor, (a, b, c, d, e,f), where a = universe (always equal to 0), b = complex, 
c = stack, d = tier, e = column, and/= row. A traditional prime form is 
interpreted here as a location vector, and every set-class is located in the 
position defined by its prime form. For example, set-class 6-20 [014589] 

may be found in the ninth row and eighth column of the fifth tier within 
the fourth stack located in the first complex, while set-class 4-22 [0247] 

may be found in the seventh row and fourth column of the second tier of 
the 0-stack, within the 0-complex (any variable not specified is assumed 
to be 0). In addition, set-classes may have other locations in the space.7 

This approach will enable us to know the location(s) for every set-class 
within a single multidimensional space that contains them all. We will 
also know the shortest route between any two set-classes of any cardinal 
ity, both the length of the route and the set-classes it passes through. 

Finally, for any set-class, we will be able to visualize the sector it inhabits. 
Indeed, our approach involves visualizing and describing chunks, slices, 
and sectors of the master space, which is difficult to grasp in its entirety. 

Figure 3 shows a parsimonious voice-leading space for the dyad classes, 
identified by their Forte names and their prime forms and arranged in a 
column (note that for reasons of space, the column is laid out horizontally 
in Figure 3). Every move up or down the column is a parsimonious move? 
one note of the dyad moves up or down by semitone. Notice that the set 
classes are arranged between the extremes of chromaticness and evenness.% 
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Figure 4. A parsimonious voice-leading space for trichord classes 

At one end of the space, we find set-class 2-1 [01], the most chromatic of the 
dyads (the dyad whose notes are most tightly packed together), and at the 
other end, we find set-class 2-6 [06] (the dyad whose notes are most evenly 
dispersed through the space). The remaining set-classes can be character 
ized by their relative position with respect to these extremes. Set-class [02], 
for example, is only one degree of offset from the most chromatic dyad 
but four degrees of offset from the most even dyad. 

Figure 4 shows a parsimonious voice-leading space for the familiar 
twelve T/I trichord classes.9 Parsimonious moves occur in three ways, 
corresponding to the cardinality of the set-class: up or down within a 
column, right or left within a row, or along the diagonal (the possible 
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moves are summarized at the top of Figure 4). With each move on the 
map, a single pitch class or, more accurately, a single functional member 

of the set-class moves up or down by semitone. In the diagonal move, one 

has to imagine the 0 moving down a semitone and the resulting trichord 
transposed up a semitone to its new position in the map (e.g., if the 0 in 
[014] moves down to 11, the resulting trichord (11, 1, 4) can be trans 

posed up a semitone to the [025] position in the map). Within the larger 
space, all diagonal moves involve displacement of the 0. 

As with the dyadic column in Figure 3, the trichordal tier in Figure 4 
falls naturally into an arrangement that places the maximally chromatic 

and maximally even trichords at opposing extremes. Set-class 3-1 [012] 
and 3-12 [048] are separated by six semitones of offset, the largest pos 
sible distance in this tier. The other trichords are positioned between 
these extremes, and their degree of chromaticness and evenness is equiv 
alent to their distance from the relevant extremes. 

Also as with the dyadic space, the maximally chromatic and maxi 

mally even trichords are in direct, parsimonious connection with only 
one other set-class ([012] connects only to [013]; [048] connects only to 
[037]). Apart from these two, every trichord maintains a parsimonious 
connection with at least three other trichords of a different type. The most 

promiscuous is [026], which has parsimonious connections with six dif 
ferent set-classes. That is the theoretical maximum?a different set-class 

is produced by the motion of each of the three notes either up or down by 
semitone. Of course, every trichordal pitch-class set creates parsimoni 
ous connections with six other pitch-class sets, as each of the three con 

stituent pitch classes moves up or down by semitone. In most cases, how 

ever, these moves produce either a dyad (as a pitch class moves onto a 

pitch class already represented in the set) or another trichord of the same 

type (as in the familiar parsimonious voice leading from a major to a minor 
triad). Among the trichords, only [026] can be led parsimoniously to six 
different set-classes. It thus occupies a unique position at the center of the 

trichordal voice-leading map. In their potential to connect parsimoniously 
with different set-classes, the remaining trichords range between the rela 

tively impoverished [012] and [048] and the relatively extravagant [026]. 
Figure 5 expands the trichordal map to reveal trichords that are capa 

ble of parsimonious self-mapping. In Figure 5 and subsequent figures, 
self-mapping is denoted with an asterisk (*), and location vectors other 
than the prime form are denoted with an equal sign (=). Set-class 3-11 
[037], for example, maps onto two other forms of itself. On the map, 
[037] is connected with [=047] and [=038]?these are the familiar P and 

L transformations of neo-Riemannian theory. In contrast, 3-2 [013], 3-5 

[016], and 3-7 [025] are capable of only one parsimonious self-mapping. 
In each case, the parsimonious voice leading connects inversionally 
related forms of a set-class. 
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Figure 5. A parsimonious voice-leading space for trichord classes, 
expanded to reveal self-mapping (self-mapping denoted with *; 

location vector other than prime form denoted with =) 

Figures 3, 4, and 5 contain set-classes of a single cardinality. How 
ever, if we permit pitch classes to split (one pitch class diverges onto two) 
or fuse (two pitch classes converge onto one), it becomes possible for a 

dyad to move (parsimoniously) to a trichord and vice versa and, by exten 
sion, to connect any two set-classes that differ in size.10 Accordingly, 
Figure 6 brings the dyads and trichords into a single shared space (and 
includes the singleton, as well). 

As with the trichordal maps in Figures 4 and 5, there are still three 
kinds of parsimonious connections: up or down within a column, right or 
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left within a row, or along the diagonal. Diagonal moves from dyads to 
trichords involve the 0 splitting onto 0 and 11, with the result then trans 

posed up a semitone into its position in the map (e.g., 02 ?? E02 -? 
013). 

The singleton occupies 0 dimensions; the dyads, one dimension (a 
single column); and the trichords, two dimensions (a tier, comprising 
columns and rows). The tetrachords occupy three dimensions: a stack, 
which comprises tiers, themselves comprising columns and rows (see 
Figure 7).11 This map represents the set-classes with the minimum pos 
sible redundancy (only 4-19 occurs twice) and with each possible parsi 

Figure 6. A parsimonious voice-leading space for dyad classes and 
trichord classes 

55 

This content downloaded  on Wed, 6 Mar 2013 16:22:43 PM
All use subject to JSTOR Terms and Conditions



How to Read IhiGnpfc 

Figure 7. A parsimonious 

voice-leading 

space for tetrachord classes 

This content downloaded  on Wed, 6 Mar 2013 16:22:43 PM
All use subject to JSTOR Terms and Conditions



monious connection between set-classes represented only once. The tet 

rachords are displayed in three tiers. The lowest tier includes all of the 
tetrachords whose prime forms begin 01; the middle tier includes all of 
the tetrachords whose prime forms begin 02; the highest tier contains all 
of the tetrachords whose prime forms begin 03, along with the redundant 
set-class 4-19 [=0348]. Within this tetrachordal stack, parsimonious con 
nections are made in four ways, as indicated by the schematic diagram at 

the top of Figure 7: within a row, within a column, vertically into an 

adjacent tier, and diagonally into an adjacent tier. These four possibilities 
correspond to motion by each of the four pitch classes in each set-class. 

As with the maps of dyads and trichords, the tetrachordal map in Fig 
ure 7 positions 4-1 [0123] (the maximally chromatic tetrachord) and 4-28 
[0369] (the maximally even tetrachord) at opposite extremes. Generally 
speaking, as one moves from left to right in a row, from top to bottom in 
a column, and upward from tier to tier, the set-classes become less chro 

matic and more even. Also as with the dyads and trichords, the voice 

leading potential of each set-class to move parsimoniously onto different 
set-classes is apparent from the map. Set-classes 4-1 [0123], 4-9 [0167], 
and 4-28 [0369] are isolated at corners of the map?each communicates 
with only one other set-class. By contrast, 4-22 [0247] has parsimonious 
connections with eight different set-classes, the theoretical maximum for 
tetrachords.12 

By virtue of splitting and fusing, the singleton, dyads, and trichords 
from Figure 6 can be combined with the tetrachords from Figure 7 into 
the more comprehensive space of Figure 8. Because of the relatively small 

number of trichords compared to tetrachords, the trichordal tier has to be 
expanded beyond its relatively pruned appearance in Figure 4, and addi 
tional (redundant) positions must be found for many of the trichords. 

This redundancy permits the map to display all of the parsimonious con 
nections within and between dyads, trichords, and tetrachords. 

In reading intercardinality maps, and in tracing the shortest pathways 
between set-classes, there are two rules to follow: (1) When moving 
between set-classes of the same size, the path may not involve set-classes 

of any other size. For example, the distance from 4-1 [0123] to 4-16 
[0157] is 7; a shortcut through the trichords, to 3-8 [=046] at a distance 

of 4, and then a single diagonal step to 4-16 [0157], is not permissible. 
(2) When moving between set-classes of different sizes, split as early as 

possible (when moving from small to large) and fuse as late as possible 
(when moving from large to small). In other words, the path has to move 
as much as possible through the larger set-classes. For example, the min 

imal distance between 4-11 [0135] and 3-12 [048] is 5, and one pathway 
of that size is 0135-0145-0146-0147-0148-048 (fusing down to a 
trichord only at the last moment). Taking a shortcut via the trichords 
(0135-035-036-037-048) is not permissible. 
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The necessity for interpretive rules of this kind suggests that these 
maps need to be understood more as game boards than as geometrical 
models. Indeed, even the single-cardinality maps are not topographically 
accurate, in that the parsimonious connections between two set-classes 

may be represented by lines of different length. A parsimonious connec 
tion is defined as one permissible move on the board, irrespective of the 
actual, literal distance of the move. 

Figure 9 presents a parsimonious voice-leading space for the penta 
chord classes. The pentachords can be understood as occupying two sepa 
rate stacks, one containing location vectors (usually prime forms) begin 
ning 01, and the other containing location vectors (usually prime forms) 
beginning 02. In the map in Figure 9, these two stacks are conflated, with 
the result that the nodes contain two slots: the upper position for set 

classes from the first stack and the lower position for set-classes from the 
second. There are now five kinds of connections, corresponding to the five 
notes of a pentachord: within the rows and columns of each tier; between 
the tiers either straight up or diagonally; and within each node. In Figure 
9, as in preceding examples, the permissible moves are summarized by the 

schematic drawing in the upper left of the example. 
The closer the set-class is to the center of the row, column, tier, or 

stack, the more likely it is to be able to make all of the different moves and 
actually find a partner in the new location. Conversely, the closer it lies to 
an edge of the space, the fewer the number of parsimonious connections 

to different set-classes it will be able to make. As with the smaller sets, the 
pentachordal space is organized so that the most chromatic pentachord, 
5-1 [01234], is at one extreme while the maximally even pentachord, 
5-35 [02479] and [=02579], is at the other. 

In the pentachordal space of Figure 9, fifteen set-classes appear in two 
locations (as in preceding examples, the set-class in a location other than 

the one specified by the prime form is preceded by an equal sign). Ten of 
these, indicated with an asterisk, are self-mapping: a shift of a single pitch 
class by semitone produces another member of the same set-class. As with 

the four self-mapping trichords ([013], [025], [016], [037]), these ten self 
mapping pentachords?[01245], [01237], [01367], [01378], [01458], 

[02357], [02358], [01369], [01469], and [02479]?all involve inversion 
ally related sets.13 Five more are unavoidable redundancies?they cannot 

be pruned away without thereby omitting parsimonious connections.14 

Figure 10 merges the tetrachordal stack from Figure 7 with the penta 
chordal stack from Figure 9 to create a parsimonious voice-leading space 
for tetrachords and pentachords. Because of space limitations, each set 

class is now identified only by its Forte name (readers may refer to preced 
ing examples for the corresponding prime forms). Each node now has 
three positions: the top position for a tetrachord, the middle position for a 

pentachord from the first of the pentachordal stacks, and the bottom posi 
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Figure 10. A parsimonious voice-leading space for tetrachord and 
pentachord classes 

tion for a pentachord from the second of the pentachordal stacks (tetrachords 
occasionally appear in the lower slots, as well). Parsimonious moves within 
and between nodes are specified at the upper left of the example. Some of 
the intrapentachordal connections are omitted for the sake of legibility, but 
all of the connections among the tetrachords and between tetrachords and 
pentachords are included. To produce these connections, a number of tet 
rachords now appear in more than one location.15 

A parsimonious voice-leading space for hexachords is shown in Fig 
ures 11 and 12, one with location vectors (mostly prime forms) and the 
other with Forte names. There are five slots on each node, corresponding 
to the five stacks in which the set-class originates (with location vectors 

beginning 012, 013, 014, 023, or 024), although only a few of the nodes 
actually contain five hexachords. Within a node, parsimonious connec 
tions are made up or down within a column or directly across a row. 

There are also the usual connections from node to node, for a total of six 
possible connections, corresponding to the six notes of a hexachord. As 
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with the smaller set-classes, the hexachordal space positions the maxi 

mally chromatic 6-1 [012345] and the maximally even 6-35 [02468T] at 

opposite extremes. Furthermore, these are the only two hexachords that 

connect parsimoniously with only one other. As one moves toward the 

center of the space, the set-classes have the potential for parsimonious 
connections with a greater variety of different set-classes. Of the fifty 
hexachords, fourteen are represented at two locations in order to ensure 

that all of the parsimonious connections are included. 

I conclude this survey of the parsimonious voice-leading space for 

set-classes with Figure 13, which conflates the spaces for pentachords 
and hexachords. To accommodate the greater number of hexachords and 

the large number of parsimonious connections between pentachords and 

hexachords, many of the pentachords are now found in more than one 

location, and the map uses Forte names only (readers may refer to pre 

ceding examples for the relevant prime forms). Each node contains ten 
slots and moves within and between nodes specified in the schematic 
diagram at the upper left of the example. 

The parsimonious voice-leading space for all set-classes has now been 

surveyed in its entirety. This master space contains all set-classes of car 

dinality 1 through 6 and connects them with optimal, single-semitone 
displacement voice leading. Larger set-classes are understood to occupy 
the same positions in the space as their smaller complements.16 Within 

this integrated space, it is possible to measure the distance between any 
two set-classes based on semitonal offset. 

I would like to use this integrated, multicardinality master space, with 
its foundational interest in connecting harmonies through minimal dis 
tance voice leading, as the basis for a significant generalization of Schoen 

berg's familiar "Law of the Shortest Way."17 Schoenberg's law operates 

primarily in the pitch space of diatonic, tonal music. It asserts that the 
pitches in one harmony should move through minimal distances to the 
pitches in the next. I propose a corresponding Law of Atonal Voice Lead 
ing for the set-class space described here. The tonal harmonies (triads and 
seventh chords) of Schoenberg's law become the full range of set-classes, 
and his motions by diatonic or chromatic step in pitch space become the 
abstract optimal voice leadings of set-class space. The generalized, 
abstract Law of Atonal Voice Leading states that, in Schoenberg's words, 
"only that be done which is absolutely necessary for connecting the 
chords." Translated into set-class space, this law specifies a preference for 

small voice-leading distances: from any set-class, the law specifies a pref 
erence for a move to a set-class that is adjacent or nearby within the space, 

separated by a relatively small voice-leading offset. Both Schoenberg's 
law and my law engage familiar ideas of musical effort and energy: both 
imagine that it is easier to move someplace near than someplace far, that 
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traversing a longer distance requires more effort. Both are thus laws of 

conservation of musical energy. 
Who is affected by such laws? Schoenberg's Law of the Shortest Way 

is usually understood to apply to composers, listeners, and (to some extent) 
to the musical tones themselves. Composers (particularly student com 

posers engaged in part-writing) are expected to compose in accordance 

with the law, moving pitches by minimal distances. Listeners are expected 
to construe music in accordance with the law, interpreting disjunct sur 

faces with respect to relatively smooth underlying norms. And, in an anthro 

pomorphization of the tones that is among our most persistent "analytical 
fictions" (this term comes from Guck 1994), the tones themselves are 
understood as possessing a will, as having inherent tendencies, including 
the will and tendency to move by minimal distances. 

My generalized Law of Atonal Voice Leading applies also to compos 
ers, listeners, and the tones themselves, but in slightly different ways. The 
generalized law obviously exerts less constraint on post-tonal composers 
than the original law did on tonal composers. As an empirical matter, tonal 
composers generally obey the Law of the Shortest Way, while post-tonal 
composers probably do not generally obey the Law of Atonal Voice Lead 
ing. The extent to which post-tonal composers prefer to move among set 

classes that are situated in relative proximity to each other is a matter for 
future research (the brief analyses at the end of this article can merely 
suggest some possible avenues). It may turn out that compliance with this 
law varies from composer to composer and is a significant marker of sty 
listic difference (I suspect, e.g., that Schoenberg is a "smoother" com 

poser than Webern in this sense, and that both are less "smooth" than their 
more conservative, neoclassically oriented contemporaries). It also may 
turn out that smoothness of voice leading among set-classes is more likely 
in certain musical situations (e.g., at cadences) or in certain musical tex 

tures (e.g., a homophonic texture). 
But whether or not relatively smooth voice leading in set-class space 

is characteristic of or statistically predominant in atonal practice, I would 
argue that the generalized law nonetheless may have an impact on com 

positional choices. Even when not observed in practice, it may nonethe 

less be experienced as an underlying tendency, one that may either be 
followed or resisted. Compositional choices, either to obey or disobey, 

may be understood in relation to the underlying law, even if the choice to 

disobey is made with equal or even greater frequency. 
One might even construe a choice to disobey in historical terms, as part 

of the deliberate flouting of musical convention characteristic of musical 
modernism in general. A preference for smooth voice leading (among 
pitches, pitch classes, and set-classes) clearly shapes traditional practice. 
In denying that preference for or, in more abstract terms, in flouting the 

Law of Atonal Voice Leading, modernist composers may be giving expres 
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sion to an aesthetic iconoclasm, asserting their independence of the claims 
of the tonal tradition. 

For listeners, similarly, the Law of Atonal Voice Leading may describe 
an underlying awareness of voice-leading distance. That is, listeners may 

experience voice leading among set-classes as either in conformity with 
or in tension with the law, as involving either shorter or longer distances. 
This claim is fully testable. Although we may not be able to verify the law 
by creating a statistical profile of atonal progressions, we could falsify it 
by testing listeners to see to what extent they experience progressions 
among set-classes as near or far, with those distances precisely predicted 

by the model.18 In the brief analyses that conclude this article, I provide 
such a test on a sample of one, through introspection. 

As for the tones themselves, I find the notion of inertia an intuitively 
appealing metaphor for one aspect of the behavior of tones (pitches, pitch 
classes, and the idealized set-class members under discussion here). Tones 

seek to conserve their energy; when the harmony changes, and they are 

compelled to move, they do so by as small a distance as possible. In the 
analyses at the end of this article, I will suggest the interpretive value of 
this metaphor. 

The Quality of Set-Classes (Dissonance and Consonance, Tension 
and Relaxation, Chromaticness and Evenness) 

I noted above that the parsimonious voice-leading space for each car 

dinality arranged the set-classes between two extremes. At one edge of the 

space, we find the maximally chromatic set-classes ([01], [012], [0123], 
[01234], and [012345]), while at the opposite edge we find the maximally 
even set-classes ([06], [048], [0369], [02479], and [02468T]). We might 
conceive these as two opposing extremes of harmonic density?the extent 

to which the notes of a harmony are either packed together or dispersed 
through whatever space they occupy?and each extreme may be taken as 

defining a particular harmonic quality. The first quality is that of compact 
ness, denseness, chromaticness. The second quality is that of dispersion, 

spaciousness, evenness.19 

For each cardinality, there is one set-class that is maximally chromatic 

and one that is maximally even. Figure 14 reprints the dyadic map from 
Figure 3, now also measuring each set-class's degree of offset from 2-1 

[01], the most chromatic, and 2-6 [06], the most even. These degrees of 
offset are always complementary?they sum to 5, which is the total dis 

tance between the two extremes. As one moves down the chart, the set 

classes become increasingly spacious; as one moves up through the chart, 
the set-classes become increasingly dense. 

Figure 15 explores the relative chromaticness and evenness of the 
trichords. The version at the left of the figure shows degrees of offset 
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OFFSET 
from 2-1 [01] 

OFFSET 
from 2?6[06] 

Figure 14. Measuring degrees of offset from the maximally chromatic 
and maximally even dyads 

from 3-1 [012] (the most compact set-class), and the version at the right 
shows degrees of offset from 3-12 [048] (the maximally even set-class 
for this cardinality). For the most part, these two measures are comple 

mentary, mod 6: the more chromatic the set-class, the less spacious, and 

vice versa. But there are two exceptions, which I refer to as rogues: 3-9 

[027] is offset by two from 3-12 [048], but by five from 3-1 [012]; sim 

ilarly, 3-5 [016] is offset by three from 3-12 [048], but by four from 3-1 
[012]. In both cases, these set-classes (which occupy a cul-de-sac on the 

map) defy the simple complementarity of the qualities of compactness 
and dispersion. 

There are four such rogues among the tetrachords: 4-8 [0156], 4-9 
[0167], 4-16 [0157], and 4-25 [0268] do not occupy complementary 

positions with respect to the maximally chromatic and maximally even 
extremes. Set-classes 4-9 and 4-25 are particularly roguish: they are max 

imally uncompact (they are both offset by eight semitones from 4-1), but 
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neither is maximally even or even close to it (4-25 is offset by two and 
4-9 by four from the maximally even 4-28). Nonetheless, for the remain 

ing twenty-five tetrachords, the complementarity and opposition of com 

pactness and dispersion operate in a simple, straightforward way: the 
more compact the set-class, the less even it is, and vice versa. 

But roguishness nonetheless remains a persistent problem for the pro 

posed complementarity of chromaticness and evenness. In addition to the 

two trichordal and four tetrachordal rogues, there are three pentachordal 
and ten hexachordal rogues.20 Furthermore, the quality of evenness is 

somewhat diffuse, particularly compared with the quality of chromatic 
ness. Set-classes that lie in close proximity to the maximally chromatic 
set-classes tend to share intervallic and subset content and would nor 

mally be judged as relatively similar by any of the existing measures of 
set-class similarity. Set-classes that lie in close proximity to the maxi 

mally even set-classes, however, tend to be much more varied in their 

sonic quality. As a result, I focus here primarily on the quality of chromat 
icness, while continuing to maintain casually that this quality is under 
stood in part in opposition to the less well-defined quality of evenness. 

Accordingly, Figure 16 identifies for the tetrachords their degree of 
offset from the maximally chromatic 4-1 [0123]. The tetrachordal space 
is reproduced from Figure 7. Onto that space, I have imposed offset mea 
sures, designed deliberately to mimic the contour lines on a topographical 

map. I mean to suggest that the voice-leading space has a varied terrain, 
with the set-classes that compose it shifting gradually in character between 

the extremes of chromaticness and unchromaticness. One interesting fea 

ture of the tetrachordal space (shared with other even cardinalities) is that 
set-classes at the same level of chromaticness are never connected by par 
simonious voice leading. To put it the other way around: a parsimonious 

move between tetrachords always involves a change in degree of chromat 

icness. Every move in the tetrachordal space thus involves not only a voy 

age through a measurable distance, but also a change in orientation in the 
space, either toward or away from maximal chromaticness. 

Relative chromaticness can also be measured in the intercardinality 
spaces. In Figure 17, trichords and tetrachords are evaluated according to 

their distance from 4-1 [0123], the maximally chromatic set-class for the 

largest cardinality in the space.21 

Graphic representation of pentachords and hexachords and of the inter 

cardinality spaces that involve them is relatively complex and is not 

attempted here. Rather, I deal with those subspaces in an ad hoc basis as 
the analytical need arises. For all of these subspaces, and for the master 

space of all cardinalities, however, the same principle applies: the relative 
chromaticness of set-classes can be meaningfully evaluated by measuring, 
in semitones of offset, their distance from some maximally chromatic set 

class. 
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Semitonal offset from maximally chromatic set-classes is an effective 
measure of the quality of chromaticness. As Quinn 2001 has demonstrated, 
the many different existing measures of set-class similarity are in broad 
accord about the qualities of set-classes, including their chromaticness. 

Table 1 selects a number of similarity measures and lists their similarity 
values for all trichords and tetrachords in comparison to maximally chro 

matic set-classes.22 

Table 1 also lists the degrees of voice-leading offset, measured in semi 
tones, from the relevant maximally chromatic set-classes, and these are 

highly correlated with the similarity measures. Semitonal offset is thus an 
excellent proxy for similarity measures when it comes to measuring the 

quality of chromaticness.23 And semitonal offset has the great advantage 
not only of producing simple integer values, but also of using the familiar 
and musically meaningful semitone as its unit of measure. 

Table 2 offers a similar comparison of semitonal offset with Quinn's 
F(12, 1) (see Quinn 2006-7). This is Quinn's measure of the quality of 
chromaticness, which uses a unit of measure called the "lewin" to mea 

sure the degree of "chromatic force": the higher the number of "lewins," 
the more closely a given set-class is understood as sharing the qualities 
of the prototypes of the chromatic genus.24 

Compared to the similarity measures, there is an even higher correla 

tion between Quinn's ascriptions of chromatic quality and the same qual 

ity as measured by semitonal offset.25 This confirms the value of semi 

tonal offset from the maximally chromatic set-classes as a measure of the 

quality of chromaticness, with the added advantage of measuring that 
quality in simple semitones. 

Traditional notions of consonance and dissonance relate in suggestive 
ways to the qualities of set-class evenness and chromaticness described 

here. The traditionally dissonant harmonies tend to be the most chro 
matic ones, and the chromatic harmonies would traditionally be under 

stood as dissonant. The traditionally consonant or stable harmonies are 

always among the least chromatic (and most even). The reverse is also 

true, although to a lesser degree: the least chromatic (and most even) 
harmonies tend to be relatively consonant and stable. Among the dyads, 
for example, the arrangement in Figure 14 corresponds pretty well 

with traditional ascriptions of consonance and dissonance: the semitone 

(set-class 2-1 [01]) is the sharpest dissonance, and the dyads become 
increasingly consonant as they become increasingly unchromatic (or 
increasingly even). The maximally even dyad, 2-6 [06], is obviously not a 
traditional consonance. But the traditionally most consonant dyad, 2-5 

[05], is only one degree of offset away?a minimum displacement of the 
maximally even structure for this cardinality. And the other traditional 
consonances lie relatively close to the even end of the spectrum while the 
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Table 1. Comparing 

Offset 

3-1 [012] 0 
3-2 [013] 1 
3-3 [014] 2 
3-4 [015] 3 
3-5 [016] 4 
3-6 [024] 2 
3-7 [025] 3 
3-8 [026] 4 
3-9 [027] 5 

3-10 [036] 4 
3-11[037] 5 
3-12 [048] 6 

Correlations: 

4-1 [0123] 0 
4-2 [0124] 1 
4-3 [0134] 2 
4-4 [0125] 2 
4-5 [0126] 3 
4-6 [0127] 4 
4-7 [0145] 4 
4-8 [0156] 6 
4-9 [0167] 8 

4-10 [0235] 2 
4-11[0135] 3 
4-12 [0236] 3 
4-13 [0136] 4 
4-14 [0237] 4 
4-15 [0146] 5 
4-16 [0157] 7 
4-17 [0347] 4 
4-18 [0147] 6 
4-19 [0148] 5 
4-20 [0158] 6 
4-21 [0246] 4 
4-22 [0247] 5 
4-23 [0257] 6 
4-24 [0248] 6 
4-25 [0268] 8 
4-26 [0358] 6 
4-27 [0258] 7 
4-28 [0369] 8 
4-29 [0137] 5 

Correlations: 

offset and si 

IcVSIM PSATSIM 

0.000 0.000 
0.577 0.167 
0.816 0.306 
0.816 0.306 
0.816 0.417 
1.000 0.306 
1.000 0.333 
1.000 0.389 
1.155 0.333 
1.291 0.583 
1.155 0.472 
1.528 0.417 

0.876 0.802 

0.000 0.000 
0.577 0.111 
0.816 0.208 
0.816 0.222 
1.000 0.347 
1.155 0.347 
1.291 0.333 
1.414 0.458 
1.528 0.486 
1.000 0.208 
1.000 0.222 
1.155 0.347 
1.155 0.347 
1.291 0.333 
1.155 0.361 
1.414 0.458 
1.528 0.431 
1.414 0.458 
1.732 0.444 
1.633 0.444 
1.633 0.458 
1.528 0.333 
1.732 0.333 
1.826 0.458 
1.732 0.486 
1.633 0.431 
1.528 0.458 
2.082 0.569 
1.155 0.361 

0.856 0.896 

as measures of 

SATSIM REL 

0.000 1.000 
0.167 0.604 
0.333 0.354 
0.333 0.354 
0.333 0.354 
0.333 0.354 
0.333 0.250 
0.333 0.250 
0.333 0.250 
0.500 0.000 
0.500 0.000 
0.500 0.000 

0.846 -0.871 

0.000 1.000 
0.111 0.753 
0.222 0.662 
0.222 0.571 
0.333 0.480 
0.333 0.480 
0.333 0.314 
0.444 0.223 
0.444 0.223 
0.222 0.650 
0.222 0.559 
0.333 0.543 
0.333 0.543 
0.333 0.505 
0.333 0.377 
0.444 0.286 
0.444 0.286 
0.444 0.286 
0.444 0.248 
0.444 0.248 
0.444 0.223 
0.333 0.273 
0.333 0.273 
0.444 0.182 
0.444 0.182 
0.444 0.257 
0.444 0.257 
0.556 0.182 
0.333 0.505 

0.874 -0.881 

ATMEMB ASIM 

1.000 0.000 
0.625 0.333 
0.375 0.667 
0.375 0.667 
0.375 0.667 
0.375 0.667 
0.250 0.667 
0.250 0.667 
0.250 0.667 
0.000 1.000 
0.000 1.000 
0.000 1.000 

-0.878 0.846 

1.000 0.000 
0.773 0.167 
0.682 0.333 
0.591 0.333 
0.500 0.500 
0.500 0.500 
0.318 0.500 
0.227 0.667 
0.227 0.667 
0.682 0.333 
0.591 0.333 
0.591 0.500 
0.591 0.500 
0.545 0.500 
0.409 0.500 
0.318 0.667 
0.318 0.667 
0.318 0.667 
0.273 0.667 
0.273 0.667 
0.227 0.667 
0.273 0.500 
0.273 0.500 
0.182 0.667 
0.182 0.667 
0.273 0.667 
0.273 0.667 
0.227 0.833 
0.545 0.500 

-0.873 0.874 
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3-1 [012] 1 
3-2 [013] 1 
3-3 [014] 2 
3-4 [015] 3 
3-5 [016] 4 
3-6 [024] 2 
3-7 [025] 3 
3-8 [026] 4 
3-9 [027] 5 I 

3-10 [036] 4 
3-11 [037] 5 
3-12 [048] 6 
4-1 [0123] 0 
4-2 [0124] 1 
4-3 [0134] 2 
4-4 [0125] 2 
4-5 [0126] 3 
4-6 [0127] 4 I 
4-7 [0145] 4 
4-8 [0156] 6 
4-9 [0167] 8 

4-10 [0235] 2 
4-11[0135] 3 
4-12 [0236] 3 
4-13 [0136] 4 
4-14 [0237] 4 
4-15 [0146] 5 I 
4-16 [0157] 7 
4-17 [0347] 4 
4-18 [0147] 6 
4-19 [0148] 5 
4-20 [0158] 6 I 
4-21 [0246] 4 
4-22 [0247] 5 
4-23 [0257] 6 
4-24 [0248] 6 
4-25 [0268] 8 
4-26 [0358] 6 
4-27 [0258] 7 j 4-28 [0369] 8 
4-29 [0137] 5 [ 

Correlations: 

0.500 0.069 
0.764 0.153 
1.118 0.292 
1.258 0.375 
1.258 0.486 
1.258 0.319 
1.258 0.319 
1.384 0.458 
1.500 0.403 
1.500 0.569 
1.500 0.458 
1.893 0.486 

0.000 0.000 
0.577 0.111 
0.816 0.208 
0.816 0.222 
1.000 0.347 
1.155 0.347 
1.291 0.333 
1.414 0.458 
1.528 0.486 
1.000 0.208 
1.000 0.222 
1.155 0.347 
1.155 0.347 
1.291 0.333 
1.155 0.361 
1.414 0.458 
1.528 0.431 
1.414 0.458 
1.732 0.444 
1.633 0.444 
1.633 0.458 
1.528 0.333 
1.732 0.333 
1.826 0.458 
1.732 0.486 
1.633 0.431 
1.528 0.458 

2.082 0.569 
1.155 0.361 

0.842 0.825 

0.067 0.835 
0.133 0.879 
0.300 0.432 
0.400 0.274 
0.433 0.274 
0.367 0.316 
0.333 0.382 
0.400 0.224 
0.400 0.224 
0.500 0.224 
0.500 0.158 
0.533 0.000 
0.000 1.000 
0.111 0.753 
0.222 0.662 
0.222 0.571 
0.333 0.480 
0.333 0.480 
0.333 0.314 
0.444 0.223 
0.444 0.223 
0.222 0.650 
0.222 0.559 
0.333 0.543 
0.333 0.543 
0.333 0.505 
0.333 0.377 
0.444 0.286 
0.444 0.286 
0.444 0.286 
0.444 0.248 
0.444 0.248 
0.444 0.223 
0.333 0.273 
0.333 0.273 
0.444 0.182 
0.444 0.182 
0.444 0.257 
0.444 0.257 
0.556 0.182 
0.333 0.505 

0.808 -0.790 

0.733 0.333 
0.800 0.333 
0.400 0.556 
0.267 0.778 
0.267 0.778 
0.267 0.556 
0.333 0.556 
0.200 0.778 
0.200 0.778 
0.200 0.778 
0.133 0.778 
0.000 1.000 
1.000 0.000 

0.773 0.167 
0.682 0.333 
0.591 0.333 
0.500 0.500 
0.500 0.500 
0.318 0.500 
0.227 0.667 
0.227 0.667 
0.682 0.333 
0.591 0.333 
0.591 0.500 
0.591 0.500 
0.545 0.500 
0.409 0.500 
0.318 0.667 
0.318 0.667 
0.318 0.667 
0.273 0.667 
0.273 0.667 
0.227 0.667 
0.273 0.500 
0.273 0.500 
0.182 0.667 
0.182 0.667 
0.273 0.667 
0.273 0.667 
0.227 0.833 
0.545 0.500 

-0.743 0.697 
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Table 2. Comparing offset and Quinn's F-space as measures of chromaticness 

Offset "F(12,l)" Offset "F(12,l)" 

3-1 [012] 
3-2 [013] 
3-3 [014] 
3-4 [015] 
3-5 [016] 
3-6 [024] 
3-7 [025] 
3-8 [026] 
3-9 [027] 

3-10 [036] 
3-11[037] 
3-12 [048] 

0 
1 
2 
3 
4 
2 
3 
4 
5 
4 
5 
6 

2.732 
2.394 
1.932 
1.414 
1.000 

2.000 
1.506 
1.000 

0.732 
1.000 

0.518 
0.000 

Correlation: -0.995 

4-1 [0123] 
4-2 [0124] 
4-3 [0134] 
4-4 [0125] 
4-5 [0126] 
4-6 [0127] 
4-7 [0145] 
4-8 [0156] 
4-9 [0167] 

4-10 [0235] 
4-11 [0135] 
4-12 [0236] 
4-13 [0136] 
4-14[0237] 
4-15 [0146] 
4-16 [0157] 
4-17 [0347] 
4-18 [0147] 
4-19 [0148] 
4-20 [0158] 
4-21 [0246] 
4-22 [0247] 
4-23 [0257] 
4-24 [0248] 
4-25 [0268] 
4-26 [0358] 
4-27 [0258] 
4-28 [0369] 
4-29 [0137] 

0 
1 
2 
2 
3 
4 
4 
6 
8 
2 
3 
3 
4 
4 
5 
7 
4 
6 
5 
6 
4 
5 
6 
6 
8 
6 
7 
8 
5 

3.346 
2.909 
2.732 
2.394 
1.932 
1.732 
1.932 
1.000 

0.000 
2.449 
2.236 
1.932 
1.732 
1.506 
1.414 

0.518 
1.414 
1.000 
1.000 

0.518 
1.732 
1.239 

0.897 
1.000 

0.000 
0.732 
0.518 
0.000 
1.414 

Correlation: -0.964 

3-1 [012] 
3-2 [013] 
3-3 [014] 
3-4 [015] 
3-5 [016] 
3-6 [024] 
3-7 [025] 
3-8 [026] 
3-9 [027] 

3-10 [036] 
3-11 [037] 
3-12 [048] 
4-1[0123] 
4-2 [0124] 
4-3 [0134] 
4-4 [0125] 
4-5 [0126] 
4-6 [0127] 
4-7 [0145] 
4-8 [0156] 
4-9[0167] 

4-10 [0235] 
4-11 [0135] 
4-12 [0236] 
4-13 [0136] 
4-14 [0237] 
4-15[0146] 
4-16 [0157] 
4-17 [0347] 
4-18 [0147] 
4-19 [0148] 
4-20 [0158] 
4-21 [0246] 
4-22 [0247] 
4-23 [0257] 
4-24 [0248] 
4-25 [0268] 
4-26 [0358] 
4-27 [0258] 
4-28 [0369] 
4-29 [0137] 

1 
1 
2 
3 
4 
2 
3 
4 
5 
4 
5 
6 
0 
1 
2 
2 
3 
4 
4 
6 
8 
2 
3 
3 
4 
4 
5 
7 
4 
6 
5 
6 
4 
5 
6 
6 
8 
6 
7 
8 
5 

Correlation: -0.902 
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traditional dissonances such as interval class 1 and interval class 2 lie at 
or close to the chromatic end of the space. 

Among the trichords, similar relationships obtain. The maximally unchro 
matic (and maximally even) trichord, an augmented triad (set-class 
3-12), is not a traditional consonance, although it is considered one of 
four standard triad types. The consonant major or minor triad (set-class 

3-11) is a minimally perturbed version of the maximally even structure 
for this cardinality. At one more degree of offset toward the chromatic 
end of the space, we find three trichords that, if not traditionally conso 
nant, nonetheless have a distinct and relatively stable harmonic identity: 
the diminished triad (set-class 3-10 [036]), the incomplete dominant 
seventh chord (set-class 3-8 [026]), and the "fourths chord" (set-class 
3-9 [027]). For the trichords, then, like the dyads, the consonant or rela 

tively stable sonorities are clustered toward the even edge of the space, 
while the most dissonant three-note combinations are the more chromatic 

ones. 

The same is true of the tetrachords: the tetrachords that are tradition 

ally understood as harmonically stable (if not actually consonant) are the 
least chromatic ones, distant from the maximally chromatic 4-1 [0123] 
and in close proximity to the maximally even 4-28 [0369]. Within one or 
two degrees of offset from 4-28 (the diminished seventh chord), we find 
all of the remaining seventh chords of tonal theory: the dominant-seventh 
or half-diminished seventh chord (4-27 [0258]), the major-seventh chord 
(4-20 [0158]), and the minor-seventh chord (4-26 [0358]). Traditional 
tonal theory does not discuss harmonies that contain more than four 
notes, but among the smaller sets, the relationship between consonance/ 

dissonance or stability/instability and evenness/compactness is reason 

ably clear. 

During the past century, a number of theorists have attempted to create 

systems of classification for harmonies, taking into account the wide vari 

ety of configurations in contemporary music. Some of these classification 

systems are entirely neutral as to harmonic quality, but others have tried 
to characterize harmonies as relatively tense or relaxed, stable or unstable, 
consonant or dissonant. In this category, the most prominent systems are 

probably those of Hindemith 1942, Hanson 1960, and Krenek 1940.26 
None of these systems is fully elaborated with respect to this issue. Fur 
thermore, there are contradictions both within and between the approaches 
of these three theorists. Nonetheless, they do share a general sense that the 

more compressed harmonies are more likely to be relatively tense and 

unstable while the more dispersed harmonies are more likely to be rela 

tively relaxed and stable. 
Hindemith's approach, concerned as it is with identifying harmonic 

roots and sensitive as it is to registral arrangement and chordal inversion, 
does not dovetail well with the set-class-oriented approach taken here.27 
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Hanson's approach is more compatible. Although Hanson does not make 

the consonance-dissonance distinction a focal point of his theory, he does 
talk about it in a sustained and interesting way in chapter 11 of his treatise, 

which is devoted to the hexachord 6-27 [013469].28 Hanson systemati 
cally extracts all of the subsets of this hexachord and ranks them accord 
ing to "their degree of consonance or dissonance." He then composes a 

passage that arranges them "in order of their relative dissonance, begin 

ning with the three most consonant triads?major and minor?and mov 

ing progressively to the increasingly dissonant sonorities." He argues that 
there is a sense of "increasing tension" over the course of the progression. 

Within each cardinality, Hanson's intuitive, interval-based measure of 

relative dissonance dovetails reasonably well with my offset-based mea 

sure. That is, the harmonies he considers relatively consonant are those 

that have relatively large degrees of offset from maximal chromaticness, 
and those he considers relatively dissonant are those with relatively small 
degrees of offset from maximal chromaticness. 

Krenek's approach to the question of consonance and dissonance (what 
he calls "tension-degrees of chords") is more explicit and systematic, but 
he discusses only trichords. He observes: "Atonality has neither rules for 
a special treatment of dissonances nor does it formulate a harmonic theory 
comparable with that of tonality. The only characteristic of a chord that 
has to be taken into consideration is the degree of tension that the chord 
shows by virtue of its constituent intervals" (1940, 19). 

Krenek provides two overlapping classification set-class schemes for 

the "three-tone chords" by which he is able to assess the degree of ten 
sion of all twelve trichordal set-classes. In the first scheme (see Table 3), 

Krenek assigns set-classes to six categories based on the consonant or 

dissonant quality of the intervals they contain (interval classes 3, 4, and 
5 are consonant; interval class 2 is a mild dissonance; interval class 1 is 
a sharp dissonance; interval class 6 is neutral). 

This classification system accounts for eight of the twelve trichordal 
set-classes. Krenek observes that "in a three-tone chord, the intervals of 

Table 3. Krenek's first scheme for assessing the "tension degree" of trichords 

Krenek 

Category Interval Content Set-class 

1 3 consonant intervals 3-11 [037], 3-12[048] 
2 2 consonant intervals, 1 mild dissonance 3-7[025] 
3 1 consonant interval, 2 mild dissonances 3-6 [024] 
4 2 consonances, 1 sharp dissonance 3-3[014], 3-4[015] 
5 1 consonance, 1 mild and 1 sharp dissonance 3-2[013] 
6 1 mild and 2 sharp dissonances 3-1 [012] 
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Table 4. Krenek's second scheme for assessing the "tension-degree" 
of trichords 

Consonant Mild Sharp 

3-10[036], 3-ll[037] 3-7[025], 3-8[026], 3-9[027] 3-4[015], 3-5[016] 

five semitones (perfect fourth) and six semitones (diminished fifth) will 
assume the character of a consonance or a dissonance depending on the 

third tone added." On that basis, Krenek creates a second system of clas 

sification for the seven trichordal set-classes that contain either interval 
class 5 or interval class 6: such chords are labeled as consonant, mild, or 

sharp (see Table 4). This second system accounts for the four set-classes 
missing from the first classification system, and accounts again in a new 

way for three previously classified set-classes. 

Figure 18 reprints the voice-leading map for trichords and shows both 
the degree of offset from the maximally chromatic trichord, 3-1 [012], 
and the results of Krenek's two classification systems. Krenek's interval 

lie approach and my offset-based approach produce strikingly similar 
results: the sonorities he considers consonant cluster toward the bottom 

of the map; those he considers dissonant cluster toward the top. Based on 
Krenek's systems of classification, one can imagine the chart as tilted on 

two axes: an implicit progression from dissonant to consonant that runs 

downhill from the top of the chart to the bottom and, to a lesser extent, 
from the left side of the chart to the right. 

Beyond the speculations of such composers as Hindemith, Hanson, 
and Krenek, cognitive scientists have long been interested in the percep 
tion and cognition of chord qualities, including the qualities of conso 
nance and dissonance. Recently, Huron (1994) has proposed "an index of 
tonal consonance constructed by amalgamating experimental data from 

three well-known studies."29 Two of Huron's explanatory charts are pro 
vided in Table 5. 

The first chart summarizes the results of previous studies of intervallic 
consonance or dissonance. From these experimental data, Huron derives 

the consonance rating for each of the six interval classes, as shown in the 

second chart. Huron asserts, "This index can be regarded as a rough 

approximation of the perceived consonance of typically equally tem 
pered interval classes constructed by using complex tones in the central 
pitch region" (293). 

By multiplying these index values by the interval-class vector, Huron 
is able to create a consonance value for any set-class: 

We might define an aggregate dyadic consonance value that is calculated 

by multiplying the number of intervals of a given size by the associated 
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consonance values, and summing the results together for all interval classes. 
. .. Those pitch-class sets that provide many consonant intervals and few 

dissonant intervals would tend to have higher aggregate dyadic conso 
nance values. Large negative scores would indicate a set that provides 

many dissonant intervals and relatively few consonant intervals. (294) 

Huron's "aggregate dyadic consonance values" correlate to a signifi 
cant degree with the offset measure proposed here. That is, generally 

OFFSET 
from 3-1 [012] 

Figure 18. Krenek's two schemes for classifying the "tension degrees" 
of trichords compared with my offset measure, both superimposed on 

the parsimonious voice-leading space for trichords 
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speaking, the less chromatic the set-class, the higher its consonance value, 
and the more chromatic the set-class, the lower its consonance value. Fig 
ure 19 provides a chart that compares Huron's consonance values with my 
offset values for trichords, tetrachords, and two of the pentachords, 5-1 

[01234] and 5-35 [02479]. The set-classes generally cluster along the 
diagonal line, indicating correspondence between consonance value and 

unchromaticness. For set-classes above the line, their unchromaticness, as 

measured by semitonal offset, exceeds their consonance value according 
to Huron. In general, these set-classes contain at least one tritone, an inter 
val that is maximally unchromatic and yet not consonant. For the set 

classes below the line, their chromaticness, as measured by semitonal off 

set, exceeds their lack of consonance value, according to Huron. In general, 
these set-classes contain interval class 3, a relatively chromatic interval as 

measured by semitonal offset and yet one that is relatively consonant 
according to Huron. Despite these discrepancies, semitonal offset mea 

sured from maximally chromatic set-classes and Huron's consonance val 
ues for set-classes correlate reasonably well.30 

Table 5. Two charts from Huron (1994) 

Measures of Tonal Consonance and Dissonance for Various Harmonic Intervals 

Interval 
Malmberg(1918) 

Consonance 

Hutchinson & 

Knopoff(1979) 
Dissonance 

Kameoka & 

Kuriyagawa (1969) 
Dissonance 

m2 
M2 
m3 
M3 
P4 
TT 
P5 
m6 
M6 
m7 
M7 

0.00 
1.50 

4.35 
6.85 
7.00 
3.85 
9.50 
6.15 
8.00 
3.30 
1.50 

.4886 
.2690 
.1109 
.0551 
.0451 
.0930 
.0221 
.0843 
.0477 
.0998 
.2312 

285 
275 
255 
250 
245 
265 
215 
260 
230 
250 
255 

Interval Class Index of Tonal Consonance 

Interval Class Consonance 

m2/M7 
M2/m7 
m3/M6 
M3/m6 
P4/P5 
A4/d5 

-1.428 
-0.582 
+0.594 
+0.386 
+1.240 
-0.453 
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Based on the speculations of Hindemith, Hanson, and Krenek and on 
research in music cognition, particularly the work of Huron, I think it is 
reasonable to imagine that there is a close correspondence between tradi 

tional notions of consonance/relaxation/stability versus dissonance/tension/ 
instability and the concepts of evenness/dispersion versus compactness/ 
compression developed here. On that basis, I propose a Law of Atonal 

Harmony: harmonies tend to move away from a state of chromaticness 

and toward a state of relative dispersion within the available musical 
space.31 

Like the Law of Atonal Voice Leading, this Law of Atonal Harmony 
has a bearing on composers, listeners, and the tones themselves. The extent 
to which post-tonal composers observe this law is a subject for further 
research. I would suspect that in a variety of post-tonal styles, especially 

more conservative styles, harmonic progressions generally do observe the 

law, beginning and ending on relatively unchromatic harmonies and reserv 

ing the most chromatic harmonies for points of relative tension. Obser 
vance of the law may be a significant way of differentiating among the 
compositional styles of different composers and post-tonal repertoires. 

Whether or not it is obeyed, however, the law may still have signifi 
cant bearing on the kinds of harmonic choices composers make. It may 
be the case that composers make harmonic decisions in light of a con 
scious or unconscious sense of the relative degrees of chromaticness of 

the harmonies. If that is the case, then the law may be understood to 
constrain their decisions even when they decide to disobey it. As with the 
Law of Atonal Voice Leading, a decision to disobey the Law of Atonal 
Harmony may have a historical and aesthetic dimension. Resistance to 
the laws may be construed as part of the larger project of modernism in 

music. 

It may also be the case that listeners interpret harmonic progressions 
in light of the Law of Atonal Harmony, experiencing harmonies as rela 
tively chromatic or unchromatic. It would be hard to imagine a definitive 
test of this matter, but it should be possible to determine whether a lis 
tener's experience of harmonies is conditioned to some extent by their 
degree of chromaticness. The analyses at the end of this article will offer 
some narrow, preliminary judgments on this point. 

As for the tones themselves, it can be interpretively suggestive and 
useful to ascribe motivations to them, as so many music theories do. 

Tones within a harmony may be construed as having a negative charge 
that repels other tones?they seek to maximize the distances between 
them. Harmonies thus seek to move from a state of relative compression 
to a state of relative dispersion. The value of this metaphor will be tested 
in the analyses at the end of this article. 

The two laws articulated here?a Law of Atonal Voice Leading that 
invokes a preference for smooth movement in set-class space and a Law 

83 

This content downloaded  on Wed, 6 Mar 2013 16:22:43 PM
All use subject to JSTOR Terms and Conditions



of Atonal Harmony that invokes a preference for relatively unchromatic 
harmonies?are complementary to each other. Within a harmony, the notes 

seek to maximize their distance from each other, as the harmony seeks to 
become more spacious. Between harmonies, the notes seek to minimize 

their voice-leading distances. Furthermore, voice leading (parsimonious 
or not) is the means by which the tones of a harmony adjust their relation 
ship to each other, either moving closer together (expending energy to 
overcome the underlying tendency away from chromaticness) or moving 
farther apart (relaxing by moving away from a state of compactness). The 
desire of tones to move apart from each other motivates voice leading, 
which occurs as the means by which tones readjust their harmonic rela 
tionships, thus producing harmonic progression. Harmonies generate voice 

leading, which in turn produces new harmonies. 

Analyses 

Example 1 focuses on a pair of chords, played by the celesta, in the 
first measure of the first of Webern's Six Pieces for Orchestra op. 6. In 
the right hand, a minor third (Dtt-Fjt) moves up a semitone (to E-G). The 

motion in the left hand is in the opposite direction but is not strictly par 
allel: the upper note of the tritone G-C? descends five semitones while 
the lower note descends four semitones, moving onto a perfect fourth. 

These large descending leaps produce a registrally distinct ascending semi 
tone, G3-G?3, that can be heard as reinforcing the more explicit ascend 

ing semitones in the right hand. 
If we think about the progression transformationally, we might imag 

ine the chords as connected by *Tb with three of the four voices actually 
ascending by semitone in pitch space. The fourth voice is offset by one 
semitone from this prevailing motion: it ascends two semitones (in pitch 
class space).32 The progression is thus maximally uniform, approaching 
as closely as possible an actual, crisp pitch-class transposition at T^ At 

the level of the set-class, the motion is thus smooth, involving the dis 
placement of a single function by a single semitone. 

The two set-classes involved, 4-15 [0146] and 4-7 [0145], are thus 
adjacent to each other on the tetrachordal map.33 Furthermore, [0145] lies 
one click closer to the maximally chromatic 4-1 [0123] than does [0146] 
(Example 1 contains just the sector of the tetrachordal map that includes 
both [0145] and [0146] as well as a shortest path from [0145] to [0123]). 

As a result, this progression involves a slight tensing, moving from a 

relatively spacious harmony to a relatively chromatic one. As the two 

chords are disposed in pitch space, however, the reverse is true: the sec 

ond chord is more widely spaced than the first. But a countervailing sense 
of compression and increasing chromaticness is also apparent in the rela 

tively dissonant quality of the second chord, with its two representatives 
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Example 1. Webern, Six Pieces for Orchestra op. 6/1, m. 1 

of interval class l.34 The theoretical model suggests that this progression 
is a smooth move (in accordance with the Law of Atonal Voice Leading) 
in the direction of greater chromaticness (pushing against the Law of 

Atonal Harmony), and the musical surface bears that out to a significant 
degree. 

Example 2 explores the cadential piano chords that conclude one of 
the first phrases in the first movement of Crawford's Violin Sonata (the 
chords are arpeggiated in the actual music). As arranged in pitch space, 
the chords are arranged in two registral pairs, as in the progression dis 
cussed in Example 1. The two lower lines both descend by semitone, 

while the two upper lines descend by large leap, eight semitones in the 
alto and nine in the soprano.35 It is also possible, however, to interpret the 
progression as a single transformational gesture, with the minor sixth in 
the left hand in the first chord moving up one pitch-class semitone onto 
the minor sixth in the right hand in the second chord, while the major 
sixth in the right hand in the first chord contracts slightly as it moves onto 
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Onset from [0123]: 3 

4-12 4-21 
[0236] [0246] 

OFFSET 
from [0123] 

*T, 
(1) 

Example 2. Crawford (Seeger), Violin Sonata, first movement, m. 14 

the minor sixth in the left hand of the second chord, with one voice mov 

ing up one pitch-class semitone while the other deviates slightly, moving 
up two pitch-class semitones (see Example 2). Viewing the progression 
as a whole, we might say that the first chord maps onto the second at *Ti, 
with an offset of one semitone.36 That is, three of the four transforma 
tional voices move at actual, crisp Th while the fourth deviates by one 
semitone from that prevailing motion. The progression is thus maximally 

uniform. 

In set-class space, the progression involves a smooth move from 4-12 

[0236] to 4-21 [0246].37 Appropriately for a cadential situation, the pro 
gression also involves a slight harmonic relaxation, with the second chord 
one click less chromatic than the first.38 As in the Webern progression of 

Example 1, the actual pitch disposition of the chords contradicts this 
underlying potential for diminished chromaticness: the second chord is 
far more compact than the first in pitch space. Nonetheless, the relative 

spaciousness of the second chord in pitch-class space is apparent enough 
in the lack of interval class 1 in the second chord. One might imagine that 

while an actual transposition would have preserved the chordal semitone, 
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the fuzzy transposition has the effect of purging it?by deviating from 
the prevailing Tb that one recalcitrant voice creates a harmony that is 
slightly less chromatic. This progression thus conforms to both laws?it 
is a smooth move toward a less chromatic harmony. 

The succession of chords in Example 3 consists of two separate ges 
tures, each supporting a melody that ascends (+1, +4).39 The first melodic 

unit, E-F-A, is transposed up four semitones onto the second, Gt-A-Cf. 
The accompanying dyads, however, generally move downward, in con 

trary motion.40 The chord that concludes the first gesture, El?-Bl?-A, is 
transposed down a semitone to become the bottom three notes of the four 
note chord that ends the phrase, D-A-Gf-Ci The Clt atop the cadential 
chord, creating the first four-note chord in the passage, arises as part of the 
ascending melodic sequence. In voice-leading terms, however, it can be 
thought of as a slightly fuzzy *Ti x from the bass El? in the preceding chord. 
In this sense, the bass Et> splits, simultaneously moving down a semitone 
onto D (in parallel motion with the tenor and alto voices) and down two 

(pitch-class) semitones onto Ci Alternatively, one might imagine the Cl5 
of the final chord as emerging from an implied Eb5 atop the previous 
chord. In either interpretation, the progression is *Tn with an offset of 1. 

In pitch-class space, the progression is maximally uniform, deviating 
from a straight transposition by only one semitone. In set-class space, the 
progression thus represents a smooth move from set-class 3-5 [016] to 
set-class 4-8 [0156], in conformity with the Law of Atonal Voice Leading. 

Because of the vagaries of intercardinality space, this single semitone dis 
placement involves two semitones of greater offset from the maximally 
chromatic tetrachord, [0123]. The progression is thus a smooth (set-class) 

Example 3. Schoenberg, Five Orchestral Pieces op. 16/1, mm. 1-3 
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move in the direction of less chromaticness, a move therefore toward 

greater relaxation. That [0156] is interpreted as less chromatic than [016] 
may seem counterintuitive: the higher cardinality and additional semitone 
of [0156] would seem to speak for greater rather than lesser chromatic 
ness. But the additional note in the final chord, the C?, not only brings an 
additional semitone into the chord but also brings an additional interval 
class 4 (with A) and interval class 5 (with Git). According to the theoretical 

model, the presence of these larger intervals more than compensates for 

the additional semitone.41 Indeed, the final chord does give the impression 
of greater stability and is thus suitable for a cadential gesture, in confor 

mity with the Law of Atonal Harmony. 
Example 4 considers the opening harmonic progression in Ruggles's 

"Lilacs."42 The progression consists of two pairs of chords separated by 
a rest. When the first chord moves to the second, three of the voices move 

down two semitones while the fourth voice holds. Transformationally, 
that is *T10 with an offset of 2. In set-class space, the voice-leading dis 

tance is thus 2, and the motion takes the progression from a greater to a 

lesser degree of chromaticness.43 

Something similar happens in the second pair of chords, only now the 
transformational relationship is via inversion, not transposition. Three of 

the voices move via I5, while the remaining voice holds (i.e., maps onto 

itself at I0) and thus deviates by five semitones from the prevailing inver 
sion. That sense of the chords as related by inversion is felt most vividly 
in the bass and tenor, which wedge away from each other symmetrically. 

As with the first pair of chords, this progression involves a harmonic 
relaxation, moving sharply away from a relatively chromatic chord to a 

relatively unchromatic one.44 

We thus have two parallel gestures, each taking us from relative har 

monic tension to relative harmonic relaxation, in conformity with the Law 
of Atonal Harmony. The distance traversed in set-class space in the first 
gesture is relatively small (in near conformity with the Law of Atonal 
Voice Leading), and the second is relatively large. The two gestures 
together bring the music almost back to its starting point: the last chord 
has three tones in common with the first, and the remaining voice deviates 
by only semitone. In our transformational language, the first and last 
chords are related at *T0 with an offset of 1. The first gesture takes us away 
from our starting point; the second virtually returns us to it. Upon our 
return, however, we find a chord whose pitches are almost evenly dis 

persed through a wide pitch space, thus amplifying the slight expansion in 
pitch-class space from [0347] to [0148].45 The overall gesture, then, is a 
smooth move in the direction of chordal relaxation and is thus in confor 

mity with both laws. 
Example 5 examines the five trichords that compose the opening phrase 

of Sessions's Piano Sonata. In twelve-tone terms, this phrase involves a 
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presentation of the four discrete trichords of a series, concluding with a 
return of its first trichord. The transformational voice leading is somewhat 
complex, but let us focus on the cadential gesture of the final two chords 
of the progression. The bass (Et-A) and soprano (D-Ab) both move by 
tritone, although in opposite directions in pitch space. The alto nearly fol 
lows suit, but leaps one semitone too far (Bb-F, instead of the To-conform 

ing Bb-E). The progression is thus *T6 with an offset of one semitone, 
producing a smooth move in set-class space. Indeed, the five-chord pro 

gression as a whole is relatively uniform and balanced, with offset values 
of only 1 or 2. In set-class space, the cadential gesture involves a slight 
increase in chromaticness, and the progression as a whole describes an 

arc, starting from a position of relative chromaticness in the first chord, 
then a small leap in the direction of relative unchromaticness, followed 
by a gradual reattainment of the original level and, in fact, of the first 
chord itself. The progression conforms to the Law of Atonal Voice Lead 
ing, with its smooth moves in set-class space, but cuts directly against the 

Law of Atonal Harmony, beginning and ending in a state of heightened 
chromaticness. 

Example 6 focuses on a progression of six pentachords, representing 
three pentachord-classes.46 From Chord 1 to Chord 2 is a simple pitch 
transposition down four semitones (modeled as T8 in the example). There 
is obviously considerable exertion involved, a total expended energy or 

displacement of twenty semitones, as each of the five voices moves four 

semitones. At the same time, because of the absolute uniformity of the 

movement of the voices, there is no offset at all and, in set-class space, 
no movement at all. The progression from Chord 2 to Chord 3 presents a 
different situation. In pitch space, less energy is actually expended (eleven 
semitones of total displacement), and in that immediate sense the pro 
gression is smoother. But compared to the progression from Chord 1 to 
Chord 2, there is a sense of disruption. Instead of all doing the same 

thing, the five voices move by three different intervals, and compared to 
a crisp transposition, there is now a deviation of three semitones. 

And the disruption is easily heard and felt as such?the relative unifor 
mity of the progression from Chord 1 to Chord 2 compared with the rela 
tive nonuniformity of the progression from Chord 2 to Chord 3. The offset 
of Chord 3 is equivalent to the distance traversed in set-class space. What 
that offset number signifies is not a greater degree of effort but rather a 

greater degree of disruption or deviation with respect to T or I. The pro 
gression from Chord 2 to Chord 3 not only involves a relatively high 
degree of disruption but also involves a slight intensification (measured in 
terms of offset from the maximally chromatic pentachord, 5-1 [01234], 

Chord 3 is slightly more chromatic than Chords 1 and 2). That slight 
intensification is reflected in the slight shrinkage of the outer boundary of 

Chord 3 compared to Chords 1 and 2: the chord is not only more com 
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pressed (more chromatic) in set-class space, but literally more compressed 
in pitch space. 

From Chord 3 to Chord 4 and Chord 4 to Chord 5, we return to the 
normative crisp transposition of the opening. Again, it is not that the voices 
are not moving, but rather that the moves are undisrupted, normative T 

(realized as actual pitch transpositions). The progression from Chord 5 to 
Chord 6 is both a slight disruption of normative T (offset =1) and a cor 
respondingly slight relaxation back to the original level of chromaticness. 

And the spacing of the final chord is slightly more spacious, more evenly 
distributed in pitch space. Within abstract set-class space, the progression 
appears to involve a relatively significant disruption of voice-leading uni 
formity toward the beginning (measured as a leap of three within the 
space), a disruption that produces an increase of tension, and then at the 

end, a relatively slight disruption of voice-leading uniformity (measured 
as a step of one within the space), producing a slight relaxation of tension 
back to the tension level of the opening. In that sense, the progression 
conforms to both laws, consisting as it does of an initiating gesture that 
involves a greater voice-leading distance and an increase in tension and an 

answering gesture that involves a smoother move in set-class space and a 

corresponding relaxation in tension, bringing the phrase to an end. The 
working of these laws and the abstract harmonic and voice-leading poten 
tials they embody are realized quite explicitly by the actual chords moving 

within pitch space. 
Example 7 examines four accompanying chords in a familiar passage, 

the opening of Schoenberg's Piano Piece op. 11/1. The first pair of chords 
is connected by *T4, realized in pitch space. The bass and the tenor ascend 
four semitones. The soprano ascends also but falls two semitones short of 

the goal marked out for it by the bass and tenor?T4 would have brought 
it all the way to Dtt, but it lands instead on Dk In the second pair of chords, 
the bass and tenor again guide the progression. They each move up one 
semitone. The soprano again is the deviant voice. The prevailing ^ would 
have sent it to A. Instead, it not only overshoots its goal, landing instead 
on B, but also transfers the B to another octave, crossing over the tenor in 

the process. If it was two semitones too low in the first progression (in 
pitch space), now in the second progression it is two semitones too high 
(in pitch-class space). 

The errancy of the soprano creates a slight tensing of the harmony in 
the first progression and a corresponding relaxation in the second. The 
second chord is two degrees more chromatic than the first, and its greater 
compression in pitch-class space is confirmed by shrinkage of the registral 
span of the second chord: the interval between tenor and soprano is now 
4 instead of 6. In the second progression, the fourth chord is two degrees 
less chromatic than the third, although, because of the voice crossing, the 
registral span of the chord actually shrinks. Nonetheless, the fourth chord 

93 

This content downloaded  on Wed, 6 Mar 2013 16:22:43 PM
All use subject to JSTOR Terms and Conditions



OFFSET from [012] 

Example 7. Schoenberg, Piano Piece op. 11/1, mm. 1-3 and 9-11 

This content downloaded  on Wed, 6 Mar 2013 16:22:43 PM
All use subject to JSTOR Terms and Conditions



is certainly less "sharp" sounding than the third, to use Krenek's term and 
classification. The cumulative effect is that of a kind of antecedent and 
consequent relationship between the two progressions. In the first, the 
soprano's deviance produces a slight tensing. The second begins at the 
level of tension at which the first left off, but now the soprano's deviance 

produces an exactly corresponding relaxation, returning us to the level at 

which we began. The first progression strains against the Law of Atonal 
Harmony; the second moves in accordance with it and repairs the viola 

tion of the first. 
We can gain additional perspective on the same passage by attending 

to the apparent suspension figures that conclude each of the phrases (see 
Example 8). The traditional suspension figure, of course, involves resolu 

tion from a relatively dissonant harmony to a relatively consonant one. 

According to the model presented here, that is exactly what Schoenberg 
has done, as well, although with a variety of different tetrachords. Both 
figures involve smooth voice leading, as three voices hold while a fourth, 
the soprano, moves by semitone. The offset is thus 1, realized in the most 
direct possible way. The voice leading is as smooth as possible, in pitch 
space, pitch-class space, and set-class space. The first figure creates a 

progression from 4-19 [0148] to 4-18 [0147], a parsimonious move 
toward less chromaticness, although somewhat ambiguously so.47 

The second figure creates a progression from 4-21 [0246] to 4-15 
[0146], again a parsimonious move toward less chromaticness, and in a 

reasonably straightforward way.48 Schoenberg's apparent suspension fig 
ures thus have a harmonic as well as melodic basis, involving the resolu 

tion of a relatively tense harmony to a relatively relaxed one. In that sense, 

Schoenberg's suspensions observe the laws for both harmony and voice 
leading: they are smooth moves in the direction of lesser chromaticness. 

Example 9 examines one of the twelve-tone chorales so common in 

Stravinsky's late music.49 This analytical chart takes no account of the 

actual realization of these harmonies in pitch or pitch-class space. Rather, 
it attends just to the distances traversed in set-class space (indicated 
beneath the chart) and the degrees of harmonic tension involved.50 The 
progression begins with relatively large moves in set-class space and then 

moves relatively smoothly from the third to the tenth chords, at which 
point it takes its two largest leaps. In terms of the quality of the harmo 
nies, the progression shows a general tendency away from chromaticness 

(measured as semitonal offset from 4-1 [0123]). In that sense, the pro 
gression as a whole strongly corresponds to the Law of Atonal Harmony, 

beginning with relatively tense, chromatic chords and ending with the 
maximally unchromatic diminished seventh chord (which is also a max 

imally even set-class). 

Example 10 provides a similar broad picture of a chorale passage from 
Schoenberg's Piano Piece op. 11/2.51 Without attempting any direct 
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engagement with the actual spacing of the harmonies, Example 10 gives 
a general sense of the size of the motions in set-class space and of the 

quality of the harmonies as it shifts over the course of the passage. In 
set-class space, the voice leadings are all relatively smooth. In terms of 

harmonic quality, the passage begins with relatively unchromatic chords, 
becomes increasingly chromatic in the middle, and then reverses course, 

culminating in the final chord of the passage, which is also the least 
chromatic chord in the passage. Taken in this fairly abstract sense, the 
passage may be said strongly to engage the Law of Atonal Voice Leading, 
in its distinct preference for relatively smooth moves, and the Law of 

Atonal Harmony, in its move away from and back to a state of relative 
relaxation and repose. 

* * * 

In the first part of this article, I established a way of measuring the 
distance between set-classes within a parsimonious voice-leading space 
that contains them. This measure of distance led to a Law of Atonal Voice 

Leading that embodied a preference for relatively short (smooth) moves 
within the space. In the second part of this article, I established a way of 
characterizing the quality of harmonies, based on their relative proximity 
to a state of maximal chromaticness, which corresponds closely to tradi 

tional intuitions about harmonic tension (and relaxation). We were thus 
led to a Law of Atonal Harmony that embodied a preference for relatively 

unchromatic (spacious) harmonies. 

Whether or not these laws are empirically predictive, whether or not 
composers are more likely to obey or disobey them, they may provide a 
useful basis for interpreting atonal harmony and voice leading. The laws 

may be understood to embody underlying tendencies, and working with 
or against those tendencies may have an impact on how harmonic pro 

gressions operate and how they may be construed. 

Theories of tonal music have frequently had recourse to spatial meta 
phors, understanding pitches, triads, and keys as relatively near or far 

within a space, and characterizing motions within that space in terms of 
patterns of tension and relaxation.52 In the work presented here, a similar 

framework is extended to the world of atonal harmony and voice leading 
in an effort to provide reliable measures of distance and direction for set 

classes within an intuitively attractive set-class space. 
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NOTES 

I thank a number of friends and colleagues for their helpful criticism and advice, 

including Clifton Callender, Jason Hooper, Jerry Ianni, Fred Lerdahl, Ian Quinn, 
Shaugn O'Donnell, and Dmitri Tymoczko. The musical examples were prepared 
by Mario Mazzoli. Tables 1 and 2 and Figure 19 were prepared by Thomas Rob 
inson. Both Mazzoli and Robinson have been indispensable interlocutors during 
this project. I am also grateful for the comments I received when I presented ear 

lier versions of this work at meetings of Music Theory Southeast (2005), the 
Music Theory Society of New York State (2005), and the Society for Music 

Theory (2005). 
1. For discussion of transformations as fuzzy or crisp and related notions of "near 

transposition" and "pseudo-transposition," see Straus 1997 and 2003, Lewin 1998, 
and Quinn 1996. 

2. On semitonal offset as a measure of the distance between sets and set-class, see 

Lewin 1998 and Straus 2003. 
3. Uniformity represents a fuzzification of transposition?the more uniform a voice 

leading, the more nearly it approximates actual, crisp transposition. See Straus 
2003. 

4. Balance represents a fuzzification of inversion?the more balanced a voice lead 

ing, the more nearly it approximates actual, crisp inversion. See Straus 2003. 
5. For a related discussion and some analytical application, see Carter 1997. 
6. On compositional spaces generally and voice-leading spaces in particular, see 

Morris 1995 and 1998. For geometrical modeling of voice-leading spaces based 
on smooth connections among sets and set-classes, see Callender 2004; Cohn 

2003; Quinn 2006-7; Straus 2003; Tymoczko 2006 and forthcoming; and Cal 

lender, Quinn, and Tymoczko 2008. 
7. In some of the single-cardinality maps and all of the intercardinality maps, some 

set-classes are found in more than one location. This redundancy is necessary to 
reveal all of the parsimonious connections among set-classes. It is difficult to 

generalize about which redundancies are required. See Callender, Quinn, and 

Tymoczko 2008 for further discussion. 
8. Clough and Douthett 1991 is the classic study of evenness in the literature. 
9. This is the way in which the trichords have been represented in previous publications? 

see Straus 2003 and Callender 2004. 
10. The terms "split" and "fuse" come from Callender 1998. Callender says a note 

may split onto two, a semitone above and below (e.g., A splits onto Git and Bb), 
and that two notes a whole tone apart may fuse onto the note that lies between 
them (e.g., Bb and Gt fuse onto A). Straus 2003 and the present article adopt Cal 
lender's terms but change the definition slightly, permitting a pitch class to split 
onto itself and the pitch class a semitone above or below (e.g., A splits onto either 
A and Bl? or A and Gt) and permitting two notes a semitone apart to fuse onto one 

(e.g., A and B\? fuse onto either A or Bl?). Ariza 2007 includes charts that list the 
number of semitones of offset between every pair of set-classes, of both the same 

and different cardinality. The spatial model presented here is essentially a way of 

visualizing the information contained in those charts. 
11. The inherent three-dimensionality of the tetrachordal space is discussed in Cohn 

2003, which represents the tetrachord classes as a tetrahedron. The configuration 
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of the space into tiers within a stack is more consistent with the present approach 
and will permit an integration of the tetrachords with the set-classes of other 
sizes. 

12. Cohn 2003 observes this special property of set-class 4-22 [0247], which he des 

ignates the "queen bee" of the tetrachords. In this same sense, 3-8 [026] is the 

queen bee of trichords. There is no comparable queen bee for dyads, pentachords, 
or hexachords. Nonetheless, the variety of different set-classes to which a given 
set-class has parsimonious connections remains a deep and interesting aspect of 
the voice-leading potential of any set-class, one of its characteristic, inherent 

properties. In general, set-classes that lie at or near the middle of these voice 

leading spaces have richer potential for parsimonious connection to other set 

classes; set-classes that lie near the edges of the space are relatively impoverished 
in this regard. 

13. Only set-classes of odd cardinality are capable of parsimonious self-mapping. On 
the pentachordal map, 5-20 is represented by [01378] and [=02378]. The former 
is the Forte-style prime form and treated as such by me (without =). The Rahn 

style prime form [01568] lies off the map. 
14. To put it the other way around, to present a parsimonious voice-leading space in 

which each parsimonious connection is listed at least once, some set-classes will 
have to appear more than once. The general issue of set-class redundancy in voice 

leading spaces for sets and set-classes is addressed in Callender, Quinn, and 

Tymoczko 2008. 
15. The layout of the map produces some apparent self-mapping among tetrachords 

in the lowest tier?these are artifacts of the layout and should be ignored. 
16. This statement is true for the single-cardinality maps; those for dyads, trichords, 

tetrachords, and pentachords may be taken to stand for maps of decachords, no 

nachords, octachords, and septachords. Unfortunately, because of the nature of 

splitting and fusing, the intercardinality maps may not be taken to stand for maps 
of larger complementary set-classes. For example, the parsimonious voice-leading 
space for trichords and tetrachords in Figure 8 is very similar to, but not identical 

with, the space for nonachords and octachords. That is because, for a given split 
that connects two set-classes, there may not be a corresponding fuse to connect 
their complements, and vice versa. For example, [248] can move parsimoniously 
to [2348] by splitting the 4 onto 34, and [2348] can move parsimoniously to [248] 
by fusing the 34 onto 4. But [0135679TE] (the complement of [248]) cannot move 

parsimoniously onto [015679TE] (the complement of [2348]), because the 3 has 
no semitone-related pitch class onto which to fuse. Similarly, [015679TE] cannot 

move parsimoniously onto [0135679TE] because there is no split available to 

produce the 3. In general, if a split has the effect of filling in a whole-tone, there 
will be no corresponding fuse for the complementary pitch class. Similarly, if a 
fuse has the effect of creating a whole-tone, there will be no corresponding split 
for the complementary pitch class. The practical impact of this on the present 
study is that, while the single-cardinality maps may be taken to stand for maps of 

complementary set-classes, the intercardinality maps stand only for themselves. 
This study presents no maps of cardinalities 6 X 7, 7 X 8, 8 X 9, or 9 X 10. 

17. The first of these directions [for connecting chords] requires that in the voice lead 
ing, at first, only that be done which is absolutely necessary for connecting the 
chords. This means each voice will move only when it must; each voice will take the 
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smallest possible step or leap, and then, moreover, just that smallest step which will 
allow the other voices also to take small steps. Thus, the voices will follow (as I once 
heard Bruckner say) the 'daw of the shortest wayO (Schoenberg 1978, 39) 

Vais?l? 2004 generalizes Schoenberg's law into what he calls a "proximity prin 
ciple of voice leading, under which small melodic (^horizontal) intervals, usually 
semitones and whole-tones, function as voice-leading intervals (melodic connec 

tives with no arpeggiating function) and larger ones function as arpeggiations" 
(13). Lewin 1998 develops a related concept of "maximally close voice leading," 

which depends on a concept of "total shift"?a measure of the total distance trav 
eled by all of the voices added together: "[T]he total number of semitones tra 
versed by the . . . voices, as they move from their notes in one chord to their notes 
in the next chord" (24). Lewin engages familiar metaphors of musical exertion in 

referring to "melodic husbandry" (30, 31) and the possibility of moving between 
sets "with as little overall strain as possible" (38). 

18. A recent study, Rogers and Callender 2006, offers some preliminary, qualified 
corroboration for the views expressed here. This study presented subjects with 

pairs of trichords and asked them to rate the perceived distance on a ten-point 
scale. The authors conclude: "The sum of individual voice-leading motion was, 

indeed, shown to approximate listeners' overall perception of distance. At the 
same time, however, our results suggest that many factors (e.g., displacement size, 

tuning environment, direction of motion, and relationship of moving voices) inter 
act with one another, contributing to our sense of musical distance in a more 

complex fashion than had been previously recognized" (1691). 
19. The question of harmonic quality is discussed extensively in Quinn 2006-7. 

Quinn investigates what he calls "quality space," abbreviated as F(c, d), where c 

is the size of chromatic universe (normally 12) and d is the cardinality of the 

maximally even set that serves as the prototype for a particular qualitative genus. 
Quinn 2006-7 describes six harmonic characters or "genera" that any set might 
express in a greater or lesser degree, with each quality associated with one of the 
six maximally even sets up to complementation (part 1, 121). The quality I am 

describing as "chromaticness" corresponds to the first of Quinn's genera, that is, 

F(12, 1). The quality I am calling "evenness" has no direct analogue in Quinn's 
system. 

20. For the pentachords, there are three rogues: 5-7 [01267], 5-20 [01568], and 5-22 

[01478]. Of these, 5-22 is particularly roguish: it is maximally distant from 5-1, 
and thus maximally uncompact, but it is two steps shy of being maximally even. 

Among the hexachords, fully ten out of fifty are rogues: 6-6 [012567], 6-7 

[012678], 6-17 [012478], 6-18 [012578], 6-20 [014589], 6-29 [023679], 6-30 
[013679], 6-38 [012378], 6-43 [012568], and 6-50 [014679]. Of these, 6-7 and 

6-30 are particularly roguish?they are maximally uncompact, but not maximally 
even. These ten rogues include three Z-related pairs: 6-6/38, 6-17/43, and 6-29/50. 

A general discussion of roguishness is beyond the scope of this article, but as a 

general matter, roguish set-classes are those that can be decomposed into both 
even or nearly even subsets and chromatic or nearly chromatic subsets (e.g., 
[0167] as both [01] + [67] and [06] + [17]). 

21. In the interest of legibility, a small number of redundant trichords have been omit 
ted from the more complete map of this space in Figure 8. As a result, the follow 
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ing parsimonious connections between trichords and tetrachords have been omit 
ted: 014-0124,015-0125,016-0126,025-0235,026-0236,027-0237,036-0236, 
037-0237, and 037-0347. All of the remaining connections between trichords and 

tetrachords, and all of the intracardinality connections (trichords to trichords, tet 
rachords to tetrachords) are present. 

22. The sources of these similarity measures are as follows: IcVSIM from Isaacson 

1990, ASIM from Morris 1979-80, REL from Lewin 1979-80, ATMEMB from 
Rahn 1979-80, and PSATSIM and SATSIM from Buchler 1998. 

23. Tables 1 and 2 are derived from Robinson 2006, which demonstrates that "prox 
imity in semitonal offset space does accurately represent similarity [among set 

classes] but only with respect to the maximally uneven or most chromatic set class 
in the cardinality" (2). The correlation between offset and similarity as measures 

of chromaticness is similarly high for set-classes of larger cardinality, and always 
higher for set-classes of the same size. 

24. Generic prototypicality may be interpreted as maximal imbalance on the associated 
Fourier Balance?at least to the extent that a generic prototype tips its associated 
Fourier balance more than any other chord of the same cardinality possibly can. . .. 
Our metaphorical Fourier Balances tip when the force of a pitch class is applied to 
them_On Fourier Balance 1, each pitch-class n tips the balance toward n o'clock. 

To model the force it exerts on the balance, then, we can use an arrow of unit length 
oriented to point toward n o'clock. We will name such arrows a(n), and refer to the 
unit of force or length that they represent as a lewin, abbreviated Lw. . . . The quan 
tification of imbalance ... is enabled by the technique of arrow addition. In particu 
lar, each Fourier Balance represents a particular way of associating pcs [pitch 
classes] with arrows, and the degree to which a chord is imbalanced on that Fourier 
Balance ... is proportional to the length of the arrow resulting from the addition of 
the arrows associated with the constituent pcs of that chord. (Quinn 2006-7, part 3, 
41-44) 

25. The correlation is nearly perfect for set-classes of a single cardinality, and the 
correlation is similarly high for the larger set-classes. The correlation is less high 
for intercardinality comparisons, for example, trichords and tetrachords together. 
In general, the offset measure considers the smaller set-classes as slightly more 

chromatic than Quinn's F(12, 1). 
26. The issue of "chordal tension" is also discussed in Persichetti 1961 (19-23), but 

the discussion there is largely derivative of Krenek and Hindemith. 
27. Hindemith 1942 divides chords into two principal groups: those that contain a 

tritone and those that do not. Within each of these principal groups, he further 
divides chords into those that contain seconds or sevenths (and have a determinate 

root), those that do not (but still have a determinate root), and those that are inde 
terminate as to root. Hindemith is more concerned with the extent to which chords 

may be understood to have a determinate root than the extent to which they are 

relatively consonant or dissonant. So, for example, the chords in his fifth and sixth 

categories (as far distant as possible from the consonant triad in the first category) 
are (036), (027), and (048). While these are all symmetrical and thus relatively 
"indeterminate" with respect to a possible root, they are obviously not relatively 
tense or dissonant by any measure. 

28.1 am translating into modern terminology. Hanson generates this hexachord as a 

cycle of minor thirds (C-El?-Gk-A) to which the beginning of another cycle of 
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minor thirds, beginning a perfect fifth higher (G-Bt?), is adjoined. In fact, this 
hexachord type can be formed from the combination of any diminished-seventh 
chord with any disjunct minor third. 

29. The studies Huron cites are Malmberg 1918, Kameoka and Kuriyagawa 1969, and 
Hutchinson and Knopoff 1978. 

30. The Pearson correlations are as follows: for trichords, .831; for tetrachords, .570; 
for pentachords, .778; for hexachords, .579. 

31. Within this article, the space in question is set-class space. The law may also have 

application in pitch class and pitch space. 
32. It would be possible, of course, to model the voice leading between these chords 

in different ways. One alternative would be to construe it in the manner of 
O'Donnell 1998 as a "split transposition," with one dyad moving at T and another 
at a slightly skewed T5 or T6. This interpretation would produce voices that coin 
cide with the registral lines. Another alternative would be to invoke Klumpenhou 

wer networks, in which case the two chords would be related at hyper-T3 (the 
details are left to the reader). This K-net interpretation would produce the same 

four voices as the transformational voice leading proposed here. 
33. Lerdahl (2001, 344-46) proposes an alternative measure of atonal chord distance, 

one that calculates the sum of the interval classes and pitch classes not shared 
between two chords. According to Lerdahl's measure, the distance between the 
two chords of Example 1 is 4: the second chord introduces two new pitch classes 

compared to the first and is missing two interval classes contained in the first. The 

possible range of values for tetrachords is from 1 (two chords share the same 

interval content but differ by one pitch class, e.g., Ct-D-E-F and D-E-F-Ft) to 
8 (two chords have entirely distinct pitch-class content and the second introduces 
four interval classes not contained in the first, e.g., C#-E-G-Bl? and D-D#-F#-Gt). 

According to Lerdahl's measure, then, the two chords in Example 1 are not nota 

bly close. Inevitably, a measure of chordal distance that values the presence or 

absence of common pitch classes will not coordinate well with a measure, like the 
one proposed here, that operates in set-class space and thus ignores actual pitch 
class content. 

34. Huron's dyadic consonance measure also judges the first chord as slightly more 
consonant than the second: the consonance value of 4-15 [0146], -0.243, is 

slightly higher than that of 4-7 [0145], -0.250. According to Quinn 2006-7, 

[0146] exerts less chromatic force than [0145] (1.414 rather than 1.932 lewins). 
The measures of Huron and Quinn thus support the judgment made here, which I 
think would also conform to the intuitive assessment of most listeners. The stan 
dard similarity measures all consider [0145] and [0146] as having comparable 
degrees of similarity with respect to [0123], but they do not necessarily agree 
about which is more similar to [0123] (see Table 1). 

35. As with Example 1, alternative interpretations involving split transformations or 

K-nets suggest themselves. One could imagine the progression as involving a dual 

transposition, with Tn in the lower parts and a fuzzy *T3 or *T4 in the upper. The 
chords could also be represented as negatively isographic K-nets, related by 
hyper-Io (again, the details are left to the interested reader). 

36. A different transformational voice leading would be produced by *I9, also with an 

offset of 1: Ct-Gf, E-E, Eb-Ff, and G-D. This interpretation would have the 

advantage of maintaining the integrity of the registral pairs, but the disadvantages 
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associated with the relative difficulty of apprehending the inversion as compared 
to the transposition of pitch class. 

37. Lerdahl's chord distance measure would consider these chords quite far apart: on 
a scale of 1-8, they are at a distance of 5 (the second chord introduces three new 

pitch classes and excludes two interval classes contained in the first). 
38. This judgment of the relative chromaticness of 4-12 [0236] and 4-21 [0246] is 

contradicted by Huron's dyadic consonance measure, which punishes [0246] for 
its three whole-tones and rewards [0236] for its two minor thirds. Huron's value 
for [0236] is -0.889 and for [0246] is a relatively dissonant -1.427. Quinn, how 
ever, rates [0246] as having somewhat less chromatic force than [0236]: 1.732 as 

opposed to 1.932 lewins, effectively punishing [0236] for its semitone. The tradi 
tional similarity measures also confirm the sense developed here that [0236] is 
closer to the maximally chromatic tetrachord, [0123], than is [0246]?see Table 1. 

39. The resulting trichord constitutes a basic motive for Schoenberg's Five Pieces for 
Orchestra op. 16. Babbitt 1987 (157-58) explores the relationship between the 
melodic transposition of Example 3 and the structure of the "Farben chord" from 

the third movement. 
40. The contrary motion suggests an interpretation via K-nets. See Stoecker 2002, 

which, however, omits consideration of the final, four-note chord. Interpreting the 
third and sixth chords of the progression as K-nets, and relating them via hyper-T9, 

would entail the same voice leading (Ek-Ct, Ek-D, Ek-A, and A-Gf) as described 
here. 

4L This judgment is confirmed by Huron's dyadic consonance measure, which rates 

[0156] (-0.443) as slightly more consonant than [016] (-0.641). Quinn considers 

[016] and [0156] as having equal chromatic force: 1.000 lewins. The similarity 
measures generally, but not universally, confirm the judgment made here?see 
Table 1. 

42. See Slottow 2001 and Straus 2003 for related discussions. 
43. Huron's dyadic consonance measure contradicts this judgment, assigning 4-17 [0347] 

a relatively high consonance value (1.772) compared to 4-18 [0147] (0.933). The 
contradiction is due primarily to the presence in [0147] of a tritone, which I rank 
as the least chromatic interval, but which Huron classifies as a relative dissonance. 

Quinn's judgment is more in accord with my own. He assigns greater chromatic 
force to [0347] (1.414 lewins) than to [0147] (1.000 lewins). 

44. Huron concurs, ranking 4-3 [0134] among the most dissonant tetrachords (with a 

dyadic consonance value of-1.864) and 4-19 [0148] among the most consonant 

(1.564). Similarly, Quinn judges [0134] as having near-maximum chromatic force 

(2.732 lewins) while [0148] has correspondingly little chromatic force (1.000 
lewins). The similarity measures all agree that [0134] is considerably more like 

[0123] than is [0148]. 
45. Huron's dyadic consonance measure considers [0347] slightly more consonant 

than [0148]. In contrast, Quinn describes [0347] as having slightly more chro 
matic force than [0148]. As is usually the case, my offset measure is better aligned 
with Quinn than with Huron. 

46. For a related discussion of this passage, see Straus 2003 (323-24). 
47. Huron's dyadic consonance measure contradicts this judgment: [0148] receives a 

value of 1.564, while [0147] is rated at 0.933. Huron's measure is responding to 

[0148]'s lack of a tritone and its inclusion of additional major thirds, compared to 
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[0147]. Quinn considers the two tetrachords as exerting the same degree of chro 
matic force: 1.000 lewins. 

48. Huron considers [0146] (with a dyadic consonance value of-0.243) considerably 
more consonant than [0246] (with a dyadic consonance value of -1.427). The 

soprano's move from A to B\? creates a harmonic semitone (between Bb and B) but 

simultaneously creates a positively weighted minor third (G-Bb) and perfect fourth 

(F-Bb). These two relatively consonant intervals outweigh the relatively dissonant 
semitone. In Quinn's chromatic quality space, [0146] is similarly considered as 

exerting less chromatic force (1.414 lewins) than does [0246] (1.732 lewins). Set 
class 4-21 [0246] tips Quinn's Fourier Balance strongly to the right; substituting 
Bb for A (or 1 for 2 in the prime forms) diminishes the force of that tip. Within the 
semitonal offset space described here, it is easier to compress the pitch class 

together from a starting position of [0246]?they would converge on 3, in the 
middle. That is why [0246] is judged as closer to the maximally chromatic [0123]. 
The judgment of the relative character of [0146] and [0246], shared by Huron, 

Quinn, and my offset measure, is generally contradicted by the similarity relations, 
which consider [0146] more similar to [0123] than is [0246]?see Table 1. 

49. For the twelve-tone derivation of this and similar passages in late Stravinsky, see 
Straus 1999. 

50. See Hindemith 1942 for related charts of "harmonic fluctuation." 
51. For a discussion of this passage in terms of Klumpenhouwer networks, see Lewin 

1994. Note that in Example 10, the degree of chromaticness is measured in terms 
of offset from 5-1 [01234]. 

52. Lerdahl 2001 surveys and extends that tradition. Lerdahl's commitment to design 
ing reliable measures of distance and tension/relaxation within his tonal pitch 
space has provided an important intellectual model for the work presented here. 
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