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RELATING MUSICAL CONTOURS:

EXTENSIONS OF A THEORY
FOR CONTOUR

Elizabeth West Marvin and
Paul A. Laprade

Cognitive psychologists and music theorists have, for many years, under-
stood that human perception of pitch cannot simply be modelled along a
single continuum from low to high.! Thus representational models for pitch
perception have been developed by psychologists to reflect a number of re-
lated dimensions? among them the tendency of listeners familiar with West-
ern tonal music to group octave-related pitches into equivalence classes.
Nevertheless, in spite of this tendency, listeners are for the most part unable
to recognize familiar melodies which have been distorted by octave dis-
placement unless the melodic contour remains invariant. So important is the
role of contour in the retention and recognition of well known melodies that
even the size of the interval between successive pitches may be altered, and
subjects will usually recognize the tune if the contour remains unaltered 3
Further, experimentation has shown that listeners frequently confuse a
fugue subject with its tonal answer—that is, they identify the two as identi-
cal on the basis of their equivalent contours and diatonic scale types, despite
the fact that their pitch contents differs4

By extention to a non-tonal context, we may predict that listeners will
be more likely to assume that non-equivalent sets belong to the same set
class if their contours are the same. In fact, W. J. Dowling and D. S. Fugi-
tani have offered experimental justification for the premise that listeners
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retain brief non-tonal melodies solely in terms of their contours’ Thus we
may surmise that given the same or similar rhythmic pattern, listeners are
generally able to perceive equivalence or similarity among musical con-
tours more easily than among pitch-class sets in melodic settings® Figure
1, for example, illustrates two instances drawn from the music of Alban
Berg in which melodic patterns share contour identity but not set-class
identity. The melodies of Figure 1A appear about six bars apart in the
second movement of the Lyric Suite. Surely the listener will associate these
two on the basis of their identical contours and rhythmic similarity, in spite
of the fact that their intervallic and pitch contents differ. The first melody
is a member of the set class 10-4, while the second belongs to set class 10-3.
The melody of Figure 1B, drawn from the second movement of Berg’s
Violin Concerto, may be divided into two parts as marked. The second unit
is an intervallic expansion of the first, but may be heard as a same-contour
imitation of the first. As in the previous example, each unit belongs to a
different set class—the first to 4-27 and the second to 4-20.

For purposes of musical analysis and description, music theorists have
also found it useful to divide musical space into a number of interrelated
spaces,’” most commonly into pitch space (a linear space of pitches which
extends from the lowest audible range to the highest) and pitch-class space
(a cyclical space of twelve pitch classes that assumes octave equivalence
and, because of its closed group structure under transposition (addition
mod-12) enables equivalence classes not possible in pitch space)® Recently
a number of theorists have focused their attention upon the examination of
another type of musical space, which has been called contour space’® In
formulating this concept, music theorists recognize the fact that listeners
may perceive similarity or equivalence among the contours of two phrases
quite apart from accurately recognizing pitch or pitch-class relationships
between them, as noted above. In order to reflect this aspect of musical
perception in analysis, new theories for comparing contours are necessary.
Criteria by which contours may be judged equivalent have already appeared
in the literature in publications by Robert Morris and Michael Friedmann.
This article takes Morris’s contour-space equivalence relations as its point
of departure, develops a prime form algorithm and table of c-space segment
classes, posits similarity measurements for c-space segments and segment-
classes of the same or differing cardinalities, and applies these tools in
musical analysis.

Contour Equivalence. Robert Morris defines contour space (c-space) as
a type of musical space “consisting of elements arranged from low to high
disregarding the exact intervals between the elements.”!® These elements
are termed “c-pitches” (“cps”) and are “numbered in order from low to high,
beginning with 0 up to n-1,” where n equals the cardinality of the segment,
and where the “intervallic distance between the cps is ignored and left
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a. Berg: Lyric Suite, (mvt. II), vin. I, mm. 66-67 and 72-73
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Figure 1. Same-Contour Melodies
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undefined.”!! (See Glossary for definitions of technical terms.) The decision
not to define the intervallic distance between c-pitches reflects a listener’s
ability to determine that one c-pitch is higher than, lower than, or the same
as another, but not to quantify exactly how much higher or lower. In this
respect, Morris’s theory differs from that of Michael Friedmann. Many of
the issues addressed in the latter part of Friedmann's article hinge upon the
concept of contour intervals that measure the distance between c-pitches.!?
In our formulation, however, as in Morris, the intervallic distance between
cps will remain undefined. ]

Musical contours are by definition ordered; thus, we will define a c-seg-
ment (cseg) as an ordered set of c-pitches in c-space.!> Csegs will be
labelled throughout this paper by capital letters; the cps which make up
csegs will be denoted by lower-case letters. Further, we define any ordered
sub-grouping of a given cseg as a c-subsegment (or csubseg). A csubseg
may be comprised of either contiguous or non-contiguous c-pitches from
the original cseg, as shown in Figure 2. The contour diagrams used in this
figure appear throughout our discussion as graphic representations of con-
tour shape. Such diagrams make relationships among contours fairly easy
to spot visually; thus, we see that csubsegs B and C are inversionally re-
lated, while A and D appear to be equivalent contours. More formal defini-
tions of contour equivalence, the operation of inversion, and other relations
among contours follow.

We propose a “normal form” for csegs and an operation by which csegs
that are not in normal form may be reduced to this form. The elements of
a cseg of n distinct c-pitches are listed in normal form when the cseg’s c-
pitches are numbered from 0 to (n — 1) and are listed in temporal order. A
csubseg’s elements may retain the same numbers assigned to these cps in
the original cseg, or may be renumbered through “translation.” Translation
is an operation through which a csubseg of n distinct c-pitches, not num-
bered in register from 0 to (n — 1), is renumbered from O for the lowest c-
pitch to (n — 1) for the highest c-pitch in the csubseg, as illustrated by the
asterisks in Figure 2 .14

Morris’s comparison matrix (COM-matrix) will be used to compare
contours in c-space, to define equivalence relations, and to develop our
similarity measurements for musical contours. The comparison matrix is a
two-dimensional array which displays the results of the comparison func-
tion, COM(a,b), for any two c-pitches in c-space. If b is higher than a, the
function returns “+1”; if b is the same as a, the function returns “0”; and
if b is lower than a, COM(a,b) returns “—1.”'5 The repeated instances of
the integer “1” are omitted in the COM-matrix, as shown in Figure 3 below.
Each of the matrices throughout this article, has symmetrical properties in
which the diagonal of zeros from the upper left-hand to lower right-hand
corner (the “main” diagonal) forms an axis of symmetry. Each value in the
upper right-hand triangle is mirrored on the other side of the main diagonal
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Webern, op. 10/1, mm. 7-10

=<502314>

=<5023>=<3012>*

=<0231>

=<5314>=<3102>*

=<5014>=<3012>*

*Normal order by translation.

A and B are contiguous; C and D are non-contiguous c-subsegments.

Figure 2. C-Subsegments
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7
4 4
3 3 5
2 2 4
1 1 3
0 0 0

A=<03241> B=<04231> C=<05473>*
03241 04231 05473
010+ + + + 010+ ++ + 010+ + + +
31-0 -+ - 41-0 - - - 51-0-+-
21- +0+ - 21-+ 0+ - 41 -+ 0+ -
41- - -0 - 31-+-0 - 71---0-
11-+++0 11-+++0 31-+ ++0

Csegs A and C are equivalent because they generate identical COM-matrices.

* Normal formof <0547 3>= <0324 1> by translation.

Figure 3. Comparison Matrices

230



by its inverse. This symmetrical structure is a natural consequence of the
fact that contour-pitch COM-matrices only compare a cseg with itself.

The comparison matrix provides a concise profile of a cseg’s structure
in much the same way as Friedmann’s Contour Adjacency Series (CAS),'6
except that the COM-matrix furnishes a much more complete picture since
it is not limited simply to relationships between adjacent contour pitches.
Indeed, the CAS appears as a subset of the COM-matrix, as the first
diagonal above and to the right of the main diagonal, as shown in Figure
4A. Each of the diagonals to the right of the main diagonal is termed
INT,,,'” where n stands for the difference between order position numbers
of the two cps compared; that is, INT, compares cps that are four positions
apart. INT; displays the results of the comparison function for each pair of
adjacent cps as Figure 4B shows: < + — + + > for the comparisons 0
t03,3to 1, 1to 2, and 2 to 4. INT, shows each comparison between a given
c-pitch and a second cp twice removed from the first: < + — + > for 0
to 1,3 to 2, and 1 to 4. Likewise, INT, displays each comparison between
two cps three positions apart: < + + > for 0 to 2, and 3 to 4. Finally,
INT, shows the comparison between two cps four positions apart. In this
case, the predominance of pluses over minuses in each of the INTs illus-
trates the generally upward motion of this contour.

The information provided by the COM-matrix gives a much more ac-
curate profile of cseg structure than INT, alone, since c-pitches may be
compared not only consecutively, but also non-consecutively with respect
to relative height. By way of example, Figure 5 contrasts several csegs
which share an identical INT, but which differ a great deal with respect to
their overall musical contours, a fact which is reflected in their respective
comparison matrices.

Two contour equivalence classes based upon the comparison matrix have
been proposed by Morris. The first of these is made up of all c-segments
which share the same comparison matrix; thus, the first and third contours
of Figure 3 preceding were equivalent csegs since they produced identical
COM-matrices. Further, equivalent csegs may be reduced to the same
normal order by our translation operation, as shown in Figure 3. The sec-
ond contour equivalence relation, the c-space segment class (csegclass), is
an equivalence class made up of all csegs related by identity, translation,
retrograde, inversion, and retrograde-inversion. The inversion of a cseg P
comprised of n distinct cps is written IP, and may be found by subtracting
each c-pitch from (n — 1).!® The retrograde of a cseg P (written RP) or its
inversion (written RIP) consists of the c-pitches in cseg P or IP in reverse
order. Two csegs belonging to the same c-space segment class may be re-
duced to the same prime form according to the prime form algorithm we
introduce below. Csegclasses, as distinct from csegs, will be labelled with
underscored capital letters.

Figure 6 shows representatives of csegclass P, consisting of its prime
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- INT4
--INT3
--INT,
--INTq
-- main diagonal

INT{= <+ - ++> (=CAS) INT2=<+-+>

INT3= <++> INT4= <+>
B:
N
INT{--<0 3 1 2 4> INT2--<0 3 1 2 4>
A SIS S Nt A
+ -+ + + +
+
TN
INT3--<0 3.1 2 4> INT4--<0_ 3 1 2 4>
SN— ~_ 7
+ +

Figure 4. Structure of the Com-Matrix
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5 5 5
4 /\/
3 4 3
2 2/\/
1
0 1
0

A=<021435> B=<120435> C=<043512> D=<452301>

043512 452301
¥ 1 0N

Each contour has INT] =< +-+-+>.

As shown by contour graphs, contours A and B are most similar;

A and D most dissimilar.

Figure 5. Comparisons Among Selected Csegs Where
INTj=< +—+—+ >
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form, < 013 2 >, together with its inversion, retrograde, and retrograde-
inversion, and the COM-matrix for each. The inversion, retrograde and
retrograde-inversion of a contour P are also defined by Morris in terms of
specific transformations of the COM-matrix for P}'* as illustrated in Figure
6. The COM-matrix for IP, for example, merely exchanges each “+” from
the P matrix for “—” in the IP matrix and likewise exchanges “—" for “+.”
The matrix for RIP is related in a somewhat more abstract manner, as
though the P matrix had been “flipped” around the secondary diagonal (the
diagonal proceeding from the lower left-hand corner to the upper right-hand
corner). Finally, the COM-matrix for RP combines both the flip and the
exchange features.

Two csegs belonging to the same c-space segment class may be reduced
to the same prime form. Simply expressed, our prime form algorithm con-
sists of three steps:

1) If necessary, translate the cseg so its content consists of integers from
Oto(n—1),

2) If (n — 1) minus the last c-pitch is less than the first c-pitch, invert
the cseg,

3) If the last c-pitch is less than the first c-pitch, retrograde the cseg?2®

If for steps 2 and 3 the first and last cps are the same, compare the second
and the second-to-last cps, and so on until the “tie” is broken. Figure 7
illustrates the use of this algorithm for several csegs and shows that each
is a member of the same csegclass. A listing of all c-space segment classes
of cardinalities 2 through 6 may be found in the Appendix to this article.
We exclude larger csegs because of limitations of space.

Similarity Relations. The similarity of two csegs or csegclasses may be
measured in two ways: either by comparing their structural profiles as sum-
marized in the COM-matrix, or by examining their common csubseg struc-
ture. The first of these we will call the contour similarity function (CSIM)
and the second, the contour embedding function (CEMB)2! Both are
designed to return a decimal number which approaches “I” as csegs become
more similar. A function which returns the value “I” compares two equiv-
alent csegs?

The contour similarity function, CSIM(A,B), measures the degree of
similarity between two csegs of the same cardinality. It compares specific
positions in the upper right-hand triangle of the COM-matrix for cseg A
with the corresponding positions in the matrix of cseg B in order to total
the number of similarities between them 23 For each compared position of
identical content, this total is incremented by 1. Such a similarity measure,
if it were simply to total the number of identical matrix positions, would
not yet yield a uniform model of similarity among csegs of various
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3 3 3 3
2 2
1 1 1 2 2 1
0 0 0 0

P: <0132> I. <3201> RI: <1023> R: <2310>

0132 3201 1023 2310
010 + + + 310 - - - 110 - + + 210+ - -
11- 0 + + 21+ 0 - - 01+ 0+ + 31-0 - -
31- - 0 - Ol++ 0 + 21- -0+ 11++0 -
21- -+0 11+ + -0 31- - -0 0l+++0

Inversion= Retrograde =

Exchange only Exchange & flip

Retrograde Inversion =

Flip only

Figure 6. C-Space Segment Class < 0132 >
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Csegs: <0312> <3021>
1. TRANSLATE, if

not consecutive
integers O to
(n-1): OK OK
2. INVERT, if Inverted =
(n - 1) minus
last cp < first cp OK <0312>

3. RETROGRADE, if
last cp < first cp

OK OK

PRIME FORM: <0312> <0312>

All four csegs belong to the same c-space segment class.

<1204>

Translated =
<1203>
Inverted =

<2130>

Retrograde =

<0312>

I

<0312>

<3241>

Translated =

<2130>

OK

Retrograde =
<0312>

<0312>

To translate, renumber the cseg with consecutive integers from O to (n - 1), where n

equals the cardinality of the cseg.
To invert, subtract each cp from (n - 1).

To retrograde, place the cps in reverse order.

Figure 7. Prime Form Algorithm
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cardinalities. That is, a similarity measurement of 3 between two three-note
csegs would signify a much higher degree of similarity than would a similar-
ity measurement of 3 between two seven-note csegs2* In order to create a
more uniform measurement, the number of identical positions will be divid-
ed by the total number of positions compared;?’ thus CSIM(A,B) will return
a decimal number which signifies greater similarity between csegs as this
number approaches 1. Figure 8 illustrates CSIM(A,B) for various csegs of
cardinality 4. As the contour diagrams of Figure 8 show, contours A and D
have an inversional relationship. They are, in fact, RI-related and are mem-
bers of the same csegclass, c4-4. Our measurement CSIM(A,B) as yet ac-
counts only for similarity between csegs, not csegclasses; thus, an extension
of the similarity measurement is needed.

We define the similarity function CSIM(A,B) to compare the similarity
between two csegclasses. CSIM(A,B) returns the largest decimal number,
or 1, obtained by comparing the COM-matrix of one cseg representative of
csegclass A with four cseg representatives (P, I, R and RI) of csegclass B.
Therefore, CSIM(A,B) indicates the degree of highest possible similarity
between two csegclasses. If the two csegs are members of the same c-space
segment class, CSIM(A,B) will return a value of “1”. Figure 9 offers two
examples: if we compare the csegs A: < 0231 > andB: <3102 >
for similarity, CSIM(A,B) accurately reflects their total dissimilarity and
inversional relationship with respect to contour (CSIM(A,B) = 0), but not
the fact that these csegs belong to the same c-space segment class. CSIM(A,
B), however, returns the value “1” since the two csegs are members of cseg-
class c4-4. In the second example of Figure 9, csegs C and D are not mem-
bers of the same csegclass; CSIM(C,D) returns the value .80.

One of the most intuitively satisfying ways of judging similarity in csegs
of differing cardinalities is to count the number of times the smaller cseg
is embedded in the larger?¢ We can do this in one of two ways: either by
examining the two COM-matrices to determine the number of times the
smaller cseg’s COM-matrix is embedded in the COM-matrix of the larger
cseg, or by looking at all possible csubsegs within the larger cseg and deter-
mining by translation how many are equivalent to the smaller cseg. We
propose a contour embedding function (CEMB(A,B)) in which the number
of times cseg A is embedded in cseg B is divided by the total number of
csubsegs of the same cardinality as A possible, in order to return a value
which approaches 1 for csegs of greater similarity. The formula for deter-
mining the number of m-sized subsets of an n-sized set is:2’

n!
m! (n — m)!.

Figure 10 illustrates two rather dissimilar csegs of unequal cardinality:
CEMB(A,B) = 2/20 = .10. Cseg ¢3-1 < 012 > is embedded only twice
incsegc6-96 < 4 52 3 61 >, as the contiguous csubset < 2 3 6 > and
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3 3 3 3
2
2 2
1
0 0 0 0

A=<2013> B=<0123> C=<1302> D=<0231>
2013 123 1302 0231

W=ON
e
‘IA
WN—=O
————

CSIM(A,B) = 4/6 = .67
CSIM(A,C) =3/6 =.50
CSIM(A,D) =2/6 = .33

Figure 8. CSIM as Similarity Measurement for Csegs of the Same
Cardinality
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CSIM(A,B): A=<0231> B=<3102>
3 3 3 3 3
2 2
2 1 1 2 1 1 1
0 0 0 0 0

_Q_Lu._ll_o__Q_Z_ﬂ__Q_Li.LBLQ

0l0+++ 310 - - - 0I0+++ 210 - -+ 110++ -
21-0+ - 1140 -+ 21-0+ - 01+0++ 31-0- -
31--0- Ol++0+ 31--0- 11+-0+ 21-+0 -
11-++ 0 21+--0 11- ++0 31---0 Ol+++0

CSIM(A, PB)=0/6=0
CSIM(A, 1B) =6/6 =1
CSIM(A, RB) =2/6 =.33
CSIM(A,RIB) = 4/6 = .67

CSIM(A,B) =1

CSIM(C,D): C=<10432> D=<12403>

4 4 4 4 4
3 3 3 3 3
2 2 2 2 2
1 A 1 1 1
0 ()} 0 0 0

C

10432 12403 32041 30421 14023
110 -+++ 110++ -+ 310 - -+ - 310 -+ - - 110+ -++
O1+0+++ 21-0 +-+ 2140 -+ - Ol+0+++ 41-0 - - -
41--0 - - 41- -0 - - Ol++0++ 41--0- - Ol++ 0++
31--+0 - Ol+++0+ 41---0- 21+-+0 - 21-+ -0+
21--++0 31--+-0 11++-+0 11+-++0 31-+--0

CSIM(C, PD) = 6/10 = .60
CSIM(C, ID) = 4/10 = .40
CSIM(C, RD) = 8/10 = .80
CSIM(C, RID) =2/10 = .20

CSIM(C,D) = .80

Figure 9. CSIM for C-Space Segment Classes
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the noncontiguous < 4 5 6 >. In Figure 10B, the complete matrix of cseg
< 012 > is found as a contiguous subset of the large cseg’s matrix, while
Figure 10C shows the matrix of < 012 > embedded as a noncontiguous
subset. The c-pitches associated with each position of the embedded matrix
are members of the csubseg < 012 >. Note that in the noncontiguous
instance, the entire structure of each embedded row and column must re-
main intact in order to reflect the csubseg relation accurately. It is for this
reason that CEMB(A,B) must consider the structure of the embedded
COM-matrix as a whole rather than the upper right-hand triangle alone. In
figure 10D, the pluses of the upper right-hand triangle of the smaller cseg’s
matrix have been circled in non-adjacent positions of the larger cseg’s ma-
trix. If the rows and columns are not violated, the corresponding matrix
entries for the main diagonal and lower left-hand triangle (indicated in the
figure by squares) are incorrect for the embedded subset. Thus, the infor-
mation given in the upper right-hand triangle is not alone sufficient to iden-
tify c-subsegments.

Since the embedding function checks for non-contiguous subsets as well
as contiguous ones, it accounts for such instances as a contour which we per-
ceive as generally rising, even though it also includes some descents. In Fig-
ure 11A, for example, the embedded csubseg < 0 12 > appears repeatedly,
both as a non-contiguous and a contiguous subset of < 0213 4 >, and
its role in our perceiving this contour as an ascending line is clearly
audible. As the comparison matrix and corresponding contour diagrams
show, < 012 > is embedded seven times in the larger cseg. CEMB(A,B)
can also be found by extracting all three-note csubsegs from the larger cseg,
translating each to normal form, and counting the number of times
< 012 > is found, as shown in Figure 11B.

Although the CSIM and CEMB functions provide an adequate measure
of similarity between most csegs (of equal or unequal cardinality), they are
not alone sufficient to describe relationships between any two csegs. For
example, our embedding function only describes relationships between
csegs of differing cardinalities. What of the situation in which two csegs of
equal cardinality share one or more common csegs? Following Rahn’s gener-
alization of David Lewin’s embedding function 2® we propose two additional
functions which count the csubsegs mutually embedded in csegs A and B.
Csegs A and B may be of equal or unequal cardinality. CMEMB(X,A,B)
counts the number of times the csegs, X (of cardinality n), are embedded
in both csegs A and B. The variable “X”” may successively represent more
than one cseg-type during the course of the function, as shown in Figure
12. Each cseg X must be embedded at least once in both A and B; then,
all instances of X are counted in both A and B. The total number of mutually-
embedded csegs of cardinality n is divided by the number of n-cardinality
csubsegs possible in both csegs to return a decimal number approaching 1
as the csegs A and B are more similar. Generally, CMEMB,(X,A,B) returns
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CEMB(A,B)

A=<012>=c31
B=<452361>=c6-96
A - MATRIX OF c3-1:
012
0l 0 + +
11 - 0 + <012>
21 - -0

B - MATRIX OF c3-1 EMBEDDED AS CONTIGUOQOUS SUBSET OF c6-96:

(VN
+'++ "' O
+++C+

+O0"

<236>=<012>

+OED! !
+e+0++
St

'C - MATRIX OF c3-1 EMBEDDED AS NON-CONTIGUOUS SUBSET OF c6-96:

D) 2 3©)

02

<456>=<012>

O+
+0O++€®
+' ' 0
+ro+ !
+@++@
S v o

+

D - UPPER RIGHT-HAND TRIANGLE:

Q1 2
0l
1! -
21 - -
[6_](33 [S_Jiziﬁl
4I+-—ZE5- 4101+ - - &) -
SIIOIC:) 5|-%)- (:»)
21+ #F 0 + - 21+ + 0 + + -
31+ + - 0 ¥ - 3|E|-0§?-
6F1F - -[@ - 61~ - - -0 -
11+ + + + +0 1H[HEFE + +[HO0

Figure 10. CEMB(A,B)
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Matrix embedding: A=<012> B=<02134>

012
01 0 + +
11 - 0 +
21 - -0

4 4
3
2 2 2
1 1
0 0
02134 2134 02134
OW SO 0 010++++
21-0-++ 2!-0@ 21-0 -++
105+ 11-+ 0+ + 11-+ (0¥ XD
38- 30)- -(0N 31- -0
41- - 0 40- -0 41- -0
csubsegs: <013> <034> <134>

4 02134
3/ 0I0(46)+++
2 21-0-®
1 11-+ 0+ + CEMB(A,B) - 7/10 = .70
31 O
41

csubseg: <234>

Figure 11A. CEMB(A,B): Additional Examples
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A=<012> B=<02134>

Possible csubsegs are: <021>=<021>
<023>=<012>*
<024>=<012>*
<013>=<012>*
<014>=<012>*
<034>=<012>*
<213>=<102>
<214>=<102>
<234>=<012>*
<134>=<012>*

* Embedded < 0 1 2 > identified by tianslation.

CEMB(A, B) = 7/10 = .70.

Figure 11 B. Embedded Csubsegs by Translation
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Cseg A =¢5-26: <10432>

Csubsegs of A:

<10432>=<10432>

Cseg B=c5-24: <20143>

Csubsegs of B:

<20143>=<20143>

<2014>=<2013>
<2013>=<2013>
<2043>=<1032>
<0143>=<0132>
<2143>=<1032>

CMEMB4(X, A, B) = 5/10= .50

AANAAAAAAANANA

<201>=<201>
<204>=<102>
<203>=<102>
<214>=<102>
<213>=<102>
<243>=<021>
<014>=<012>
<013>=<012>
<043>=<021>
<143>=<021>

CMEMB3(X, A, B) = 16/20 = .80

Common csubsegs are underlined.

Figure 12. CMEMBy (X, A, B)
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a higher decimal number for embedded csegs of smaller cardinality since
there are fewer cseg types, and therefore a higher probability of inclusion
in both csegs A and B. Thus a refinement of the function is necessary.

ACMEMB(A,B) counts the total number of significant mutually-embed-
ded csegs of cardinality 2 through the cardinality of the smaller cseg, and
adjusts this to a decimal value by dividing by the total number of possible
subsets of A and B (excluding the null sets for each and the one-note csub-
segs) 2° Figure 13A shows the adjusted mutual embedding function for two
csegs of the same cardinality, and 13B for csegs of differing cardinalities.

Finally, we generalize our embedding functions for csegclasses in much
the same manner as the CSIM function. That is, CEMB(A,B), CMEMB
(X,A,B) and ACMEMB(A,B) will compare the csubseg content of cseg A
with each of the four transforms of cseg B (PB, IB, RB and RIB) and return
the highest of these values. Thus, if A and B are members of the same cseg-
class, each of these functions will return a value of “1.”

Extensions of the Theory for Context-Dependent Analysis. Up to this
point, we have considered relations among contours without extensive
reference to the musical contexts in which these contours appear. The appli-
cation of contour theory to context-dependent analysis poses a number of
problems, not the least of which is the segmentation of the music into mean-
ingful units. Friedmann has discussed segmentation in some detail; his
examples provide considerable insight into this difficult problem.3® A sec-
ond context-dependent issue with considerable theoretical ramifications is
the common occurrence of repeated notes within a musical contour3! Con-
secutive repeated notes pose no problem, since they may be treated as single
contour pitches, as shown in Figure 14A. We propose that csegs containing
nonconsecutive repeated c-pitches be numbered in order from low to high
with O representing the lowest pitch and (n — 1 — r) the highest; repetitions
of a c-pitch are represented by the same integer. Here the variable “n” stands
for the cardinality of the cseg, while “r” equals the number of times any
c-pitch is repeated. Thus, the contour of the melody in Figure 14B is
< 123031 >. The cardinality of the cseg is 6, cp 1 is repeated once and
cp 3 is repeated once; thus the cps are numbered from 0 to 3, since
(n — 1 —r) equals (6 — 1 — 2) or 3. Translation of a cseg including re-
peated notes is defined as the renumbering of the cseg with integers ranging
from 0 to (n — 1 — r). The inversion of a repeated-note cseg is calculated
by subtracting each cp from (n — 1 — r). Previously stated definitions of R
and RI still hold. Our prime form algorithm also holds, although “ties” may
occur more frequently (if for steps 2 and 3 the first and last cps are the
same, the second and the second-to-last cps are compared, and so on until
the “tie” is broken). The COM-matrices of repeated-note csegs differ from
previous COM-matrices only in the fact that the repeated notes generate
zeros in positions other than along the main diagonal.
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A: CSEGS OF EQUAL CARDINALITY

Csubsegs of A:

A=<0123>

<01>=<01>
<02>=<01>
<03>=<01>
<12>=<01>
<23>=<01>
<13>=<01>
<012>=<012>
<013>=<012>
<023>=<012>
<123>=<012>
<0123>=<0123>

Csubsegs of B:

B=<0213>

<02>=<01>
<01>=<01>
<03>=<01>
<23>=<01>
<13>=<01>
<21>=<10>
<021>=<021>
<023>=<012>
<013>=<012>
<213>=<102>
<0213>=<0213>

17 csegs mutually embedded in both csegs; ACMEMB(A, B) = 17/22 = .77

B: CSEGS OF UNEQUAL CARDINALITY

Csubsegs of C:

AANAAA

C=<02134>

0214>=<0213>
0234>=<0123>
0134>=<0123>
0213>=<0213>
2134>=<1023>

<021>=<021> <02>=<01>
<023>=<012> <01>=<01>
<024>=<012> <03>=<01>
<013>=<012> <04>=<01>
<014>=<012> <23>=<01>
<213>=<102> <24>=<01>
<214>=<102> <13>=<01>
<02134>=<02134><234>=<012> <14>=<01>
<134>=<012> <34>=<01>
<034>=<012> <21>=<10>

29 csegs mutually embedded in csegs A and C; ACMEMB(A, C) = 29/37 = .78
33 csegs mutually embedded in csegs B and C; ACMEMB(B, C) = 33/37 = .89

Figure 13. ACMEMB(A,B) for Sets of Equal Cardinality
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A. Repeatea-Note Segments Consecutive Repeated Notes:

Webern, op. 10/1, mm. 10-11

— 3
A Hp. L [————
&E § T 1 T g
m - p———

<053241> NOT <0533241>

B. Repeated-Note Segments, Non-Consecutive Repeated Notes:

Webern, op. 10/1, mm. 3-6

_p L WS- P l %E EE
I'R IH'R 1 )
i =]
— p—— ——
3 123031
3 178++-+0
2 2| -0+-+-
: 1 31--0-0-
0 Ol +++0++
P=<123031> 31--0-0-
110++=-+0
3 3 3 3
2 2 2 2 2
! I 1 4
0 0 0 0 0

IP=<210302>* RP=<130321>

RIP=<203012>

*To invert, each cp is subtracted from (n-l-r), where n represents the cardinality of the cseg
and r is the number of times a particular cp is repeated. In this instance, r=2, since cp 1 is

repeated once and cp 3 is repeated once.

Figure 14
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The csegclass name of a repeated-note cseg is a hyphenated composite
label, based on the cseg’s similarity to nonrepeated-note csegclasses. The
cardinality of the cseg appears to the left of the hyphen. To the right of the
hyphen, separated by slashes, are the ordinal numbers of two related cseg-
classes. The first ordinal number represents the csegclass label of some cseg
whose COM-matrix is identical to that of the repeated-tone cseg except that
it contains a plus in the place of each 0 in the upper right-hand triangle.
The second ordinal number represents the cseg which contains a minus in
each of those positions. In Figure 15A, csegclasses ¢5-2 and c5-4 differ
from the repeated note cseg in only one position each; the composite label
is rc5-2/4 (“rc” stands for “‘repeated-note csegclass”) 32 Two repeated notes
will result in two zeros in the upper right-hand triangle, as shown in Figure
15B, and so on. The CSIM function will return the same value when mea-
sured between a repeated-note cseg and the csegclasses represented in its
composite label (or between those two csegclasses), since each of these
csegclasses differs precisely in the positions of the COM-mtarix where a
“0” appears for the repeated-note set. Therefore, the name of the repeated-
note cseg allows us to generate the COM-matrix of the repeated-note cseg
(and therefore the normal form of the cseg itself) merely by comparing the
csegclasses in its name. Finally, our similarity and embedding functions®?
still hold for repeated-note csegs, as for nonrepeated-note csegs.

Analytical Applications. We have chosen to illustrate some analytical
applications of the preceding contour theories in the first of Anton Webern’s
Fiinf Stiicke fiir Orchester, Opus 10. The movement divides into four two-
and four-bar phrases—A (mm. 1-2), B (mm. 3-6), C (mm. 7-10), and D
(mm. 10-11)—plus a concluding 1-bar “codetta” of a single reiterated pitch.
The two central phrases are joined in an antecedent-consequent relation-
ship. Both consist of a broad solo line played in the upper register over a
sustained celesta trill. Both melodies have substantial accompaniments: a
series of chords beneath the antecedent phrase, and a thicker, more contra-
puntal accompaniment to the consequent. Flanking this central portion on
either side are opening and closing sections of sparser texture, consisting
of solo lines without accompaniment. The first and last bars of the move-
ment feature striking instances of Klangfarbenmelodie, while the second
and penultimate bars consist of unaccompanied solo lines on distinctive,
coloristic instruments. Thus the opening and closing sections frame the
central portion in a symmetrical arrangement, as shown in Figure 16.

Each of the four principal melodies forms a melodic contour of cardinal-
ity six. Yet in each case the six cps are partitioned differently in terms of
rhythm, register, and/or timbre: the first as 3 | 3, the second as 4 | 2, and
the third as 5 | 1. The final melody is interrupted by rests and has no change
in instrumentation; thus it forms a 6 | 0 partition. Comparison of set-class
membership reveals that no pair of melodies belongs to the same set class.
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A: CSEG WITH ONE REPETITION
A=<01232>

| Csegclass label = 5-7

Related Matrices:
B=c52:<01243> C=c5-4:<01342>

Therefore: A = rc5-2/4.
CSIM(A,B) = CSIM(A,C) = CSIM(B,C).

B: CSEG WITH TWO REPETITIONS
D=<123031>

Csegclass label = 6-?

Related matrices:

E=c6-145: <134052> F=c6-154: <235041>

Therefore: D = rc6-145/154.
CSIM(D,E) = CSIM(D,F) == CSIM(E,F).

Figure 15. Csegclass Labels for Repeated-Note Csegs
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A B C D “codetta”

3 + 3 4 + 2 S + 1 6 (+ 0) 1
sol . Lo
Klangfarben Gloogk. ‘s‘gll'nci‘e%l:t?ennett" “csgxll(;e‘gﬁlel:t" solo harp  Klangfarben

chordal contrapuntal
X . ;
solo texture accompaniment accompaniment solo texture
h

Contour A:

Cl. g . gﬁ |\
T T

Contour B: mm. 3—-6 ¥ T | — " |
L: 3 —1 T T Lo |
Y pr —— —

1

-

|
Y J

Contour C: mm. 7—10 % LI ¥ ; { 7 —]
= >3<<—3=. p—— L

C=<502314>c6-104

Contour D: mm. 10—11 ﬁqq: I k Wa
q -::::

D=<053241>c6-104

SEBE

Figure 16. Primary Melodic Contours in Webern, op. 10/1
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In fact, since two are repeated-note csegs, the cardinalities of the pitch-class
sets differ; the first is a pentachord, the second a tetrachord, and the last
two, hexachords. Although the two hexachords do not belong to the same
set class (C = 6-Z44, D = 6-Z6), they are members of the same c-space
segment class, c6-104. Contour D immediately follows C musically, and is
its contour inversion. This, of course, is a much more precise relationship
than simply reversing the pattern of ups and downs between adjacent c-
pitches (a reversal of signs in the INT,); that is, changing < + — — + — >
to < — + + — + >. In this case, such a reversal of signs is instead re-
flected throughout the entire COM-matrix. Further, the ordering of cps in
c6-104 produces a successive pattern of preserved adjacencies between the
inversionally-related contours:34

C=<502314>
D=<053241 >.

The relationship between successive contours is, for the most part, one
of high dissimilarity: CSIM(A,B) and CSIM(B,C) equal .27 and CSIM(C,
D) equals 0. On the other hand, connections between the opening melodies
and the concluding one are much stronger (CSIM(A,D) = .53 and CSIM
(B,D) = .60). Thus the third melody, at the highpoint of the movement, has
the contour most dissimilar from those which precede and follow it, a con-
tour which sets it apart from the others (CSIM(A,C) = .40, CSIM(B,C) =
.27 and CSIM(C,D) = 0).

All four of the primary melodies are related by their csubseg structure.
Each has c4-6 embedded at least once as four successive cps, often promi-
nently positioned. Yet in no case do these successive pitches belong to the
same set class, despite their membership in the same csegclass. For exam-
ple, contour A ends with < 04 3 2 > (or, by translation, < 0321 >),
and is immediately followed by its retrograde in the first four cps of contour
B, < 123 0 >. This segmentation into fours is aurally suggested by the
isolation of these tetrachords by rests on either side. Like contour B, con-
tours C and D begin with c4-6 as the first four cps. Contour C begins with
< 5023 >, which is the inversion of the original csubseg as stated in
A (by translation < 502 3 > becomes < 3012 >, and by inversion,
< 0321 >). Contour D’s initial tetrachord is a returnto < 0321 >
as initially appeared. Finally, csegclass c4-6 appears embedded as noncon-
tiguous csubsegs in contours A, C, and D as well. It occurs a total of three
times in A and five times in D, and is in fact the only four-note csubseg
these two contours share (CMEMB,(X, A, D) = 8/30 = .27). Contour C
also contains five embedded statements of c4-6, but in the inverted form.

Secondary melodic material (of cardinality four or greater) is shown in
Figure 17 as contours E through H. In contour F, c4-6 appears again in
exactly the same form as in contour C, the melody which it accompanies.
Thus the contours of the violin and cello lines (mm. 7-8) form a heter-
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Figure 17. Secondary Melodic Material: Webern, op. 10/1
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Both contours are ¢c4-6,< 3012 >.

Figure 18. Contour Heterophony: Webern, op. 10/1, mm. 7-8
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ophonic texture of overlapping statements of c4-6 in close temporal prox-
imity, as shown in Figure 18. Contour heterophony occurs only at this high-
point of the piece, where the contrapuntal texture is most complex. In every
other case, the csegclass of the accompanying line is not an embedded
csubseg of the melody it accompanies; thus the distinction between melody
and accompaniment is clear.

Finally, only two possible csegclasses exist for c-segments of cardinality
three. Therefore, occasional instances of recurring three-note csubsegs may
be of relatively trivial analytical importance. The distinctive repeated-note
csubseg rc3-2/2, < 010 >, occurs with enough frequency throughout the
movement to warrant discussion, however. This “neighbor note” motive
opens the movement with its vivid Klangfarben scoring. Its inverted form
is embedded repeatedly in contour B which follows, as the contiguous cps
< 303 > and as the noncontiguous csubsegs < 121>, <131 >
(twice), and < 10 1 >. Further, it occurs as the central three consecutive
cps of contour H. Most striking, however, is its prolonged statement over
the course of measures 3 through 10—first in the extended trill (which in
itself contains repeated instances of < 010 >) and then in the continua-
tion of this line in the trumpet/harp of m. 9 and celesta/cello of m. 10. This
extended < 010 > clearly refers back to the opening gesture, even with
respect to its instrumentation.

* x k%

If music theorists model analytical theories to reflect aural perceptions,
then a theory which describes relationships among musical contours is cer-
tainly overdue. The theory detailed above defines equivalence and similarity
relations for contours in contour space. The analysis that follows briefly
illustrates how specific contour relationships may be used to shape a formal
scheme, to differentiate melody from accompaniment, to associate musical
ideas that belong to different set classes, and to create unity through varied
repetition.
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GLOSSARY

COM-matrix (comparison matrix) - a two-dimensional array that displays the
results of the comparison function, COM(a,b) for any two c-pitches in c-space.
If b is higher than a, the function returns “+”; if b is the same as a, the function
returns “0”; and if b is lower than a, COM(a,b) returns “—.”

C-pitches (cps) - elements in c-space, numbered in order from low to high,
beginning with 0 up to (n — 1), where n equals the number of elements.

C-segment (cseg) - an ordered set of c-pitches in c-space.

C-space (contour space) — a type of musical space consisting of elements ar-
ranged from low to high disregarding the exact intervals between elements.

C-space segment class (csegclass) - an equivalence class made up of all csegs
related by identity, translation, retrograde, inversion, and retrograde-inversion.

C-subsegment (csubseg) - any ordered subgrouping of a given cseg. May be
comprised of either contiguous or non-contiguous c-pitches from the original
cseg.

INT,, - any of the diagonals to the right of the main diagonal (upper left-hand
to lower right-hand corner) of the COM-matrix, in which n stands for the differ-
ence between order position numbers of the two cps compared; that is, INT;
compares cps which are 3 positions apart.

Inversion - the inversion of a cseg S comprised of n distinct cps is written IS,
and may be found by subtracting each c-pitch from (n — 1).

Normal form - an ordered array in which elements in a cseg of n distinct c-
pitches are numbered from O to (n — 1) and listed in temporal order.

Prime form - a representative form for identification of cseg classes, derived
by the following algorithm: (1) if necessary, translate the cseg so its content con-
sists of integers from 0 to (n — 1); (2) if (n — 1) minus the last c-pitch is less
than the first c-pitch invert the cseg; (3) if the last c-pitch is less than the first
c-pitch, retrograde the cseg. Appendix One lists the csegclasses and their cor-
responding labels as used in this paper. The first number of the label represents
the cardinality of the csegclass and the second number represents its ordinal po-
sition on the list: thus c5-12 represents the twelfth contour on the list of five-note
csegclasses.

Translation - an operation through which a csubseg is renumbered from O for
the lowest c-pitch to (n — 1) for the highest.
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SIMILARITY MEASUREMENTS:

ACMEMB(A,B) - counts the total number of mutually-embedded csegs of
cardinality 2 through the cardinality of the smaller cseg and adjusts this to a
decimal value by dividing by the total number of possible subsegs of A and B
(excluding the null set for each and the one-note csubsegs).

CEMB(A,B) - counts the number of times cseg A is embedded in cseg B, then
divides this sum by the total number of csubsegs of the same cardinality as A
possible, to return a value that approaches 1 for csegs of greater similarity.

CMEMB,(X,A,B) - counts the number of times the csegs, X (of cardinality
n), are mutually embedded in both csegs A and B. (The variable “X” may suc-
cessively represent more than one cseg-type during the course of the function.)
Each cseg X must be embedded at least once in both A and B; then, all instances
of X are counted in both A and B. The total number of mutually-embedded csegs
of cardinality n is then divided by the number of n-cardinality csubsegs possible
in order to return a decimal number approaching 1 as csegs A and B are more
similar.

CSIM(A,B) - measures the degree of similarity between two csegs of the same
cardinality by comparing specific positions in the upper right-hand triangle of
the COM-matrix for cseg A with the corresponding positions in the matrix of
cseg B in order to total the number of similarities between them. This sum is
divided by the total number of positions compared to return a decimal number
that signifies greater similarity between csegs as the value approaches 1.

In additon, ACMEMB(A,B), CEMBA(A,B), CMEMB,(X,A,B), and

CSIM(A,B), generalize each of the functions above to measure similarity be-
tween csegclasses.
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APPENDIX

C-SPACE SEGMENT-CLASSES
OF CARDINALITIES 2 THROUGH 6

The following table of csegclasses, cardinalities 2 through 6, is a portion of
the output of a computer program written in March 1986. The program, written
in standard Pascal language, was implemented on a Digital PRO-350 using the
Xenix Pascal compiler and editor.

The csegclasses are listed in prime form, grouped by cardinality, and num-
bered in ascending order by prime form considered as an integer value. An
asterisk (*) following the csegclass namne indicates identity under retrograde
inversion. For referential purposes, the INT, of a csegclass is listed at the right
of its csegclass representative.

C-space segment classes for cseg cardinality 2

Csegclass/Rlinv.
c 2-1*%

Prime form

<01>

C-space segment classes for cseg cardinality 3

INT(1)
<+ +
< + -

Csegclass/Rlinv.
c 3-1*
c 32

Csegclass/Rlinv.
Cc 4-1*
c4-2
c 4-3%
c44
c4-5
c 4-6
c 4-7*

c 4-8%

Prime form
<012 >
<021>

Prime form
<0123
<0132
<0213
<0231
<0312
<0321
<1032
<1302

VVVVVVVY

C-space segment classes for cseg cardinality 4

INT(1)
< + >

INT(1)

<

AANAAAAANA

C-space segment classes for cseg cardinality 5

Csegclass/Rlinv.
c5-1*
c5-2
c53
c54
c5-5

Prime form

<01234 >
<01243 >
<01324 >
<01342 >
<01423 >

+ 1+ +++++

L+ 1+ 4+
L+ 1+ 1+
VVVVVVVYV

+

+

Vv

I+ 1+ +

+ 1+ 1+
VVVVY
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c 5-6 <01432 > < + +
c 57 <02143 > < + -
c 5-8 <02314 > < + +
c 59 <02341 > < + +
c 5-10 <02413 > < + +
c 5-11 <02431 > < + +
c 5-12 <03142 > < + -
c 5-13* <03214 > < + -
c 5-14 <03241 > < + -
c 5-15 <03412 > < + +
c 5-16 <03421 > < + +
c 5-17 <04123 > < + -
c 5-18 <04132> < + -
c 5-19 <04213 > < + -
c 5-20 <04231 > < + -
¢ 5-21 <04312 > < + -
c 5-22 <04321 > < + -
c 5-23* <10243 > < -+
c 5-24 <10342> < — +
c 5-25 <10423 > < -+
c 5-26 <10432 > < -+
c 5-27 <12403 > < + +
c 5-28 <13042 > < + -
c 5-29 <13402> < + +
c 5-30 <14032> < + -
c 5-31* <14203 > < + -
c 5-32 <14302< < + -
C-space segment classes for cseg cardinality 6
Csegclass/Rlinv. Prime form INT(1)
c 6-1% <012345 > < + +
c 6-2 <012354 > < + +
c6-3 <012435> < + +
c 64 <012453 > < + +
c 6-5 <012534 > < + +
c 6-6 <012543 > < + +
c 6-7* <013245 > < + +
c 6-8 <013254> < + +
c 6-9 <013425> < + +
c 6-10 <013452 > < + +
c 6-11 <013524 > < + +
c 6-12 <013542 > < + +
c 6-13 <014235 > < + +
c 6-14 <014253 > < + +
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L+ 1+
L+ +

I+ + 4+ + + + |

I+ + + + |

I+ 1 + 1

I+ 1+ 1+ 1+ 1 + 1
VVVVVVVVVVVVVVVVVVVVVVVVVVY

L+ 1+ +

I+ 1+ + 1
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c 6-15
c 6-16
c 6-17
c 6-18
c 6-19
c 6-20
c 6-21
c 6-22
c 6-23
c 6-24
c 6-25
c 6-26*
c 6-27
c 6-28
c 6-29
c 6-30
c 6-31
c 6-32
c 6-33
c 6-34
c 6-35%
c 6-36
c 6-37
c 6-38
c 6-39
c 640
c 641
c 6-42
c 643
c 6-44
c 645
c 6-46
c 647
Cc 6-48*
c 6-49
¢ 6-50
c 6-51
c 6-52
c 6-53
c 6-54
c 6-55
c 6-56
c 6-57*
c 6-58

<014325
<014352
<014523
<014532
<015234
<015243
<015324
<015342
<015423
<015432
<021354
<021435
<021453
<021534
<021543
<023154
<023415
<023451
<023514
<023541
<024135
<024153
<024315
<024351
<024513
<024531
<025134
<025143
<025314
<025341
<025413
<025431
<031254
<031425
<031452
<031524
<031542
<032154
<032415
<032451
<032514
<032541
<034125
<034152

>
>
>
>
>
>

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY

AAAAAAANANAANAAANAAANAAAAANAAAAAANAAAANAAAANAANAANAAAAAAANAAAANAANA
+t+++++ A A A+ + 4

L+ ++++++++ +

I+ ++++++++++++++++ |
L+ +++ 1+ ++++ 1

L+ +++ 1 +++++ 1

L+ + 1

P4+ 00
N

+

I+ 1 +1+ 1+ 1 +

I+ 1+ + |
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY

I+ 1 + 1
I+ 1 + 1

I+ 1+ 1

I+ 1+ 11+ 10+ 1 1+ 1 ++ |

|

+ +

I+ 1 +1 + 1 +1 + 1+ 1+ 1 + I

I+ 1+ 1

I+ 1+ 1 + 1

N
3
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c 6-59
¢ 6-60
c 6-61
c 6-62
c 6-63
c 6-64
c 6-65
c 6-66
c 6-67
c 6-68
c 6-69
c 6-70
c 6-71
c 6-72
c 6-73
c 6-74*
c 6-75
c 6-76
c 6-77
c 6-78
¢ 6-79*
c 6-80
c 6-81
c 6-82
c 6-83
c 6-84
c 6-85
c 6-86
c 6-87
c 6-88
c 6-89
¢ 6-90
c 6-91
c 6-92
c 6-93
c 6-94
c 6-95
c 6-96
c 6-97
c 6-98
c 6-99
¢ 6-100
¢ 6-101
¢ 6-102

<034215
<034251
<034512
<034521
<035124
<035142
<035214
<035241
<035412
<035421
<041253
<041352
<041523
<041532
<042153
<042315
<042351
<042513
<042531
<043152
<043215
<043251
<043512
<043521
<045123
<045132
<045213
<045231
<045312
<045321
<051234
<051243
<051324
<051342
<051423
<051432
<052134
<052143
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¢ 6-103
c 6-104
c 6-105
c 6-106
c 6-107
c 6-108
¢ 6-109
c 6-110
c 6-111
c 6-112
c 6-113*
c 6-114
c 6-115
c 6-116
c 6-117*
c 6-118
c 6-119
c 6-120
c 6-121
c 6-122
c 6-123
c 6-124
c 6-125
c 6-126
c 6-127
c 6-128
c 6-129
c 6-130
c 6-131
c 6-132*
c 6-133
c 6-134
c 6-135
c 6-136
c 6-137*
c 6-138
c 6-139
c 6-140
c 6-141
c 6-142%
c 6-143
c 6-144
c 6-145
c 6-146
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c 6-147*
c 6-148
c 6-149
¢ 6-150
¢ 6-151
c 6-152
c 6-153
c 6-154
c 6-155
c 6-156
c 6-157
c 6-158
¢ 6-159
¢ 6-160
c 6-161
c 6-162
¢ 6-163
c 6-164
c 6-165
c 6-166
c 6-167
c 6-168*
c 6-169
¢ 6-170
c 6-171*
c 6-172
c 6-173
c6-174
c 6-175
c 6-176
c 6-177*
c 6-178
c 6-179%
c 6-180
c 6-181
c 6-182
c 6-183*
c 6-184
c 6-185*
c 6-186
c 6-187*
c 6-188
c 6-189*
¢ 6-190
c 6-191*
c 6-192%

135024 >
135042 >
135204 >
135402 >
140253 >
140352 >
140523 >
140532 >
142053 >
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145023
145032
145203
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150423
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NOTES

1. A bidimensional model for pitch, distinguishing pitch (or pitch height) from pitch
class (called pitch quality or chroma) has existed in the psychological literature since
the mid-nineteenth century. Christian Ruckmick (“A New Classification of Tonal
Qualities,” Psychological Review 36 [1929]: 172), for example, cites an M. W. Dro-
bisch article from 1846 (“Uber die mathematische Bestimmung der musikalischen™)
as the earliest attempt to depict pitch perception as a helical model. This model shows
the close perceptual proximity of octaves as distinct from rising pitch height by the
vertical alignment of octave-related pitches within each turn of the helix.

2. In recent years, several psychologists have posited representational models for pitch
perception on the basis of experimentation, among them Diana Deutsch, Carol Krum-
hansl and Roger N. Shepard. Shepard’s multi-dimensional model for pitch is a double
helix wrapped around a helical cylinder, where ascent represents pitch height with
octave-related chroma aligned vertically while a downward projection of each pitch
produces a circle of fifths model. Further, a vertical plane passing through the double
helix model divides those tones which are diatonic to a given key from those which
are not. See Shepard’s “Structural Representations of Musical Pitch,” in Diana
Deutsch, ed., The Psychology of Music (NY: Academic Press, 1982), pp. 343-390,
for an overview of representational models for pitch perception. Shepard notes else-
where, however, that certain aspects of pitch perception differ markedly among
listeners depending upon their musical backgrounds. In experiments undertaken joint-
ly with Krumhansl in 1979, Shepard discovered that musical listeners perceived
octave-related pitches as functionally equivalent, whereas subjects with less musical
experience did not perceive such an equivalence. See his “Individual Differences in
the Perception of Musical Pitch,” in Documentary Report of the Ann Arbor Sympo-
sium (Reston, VA: Music Educators National Conference, 1981), pp. 152-174, for
further details of this phenomenon. For purposes of this article, we will therefore
assume experienced musical listeners in discussions relating to perceptual issues.

3. See Diana Deutsch, “The Processing of Pitch Combinations,” The Psychology of
Music, pp. 277-289, for an overview of experiments on recognition of melodies dis-
torted by octave displacement or by alteration of interval size. W. J. Dowling and
A. W. Hollombe’s study, “The Perception of Melodies Distorted By Splitting Into Sev-
eral Octaves: Effects of Increasing Proximity and Melodic Contour,” Perception and
Psychophysics 21 (1977): 60-64, generalizes Deutsch’s findings as published in “Oc-
tave Generalization and Tune Recognition,” Perception and Psychophysics 11 (1972):
411-412, over a number of familiar melodies. See also W. L. Idson and D. W. Mas-
saro, “A Bidimensional Model of Pitch in the Recognition of Melodies,” Perception
and Psychophysics 24 (1978): 551-565 and W. J. Dowling and D. S. Fujitani, “Con-
tour, Interval, and Pitch Recognition in Memory for Melodies,” The Journal of the
Acoustical Society of America 49 (1971): 524-531.

4. W. J. Dowling, “Scale and Contour: Two Components of a Theory of Memory for
Melodies,” Psychological Review 85 (1978): 341-354, and “Mental Structures Through
Which Music is Perceived,” Documentary Report of the Ann Arbor Symposium (Res-
ton, VA: Music Educator’s National Conference, 1981), pp. 144-151.

5. W. J. Dowling and D. S. Fugitani in the first of two experiments described in “Contour,
Interval, and Pitch Recognition in Memory for Melodies” (Journal of the Acoustical
Society of America 49 [1971): 524-431) discovered that listeners were likely to confuse
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the exact transposition of a novel non-tonal melody with a second non-tonal melody
if the latter retained the same contour. Thus, they concluded that listeners retain non-
tonal melodies in memory solely in terms of contour. The authors admitted, however,
that their subjects’ confusion of same-contour melodies with transpositions of the
original melody may have resulted from the severe constraints placed on the intervallic
construction of the melodies used in this experiment. Only minor seconds, major sec-
onds, and minor thirds were used (pp. 527-528). See also Dowling, “Mental Struc-
tures,” p. 146.

6. James C. Bartlett and W. Jay Dowling in “Recognition of Transposed Melodies: A
Key-Distance Effect in Developmental Perspective” (Journal of Experimental Psy-
chology: Human Perception and Performance 6 [1980]: 501) give a brief overview of
several experiments, concluding that “in all of these tasks with unfamiliar melodies,
subjects seem to have little trouble reproducing or recognizing the melodic contour,
but they have a great deal of trouble with the exact-pitch intervals among the notes.”
Judy Edworthy, in “Melodic Contour and Musical Structure,” Musical Structure and
Cognition (London: Academic Press, Inc., 1985), confirms these findings. Her ex-
periments involve transposition of novel, tonal melodies to various keys. She con-
cludes that “interval information is well-defined and precise only when the listener is
able to establish a key. . . . Contour information is immediately precise but decays
rapidly as a melody progresses and its length increases. However, accurate encoding
of contour does not depend on the listener’s ability to establish a key” (p. 186). In non-
tonal contexts, subjects should therefore be able to recognize relationships among con-
tours more quickly and easily than among pitch-class sets, since only the latter
requires subjects to perceive intervallic information.

7. Robert Morris, in his Composition with Pitch Classes: A Theory of Compositional
Design (New Haven: Yale University Press, in press), develops five such spaces.
David Lewin’s Generalized Musical Intervals and Transformations (New Haven: Yale
University Press, 1987) posits six temporal and six pitch- and/or pc-related musical
spaces (pp. 16-25).

8. John Rahn, in Basic Atonal Theory (New York: Longman, 1980) clearly and con-
sistently distinguishes between pitch relationships and pitch-class relationships,
effectively separating theoretical concepts which apply only to pitch space from those
which operate in pitch-class space.

9. In addition to Robert Morris’s Composition with Pitch Classes, another important re-
source is Michael Friedmann’s “A Methodology for the Discussion of Contour: Its
Application to Schoenberg’s Music,” Journal of Music Theory 29 (1985): 223-248.
Friedmann’s work raises important issues regarding musical structure, analysis, and
perception. His article posits a number of theoretical constructs for comparing and
relating musical contours, including the contour adjacency series and related vector,
the contour class with its associated vector, and the contour interval succession and
array. Although these formulations differ from ours in a number of crucial aspects,
his work has greatly influenced our thinking.

Discussion of musical contour is not without earlier precedents, however, particu-
larly in the writings of music theorist-composers, such as Arnold Schoenberg (Funda-
mentals of Musical Composition [New York: St. Martin’s Press, 1967], pp. 113-115),
Ernst Toch (The Shaping Forces in Music [New York: Criterion Music Corp., 1948],
Chapter 5), and Robert Cogan and Pozzi Escot, whose Sonic Design: The Nature of
Sound and Music (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1976) makes extensive use
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10.
11.
12.

13.
14.
15.

16.
17

of contour graphs in musical analysis. See also Cogan's New Images of Musical Sound
(Cambridge: Harvard University Press, 1984).

Morris, Glossary, under the word “c-space.”

Morris, Definition 1.1.

Friedmann defines contour intervals (Cls) as “the distance between one element in a
CC (Contour Class) and a later element as signified by the signs + or — and a
number. For example, in CC < 0-1-3-2 >, the CI of 0 to 3 is +3, and the CI of 3
to 2 is —I” (p. 246). He readily acknowledges that the contour interval is “infinitely
expandable or contractable in pitch space,” and that “a larger CI contains a great
number of intervening pitches in the registral order of the musical unit . . . [and] is
by no means necessarily a larger interval in pitch space” (p. 230). Although we find
such a concept interesting, it seems counterintuitive from the perspective of a listener’s
perceptions, since a contour interval of +3 may be considerably smaller in pitch space
than a CI of +1. For example, the cseg < 013 2 4 > may be realized as follows:

4
CI+3

1

(VI

CI+3
Ci+1

CI+1

0

In this case, CI + 3 (measured from contour pitches 1 to 4) is only a major third,
while CI + 1 is a minor tenth. Other musical realizations of this cseg may produce
even larger differences in CI size. Further, Friedmann uses the contour interval, con-
tour interval array, and associated vectors as an equivalence criterion (pp. 231 and
234), and to compare similarities among contours in his analyses (pp. 240 ff). Since
we choose not to define intervals in c-space, our equivalence criteria and similarity
relations differ markedly from Friedmann’s in concept.

We use a slightly different definition than Morris, since we refer to all contours as
c-segments, not as c-sets.

Note that our definitions do not account as yet for repeated tones within a musical
contour. This is a separate issue which will be addressed at a later point in the article.
Morris, Definition 1.2.

Friedmann, pp. 226-227.

- The term INT is used to be consistent with Morris’s terminology for matrices in p-

and pc-space, where the integers appearing in each diagonal give information about
a set’s intervallic structure, including properties of invariance. Thus the term INT is
retained here, even though we do not define intervals in c-space.

. We rephrase Morris’s Definition 1.4 slightly to conform with our terminology: the in-

version of a cseg P, of cardinality n, is the cseg IP. Each IP  equals (n —1) - P
where the subscript m denotes order positions with the cseg P.

m
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19.

20.

21.

22.

23.

24.

25.

26.

Morris, Chapter 2.
More formally:

Let [cp(l) . . . cp(n)] be a cseg with cps numbered in time from 1 to n.

Let “n” equal the cardinality of the cseg;

Let “x” equal an ordinal position within the cseg, ranging from 1 to n
(thus, “cp(x)” is a particular c-pitch, located “xth” from the left).

1) If necessary, translate the cseg to normal form,
2) If (n — 1) — cp(n) < cp(l), then invert the cseg,
3) If cp(n) < cp(l), then retrograde the cseg.

The design of these functions is modelled, in part, upon the similarity measures for
pitch-class sets previously formulated by David Lewin, Robert Morris and John Rahn.
See, in particular, Lewin’s “Forte’s Interval Vector, my Interval Function, and Regener’s
Common-Note Function,” Journal of Music Theory 21 (1977): 194-237; Morris’s “A
Similarity Index for Pitch-Class Sets,” Perspectives of New Music 18 (1979/80): 445-
460; and Rahn’s “Relating Sets,” in the same volume, pp. 438-498.

We are following John Rahn’s example in designing functions to return a decimal value
approaching “1” as similarity increases. See his “Relating Sets.”

As previously mentioned, the entries in the lower left-hand triangle of the COM-ma-
trices used here simply mirror (with inverse values) those in the upper right-hand
triangle. We therefore base our similarity measurement upon compared positions in
the upper triangles alone.

Rahn, “Relating Sets,” p. 490.

This total number of comparisons between right triangles is sigma(n); which we define

as:
E )
S=1

(in other words, the summation of an arithmetic series from 1 to (n — 1), where n
equals the cardinality of the cseg).

We choose this method of comparing csegs of unequal cardinality over an expansion
and generalization of the CSIM measurement for two reasons. First, the embedding
relation is easier to hear and therefore is intuitively more satisfying. Second, any gen-
eralization of CSIM to csegs of unequal cardinality would, in effect, create another
type of embedding function, since it would involve comparing matrices of unequal
size (thus embedding one matrix within another and systematically shifting the posi-
tion of the embedded smaller matrix to make comparisons with each position of the
larger matrix).

27. Rahn, Basic Atonal Theory, p. 122.

28.

29.

Rahn, “Relating Sets,” p. 492. Rahn generalizes David Lewin’s embedding function
as formulated in Lewin, “Forte’s Interval Vector,” pp. 194-237.
More formally:

c

E CMEMB(X,A,B)

ACMEMB(A B) = n=2
2#A 4+ 2#B — (#A + #B + 2)
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30.
31.

32.

33.

34.

where ¢ = cardinality of the larger of the 2 csegs,

n = cardinality of x,

x = mutually embedded cseg, and

# stands for “cardinality of.”
The numerator of this fraction loops through the CMEMBn(X,A,B) function succes-
sively for cardinalities 2 through the cardinality of the larger cseg. The denominator
divides this figure by the total number of csegs possible (2#A + 2#B) minus the one-
note csubsegs (#A + #B) and minus the null set for each (2).
Friedmann, pp. 234-236.
The introduction of repeated notes into contour theory, as formulated to this point,
strikes at the heart of the distinction between pitch space and contour space. Because
our definition of c-space, following Morris, disregards the exact intervals between c-
pitches and chooses to leave this distance undefined, the perception of a repeated note
must be seen as a pitch-space rather than a c-space phenomenon. In considering
analytical applications of contour theory, we must therefore depart slightly from our
previous c-space definition in order to accommodate those segments in which pitches
are repeated.
In symmetrically-structured csegs of odd cardinality (i.e., < cbrxrbc > or
< 1320231 >), the composite label will reflect the cseg’s symmetry. For exam-
ple, the COM-matrix for the repeated-note cseg < 102 01 > is shown below with
the two matrices which determine its composite label:

1 0201
1 0 + — o] 2 3
0 + O\t o] + 0 1
2 - -0 4 4
0 + 0 + ON\¢ 1 0
1 0-+-20 3 2
rc5-28/28 c5-28 also c5-28

In cases such as these, the related csegs that determine the composite label belong to

the same c-space segment class. The composite label reflects this dual relationship by

listing the csegclass’s ordinal number twice.

The maximum possible value for CSIM(A,B) between cseg A with repeated notes and

cseg B without, is equal to S8Ma(M) ~ I, where r is the total number of cp repeti-
sigma (n)

tions. Such a comparison cannot therefore return a value of “1.”

Such a pattern will always result between inversionally-related csegs in which adjacent

cps add to an odd index number, in this case, 5. Other patterns of invariance between

inversionally-related contours may be predicted using the T,I cycles. See Daniel

Starr, “Sets, Invariance, and Partitions,” Journal of Music Theory 22 (1978): 1-42, for

a detailed examination of this subject.
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