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EQUIVALENCE AND
SIMILARITY IN PITCH
AND THEIR INTERACTION
WITH PCSET THEORY

Robert D. Morris

A good deal of Western music theory rests on the distinction between
pitch and pitch-class. Nevertheless, the term pitch-class (pc) was intro-
duced by Milton Babbitt relatively recently—about 45 years ago; and the
first general exposition elaborating the implications of the pitch/pc dis-
tinction' was published only in 1980 by John Rahn.2 In my book, Com-
position with Pitch-Classes: a Theory of Compositional Design,’ 1 divide
pitch function into three categories, each encapsulated by a different
pitch space: contour space, pitch space, and pitch-class space.* Along the
way, I develop the basis for a set theory for pitch sets in analogy to the
now “standard” pcset theory of Allen Forte® and others.® Still, my book
as a whole treats the relation of pitch-class to pitch rather than pitch
alone. This is because, for me at least, the study of an atonal composition
considers the relations between the underlying pitch-class materials and
entities and their musical realizations as pitches in various categories of
time.

While this approach is particularly valuable in the study of twelve-
tone and other types of serial music, it is awkward—even wrong-
headed—in some other sorts of music, most notably in a good deal of
progressive European art music written since the 1950s by composers
such as Ligeti, Messiaen, and Xenakis. While some of this literature
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seems resistant to any kind of pitch function, a good deal of it would
seem to be based on pitch rather than pitch-class relations either on the
faith of composer testimony or by little evidence of musical unity or
coherence using pitch-class theory as a heuristic. We should therefore
expect such music to be insensitive to octave equivalence so that the
occurrence of an octave is as likely as any other interval. Jonathan Ber-
nard takes such a view when he asserts that “octave equivalence must be
ruled out” in the music of Edgard Varese.” Yet a good deal of music, not
only by Varese, is marked by a characteristic lack of proximate octaves
or by their special treatment. This suggests that pitch-class relations still
affect this repertoire in some special way.

This paper explores the relations between pitch and pitch-class func-
tion in two ways. First, it defines three context-sensitive definitions of
pitch equivalence, the context being pitch-class space. These equiva-
lences are called PSC, PCINT, and FB. Second, the paper proposes that
similarity relations can be used on a par with equivalence relations in
pitch since similarity among pitch sets does not have the problems of
pitch-class similarity we will discuss below.

I begin with a brief review of pitch set theory (example 1). We adopt
the convention of labeling middle-C as the pitch 0 and pitches n semi-
tones higher or lower than 0 are labeled by plus or minus n. The ordered
interval between two pitches is computed by taking the first pitch num-
ber from the second. Ordered intervals are labeled by (signed) integers.
Unordered intervals, called interval-classes, are distances between either
simultaneous or conceptually unordered pitch pairs. We use unsigned
(positive) integers to label interval-classes, or ics in pitch. The reader
should remember that in this paper, ics are between pitches, not pcs. A
pset is an unordered collection of pitches. The pset { -12 -529 } is the
collection of open strings of the viola; the pset { -12 -4 -1 4 9 } is the
“Farben” chord of Schoenberg’s op. 16, no. 3. Ordered sets of pitches are
called psegs. < -3 -2 10 -1 > is the pitch sequence of the opening phrase
of Bartok’s Music for Strings Percussion and Celesta. In correspondence
to pc-space relations and as the examples show, curly brackets denote
unordered sets and angle brackets denote ordered sets.?

The interval content of a pset is a roster of the interval-classes between
each of its pairs of pitches. It is analogous to an interval-class vector in
pc theory. We can derive the roster from an ic-matrix. The ic between the
mth and nth pitch in a pset is in the mth row and nth column of the matrix.
The roster tells us how many times each ic n occurs in the upper right tri-
angle of the ic-matrix, which contains the interval content of the pset.
The function SP(X), “the spacing of the pset X,” is an ordered list of the
adjacent but unordered pitch-intervals in the pset X from low to high. For
instance, SP(<-4 -2 5 8 10>) =[ 2 7 3 2 ]. The left-most diagonal of the
ic-triangle of X’s ic-matrix contains the SP(X).
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GLOSSARY

Pitch-space Definitions.

Pitches are shown on the staff or by integers, with pitch 0 = to middle-C.

Ordered interval: interval from pitch a to pitchb =b - a.

Unordered interval, distance, interval-class (ic): interval between pitch a
and pitch b = | b - a |; the number of semitones between a and b.

psets: unordered set of pitches.

Examples:
=
K J

open strings of viola: { -12-529}
Schoenberg's "Farben" chord: { -12-4-149 }

psegs (pitch segments): ordered set of pitches.

Example:

I‘ (2 Y + || |

Bartok: opening phrase from

Music for Strings Percussion and Celestq, L

<-3-210-1>

Example 1
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ic content of X = {—4 -2 5 8 10}.

ic roster:

—I\J—i—i—v—-n—MEh

ic-matrix for X = {—4 -2 5 8 10}

The spacing of X or SP(X) is [2 7 3 2]
and is found in the diagonal with
underlined entries.

N.B.: Bold-face entries form the
"ic-triangle" from which the ic-roster
is drawn.

Example 1 (continued)




v 0
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Proximate realization of pcseg X' as pset X.

pesetX'=<4281>

INTX)=<A65>

INT(X") is realized as SP(X).
psetX={-82813}

SP(X)=[1065]
Example 2

Example 2 presents a pc-segment X' and its INT. The INT of a pc-
segment is the list of its successive adjacent ordered-intervals.” The
example shows that the INT of a pc-space segment X' is related to the
spacing of a pset X if X is a proximate realization of X' in pitch, ordered
low to high, such that the pitches of X are as close as possible. In the
example, X'is <4 2 8 1> and the INT(X') is < A 6 5 >. The proximate
realization of X' in pitch-space is { -8 2 8 13 } and its spacingis [ 106 5 ]
the same as INT(X").

Pitch-space transposition and inversion are defined in example 3. The
example shows that: 1) the interval from pitch a to b, a’s transposition by
n, is n; 2) the I operator (inversion) inverts pitches around pitch 0, mid-
dle-C; and 3) two pitches related by T,I add up to n. In addition, the axis
of symmetry between two pitches related by T,I is n/2. This axis is either
a pitch or quarter-tone between two pitches.

A pitch set-class (PSC) is the collection of psets related by T,.'° A
pitch set-class that includes the pset X will be denoted by the function
PSC(X). A PSC is named by its members’ spacing. In principle each PSC
contains an infinity of psets, but human hearing and use limits the num-
ber of functional members. A few members of the PSC({-6 7 9}) are
given in example 4.

In sum, pitch-space relations correspond to relations in pc-space but
without doing the arithmetic mod-12. A major difference between pitch
and pc is the number of entities in each space. In pc-space there are 12
pcs, 12 ordered intervals, 7 ics, and 4096 pcsets. In pitch-space there are
88 pitches, 176 ordered intervals, 88 ics, and 2% psets. As for SCs, in pc-
space there are 223; in pitch-space the number of PSC is astronomical
and impossible to calculate without a computer programmed to execute
standard combinatorial formulae. A comparison of the number of tri-
chordal SCs with PSCs, however, gives some idea of the scale; there are
12 trichordal SC in pc-space and 2838 trichordal PSCs in pitch-space.!!
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a, b € pitches

Transposition (Tp): b=Tha=a+n
(and n = b - a).

Inversion (I): b =1Ia=-a.

Transposition and Inversion: b=Tpla=n-a
(andn=a+b)

Axis (center) of Tyl = n/2.

Example 3

PSC (pitch Tp-type set-class)
X={-679} SPX)=1[132]

PSC(X) is named [13 2] and includes:

{(-679} =X
{01315} =TeX
{-857}=T2X
etc.
Example 4

Thus, the sheer number of PSCs would seem to diminish their general
usefulness in composition and analysis. For while it is not very difficult
to memorize and internalize 12 trichord types, 2838 poses a significant
musical challenge.

Fortunately, our interest in defining some context-sensitive equiva-
lences and similarities in pitch-space—those that reflect pcset equiva-
lence—can help solve the problem of PSC abundance. Some new defin-
itions of pitch equivalence will collect psets into a more modest number
of equivalence-classes. (Of course, each class will have many more mem-
bers than any PSC.) The key to this project is to consider the set of pitch
realizations of the members of a pitch-class SC. We denote all possible
pitch realizations of the pc SC X by the function PR(X). Example 5a gives
the 24 members of the 3-3[014] set-class. Example 5b provides a few of
the members of PR(3-3). The example only shows psets, but the pitch
realization of a SC includes ordered psets, with and without duplications.
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{ {014} {67A} {0B8} ({652}
{125} {78B} {109} {763}
{236} {890} {21A} ({874}
{347} {9Aa1} (32B} {985}
{458} {aB2} (430} {A96}
{569} {B03} ({541} {BA7} }

Set-Class 3-3[014].

Example 5a

D

A o hi
1’ A I;\: — — 1N
[ .0 i b1
T3 N

F

Some pset members of PR(3-3).
PR(3-3) is the set of all pitch realizations of the pc SC(3-3).

Example 5b

The number of pitch realizations is, of course, infinite, or in practice very
high, but we can divide this collection into smaller and manageable sub-
collections using a pitch relation S. When S is an equivalence-relation, S
partitions PR(X) into (non-overlapping) subcollections. And by defini-
tion, each subcollection is made out of pitch-realizations of the members
of SC X in pc-space. Thus when we apply S to pitch-relations of all pc
SCs, the partitions induced by S will not cut across pc-space SC bound-
aries. In this way, S is context-sensitive to SC membership in pc-space.

I propose three candidates for S, a pitch equivalence that partitions
any PR(X): PSC, PCINT, and FB.

We have already defined PSC. Example 6 shows a few members of
PSCs that partition SC(3-3). Thus, as in the example, the PSC [1 3] con-
tains the following psets: {5 6 9}, {19 20 23}, and {-21 -20 -17}. Each
PSC has a dual PSC in which the SP succession is backward. For exam-
ple, the dual of PSC [4 5 11]is PSC [11 5 4]. The psets in a PSC are the
p-space inversions of the pset members of its dual. Some PSCs are their
own duals; PSC [23532] is self-dual.'?

The large number of PSCs can be reduced significantly by setting a
limit on a PSC’s outside pitch interval, the interval from the lowest pitch
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Some members of PSC [1 3]: Some members of PSC (8 3]:
A bge L,
@- s Pl —
#‘I Y >

(569} (192023}  (-21-20-17) {-15-7-4) (122023}  {-1710}
Members from two of the PSCs (pitch set-classes) that partition PR(3-3).

Example 6

PSCs containing members of PR(3-3) with outside intervals less than 12 semitones.

A
Pe— £ s
- 4 .
PSCs: [13] [3 8] [81] [31] 18] [83]
Example 7

to the highest in a PSC member. The outside interval is the sum of the
intervals in the PSC’s name, its members’ spacing. If we set the outside
interval limit of PSCs to 11 semitones, there are only six PSCs that con-
tain members of PR(3-3) as shown in example 7. Such a limitation is par-
ticularly apt in serial pieces where array lynes are articulated in narrow
registral spans.

Example 8 indicates how band-limited pitch areas help project pc
lynes in Milton Babbitt’s Partitions for piano. The example comes from
mm. 32-35, which is based on a typical four-aggregate trichordal array.
Each array lyne is articulated in a different 11-semitone span from some
Al to G§. The trichordal segments which generate the array are therefore
mapped one-to-one from pc to pitch into their registral slots. This means
that the unordered content of each trichord is mapped to one and only one
PSC. Since the trichords in an array line are related under twelve-tone
operations, the PSCs that result are those that partition one trichordal SC.
On the top line, for example, each trichord’s content is of SC3-3[014] and
due to the constraints under discussion, only PSCs [3 1], [1 3], and [1 8]
occur in the music. Note that two of the three are duals. Since the second
lyne is a rotation of the first by six order-positions, the same PSCs occur
in the pitch realization of that line. The bottom two lines are also related
by rotation, but are based on members a different trichordal SC, 3-
4[015]. The corresponding PSCs are therefore different, but once again
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(14] [41] 17 [14]

:;f
;

7 T3

PSCs in Babbitt's Partitions for piano,
mm. 32-38.

The top two lines contain pitch realizations of (pc) trichordal
segment-class <5 2 6> whose content is of (pc) SC(3-3)[014].

Only three PSCs are found realizing the trichords, two of which are
duals: [1 3], [3 1], and [1 8].

The bottom two lines contain pitch realizations of (pc) trichordal
segment-class <0 B 7> whose content is of (pc) SC(3-4)[015].
Only three PSCs are found realizing the trichords, two of which are
duals: [14],[4 1], and [17].

Example 8
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(pc) segment-Class 1 <0 14> INT =<13 > — pitch PCINT-class [13]
(pc) segment-Class 2 <0 19> INT =<18 > — pitch PCINT-class [18]

(pc) segment-Class 3 <004 1> INT = <049 > — pitch PCINT-class [049]

Three pc segment-classes whose (unordered) contents are members of
SC(3-3)(014] that map to three (pitch) PCINT-classes.

(NB: pc segment-classes contain pcsegs related (only) by Tp.)

Example 9a
a ha
H ) = L’. =
r ) —~ —
¥ 1 b 1
%—b& = = 1z 4 =
4

h 4 EE o
§ pem——hy—————fe . * —
L L H:;
%——l a e P
= e o F

4
Members of the PCINT-class [1 8] derived from segment-class 2 in example 9a.

-

e 13

it

v = = £ = iE_ e
L4 - - . .o
Members of the PCINT-class [0 4 9] derived from segment-class 3 in example 9a.

Example 9b
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there are three and two of them are duals. The reduction of the ordered
pc trichords of the array to a handful of PSCs induced by the tight regis-
tral assignments helps project the pc structure of the array in a redundant
and hence effective way. In addition, the pc ordering in the array with the
PSC registrations projects a small set of contours that further unifies the
passage.'?

A second equivalence, called PCINT (for pitch-class INT equiva-
lence) involves psets whose spacing intervals from low to high are iden-
tical, or expanded (or diminished but without order interchange) by any
number of octaves. We name a PCINT-class by the spacing of its most
compressed member(s), in proximate realization. Thus a few of the
members of the PCINT-class [2,4,5] are psets {0,2,6,11}, {0,14,18,23},
{-5, -3, 13,18}. The members of a particular PCINT-class are pitch real-
izations of members of a pitch-class segment-class that contains the
transpositions of a pcseg. The spacings of any member of a PCINT-class,
when taken mod-12, will reduce to the same INT of some pcsegment.'
The retrogrades, inversions, and retrograde-inversions of the same pcseg-
ment form three other PCINT-classes. Since the pc-space sources of
PCINT-classes are ordered pcsets, the reader may wonder if PR(X) is
partitioned by a set of PCINT-classes. The assertion goes through when
we remember that PR(X) contains all permutations of all members of
SC(X). Since each permutation of the pcs of X generates a different INT
from X (to within any pc invariances of X) and these INTs define each
PCINT-class, so the PCINT-classes in question partition PR(X). Ex-
ample 9a provides three different pc segment-classes whose mem-
bers’ unordered content are members of SC 3-3. Three segment-classes
map to three PCINT-classes. Example 9b shows several members of
these PCINT-classes. As with PSCs, The dual of a PCINT-class P is that
class which takes the name of P in reverse. [4 7] is the dual [7 4]. The
PCINT-class [111] is its own dual and contains the psets, {0123},
{-3,-2, 11, 12}, {-24, -11, 2, 27}, among others.

When the pcset X in PR(X) has invariance under pc transpositions
beside T, the number of different PCINT-classes is diminished accord-
ing to the following formula. Dy is the degree of symmetry of X.

#PCINT-classes = (#X)! * 2/ Dy

The third equivalence is well-known to music theorists; it is called FB,
for figured bass.' The pc ordered-intervals between the non-bass pitches
and the lowest, bass pitch of a pset are given as the integers O to B. These
intervals are listed in ascending numeric order and identify an FB-class.
Two psets with the same (chromatic) figured bass are FB-equivalent—in
the same FB-class—which takes its “normal form” from the set of fig-
ures. Each member of an FB-class can be interpreted as a partially-
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h i

4 §s b

o) —o <
TG

4

3478 3478 2478

Members of the FB-class 3478.
Example 10a

orderéd pcset realized in pitch-space. One pc occurs before all the others
in the set. The concept of “before” is interpreted in pitch as lower. Thus
the pcs that follow the first pc can be realized in any register of pitch-
space as long as they are higher than the first pc’s realization. Example
10a shows samples of psets related by FB-equivalence. Note also that a
FB or its class may have a zero or multiple instances of intervals.

How do the FB-classes partition PR(X)? I have just shown that FB-
classes are pitch realizations of partially ordered pcsets. We can derive all
the possible posets of the required type as follows. To construct an FB-
class we take a pc of X and follow it by the other members of X to pro-
duce the partially ordered set. The rest of the partially-ordered sets are
derived likewise from the (pc) inversion of X. These posets define the
non-duplicating FB-classes without zeros or multiple intervals. In exam-
ple 10b, we see the three rotations of X and I(X) which are members of
SC 3-3. The rotations of the inversion of X are 034, 340, and 403. Taking
for instance the last, 403, the example generates the partially ordered set
<4, {03 }> which means that the pc 4 comes before the pcs 0 and 3, which
are unordered with respect to each other. The intervals between 4 and 0
and 4 and 3 are listed as subtractions on line three of the example, vis.
“[0-4, 3-4].” The intervals are then computed; this yields the FB-class
8B. Every member of this class is a pitch trichord with two pitches 8 and
11 semitones (plus any number of octaves) above its lowest note. From
this generative algorithm, the number of non-duplicating FB-classes is
given by the following formula:

#(non-duplicating FB-classes) = #X * 2 / Dy

The formula indicates that, for example, there are 8 FB-classes (with-
out duplication) derivable from SC(4-2) and there are 3 classes from
SC(3-6) since each member of 3-6 has a degree of symmetry of 2. A
hexachordal SC may generate anywhere from 10 to 1 FB-classes. The
total number of non-duplicating FB-classes is easy to determine. Since a
non-duplicating FB-class is an unordered pcset preceded by a different
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e

mS

HE =

== Z==

FB-class 38B 38B 38B
PCINTlass [353] (353] [353]
PSC [27515] (275 15] (15527)
S
T, related in pe.
T, related in pitch.

Referential pitch equivalences in Babbitt's Partitions.

Example 11

pc and the size of the pcset can vary from O to 11 elements, there are 2!
or 2048 FB-classes. Incidentally and surprisingly, such enumerative facts
about chromatic figured bass were worked out and published in 1884 by
the French music theorist Anatole Loquin.'®

As the bottom of example 10b shows, we can arrange the FB-classes
in pairs of duals, such that for each interval n in a FB-class, its dual has
the interval k-n where k is the largest interval in the FB-name; in addi-
tion, we replace the O by k. For instance, to produce the dual of the FB-
class 349 ; k =9, 50 9-3 = 6, 6-4 = 5, and 9-9=0 which is replaced by 9.
The dual is 569.'7 The reason the definition of dual is a little more com-
plicated than with other equivalences is that we want two psets related by
p-space inversion to be respectively included in dual FB-classes.

A brief musical illustration, also from Babbitt’s Partitions, will help
point out how these pitch equivalences can be used in analysis. The point
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of the discussion is not that pitch equivalence is an analytic substitute for
pc-equivalence, but that pitch-equivalence enables the deeper, underly-
ing pc relations to be discovered and heard.

The first section of Partitions, which serves as a kind of introduction,
presenting the materials of the entire piece, opens dramatically with the
pitches on the left of example 11. The pc SC is 4-17[0347], a telling sub-
set of the work’s generating hexachord, an ordering of the B all-combi-
natorial source-set. At the very end of the section in m. 8, the music also
articulates a member of 4-17, a T¢ transposition of pcs of the opening
chord. In the middle of the opening passage, in m. 5, there is one other
articulation of 4-17. This is a T4 pc transposition of the first chord. When
we write down the pitches of the three chords, as in example 11, we see
that each is a member of the same PCINT-class [3 5 3]. This obliges the
FB-classes of the three chords to be the same, since, as we will see,
PCINT-classes partition FB-classes. Two PSCs are represented by the
three psets; the first two are identical, the last is the dual of the first two.
This pitch symmetry gracefully frames this opening section and suggests
many other relations as well. Among these is a T. ol relation between the
first and last psets of the example. This symmetric pitch relation prompts
the listener to suspect that a TsI pc relation underlies the pitch symmetry.
This conjecture is well rewarded as the hexachords of the array are so
related. And together with the T relation already mentioned, TsI forms a
four-group of pc relations that generates the entire four-aggregate array
of the opening section. The transformations are Ty, Ts, Tsl, and Tgl,
which together with retrograde and rotation define the symmetries upon
which the array and much of the rest of the composition is based.'®

But we haven’t addressed the role of the middle chord of example 11.
Aside from having its own pc symmetry under Tsl, this pset provides an
origin for a special event crossing bar 44 shown in example 12. There the
pc 0 is played twice an octave apart signalling an array boundary. The
low major second joining the two Chks produces a memorable, if odd,
moment. Measure 44 perplexed me for many years before I recognized
its origin in the opening section. Of course, the reader has the benefit of
example 11; thus it doesn’t take much work to understand that the music
at m. 44 plays out the Ty, T4, T relation of the chords as the pcset {046}.
And hearing the three chords as connected by their shared figured bass
suggests that the pseg < C, Bb, Gb >is derived from the chords’ bass tones;
this underlines the connection to m. 44 that much more since the pseg
under T becomes the notes of the later passage. So it is Babbitt’s real-
ization of the pcs of the opening array of Partitions as psets related by
pitch equivalence relations that “explains” the event at m. 44. Conversely,
these pitch equivalences allow the listener to appreciate the pitch-class
symmetries in the array.

I now turn to relations among the three equivalences that partition
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A
bass notes of above. % ﬁ ﬁ
35 QJV-‘ t 1§
P A - P~ —
= = 5 S —
= = = —] '
> L] .
&b ........
{0AG6} T, > {046}

Relation of opening to m.44 of Partitions.

Example 12

PR(X). Example 13 summarizes the definitions of PSC, PCINT and FB.
While I trust my reasons for selecting these pset relations are not coun-
terintuitive, there is a property that gives them special status; they form a
hierarchy of relations under set-inclusion. As example 13 shows, for
PR(X), each member of SC(X) exclusively includes certain FB-classes,
each of these FB-classes exclusively includes certain PCINT-classes,
each of these PCINT-classes exclusively includes certain PSCs, which in
turn include certain psets. Or, working up from left to right, psets parti-
tion the PSCs, which partition the PCINT-classes, which partition the
FB-classes, which partition PR(X).

The entire system of equivalences forms a huge tree-structure of depth
4. Example 14 indicates some of the tree’s branches for the SC (3-3). The
diagram also indicates how the duals in the three pitch-space equiva-
lences interact. Note that two psets related by (p-space) T,I are found
respectively in dual PSC, PCINT, and FB-classes. But a PCINT-class
and its dual need not be respectively included in a FB-class and its dual.
For instance, PCINT [4 9] is included in FB-class 14, but PCINT [9 4],
the dual of [4 9], is not included in FB-class 34, the dual of 14, but in 19.

Another issue in the relations between duals defined in each pitch-
equivalence is revealed when we look at the members of duals of PSCs.
The pset {0 1 4} is the pitch-space inversion of {0 -1 -4}; these two sets
are dually related under PSC. Yet the spacing of their dual PSC and
PCINT-classes are related by retrograde. [1 3] is the retrograde of [3 1].
Since spacing is analogous to the INT of a pcseg, the two spacings can
taken as INTs of two pcsegs related by retrograde-inversion. This may
seem counterintuitive, but if we are ordering a pcseg Y under a proximate
realization in pitch-space, the RI (not the I) of Y similarly interpreted in
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Hierarchy of pitch and pc equivalence classes:

psets < PSC < PCINT-classes < FB-classes < PR(X)

Summary of pitch and pc equivalence classes:

PR(X) = all pitch realizations of members of SC(X).

FB-classes =  partially ordered members of SC(X) realized in
pitch-space to within pitch transposition.

PCINT-classes =  members of SC(X) partitioned into classes of pcsegs
with identical INTS realized in p-space from low to
high.

PSC = members of SC(X) realized in p-space as psets with
identical spacings.

psets =  unordered sets of pitches; members of PSCs.

Example 13

pitch produces an ordering of intervals that is the reverse of Y’s realiza-
tion. So inversional duality among pcsegs maps to inversional duality
among psets under retrograde.

While these pitch equivalences can model music in pitch-space with-
out postulating any underlying pitch-class relations yet do not contradict
potential pitch-class SC correlations, if any, the large number of equiva-
lence-classes remains a major issue. Even though there are pieces that
will be modeled adequately by a small number of classes, many others
have psets from literally hundreds of classes. Defining similarity rela-
tions between psets is one recourse to such situations, and it is of some
merit since it does not have the problems associated with pitch-class sim-
ilarity.

There are two basic difficulties with applying pitch-class set-class
similarity in analysis: 1) different pcsets can articulate the same pitch-
class SC; and 2) each pcset has a multitude of realizations in pitch and
time. If we base a similarity measure on a feature shared by all members
of a set-class, such as interval-class content or abstract subset content,
then we address the first difficulty. However, as example 15a indicates,
the second difficulty remains a severe stumbling block to the meaningful
use of pitch-class similarity in most analytic contexts. Each pset in the
example is a realization of the same eight pitch-classes, an octatonic
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Four psets that realize SC(8-28) (the octatonic scale).

Example 15a
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SC(6-23)[023568] SC(3-11)[037] SC(5-35)[02479] SC(8-9)[01236789]

Four psets, each very similar to its corresponding pset in
Example 15a. These psets are not realizations of SC(8-28).

Example 15b

scale. Yet the four sets are highly differentiated by spacing and interval-
class adjacency. Moreover, example 15b has four other psets that pair up
with the psets in 15a to produce similarity pairs—yet these psets are real-
izations of different SCs, none of which is octatonic. The example dem-
onstrates that similarity in pitch (and time) is just as likely to cut across
as confirm SC equivalence in pitch-class space. Consequently, paths of
peset similarity have to be carefully realized in pitch according to crite-
ria of pitch similarity; and more importantly, pitch similarity may oper-
ate independently of pitch-class equivalence. Because psets do not need
to be realized through some other musical space or dimension—that is,
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they can be directly perceived as chords or arpeggiated chords—this dif-
ficulty is answered. '’

While a number of similarity measures among the three types of pitch
equivalences can be constructed, I will discuss and evaluate what is per-
haps the most direct of all of them. This measure is called PM (for pitch-
measure) and compares any two psets. It registers two things: the num-
ber of pitches shared by two psets; and number of (pitch) ics of the same
size shared by the two. The measure therefore returns two numbers, the
first for pitch intersection, the second for ic intersection. We write,

p.i = PM(X,Y)

where X and Y are two psets and p and i are the cardinalities of pitch and
ic intersection. For the psets {04 6} = X and {-1 2 4} =Y, the number of
pitches shared is 1 and the number of ics shared is 1 so the PM(X,Y) is
L1

To illustrate how PM can aid pitch analysis, I include a few analytic
remarks on the opening of “Eine blasse Wischerin” from Arnold Schoen-
berg’s Pierrot Lunaire.?® Example 16a presents the first five measures of
the piece, an introduction immediately preceding the entrance of the
sprechstimme. The 13 chords are labeled A to I with repeated chords
given the same letter. In example 16b, each chord is listed as a pset with
its interval roster. The chords are then compared according to the PM
measure in the similarity matrix at the bottom of the example. The entry
in the cell in row R and column C of the matrix gives the PM similarity
between the psets associated with row R and column C. Bold face entries
highlight the higher degrees of similarity. The entries in the pitch-simi-
larity matrix are used to support the findings in example16a. As the ex-
ample shows, the passage exhibits a retrograde symmetry according to
the PM measure. This comes from a parallelism between the first three
measures and the next two. Each group of measures each exhibits a high
similarity between its beginning and ending pset, possesses adjacent PSC
connections, and is linked to the other by high similarity symmetrically
placed around the chord labeled D. D makes a good pivot since it is
almost inert, having only the weakest connections with the other chords.

Next, after the entry of the voice halfway through m. 5, the instru-
ments play a run of seven eighth-note trichords as shown in example 17a.
The chords, all different, are labeled from A to G and are compared in a
new similarity matrix in example 17b. Even without the matrix it is easy
to see/hear that chords D and E are related by T, in pitch, and chord A
and F are PSC duals. As before, there is an augmented-chord labeled G
at the end of the passage with little connection to the psets right before it.
In fact, its similarity rating is 0,0 with all other chords except B and C.
From a pitch-class point of view, G has the same content as chord D in
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Psets in example 16a.

pset interval-class roster
A = {5 11 14} [3 6 9]
B = (2 11 16} [5 9 14]
Cc = {2 5 11} [3 6 9]
D = {-1 7 15} [8 8 16]
E = {14 8} [3 4 7]
F= (25 9} [3 47]
G = {-50 6} [5 6 11]
H= (-4 -1 3} [3 4 7]
I = (-3 4 8} [4 7 11]

Similarity Matrix for psets A through H.

The entry in the cell in row R and column C of the matrix gives the PM
similarity between the psets associated with row R and column C. Bold
face entries highlight the higher degrees of similarity.

A B C D E F G H I

A — 1,1 2,3 0,0 0,1 11 0,1 0,1 0,0
B — 2,1 0,0 0,0 1,0 0,1 0,0 0,0
C — 0,0 0,1 2,1 0.1 0,1 0.0
D — 0,0 0,0 0,0 1,0 0,0
E — 0,3 0.0 0,3 2,2
F — 0,0 0,3 0,2
G — 0,0 0,1
H — 0,2
I —

(Note that the lower-left triangle of the matrix is left unfilled since these
entries are redundant.)

Example 16b

the previous passage, but we need not rely on pc relations to connect the
two chords. They are at the end of phrases, unrelated to their neighbors,
and share two pitches. Besides, all spacings of augmented chords are of
the same FB-class (and PCINT-class).

But we gain finer relations among the seven chords from consulting
the similarity matrix. Example 17c writes the chord labels connected by
curves. The curves show moderately high PM values from the matrix.
Numbers above each chord-label indicate the sum of all PM ratings in-
volving that chord. The example’s network of chords indicates the sepa-
ration of G from the rest save one and that chord E is the nexus of the
seven, having more similarity with its fellows than the others. We can
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A B C D E F G
Example 17a
Psets in example 17a.
pset interval-class roster
A = {10 21 30} [9 11 20]
B = {16 19 27} [3 8 11]
C = {11 16 19} [3 5 8]
D = {6 12 17} [5 6 11]
E = {10 16 21} [5 6 11]
F = {8 17 28} [9 11 20]
G = {7 11 15} [4 4 8]
Similarity Matrix for psets A through H.
A B C D E F G

A — 0,1 0,0 0,1 2,1 0,3 0,0
B — 2,2 0,1 1,1 0,1 0,1
C — 0,1 1,1 0,0 1,1
D — 0,3 1,1 0,0
E — 0,1 0,0
F — 0,0
G

Example 17b
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Example 17¢

rewrite the diagram as a partially ordered set as shown at the bottom of
the example. Now we see that the first chord, A, connects most directly
but non-adjacently to E and especially F, its dual. Chords B, C, E, and F
form a chain of similarity, with D acting as a local embellishment of E.
Note how E is part of three continuities, from B, from C and from D.
These associations make E stand out of the flow which makes sense since
E (and D) are duals to chord G of the previous example, a chord with lit-
tle affinity with its surroundings. A strategy seems to be emerging from
our observations. Psets that are most deviant from their local environ-
ment stand out and are closely tied via PM similarity to each other across
longer musical spans.

While the PM measure does help illuminate the passage, I do not
mean to imply that ordinary SC analysis would not point to some of the
same or similar conclusions. My point is that SC analysis using pc simi-
larity relations like Forte’s Ry, R;, and/or R, Morris’s SIM, or Rahn’s
TMEMB underdetermines the analysis.?! Consider that the degrees of
similarity determined by such measures would remain exactly the same
if the chords of the Schoenberg were each randomly transposed or in-
verted and/or if each pitch of the piece were randomly transposed by any
number of octaves. Rather, it is the exact pitch of each chord of the unal-
tered Schoenberg that accounts for our sense of pitch similarity therein.
As my discussion of examples 15a and b implies, pc similarity, if it is to
elicit any sense of heard “similarity,” is essentially dependent on realiza-
tions that promote pitch similarity. Thus, in the absence of pitch-class SC
relations, we need not appeal to pc relations as explanatory, but remain
within the domain of pitch, using PM or other kinds of pitch similarity to
explicate a passage.
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Example 18

The transparency of the PM similarity index is a strength; it is easy to
calculate and its uses are many. But behind the simplicity there is another,
quite remarkable feature that involves what is often called maximal sim-
ilarity in the literature on pc similarity measures. Two sets are maximally
similar if they are as similar as possible but not identical. Now two psets
from the same or dual PSC will contain the same ics, but the number of
pitches in common will vary from from all to none.?? In the case of tri-
chords, maximal similarity is therefore all (three) ics in common and two
pitches in common.

A more general question can be posed: when the two psets differ by
only one pitch what is the maximal number of ics that can be preserved?
The diagram in example 18 shows the trichordal case; it indicates how
the change of one pitch can preserve all ics in a three-pitch pset. Either
the middle note between the two others is changed so the ics b and ¢ inter-
change while the ic a remains constant, or the first note is flipped around
the last two it so that the loss of ic b from the first pitch to the second is
regained by the final position of the changed pitch. When there are more
than 3 pitches, then the intervals between the moving pitch and the other
pitches change but not in the subset of unaltered pitches. Thus, the num-
ber of ics that change in a pset S when one pitch is altered is the number
of pitches in S minus 1.2 We write:

#(Changed ics) = #S - 1.

Furthermore, when pset X is changed to pset X' by changing one pitch
the PM measure between X and X' is C,D, where C =#X - 1 and D > #(ics
in X) - C.

As mentioned above, the PSC of a trichordal pset can be preserved or
changed to its dual with maximal similarity under the PM measure. It is
more interesting to consider a special kind of maximal similarity among
trichords: a change of one pitch and a change of one ic. This similarity
relates trichords of two different PSCs provided the ic roster of either of
the two psets has no ic duplication. This kind of maximal similarity will
be called FOLDSIM. We have seen an example of FOLDSIM in exam-
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a< e,

-

®L--°"
Example 19d

In the above, dotted arrows show a flip from o over pivotnote -o- to @ ;
solid lines show intervals.

ple 16a. There trichordal psets E and I share two out of three pitches and
two out of three intervals.

I will now show that trichordal FOLDSIM occurs as a byproduct of
two pitch transformations called unfolding and folding in invented by
Jonathan Bernard for analyzing the music of Varése.? I shall refer to all
of these transformations as foldings.?> Consider the three trichords shown
schematically in example 19a. On the left is a trichord whose three
pitches are represented by black note-heads with the ics a, b, and a+b.
The center trichord shows the result of transforming the left trichord by
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Pset spacing [b a] and pset ic roster {a b a+b} become in
Ex. 19a [a+b a] or [a a+b] and {a a+b 2a+b},
Ex. 19b [b-a a] or [a a-b] and {a a-b b},
Ex. 19¢ [b a+b] or [a+b b] and {a a+b 2b+a},

Ex. 19d [a b] and {a b a+b}.

Example 19¢

symmetrically flipping its middle pitch around its top pitch. This is indi-
cated by a white note representing the old position of the changed pitch
and a line through the pivot note—in this case, the top one. Since the flip
is symmetric, ic a is preserved, as is the ic a+b (between the unchanged
pitches). A new ic however is formed between the flipped note and the
bottom pitch; it is 2a+b. Bernard calls this kind of flip an unfolding. The
right trichord shows what happens when the flipped note is originally on
the bottom, keeping the top one as the pivot. This flip transformation is
not described as such by Bernard. In any case, the result is the dual of the
center trichord.

Examples 19b and c continue the flipping around the middle and bot-
tom pitches respectively. The center trichord of 19b is an example of
Bernard’s other transformation, folding in. Some other foldings not
described by Bernard are given in example 19d. Here the pivot is not a
note but two pitches, or the ic between them. The result is pset duality.

Example 19e produces a summary of the six basic foldings, plus the
two others in 19d. The example shows that a given trichord can be
changed into three pairs of dual trichords or its own dual. Four pairs of
duals are involved. Because two out of three pitches and ics are preserved
in each case, the flipping transformations produce either FOLDSIM or
maximal similarity between the unflipped trichord and any of the others.

We can illuminate an important aspect of folding if we repetitively
perform one of the six basic types given above. In such cases, one pitch
remains invariant throughout while the other two change one at a time
and alternately. In example 20a the pset {11 14 15} is unfolded down-
ward. The process involves the bottom two pitches exchanging the roles
of flip and pivot. Since the first pset has 3 as its lower ic, the set of spac-
ings retains an ic 3. The other ic in the spacing expands by 3 as does the
outside ic, not noted in the spacing. Note that the moving pitches form
cycles of one pitch interval. This observation couples folding, FOLD-
SIM, 2and pitch transposition to the compositional theories of George
Perle.?¢
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spacings: [31] 34] (37) [310]

Repeated unfolding of pset {11 14 15}.

Example 20a
A 1 ! k
. e 3 * =

spacings: [411] [47] (43] (B1] (14 (54
Repeated infolding (then unfolding) of pset {-1 3 14}.

Example 20b

Example 20b displays folding in—or at least up to a point. The bot-
tom pitches exchange the flip and pivot roles until they reach the invari-
ant pitch. Then the process changes so that the lowest note flips not only
around the middle but over the top note. This happens once more, after
which the process is a matter of unfolding upward. In this example the ic
4 is preserved in the spacings that are produced by in- or unfoldings. In
the crossing of the invariant pitch, the 4 is an outside interval. The other
two intervals in each pset’s ic roster (either in the spacing or the outside
interval) are contracted or expanded by 4.

The next step in our exploration of trichordal FOLDSIM is to connect
all PSCs whose psets are related by in- and unfolding to form a FOLD-
SIM network.?” The most basic and perhaps most important of the
FOLDSIM networks is shown in example 21. As before, we represent a
PSC by its spacing. At the top of the network we start out with the PSC
[01], containing the pset {0 O 1}. This pset and all other members of its
PSC can be folded into only psets of two PSC: another member of its own
PSC or members of the PSC [11]. This shown by the line connecting [01]
to [11]; the self-mappings under folding (producing maximal similarity)
are suppressed. The psets of PSC [11] can be folded into psets of four
PSCs: itself, back to [01], to [12], or [21]—this shown by connecting
lines on the network. Psets of [12] can be folded into four different PSCs;
[11], [12], [13], and [32]. On the other side of the network, we have the
pset [21] connected to [11], [23], [31], and itself. As the reader can see,
the entire network is left/right symmetric under pitch inversion. Since
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folding can connect pset duals, we should regard the FOLDSIM network
as having connections between its dual psets. The reader can imagine the
network as folded up around a middle axis of symmetry so that each pset
coincides with its dual. With the psets [12] and [21] and all others below
we have the norm for trichords given above in example 19e; that is, fold-
ing connects a pset with psets of four pairs of dual PSCs, one of which
its own PSC or its dual; the top two psets of the network have less fold-
ing mappings because they are invariant under T,I.

As can be readily seen, the network forms a tree structure. This is of
some significance since nodes in a tree structure are related to each other
by one and-only one path.?® The distance between two PSCs is the num-
ber of PSCs on the path between the two plus one. Duals are related by a
distance of 1. The network can also be interpreted as relating psets. This
means that one can get from a specific pset to another by following a
unique path on the network by in- or unfolding pitches; this automati-
cally preserve two pitches and two ics from one pset to the next. Then the
members of the connected PSCs may not be related by FOLDSIM or any
other degree of PM similarity dependent on pitch intersection. The dis-
tance between a pset of [57] and a pset of [54] with FOLDSIM is found
by tracing the unique path between them. The PSCs on the path are [57],
[52], [32], [12], [13], [14], [54]; there are 5 PSCs between the beginning
and end so the distance is 6.2°

Since trichordal FOLDSIM networks are trees, they induce a hierar-
chy on their nodes. Moving down the tree is done by unfolding, moving
up the tree involves infolding. To get from one node to another, one either
unfolds, infolds, or infolds then unfolds. In the last move, there is a node
at which the folding changes from in- to un-. This is called the control-
ling pset (or controlling PSC) and has the smallest ics of all the other
psets on the path. Another relation between nodes of the tree is asserted
by Bernard’s constellation, which in our theoretic context is a node N and
the set of nodes that surround N on the tree. Thus the PSC [2 5] and the
PSCs that surround it, [2 3], [7 5], and [2 7] form a constellation “around”
[2 5]. Bernard seems to treat his constellations as if they were akin to
equivalence-classes, but since they are actually similarity sets, constella-
tions are not mutually exclusive. Bernard therefore advances a number of
criteria for limiting the PSCs found in a piece to the members of a few
constellations. This is done empirically, presuming that the analyst will
be able to show that only a small number of PSCs dominate a work and
these in turn represent the pcsets in their respective constellations.30

Two additional aspects of FOLDSIM networks are worthy of com-
ment. First, as mentioned above, the network in example 21 is not the
only tree of trichords. In general, any number of trees can be generated
from top node containing the PSC [0 n], where n is any non-negative inte-
ger.3! The various trees partition all the trichordal PSCs into non-over-
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lapping collections internally related by folding and FOLDSIM. For
example, the (augmented-chord) PSC [4 4] is a member of the tree with
[0 4] as its top node. Thus, it is not related to members of the tree in
example 21 by folding or FOLDSIM.?? Only the top two nodes of a
FOLDSIM network contain psets with T,I invariance.

Second, when we generalize foldings to tetrachords and larger psets,
the elegance of the trichordal networks is complicated. Thus with large
psets, similarity and folding diverge; maximal similarity is better dis-
cussed directly than as the result of pitch flips.

Returning to the more general subject of pitch similarity, let us look at
the opening of Varese’s Intégrales, with an eye on FB-classes, not PSC
relations. Since FB-classes relate to T,-type pitch-class SC-classes, and
are notated via pc intervals, octave equivalence lurks in the background.
Therefore the following discussion cannot conform to Bernard’s general
assertion that pitch-class relations do not function in Varése.>* Further-
more, FB-classes put emphasis on the bass pitches of psets. Nevertheless,
we will show that pc-space and bass bias are reasonable contexts for at
least one piece by Varese.

Example 22 provides the pitches for the first 78 measures of Inté-
grales except for a brief patch of music from m. 61 to 69. As the pitch
turnover is slow, the example represents the passage with some security
even though the instrumentation and percussion are not notated. As in
other pieces of Varése, aggregate completion—pitch-class saturation—
tends to define sections. In this case, the aggregate is “all-but-one-or-
two,” a ten- or eleven-pc chord. The missing pitch-class(es) for a given
section are found in the bass of a neighboring chord or passage. For
instance, the missing pc 5 of the first 23 bars occurs in the lowest note of
the next bars, an Fbin the trumpets. This passage from measures 24 to 29
produces a local climax but omits the pc 0, the lowest pitch in the first
section. The pcs 9 and A are omitted from next large part of the work
which begins at m. 32. The missing pcs are found as the lowest pitches in
mm. 26-29. The pcs can also be found in the trombone glissando but are
repressed as they slide up to the trombone’s high B. The low F} in the
contrabass trombone is also found later at the very end of the next sec-
tion in m. 69. These instances of pc 6 provide the missing pc for mm. 70-
7. A local lowest note at mm. 72-3 is pc 1, which is the missing pc in the
next gesture in mm. 77-8.

Since aggregate completion is an integrating feature of Intégrales and
that the pcs that confirm the completion are in the bass, we are motivated
to use a theoretic tool that emphasizes the lowest tone.* I have therefore
examined the psets in example 22 according to their FB-class member-
ship. As for occurrences of the same FB-class, we find FB-class 12 most
prominent, especially in mm. 24-9 and mm. 70-8. The opening three
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notes of the piece (played by the Eb clarinet) form the FB-class 68, imme-
diately followed by a 126 in the clarinets and piccolos. The same FB-
classes are found in m. 32 where the horn takes the T.,; of the Eb clarinet’s
notes of the beginning. Note that the FB-class 126 formed by the low F#
and C, plus the horn Gk and the higher G# is not analogous to the same
FB-class at the opening; the collection of instrumental forces and their
overlap is different. Another aspect of FB-classes occurs when notes col-
lect over a sustained bass note as in mm. 32-52, or when successively
lower notes are added to a high chord—this occurring in mm. 24-9. In
the former place, the FB-classes formed by the passage are related by
inclusion, merely adding more figures to the previous ones over the low
F4. Such passages promote FB-class similarity. In the descending pas-
sages however, each new bass forms a completely new FB-class. There
can be a drama to such progressions as in measure 26, found in the top
system after the dotted bar. The three FB-classes are 89B, 12AB, and
1245678. The move from the first preserves only the interval B, while the
move from the second to the third shares only two intervals, 1 and 2,
while changing two and adding three intervals more. The harmony at
mm. 53-61, preceded and followed by fanfare-like writing in the trum-
pets sounds like a flashback to the opening. Why? Because the 68 and
126 of the opening measures match the FB-classes here, 168 and 12678,
by inclusion. Moreover, the pitch-classes of the opening, {2 8 A} are also
shared. But the opening pset { 14 20 22} is neither literally nor abstractly
included in the pset { 2 8 15 22} of measure 53, and the pitch-class con-
nection between these chords cannot be registered in a world defined
without pitch-classes, so only the FB-class can connect the two chords in
pitch-space.

So despite Bernard’s admirable work, I believe pitch-class connec-
tions do function in Varése, regardless of appeals to the composer’s writ-
ings or to other aspects of his music.

There is much more to say about the relation of pitch equivalence and
similarity to pitch-class relations.>> But the discussion of example 22
should portray my view of the influence of pitch-class on pitch relations
well enough. Some music may not be modeled well by pc-relations, but
this does not mean that in our use of pitch and contour we should ignore
pc function altogether. For it is important that theory does not limit the
potential richness inherent in the audition of its composers, performers or
listeners—especially with those composers who have stretched and chal-
lenged our ears and minds.
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NOTES

1. Of course, composers have also identified the difference between pitch and pc, as
in Boulez’s distinction between absolute and relative pitch or John Cage’s state-
ment “I was free to hear that a high sound is different from a low sound even when
both are called by the same letter.” See Boulez on Music Today (Faber: Boston,
1960), 35, and Cage, Silence (Wesleyan University Press: Wesleyan, Ct, 1958),
116.

2. See Milton Babbitt, “Twelve-tone Invariants as Compositional Determinants,”
Musical Quarterly 46 (1960), John Rahn, Basic Atonal Theory (New York: Long-
man, 1980).

3. Robert Morris, Composition with Pitch-Classes: a Theory of Compositional De-
sign’(New Haven: Yale University Press, 1987).

4. The generality of Morris’s definitions of p- and pc-space will not be needed here.
For our purposes, p-space is the familiar set of pitches separated by semitones,
from low to high; the set of integers models p-space. Pc-space is the set of pitch-
classes; the set of residue-classes mod 12 models pc-space so that pitches related
by any number of octaves belong to the same class.

5. See Allen Forte, The Structure of Atonal Music (New Haven: Yale University
Press, 1973).

6. Morris’s account of pitch relations has all the theoretic apparatus of pcset theory
(including adaptions of Alphonce’s invariance matrices) save complement-rela-
tions. (See Bo Alphonce, “The Invariance Matrix” (Ph.D. diss., Yale University,
1974).) It is also straightforward, having none of pitch-class theory’s (interesting)
complications such as the Z-relation or “embedded (abstract) complementation.”

7. Jonathan Bernard, The Music of Edgard Varése (New Haven: Yale University
Press, 1987), 43.

8. In a different theoretic context we would continue to use integers to stand for
pitches. For our present purposes however, it is just as easy and convenient to use
music notation for pitches since the numerical notation is isomorphic to the nota-
tion of pitches on the staff to within enharmonic equivalence. This is not the case
with pitch-classes, which must realized as particular pitches, a one-to-many, and
therefore indeterminate, association.

9. See Morris, Composition, xviii.

10.T should point out that Morris’s definition of “pitch set-classes” on page 55 of
Composition includes T,I as well as T, as a criterion for set-class membership.

11. The comparison is not quite exact as T,I is an equivalence operation in pc SCs, but
not in pitch PSCs. If we define pc SCs under T, alone, there are 19 trichordal SCs.

12. Dual PSCs taken in union form Morris “pitch set-class,” or a T,/T,I PSC. See note
10.

13. Dora Hanninen has studied the effect of articulating rows in narrow registral spans
in her paper, “Contour as a Medium for Musical Association in Milton Babbitt’s
Tableaux (1973) for Piano,” delivered at the April 1994 meeting of the New Eng-
land Conference of Music Theorists at Connecticut College, New London, and the
November 1994 National Conference of the Society for Music Theory at Talla-
hassee.

14. Pcsegments are ordered sets, but we need not always interpret their ordering in
time. In the case of PCINT-classes, a pcsegment’s ordering interpreted in pitch

240



(register) generates the class. In fact, any pitch segment P can be considered as
defined by two pcsegments; one determines the pitches of P from low to high, the
other determines P’s pitch’s temporal succession.

.Morris has discussed FB-classes in his article, “Some Recommendations for
Atonal Music Pedagogy in General; Recognizing and Hearing Set-Classes in Par-
ticular,” Journal of Music Theory Pedagogy, 8 (1994). Chromatic figured bass is
also elaborated in Alan Chapman “Some Intervallic Aspects of Pitch-Class Set
Relations,” Journal of Music Theory 25/2 (1980). His AB is our FB (and his VP is
our SP).

. For a survey of Loquin’s contribution to figured bass theory see “Anatole Loquin:
Algebra de I’'Harmonie (1884),” an unpublished paper by Penelope Peters.

. Note as stipulated above, the intervals of all FB-classes, including duals, are writ-
ten in ascending order.

. I should mention that the symmetries of the array and the 12-semitone disposition
of pitch registers that articulate the array lines almost automatically produce the
features pointed out here. One only has to articulate a certain four-pc begin-set
from the beginning of the first aggregate, and the corresponding end-set from the
last aggregate in some coherent, aurally cogent manner, to achieve these pitch and
pc relations.

19. After these considerations, the reader might wonder if my reasons for applying

—_

similarity relations only in pitch might be used also to argue that grouping pcsets
into (pc) SCs has comparable difficulties. While it is true that different spacings
and temporal adjacencies can make two members of the same pc SC “sound” quite
different, SCs have two basic properties that prevent the arguments from going
through. First, the abstract subset content of each member of a SC is identical
while pcsets from different SCs have different subset content. Pc similarity mea-
sures based on degrees of abstract subset intersection do not as a rule differentiate
classes of SCs but only connect them in a network. Second, the members of a SC
are related via the familiar mappings in the canonical group, usually T, and T,I.
With pcsets from different SCs related by pc similarity relations, the mappings
from one to another are various and arbitrary. If one can find a family of mappings
that consistently relates pcsets from different SCs, one can posit the mappings as
members of a canonical group and the similarity turns into equivalence.

. John Roeder discusses the same passage in “A Geometric Representation of Pitch-
Class Series,” Perspectives of New Music, 25/1 & 2 (1987). He compares the
chords of the Schoenberg using his “two-dimensional ordered interval space,” and
arrives at some of the same relations present herein. Nevertheless, his methodol-
ogy only concerns ordered pcsets which can, but need not be, interpreted in p-
space (our PCINT-classes).

. See Forte The Structure of Atonal Music, Morris, “A Similarity Index for Pitch-
Class Sets,” Perspectives of New Music 18/2 (1980), and Rahn, “Relating Sets”
Perspectives of New Music 18/2 (1980).

22. This works for members of the same PSC under transposition. A sum roster has to

be generated for determining intersection under T,I between (transposed) duals.

23. Of course, one or more of the new ics introduced by the changed pitch may be the

same as one or more ics lost in the process. Thus, the number of different ics after
the pitch change may be less than #S - 1.

24. See Bernard, The Music of Edgard Varése, 74. 1 should also note that my presen-
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25.

26.

27.

28.

29.

30.

31
32.

33.

tation of Bernard’s transformations differs from his and takes a different theoretic
and analytic tack. For instance, Bernard defines equivalence of psets under both
pitch transposition and inversion; our dual PSCs are thus collapsed into one
Bernard pitch SC. Consequently, he considers some of all of the possible unfold-
ings and infoldings as redundant—specifically those that produce duals of others.
David Lewin has also formalized Bernard’s un- and infoldings as “serial transfor-
mations” called FLIPSTART and FLIPEND in Generalized Musical Intervals and
Transformations (New Haven: Yale University Press, 1987), 189. Perhaps the ear-
liest invocation of folding is found in Benjamin Boretz, “Sketch of a Musical Sys-
tem (Meta Variations Part II),” Perspectives of New Music 8/2 (1970). See Df. 2.13
on p.101 and its analytic use in Boretz, “Meta Variations, Part IV: Analytical Fall-
out (I),” Perspectives of New Music 11/2 (1973), 182.

See George Perle, Twelve-Tone Tonality (Berkeley: University of California
Press, 1977).

Lewin makes the same move to develop chains (actually cycles) of overlapped tri-
chords related by repeated applications of FLIPEND and FLIPSTART in alterna-
tion in his example 8-11a and b in Generalized Intervals. His cycles can also be
generated from the network in example 21.

For the same reason, Tree structures are automatically mathematical “metrics”
since the distance from node a to b or from node b to c is equal or less than the dis-
tance from node a to c—distance being the number of arcs traversed.

Consider the sequence of psets that can represent the path [57], [52], [32], [12],
[13], [14], [45]. For instance, starting with pset {5 10 17} representing the PSC
[5 7] can form different chains of psets having FOLDSIM: one chain is{5 10 17}
{10 1517} {121517} {14 1517} {14 1518} {14 15 19} {14 19 23}; another is
{51017} {51012} {5810} {568} {458} {348} {38 12}. Such realization
issues are discussed in my paper, “Compositional Spaces and Other Territories,”
Perspectives of New Music 33 (1995). The network in example 21 would be called
an abstract compositional space and the much more complex graph of all the pos-
sible realization paths (including the two just given) is a literal space.

But despite our ability to describe Bernard’s work on Varése with the present con-
ceptual framework, it has a very different feel in the original since Bernard relates
his “basic forms” (p.74) with operations of folding and shows these relations as
geometric configurations and transformations on a pitch/time grid.

Except where n is 0, and there is no tree, only the PSC [0 0].

According to Bernard, “A Theory of Pitch and Register for the Music of Edgard
Varése” (Ph.D. diss., Yale University, 1977), 114, the opening of Varése’s Inté-
grales is based on two “basic forms,” our PSCs [4 9] and [2 6] and their duals.
These two pairs of PSCs are not on the same tree and are therefore not related by
folding or FOLDSIM. [4 9] and [2 6], with their constellations or networks, there-
fore represent highly differentiated, even conflicting sounds at the opening of the
work. The two networks represented by [4 9] and [2 6] are generated by [00 1] (or
ic 1) and [0 O 2] (ic 2). The conflict between the chromatic versus whole-tone
worlds comes up in other pieces by Varése. For instance, compare the end of Den-
sity 21.5 and the rest of that composition.

Despite categorical statements about ruling out octave and inversional [read: com-
plementary interval] equivalence on page 43, Bernard does discuss “octave dou-
bling” and says on page 102 “an interval enlarged or shrunk by an octave (or com-
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34.

35.

pound octave) has, for some purposes only [Bernard’s emphasis], a meaning
equivalent to its unaltered form” (The Music of Edgard Varese). These octaves
may be explained if we consider FB-classes to inform analysis. At least in tradi-
tional figured-bass theory, an interval number specified by the figured bass may
result in the realization of more than one representation of a pitch-class in differ-
ent octaves, which does not change the figured bass’s function. In our theory how-
ever, an octave or unison doubling would be represented by a 0 in the FB name.
In the following I do not define similarity among FB-classes. Nevertheless, the
following definition underlies the discussion. Two FB-classes are similar to the
degree they have the same numbers (figures) in their names. Maximal FB similar-
ity occurs when two FB-classes differ by only one number, either by change or
omission: for instance, 678 is maximally similar to 67 and 679 and 4678.

For instance, I have not discussed PCINT similarity. John Roeder proposes a use-
ful (non-Euclidian) measure in “A Geometric Representation,” 383-84. “[I]t mea-
sures the total amount of discrepancy between [two INTSs’] correspondingly situ-
ated intervals.” Other equivalences can easily be derived from FB; consider FS
(figured soprano) and FSB (combining FB and FS, wherein pitches n + 12q apart
form the outside ics of equivalent psets). William Benjamin’s “harmonic bip” and
its derivatives form other equivalence functions. See Benjamin’s review of Allen
Forte’s The Structure of Atonal Music in Perspectives of New Music 13/1 (1974),
183.
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