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The Perception of Rhythm in Non-Tonal Music:
Rhythmic Contours in the Music of Edgard Varese

Elizabeth West Marvin

To this point in its relatively brief history, the systematic
study of structure in non-tonal music has undergone tre-
mendous changes.! Yet its emphasis throughout has been
upon pitch and pitch-class structure over rhythmic structure,
in spite of the striking rhythmic innovations that have oc-
curred in Western music during this century. Early writings
on rhythm in non-tonal music were primarily the work of
composers, such as Olivier Messiaen, Milton Babbitt, and
Karlheinz Stockhausen, whose contributions detailed the au-
thors’ compositional systems and aesthetics.? Only in the last

Publications regarding non-tonal pitch and pitch-class structure now
span more than half a century. but few sources survey developments in the
field chronologically. The opening section of Janet Schmalfeldt’s Berg's
“Wozzeck": Harmonic Language and Dramatic Design (New Haven and
London: Yale University Press. 1983). entitled *Pitch-Class Set Theory:
Historical Perspective.” gives one account of early developments in the field.
It also provides a succinct overview of Allen Forte's theories, as well as
definitions for technical terms commonly used in the literature. See also
Elizabeth West Marvin, “A Generalized Theory of Musical Contour: Its
Application to Melodic and Rhythmic Analysis of Non-Tonal Music and its
Perceptual and Pedagogical Implications™ (Ph.D. dissertation: University of
Rochester, 1988). which also begins with a historical overview (pp. 2-31)
and which supplements Schmalfeldt’s account by including more current
contributions to the field.

2Olivier Messiaen. The Technique of My Musical Language (1944), trans.
John Satterfield (Paris: A. Leduc, 1956): Milton Babbitt, “Twelve-Tone

decade have publications by the music-theoretical commu-
nity begun to focus attention consistently upon rhythmic
structure in non-tonal music: for example, in articles by
Allen Forte, Christopher Hasty, Martha Hyde, and David
Lewin, and in the recent books of Lewin, Jonathan Kramer,
and Robert Morris.?

Rhythmic Structure and the Electronic Medium.™ Perspectives of New Music
1/1 (1962). 49-79, reprinted in Perspectives on Contemporary Music Theory.
ed. Benjamin Boretz and Edward T. Cone (New York: Norton, 1972),
148-179: Karlheinz Stockhausen, *. . . how time passes. . . .." trans. Cor-
nelius Cardew, Die Reihe 3 (1959). 10-40: Stockhausen, “*Structure and
Experiential Time." trans. Leo Black, Die Reihe 2 (1959). 64-74. See also
Charles Wuorinen, Simple Composition (New York: Longman. 1979), par-
ticularly Chapters 10 and 12, for a discussion of Babbitt's time-point system.

JRepresentative articles include Allen Forte, “*Aspects of Rhythm in
Webern's Atonal Music,” Music Theory Spectrum 2 (1980). 90-109: Forte.
“Foreground Rhythm in Early Twentieth-Century Music.” Music Analysis
2 (1983). 239-268: Christopher Hasty, *“Rhythm in Post-Tonal Music: Pre-
liminary Questions of Duration and Motion.” Journal of Music Theory 25
(1981), 183-216: Martha Hyde, **A Theory of Twelve-Tone Meter.”” Music
Theory Spectrum 6 (1984), 14-51: David Lewin, “*Some Investigations into
Foreground Rhythmic and Metric Patterning.” in Music Theory: Special
Topics, ed. Richmond Browne (New York, Academics Press. 1981). 101-
137. Other published investigations into the rhythmic structure of non-tonal
music may be found in Kramer's very thorough **Studies of Time and Music:
A Bibliography.” Music Theory Spectrum 7 (1985). 72-106. Recent books
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A fundamental distinction must be made in theories of
musical time between those that posit an underlying system
of equally spaced time points and those that do not.* These
time points may take the form of a perceived beat, or may
represent a small beat subdivision used as an analytical tool
for measuring durations. Theories that assume equally
spaced time points are more common by far, since the
rhythm of the music that these theories model—virtually all
Western tonal music and a great deal of non-tonal music as
well—has some basic pulse as its foundation. Two of the
publications cited above have dealt in some detail with
nonbeat-based musical time: Kramer, in his examination of
nonlinear time and perception of durational proportions; and
Morris, in his model of sequential time, in which the “du-
rations between s-time points are undefined,” and thus are
not assumed to be equally spaced.> This study proposes a
theory for analysis of nonbeat-based rhythms, one which
differs from most previous work in that it models relative,
rather than absolute, measured durations. These patterns of
relative durations, here termed rhythmic contours, are based
upon perceptual strategies that listeners use in the absence
of a beat framework.

dealing with this issue include Lewin, Generalized Musical Intervals and
Transformations (New Haven and London: Yale University Press, 1987):
Kramer, The Time of Music, New Meanings, New Temporalities, New Lis-
tening Strategies (New York: Schirmer Books. 1988): Robert Morris, Com-
position with Pitch Classes: A Theory of Compositional Design (New Haven
and London: Yale University Press, 1987).

#It is assumed here that the presence of equally spaced time points is
required for music to be metric. Meter will be understood, following Maury
Yeston's definition ( The Stratification of Musical Rhythm [New Haven: Yale
University Press, 1976]. 151-152), as a consonant relationship between two
hierarchical levels of equally spaced pulses. requiring both a faster- and a
slower-paced pulse. Rhythm will be understood here simply as a succession
of durations that may or may not be metrical. and thus may or may not
contain a perceived beat.

“Morris. 299.

OVERVIEW OF MUSIC-PSYCHOLOGICAL STUDIES

Almost without exception, psychologists agree that lis-
teners familiar with Western tonal music perceive musical
rhythms in relation to equally spaced, internally generated
beats whenever possible.® Dirk-Jan Povel and Peter Essens.
for example, describe their beat-based model by contrasting
three hypothetical “‘perceptual clocks™: first, an absolute
clock, pulsing at a single fixed rate; second, a clock that
pulses at a rate derived from the smallest time unit of a given
rhythmic sequence; and third, a hierarchical beat-based
clock.” The authors reject the first two of these clock hy-
potheses on the basis of their experimental results. The ab-
solute clock, for example, is ““unable to explain why a tem-
poral pattern presented at a different tempo will be
recognized as structurally identical.” Further, **such a model
would imply that all sequences having the same number of
[temporal] intervals will be equally well perceived and re-
produced regardless of the durations of the intervals.” Re-

®This is not to say that such a perceptual model is universal. Listeners
native or acculturated to Arabic or Indian music hear rhythms as additive
rather than divisive. Thus. one would expect that the pattern eighth-quarter-
quarter would be as easily structured cognitively as the pattern eighth-eighth-
quarter to these listeners, despite the fact that the former does not conform
to a beat-based model. The psychological studies cited here are generally
biased toward Western tradition by virtue of the musical backgrounds of the
listeners who participate in these experiments. However. it is interesting to
note that the duration-space classes to be posited below model certain aspects
of Indian rhythmic practice. since some rhythmic ralas considered to be
variations of each other belong to the same d-space segment class (see note
30 and its accompanying discussion. below).

"Dirk-Jan Povel and Peter J. Essens. “The Perception of Temporal Pat-
terns.” Music Perception 2 (1985), 411-440 (see 413-414).

8Ibid. 413. For example, *‘the sequence 200 200 400 [msecs.] and 200 400
400 . . . should both be equally well reproduced. In fact. however. subjects
reproduce the first sequence perfectly. but the second poorly.”™ In musical
notation. this would compare the sequence eighth—eighth—quarter with
eighth—quarter—quarter.



garding the second type of clock, Essens and Povel have
undertaken further experimentation to determine “whether
subjects can use the smallest interval in a temporal pattern
as a basic unit in representing other (longer) intervals in the
same pattern.”® According to this hypothesis, duration suc-
cessions in which intervals relate as 3:1 or 4:1, exact multiples
of the basic duration unit, should be reproduced more ac-
curately than ratios of 2.5:1 or 3.5:1. Their results do not
support a distinction between such patterns, however, and
they conclude that the smallest interval is not used in spec-
ifying the time structure of such patterns. The implication of
this work is that rhythmic theories based upon tallied mul-
tiples of a composition’s smallest durational value do not
model aural perception. That is not to say that such theories
cannot reveal important aspects of a work’s rhythmic struc-
ture, !¢ particularly in compositions where serialized rhythm
is directly linked to pitch structure and in certain non-
Western musics.!! Povel and Essens conclude, however, that

“Peter J. Essens and Dirk-Jan Povel, “"Metrical and Nonmetrical Rep-
resentations of Temporal Patterns,” Perception and Psychophysics 37
(1985). 3.

10See. for example, Forte, “Aspects of Rhythm in Webern's Atonal
Music.” His proportional graph is designed in precisely this way: “The in-
teger value 1 is assigned to the smallest durational value in the work (move-
ment). The largest value is the least common multiple of all the other
values. . . . The result is a depiction of a precise calibration of component
durations, so that any temporal span or pattern can be compared with any
other” (p. 91).

"In *African Rhythm: A Reassessment.” (Ethnomusicology 24 [1980],
393-415)., Robert Kauffman expands upon various current theories of rhyth-
mic structure in African music. Among these is analytical use of the “‘density
referent,” a concept defined by Mantle Hood in The Ethnomusicologist (New
York: McGraw-Hill, 1971), that refers to the fastest regularly recurring
event. Kauffman notes that the density referent “‘can be used to study and
understand temporal elements that would be rendered ambiguous by ref-
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listeners use a hierarchical clock, in which equally spaced
pulses of medium duration are subdivided or concatenated
by the listener to structure a duration succession as it is
heard.

In a beat-based hierarchical system, each of the durational
units may also be subdivided. It is unclear, however, exactly
how the listener perceives this subdivision. Experimentation
has shown that the cognitive structure for perception of
rhythmic subdivisions is far from precise. Eric F. Clarke
proposes a perceptual model with two components: equally
spaced metrical markers on one level, and a system of un-
timed procedures organized around these markers at an-
other, “‘specifying subdivisions in terms of equal and unequal
time spans, the unequal subdivisions using a simple distinc-
tion between long and short.””!2 This categorization of un-
equal subdivisions simply into longs and shorts is an impre-
cise measurement of relative duration, and explains the
common misperception of the dotted eighth-sixteenth beat
subdivision for a triplet’s quarter-eighth subdivision, since

erence to more subjective concepts of beat. For example, a beat of MM60
can also be perceived as two beats at 120. Density referent, being faster than
beat, is not subject to such ambiguities™ (p. 396). While density referent is
a useful analytical tool, Kauffman suspects that it is not commonly used by
African performers or listeners to structure rhythmic patterns perceptually.
After observing a teacher instructing African drumming students, Kauffman
notes that “Ayitee did not ask his students to count out eight fast pulses.
Instead he wanted them to respond to the gestalt of the two drum parts. This
would seem to suggest that density referent is only one level of a larger
metrical organization™ (p. 396).

12Eric F. Clarke, “‘Structure and Expression in Rhythmic Performance,”
in Musical Structure and Cognition, ed. Peter Howell, Ian Cross. and Robert
West (London and New York: Academic Press. 1984). 225-226. Clarke cites
W. Jay Dowling’s **Scale and Contour: Two Components of a Theory of
Memory for Melodies.” Psychological Review 85 (1978), 342-354.
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both are heard as long-short.!? In Clarke’s *‘two-component
system,”’ the perceived pattern of relative longs and shorts
is overlaid upon a metrical matrix that represents beat struc-
ture and subdivision. Clarke notes that this theory has certain
similarities to W. Jay Dowling’s two-component model of
melodic contour overlaid upon a diatonic scale framework. 4
Dowling and Dane L. Harwood note the similarity between
theories as well, citing Monahan’s suggestion that

rhythmic subdivision patterns are laid on the beat framework in a
way analogous to the way melodic pitch contours are laid on the
scale framework. . . . Rhythmic subdivisions can thus be said to be
encoded in rhythmic contours of relative, not absolute, temporal
relationships. Rhythmic contours are like melodic contours in being
able to stretch to fit different frameworks (as with change of tempo)
and in being able to slide along a given framework (as in displace-
ment of rhythmic accent).!

Thus rhythmic contours may be understood as analogous
to melodic contours: they represent relative durations in

3This type of error has also been discussed with reference to African
drumming performance. In discussing applications of the “‘density referent”
concept, Kauffman notes that: ““A performer of the pattern .. . must be
aware of the density referent } in order to avoid the errors ‘a_“j‘ or 3.
but he will ultimately respond to the larger gestalt of each beat or of the
entire measure. Thus it would also seem that African musicians respond to
some type of metrical organization, which may include various combinations
of the density referent” (“*African Rhythm: A Reassessment,” 396-397).
The rhythms that Kauffman cites are all unequal beat divisions which may
be categorized as long-short, and which are therefore easily confused.

“Clarke mentions this analogy in “Some Aspects of Rhythm and Ex-
pression,” 324-325, and in **Structure and Expression in Rhythmic Perfor-
mance."” 226.

13W. Jay Dowling and Dane L. Harwood, Music Cognition (New York:
Academic Press, 1986), 187-188. The authors cite, in particular, Chapter 5
of Monahan's dissertation, “‘Parallels between Pitch and Time: The Deter-
minants of Musical Space™ (Ph.D. dissertation, University of California, Los
Angeles, 1984).

much the same way that melodic contours represent relative
pitch height, without a precise calibration of the intervals
spanned.

Povel hypothesizes that listeners have at least two possible
ways of understanding temporal sequences, and that it is the
nature of the rhythm itself that determines which method will
be used: those that do not fit a beat-based coding are in-
ternally represented as rather unstructured groups of tones. '
He notes that for nonbeat-based rhythms, an “alternative
coding, called ‘figural coding’ by Bamberger (1978). capi-
talizes on the perceptual grouping of events . . . [and] de-
tailed information about the relative durations of intervals
would seem to be left uncoded.”'” This hypothesis has been
substantiated more recently by Jeffrey Summers, Simon
Hawkins, and Helen Mayers, who also describe two per-
ceptual models of temporal organization: (1) Gestalt-like
groupings; (2) beat-based hierarchies.'® They note that the
first is used to interpret non-metrical rhythms, while the sec-
ond is used for metrical ones. It is this type of non-metrical
rhythmic processing that the theory to be discussed here
attempts to model—a musical conception without the “sign-
posts” that beats provide, a conception marked by percep-
tual grouping according to temporal proximity, and retention
of relative rather than absolute measured durations.
Nonbeat-based rhythms such as these abound in non-
Western musics and in Western music of this century—in
some electronic compositions, in serialized rhythmic designs.

!°Povel, “Internal Representation.” 16.

"Povel and Essens, “The Perception of Temporal Patterns.” 437. The
article the authors cite is Jeanne Bamberger. “Intuitive and Formal Musical
Knowing: Parables of Cognitive Dissonance.” in The Arts, Cognition, and
Basic Skills. ed. S. S. Madeja (New Brunswick, N.J.: Transaction Books.
1978).

I8Jeffrey J. Summers, Simon R. Hawkins, and Helen Mayers. *Imitation

and Production of Interval Ratios.” Perception & Psychophysics 39 (1986).
437.



and in rhythmically dissonant passages of works by Carter
and Stockhausen, for example.

RHYTHMIC CONTOURS IN DURATION SPACE

Two recent music-theoretical publications have discussed
structural parallels between pitch spaces and temporal
spaces; they form an important point of departure for the
theory of rhythmic contours that follows. Morris’s Compo-
sition with Pitch Classes defines three types of temporal
spaces, the structures of which are isomorphic with three
pitch spaces: “‘sequential time” with contour space, “mea-
sured time” with pitch space, and ‘“modular time’’ with pitch-
class space. Segments in Morris’s sequential time and in con-
tour space are represented numerically by integers from 0 to
n-1, where n equals the cardinality of the segment. In both
sequential time and contour space, the precise interval be-
tween the successive elements of a segment is not calibrated;
the integers simply model the concepts of “earlier/later” or
“lower/higher”” without a precise measurement of how much
earlier or how much higher. Morris’s measured time is a
temporal pitch-space analogy: both are spaces divided into
equal measured units numbered with positive and negative
integers on either side of some midpoint. Lower pitches or
earlier time points are modeled by increasingly positive in-
tegers. Finally, modular time is the temporal analogue to
pitch-class space, derived from measured time and from
pitch space by reduction mod n; its elements are numbered
from 0 to cardinality n—1. Lewin’s formulation, in Gener-
alized Musical Intervals and Transformations, contains six
temporal spaces, two of which correspond to Morris’s mea-
sured time and modular time. In addition, he defines four
types of temporal spaces based not on sequential time points,
but upon durations. Two of these duration spaces differ only
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in the way intervallic spans are measured: in the first case
as quotients and in the second as differences. The remaining
two temporal spaces are modular reductions of these two
systems.!”

An additional type of temporal space is proposed here:
a duration space, analogous to contour space, that models
relative duration in the same way that contour space models
relative pitch height. However, unlike melodic contours in
contour space, which can be recognized aurally with some
accuracy regardless of context (tonal or non-tonal), rhythmic
contours in duration space are very much altered in listeners’
perception by their metric contexts. Thus the works to be
studied here are non-metrical; they are, in fact, works where
a consistent and uniform beat is hard to discern. It is in this
type of context, where no consistent beat unit can be per-
ceived, that rhythmic contours of relative shorts and longs
best model the listener’s perception.?® At least one composer
concurs with the premise that listeners’ temporal understand-
ing of nonbeat-based music is based upon perception of rel-
ative durations; Gérard Grisey states that

without a reference pulse we are no longer talking of rhythm but
of durations. Each duration is perceived quantitatively by its re-
lationship to preceding and successive durations. This is the case in
the rhythmic writing of Messiaen and of the serialist school. In fact,

YMorris’s temporal spaces are discussed in Composition with Pitch
Classes. 299-301: Lewin’s are defined in Generalized Musical Intervals, 22—
25.

20As Povel noted in the experiments discussed previously, a beat emerges
in duration successions where successive equally-spaced shorter durations
may be heard as subdivisions of a longer duration. By extension, in beat-
based rhythms. strings of equally spaced durations are common (two eighths
or four sixteenths, for example). However, in duration successions where no
two durations are of equal length, a beat is difficult to hear unless supplied
in an accompanying line. Musically-trained listeners may try to “‘impose’’ a
beat to structure their listening, but if this strategy fails they too rely upon
a perceived rhythmic contour of relative shorts and longs.
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a micro-pulse allows the performer or conductor to count and ex-
ecute these durations, but it only exists as a way of working and
has no perceptual reality. The more complex the durations . . . the
more our appreciation of them is only relative (longer or shorter
than . . .).2!

Duration space (or d-space) is defined here as a type of
temporal space consisting of elements arranged from short
to long. Elements in d-space are termed durations (durs)
and, as mentioned previously, are numbered in order from
short to long, beginning with 0 up to (n-1), where n equals
the number of elements in the segment and where the pre-
cise, calibrated duration of each dur is ignored and left un-
defined.??> A d-segment (dseg) is defined as an ordered set
of durations in d-space. Just as a contour-space cseg can be
realized in pitch space in an infinite number of ways, so can
a dseg be realized in measured time by an infinite number
of rhythms. Example 1 shows several realizations of the
contour-space segment <0 1 2 3> realized in pitch space.
Segments in contour space are comprised of c-pitches num-
bered in order from low to high, thus <0 1 2 3> represents
a continuously rising melody, <3 2 1 0> a continuously de-
scending line, and <2 3 0 1> a more angular melody with
two changes of direction. Note that the theory is general
enough to be applicable to Bach as well as Barték and that
the intervals spanned between contour pitches may vary;
thus the stepwise motion of the Bach excerpt is equivalent
in contour space to the arpeggiation of the Beethoven ex-
ample. Example 2 shows <0 1 2 3> as a duration-space seg-

2lGérard Grisey, ‘‘Tempus ex Machina: A Composer’s Reflections on
Musical Time.” Contemporary Music Review 2 (1987), 240.

22Formulation of these definitions and those that follow are indebted to
those for contour space in Morris. cited above. Note that this application
of the COM-matrix differs somewhat from Morris’s temporal applications
of contour theory.

Example 1. Multiple realizations of <0 | 2 3> in contour space

J. S. Bach, The Musical Offering. BWV 1079, X. Canon a 2. Quaerendo invenietis.
mm. 1-2

0 . . — - ,
(a) ¥ il J— B T T I 1 1 - 1

L J L |

<3210>

ment realized in measured time.2* Examples (a) through (c)
show different possible metrical interpretations, while ex-
amples (d) through (f) show some non-metrical realizations
drawn from Varese’s Octandre.

In numbering durs from short to long, the determination
is made from the onset of one dur to the onset of the next,
regardless of whether the pitch in question extends through
the entire temporal interval spanned or is interrupted by a
rest. Thus, dseg (b) of Example 2 still represents <0 1 2 3>

23Note in Example 2 that the fourth dur of dseg (d) is ornamented by
D#-E grace notes. The grace notes will not be considered two separate (very
short) durs. but rather ornaments (like a trill), belonging to the D and
lengthening its duration slightly.
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Example 2. Multiple realizations of dseg <0 1 2 3> in measured time:

overlaid upon three possible “‘temporal grids™
(a) (d) m. 2, oboe

from Varese. Octandre, |

0 N
L ——— ——F = A, ——
.

(e) mm. 13-15, bassoon

S S e —
f

‘
N
L
N
N

g
il
L

5

he F——rfrfr -~ ef
T ) S— T AL"i '. | 4
C
(c) of =— —sfff
—N— f — —] (f) mm. 17-18, oboe

even though it contains a rest. Music psychologists call this
temporal span the inter-onset interval. As Eric Clarke notes,
“This is the most significant measure as far as the rhythmic
function of the note is concerned since the other possible
measures (onset to offset or offset to onset) refer mainly to
the articulation properties of the note.”’?* This requirement
is one of the features that distinguishes contour space from
duration space, since c-space compares points in space while
d-space compares pairs of points (onset to onset). This pre-
sents certain analytical difficulties in determining the dura-
tion of the final note of a succession, because there is no
following onset by which to measure the length of that final
duration. In the abstract and in the case of certain non-

Eric F. Clarke. “Structure and Expression in Rhythmic Performance.”
212.

<0123>

sustaining instruments, the theory might be formulated to
exclude the duration of the final note, restricting its role so
that it serves only to define the length of the penultimate
duration. However, in musical contexts—particularly those
involving performance by sustaining instruments, such as
voice or wind instruments—the cut-off of the final note has
some perceptual validity. It is for this reason that the ex-
amples following include the final note’s duration. Finally,
while a rest that is internal to a duration succession generally
adds to the duration of the note preceding, it is also an
important criterion for dividing the succession into
d-subsegments.

A d-subsegment (dsubseg) is defined as any ordered sub-
grouping of a given dseg. Example 3 illustrates dsubsegs
drawn from a prominent oboe melody in the first movement
of Octandre (mm. 8-12). Dsubsegs may be compared more
easily by renumbering the segments through ‘‘translation,”
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Example 3. Dsegs and dsubsegs in duration space:
Varese, Octandre, 1, oboe, mm. 8-12

> —
///—\—:E 3
>he 2 2 3

IS
3
q
]

)

e hia ~
g F— T e — i #Pqﬁ"/_\r 1
— E=— =t ==
s 14
<210354>
Dsubsegs:
n n 1 T
(a) >
& 17 T 7.4
- P ?
<210>
N TN
g
ﬂ h - 1 1 ‘:1 — T :
UF === =
<035>=<012>*
hg/—\{)- P
T~ = = Q)
0 het = = P W
© fo——t—=— : R —2
5 ! t t f = ——
<0354>=<0132>*
e e N
0 e & o = = =
e

T

ouu

9|

HHH

<1035>=<1023>*

*=Dby translation

as Example 3 shows. Translation is an operation through
which a dsubseg of n distinct durations, not numbered from
0to (n-1), is renumbered from O for the shortest dur to (n—1)
for the highest. Dsubsegs in duration space are assumed to
be contiguous subgroupings, unlike csubsegs in contour
space. In contour space, the listener may group non-

contiguous high cps aurally by their close proximity in pitch
height, for example, whereas the temporal nature of d-space
prevents the listener from grouping all long durs together
simply by virtue of their length. Only in the case where
melodic contour interacts with perception of rhythmic con-
tour might a case for noncontiguous dsubsegs be made. In



compound melody, factors such as pitch proximity might
cause the listener to perceive the higher or lower voice (or
both) as an independent duration stream. Example 4 shows
such an instance. Here, the reiterated low F might be heard
as a separate stream, resulting in a noncontiguous dsubseg
heard in the upper voice (indicated by stems up). Non-
contiguous dsubsegs are clearly a special case; thus the term
dsubseg will generally refer only to contiguous dsubsegs un-
less otherwise specified.

A precise profile of the structure of a duration succession
in d-space is provided by Morris’s comparison-matrix (or
COM-matrix), shown in Example 5. This matrix is a two-
dimensional array that displays the results of the comparison
function, COM(a,b). In this case, a and b represent any two
durs in d-space. If b is longer than a, the function returns
*+7; if bis the same length as a, it returns “*0”’; if b is shorter
than a, COM(a,b) returns "*-.”" Each of these matrices has
symmetrical properties in which the diagonal of zeros from
the upper left-hand to lower right-hand corner forms an axis
of symmetry. Each value in the upper right-hand triangle is
mirrored on the other side of this diagonal by its inverse. This
symmetrical structure is a natural consequence of the fact
that the COM-matrix. as used here, compares a dseg with
itself.

Two types of equivalence relations are posited for dsegs
in duration space, based in part upon the COM-matrix. First,
equivalent dsegs are those that generate identical matrices.
This definition asserts equivalence for any two duration suc-
cessions related as those in Example Sa. Measured in terms
of the smallest durational unit (the sixteenth note), succes-
sion (1) may be represented as <3 1 4> and (2) as <6 2 8>.
Succession (2) is an augmentation of (1) in measured time,
a relationship that may be shown numerically by multiplying
the durational values of (1) by 2. The two successions gen-
erate identical matrices, and in d-space are equivalent rep-
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Example 4. Non-contiguous subsegs:
Varese, Octandre, 1, oboe, mm. 2-3

R PR U

[ S— S~

stems down: <0123> <11002>
stems up:* <012> <102>

*noncontiguous dsubsegs

resentatives of <1 0 2>. Dseg equivalence may also explain
why rhythms such as those of Example 5b are often confused
by students in early stages of aural skills training, since the
two are equivalent in duration space. Finally, Example 5c
illustrates an additional instance of dseg equivalence; here
the durations of the two successions in measured time are
not related by any precise mathematical relationship. Yet
succession (4) is a free augmentation of (3); in d-space the
two are equivalent representations of <01 3 2> and pro-
duce identical matrices as shown. Succession (4) is one of the
dsubsegs from Octandre cited previously in Example 3, and
is numbered as in that example to show the translation op-
eration; succession (3) is comprised of the first four notes of
the movement. The two successions have clear aural
associations—both are prominent solo oboe lines, and the
melody of succession (4) represents a rhythmic expansion,
or development, of the melody with which the movement
opened.

The second equivalence relation, the duration-space seg-
ment class (dsegclass), is defined as an equivalence class
made up of all dsegs related by identity, translation, retro-
grade, inversion, and retrograde inversion. The inversion of
a dseg S of n distinct durs is written IS, and may be found
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Example 5. Dseg equivalence

<3 14> in sixteenth-note durations = <102 > in d-space

<628>in sixteenth-note durations = <102 > in d-space

matrices:

[

(1) (2)

s —w
C o+ o|w
o
o+ + &
o0 o O
Y+ oo
o
o + + |

<102 > in d-space

<102> in d-space

by subtracting each dur from (n-1), where n represents the
cardinality of the segment. In effect, this results in durations
“swapping’ positions within the segment. Given an odd
value of (n-1), the longest and shortest durations swap po-
sitions, the next-to-longest and next-to-shortest swap posi-
tions, and so on. If (n—1) is even, the same holds true except
that ™! retains its position (see Fig. 1.). A comparison of the
P and I forms in Example 6, for example, shows that 0 and
3 (or the sixteenth and half) swap positions, as do 1 and 2
(or dotted eighth and quarter). This algorithm for finding the
inversion of a rhythmic segment is precisely the one used by

(c)

Varese. Octandre, 1. oboe. mm. 9-12

3) t - &
- > % i
mp — T
<0132>
Varese. Octandre. 1. oboe. m. 1
>/‘\ I
N
S e
-] >hff f_| :|‘~ ﬁrl;’" —
4 f* JI ! 54 5 — i T m{
<0354>=<0132>
matrices:
3) 4)
0 0
1 3
3 S
2 4

Milton Babbitt in his Three Compositions for Piano.?s The
retrograde (RS) or retrograde inversion (RIS) may be found
by listing the elements of S or IS in reverse order. Thus, in
Example 3, dsegs (a) and (b) are R-related, while (¢) and
(d) are Rl-related. Example 6 summarizes these relation-
ships for one representative of dsegclass <0 13 2>, rep-
resenting S and its R, I, and RI transformations and the

>Charles Burkhart describes this algorithm in some detail in his intro-
duction to Babbitt's composition in Anthology for Musical Analysis. 3rd ed.
(New York: Holt., Rinehart, and Winston, 1979), 578584,
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corresponding COM-matrix for each. Because d-space is iso-
morphic with c-space, the prime form algorithm and cseg-
class labels developed for contours in c-space, included as an
appendix to a previously published article, may be adopted
for use in analyzing rhythmic contours.?® These labels are
hyphenated numbers, with the first number representing the
cardinality of the segclass, and the second representing its
ordinal position on the list. As an alternative to reprinting
the segclass table, duration segments are represented here
by their prime forms instead of their dsegclass labels.?”
To return briefly to the data on temporal perception dis-
cussed at the outset, listeners discern a beat most easily in
rhythmic patterns where successive equally spaced shorter
durations may be heard as subdivisions of a longer duration.
It is only in nonbeat-based rhythms—by extension, rhythms
with fewer instances of repeated equal durations—that lis-
teners perceive a rhythmic contour of relative shorts and
longs without a precise notion of their proportional rela-
tionships. For this reason, the theory that models these

*0Elizabeth W. Marvin and Paul A. Laprade. “Relating Musical Con-
tours: Extensions of a Theory for Contour.” Journal of Music Theory 31
(1987). 225-267 (see 257-262).

A dseg’s prime form is a representative form derived by the following
algorithm: (1) if necessary. translate the segment so its content consists of
integers from 0 to (n-1): (2) if (n~1) minus the last element is less than the
first. invert the segment: (3) if the last element is less than the first, retrograde
the segment.

The Perception of Rhythm in Non-Tonal Music 71

Example 6. Dsegclass equivalence

2P R R R A R R D P I

P: <0132> I: <3201> RI: <1023> R: <2310>
1023 2310
0 3 1]0- ++ 210+ -
1 2 0|+ 0+ + 3/-0- -
3 0 2 0+ 1++0-
2 1 31- 0 Ol+++0

rhythmic contours has not, up to this point, accounted for
the instance of repeated equal durations. For the most part,
however, the theory can be extended to include such
rhythms. As shown in Example 7, a duration succession such
as eighth-quarter-half-quarter would be modeled as a
“repeated-note contour,” <012 1> in duration space.
Such a contour would generate a matrix containing zeros in
positions other than along the main diagonal, as shown. Its
dsegclass label is a composite, combining the labels of the
two dsegs that are most similar to the repeated-note contour.
These dsegs for <0 1 2 1> are illustrated in Example 7; the
first is generated by replacing all zeros that appear in the
upper right-hand triangle of the repeated-note contour with
pluses, and the second with minuses.

In order to generalize contour theory from c-space to
d-space, a number of important differences between the
spaces must be acknowledged, some of which have been
touched upon above. While these differences do not affect
the general applicability of the theory to duration space, they
do have important implications for the perception of various
transformations that occur in the music to be studied below.
First, a fundamental perceptual difference between contour
space and duration space is that while melodic contours are
easily remembered, and same/different comparisons accu-
rately made by most listeners regardless of context (tonal or
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Example 7. Repeated-note dseg <0 12 1> and related

b4

<0121>

o
w
[

0231

o o= O

W= O
:||Jo
o,
(=}

E3
—_w O

non-tonal), rhythmic contours may not be recognized by lis-
teners as identical if their underlying metrical structures dif-
fer. It is for this reason that compositions chosen for analysis
and discussion here are works that do not strongly invoke
a perceived beat or meter. A second consideration is that
since the elements of d-space are durations and are therefore
measured from the onset of one event to the onset of the
next, each duration is dependent upon two points for its
identity rather than one. Thus, while a point in contour space
is immediately perceivable, a duration in d-space is not per-
ceived until the second point of the pair defines its length.
Third, segments in c-space or d-space may be divided into
subsegments for comparison and analysis. Unlike c-space
segments, non-contiguous d-segments are probably per-
ceived by the listener only if their elements are associated
by some other musical feature, such as extreme low or high
register (as in Ex. 4), by a pattern of accentuation, or by
some other mode of articulation. Thus, segmentation of non-
contiguous d-segments should be considered analytically
only if one of these conditions holds.

Finally, while the operations of inversion and retrograde
inversion have a clear perceptual basis in pitch-space and
contour-space, application of these operations to successions
in duration-space may be more difficult to perceive. Music

psychologists have not yet explored the question of whether
listeners can perceive R, I, and RI transformations upon
duration successions. Retrograde rhythms have been used
for centuries in conjunction with pitch retrogrades in musical
composition, but it is unclear how well listeners recognize the
pitch transformation, much less the rhythmic retrograde. In
the case of metric music, rhythmic retrogrades violate such
expectations as long notes coinciding with “'strong’ beats or
initiating measures; thus the new metric context of the ret-
rograde succession makes this transformation difficult to rec-
ognize aurally. Yet musical experience and intuition suggest
that rhythmic retrogrades may be perceivable if their length
is not excessive. Certainly the palindromic rhythms of We-
bern’s Variations, Op. 27 and Symphony, Op. 21 can be
heard for a short while, if not for their full length.>* The issue
of rhythmic inversion is a more complex one. Few composers
before this century attempted to “invert” duration succes-
sions, since there was no established procedure as to how
inversion might operate in a temporal space. Yet in both
contour space and duration space, the operations of identity,
inversion, retrograde, and retrograde inversion can be shown
to model certain transformations occurring in non-tonal com-
positions. In contour space, experimentation has shown that
these transformations can indeed be perceived;?” in duration
space, however, some questions remain as to the percepti-
bility of the I and RI operations.

20f course, the pitch palindrome in these cases assists the listener in
perceiving the rhythmic palindrome.

2%See W.J. Dowling and D. S. Fugitani, **Contour, Interval. and Pitch
Recognition in Memory for Melodies.™ Journal of the Acoustical Society of
America 49 (1971), 524-531: Dowling. *“Mental Structures Through Which
Music is Perceived.,” Documentary Report of the Ann Arbor Symposium:
National Symposium on the Application of Psychology to the Teaching and
Learning of Music (Reston, Va.: Music Educators’ National Conference.
1981). 141-149.



Qualifications aside, the theory proposed here does in-
deed model aspects of rhythmic structure in non-metrical
music, not only in the Western non-tonal repertory that is
considered here, but in certain non-Western musics as well.
For example, in their discussion of South Indian rhythmic
talas, Kanthimathi Kumar and Jean Stackhouse describe the
divisions of tala in Karnatic music.3® They list the seven main
talas in terms of their number and grouping of counts, then
note that each of these seven ralas has five forms. An ad-
aptation of their table showing the five forms (Jatis) of the
tala dhruva is given in Table 1.3! Note that each of the five
variations of dhruva has an equivalent rhythmic contour,
<101 1>. Each of the other six main talas’ Jatis shares the
same dseg. Thus the seven talas are equivalence classes ac-
cording to the definition of dseg proposed here.

AN ANALYTICAL APPLICATION

Generalization of contour theory to the temporal domain
enables analysts to address two aspects of musical
structure —melodic contour relations and non-metric rhyth-
mic structure —that are too often slighted in analyses of non-
tonal compositions. The analysis of Varese’s Density 21.5
that follows focuses upon these two types of analysis, noting
recurring melodic and rhythmic contours that work in con-
junction with pitch- and set-class structure to shape the
work’s formal design. Varese's music provides an ideal con-
text in which to illustrate analytical applications of the rhyth-
mic theory proposed here since, as Jonathan Bernard notes,
the composer’s “‘penchant for rhythmic complexity seems to

#Kanthimathi Kumar and Jean Stackhouse, Classical Music of South
India: Karnatic Tradition in Western Notation (Stuyvesant, N.Y.: Pendragon
Press, 1988), 21-23.

3bid.. 23.
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Table 1. Five forms of the tala dhruva

different jatis count total

of dhruva distribution counts  dseg
1. tisra 3+2+3+3 11 <1011>
2. chaturasra 4+2+4+4 14 <1011>
3. khanda 5+2+5+5 17 <1011>
4. misra 7+2+7+7 23 <1011>
5. sankeerna 9+2+9+9 29 <1011>

have been aimed at nearly complete and constant disruption
of pulse, of any semblance of regularity in beat pattern. . . .
It is difficult to find passages in Varése where the beat, or
even some simple subdivision or compound of it, is literally
stressed for more than a couple of measures.”’32 Bernard
describes here precisely the type of nonbeat-based context
that listeners are most likely to perceive in terms of a rhyth-
mic contour.

Density 21.5 is the most often analyzed of Varése’s com-
positions.3? Although the work’s structure is as much
founded upon recurring rhythmic contours as it is upon re-

*Jonathan W. Bernard, The Music of Edgard Varése (New Haven and
London: Yale University Press, 1987). 133.

*3See, for example. Marc Wilkinson, **An Introduction to the Music of
Edgar Varese,” The Score and I.M.A. Magazine 19 (1957). 5-18: Martin
Giimbel. “*Versuch an Varese Density 21.5.” Zeitschrift fiir Musiktheorie 1
(1970), 31-38; James Tenney with Larry Polansky. “Temporal Gestalt Per-
ception in Music.”” Journal of Music Theory 24 (1980), 205-241: Jean-
Jacques Nattiez, *“Varese’s Densiry 21.5: A Study in Semiological Analysis.™
trans. Anna Barry, Music Analysis 1 (1982). 243-340: Carol K. Baron.
“Varese's Explication of Debussy’s Syrinx in Density 21.5 and an Analysis
of Varese's Composition: A Secret Model Revealed.” The Music Review 43
(1982), 121-134. In addition, Perspectives of New Music 23 (1984) contains
three articles in a Varése Forum: James Siddons. **On the Nature of Melody
in Varese’s Density 21.5." 298-316: Jeffrey Kresky. A Path through Den-
sity.” 318-333: and Marion Guck. *A Flow of Energy: Density 21.5." 334—
347. Bernard’s analysis concludes The Music of Edgard Varése. 217-232.
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curring pitches or set classes, no analysis published to date
adequately addresses the issue of rhythmic structure. The
work may be divided into three large sections, as illustrated
in Example 8. Two of these sections are further subdivided;
B contains two contrasting subsections marked B-I and B-II
in the example, while A’ contains a return of material from
both the A and B sections. The boundary between subsec-
tions in each case is marked by a recurring fanfare-like mo-
tive labeled “x” in the diagram.

A recurring rhythmic figure, dseg <0 0 1>, initiates most
phrases of the A section, as shown in melodies (a) through
(f) of Example 9. Segment (d) consists entirely of this du-
ration succession. All of the remaining segments begin with
either <0032 1> or <0023 1>. Although these two
successions do not share many embedded subsegments, com-
parison of their matrices reveals a high degree of similarity;
their content is identical in nine out of ten positions. Three
of the six segments cited here—labeled (b), (c), and (f)—
begin with the rhythmic contour <0 0 2 3 1>, yet their me-
lodic contours and set-class structures differ. Melody (c) may
be heard as a variation of (b), since it immediately follows
(b) musically and since its rhythmic contour differs only with
respect to the final duration. Further, the pitches of melody
(c) are a literal subset of those in melody (b) (which, inci-
dentally, are the same pitches as melody (a)—thus (a), (b),
and (c) form a kind of *‘continuous variation’’). The melodic
contours of the first four notes of (b) and (c) differ a great
deal, however: in terms of adjacencies, <- + + >in (b) as
opposed to <+ — —> in (c). Although melody (f) begins
with the same rhythmic contour as segments (b) and (c), it
contains no common pitch classes with either segment. Fur-
ther, segment (f)’s melodic contour differs markedly from
the others. This melody contains only three distinct pitches,
forming the repeated-note contour <2 120120 1> and
set class 3—1 [0,1,2]. The remaining two segments, (a) and

Example 8. Formal design of Varese, Density 21.5

A(mm. 1-23) B (mm. 24-40) A’ (mm. 41-61)
B-I  "x" B-lI A’ B-1I' "x" Bl
24-28 29-32 32-40 41-45 46-51 51-53 53-61

primary thematic material:

(mm. 1-3)

(mm. 24-26)
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(e), are very similar rhythmically, since the rhythmic contour
of the latter, <00 3 2 1>, can be embedded contiguously
in the former. The first three notes of each forms the 3-1
trichord, as did segment (f). Neither the melodic contour
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Example 9. Primary rhythmic contours in Density 21.5, A and A’ sections

A:

(a)mm. 1-2

(b) mm, 34

(c) mm. 4-5

(d)m.9

(e)m. 15

(f) mm. 21-22

.

T I
— 1

1 T I

Pak— LA
p<f>

dseg = <0042135> cseg = <2130304> sc 54
dsubsegs = <0021>,<00321> pes = {1,4,5,6,7}
by translation

dseg = <002312>
dsubsegs = <0012>,<00231>

cseg = <213404> sc 54
pes = {1,4,5,6,7}

dseg = <002311> cseg = <232103> sc 4-13
dsubsegs = <0012>,<00231> pes = {1,4,6,7}
0 .
N W 1 1 T 1 I
= v
ﬁ —
dseg = <001> cseg = <101> sc 2-1
pes = {0,1}

T l T 1 ;L
dseg = <00321> cseg =<10202> sc 3-1
dsubseg = <0021> pes = {3,4,5}
——3—
= : e
~ T
P subito Y S=

dseg = <00241345>
dsubsegs = <0012>,<00231>

cseg =<21201201> sc 3-1
pes = {9,10,11}

A’:<001>,<0021>,and <00 12> embedded as dsubsegs

ﬁ 1 B T 1
(g)mm. 41-42  — | —
“-"v\___,,/
» —————
dseg = <001> cseg = <102> sc 3-1
pes = {5,6,7}

(h) mm. 42-43

| p —

dseg = <00333112224>
dsubseg = <001>
bracketed dsubsegs: both = <00111>

cseg = <21312321304> sc 54
pes = {2,5,6,7,8}

u ’”

(based on rhythmic contour of (a)):

(i) mm. 29-30

cseg =<3210> sc 3-1
pes = {5,6,7}

(3]
cfp —_—
dseg = <021> cseg = <210> sc 3-5
pes = {0,5,6}
r.__3___1
’\ T N
(k)m. 52 %& E + T
T 1
qu>p
dseg = <02111 cseg = <21021> sc 3-5
dsubseg = 02 pes = {0,5,6}
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nor the pitch-class content of (e) can be embedded literally
in (a), however.

The three-note figure with which the A’ section begins,
segment (g) of Example 9, marks a return to the duration
succession, melodic contour, and 3-1 set class of the com-
position’s opening, although the precise pitches differ by a
semitone. The composer repeats and expands this motive in
melody (h), which follows (g) immediately in the score. Seg-
ment (h) is a member of set class 5-4 [0,1,2,3,6], as were
the opening two melodies of the work. The rhythmic contour
of this final reference to the material of the A section differs
most strongly from the contours of the rhythms that preceded
it. This duration succession, <00333112224>, con-
tains four instances of repeated equal durations, and more
closely resembles the repeated-duration successions that are
featured in the B section than the rhythms of the A section.

Motive “x.” dividing both the B and A’ sections, provides
contrast to the material that surrounds it by virtue of its
sudden change of register and dynamic, but the contour seg-
ments and duration successions used here are not new to the
work. Segment (i) of Example 9 contains three short state-
ments of “x”—the first and last forming dseg <002 1>
(which was heard previously in segments (a) and (e)) and the
central statement forming dseg <0 0 1>, the segment that
has been heard repeatedly in the work as a kind of rhythmic
“head motive” of every melody discussed thus far. In this
case, however, the motive is initiated with equal-duration
thirty-second notes rather than the sixteenths of most pre-
vious statements. The melodies of segments (i), (j), and the
initial notes of (k) are the continuously descending melodic
contours <2 1 0> and <3 2 1 0>; these contours recur reg-
ularly throughout the piece as do their inversions, to be
discussed in Example 10 following.

This analysis of melodic and rhythmic contours in Density
21.5 closes with a discussion of two compositional techniques

used in this work, the analysis and discussion of which are
greatly enhanced by the precise language of contour theory.
The first of these involves the composer’s development of
melodic material by registral expansion—that is, by varying
the pitch-space realization of a reiterated c-segment. The
second involves his use of contour equivalence spanning both
the pitch-registral and temporal domains. Example 10 shows
three instances of pitch-space expansion within recurring
equivalent contours, a technique that plays an important role
in linking the A and A’ sections, as well as the B and B’
sections. The first example of contour expansion occurs
within the A section in mm. 3-4 and mm. 13-14. Here, the
cseg <102 3> is expanded from a total pitch compass of
a minor third to one of a perfect twelfth. Likewise, the
rhythm of mm. 13-14 represents a contour expansion of the
first in sequential time; both are d-space statements of
<00 12>. Second, mm. 9-10 of the A section contain a
long melody that for two measures oscillates up and down
a semitone, creating the cseg <1010101010>. This
contour recurs in the A’ section, mm. 46-48, this time as a
minor-third oscillation. In the third instance, the melody
beginning in the second measure of the B section (m. 22)
forms cseg <013 03 0>. It returns in the B’ section ex-
panded in register by a semitone, and with one additional
Cp~34

A striking feature of this work is the occurrence of several
segments that are equivalent in contour space and duration
space. Melody (a) of Example 11 is one such example. This
melody is structured such that each successive pitch is both
higher and longer than the one that preceded it; thus both
facets of its structure can be represented by the succession
<012 3>. Although melody (b) begins with a repeated
duration, the rhythmic and melodic contours of the last three

*Bernard notes this relationship as well (p. 230).
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Example 10. Contour expansion in Density 21.5

A section ///_\
mm. 34 3 mm.1314 B e
H » |’F~' 5 g 1%
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dseg<0012> expanded
A and A’ sections
mm.9-10
0 —3—
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cseg<1010101010> expanded
B and B'sections
mm. 25-27
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cseg<013030>expanded
(second time adds one cp 1)

notes can be represented by the succession <0 12>. In
addition, if the melody is aurally segmented by register, the
non-contiguous dsubseg formed by the three highest pitches
is also <0 1 2>. Melody (c) also contains one repeated du-
ration (this time at the end of the melody) but, disregarding
this repetition, its initial contour may be represented in both

the registral and temporal domains as <012 3>. A case
might be made for the function of the continuously ascending
melody as a cadential gesture in this work, since melody (c)
serves this function immediately before the B-II section be-
gins, and the ascending melody of mm. 44-45 (not shown
in Ex. 11) concludes the first subsection of the A’ section.
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Example 11. A recurring melodic/rhythmic contour in
Density 21.5

——3— _
@ me 0 R S S — —2
a) m. = T 1T T
g“-_ I I T
ﬂf< p—— —_—
dseg = <0123> cseg = <0123> sc 4-12

pes = {7,9,10,1}

n l’ XF T T
(bymm. 13-14 o1 t t Y
N 1 1 1
) —
b/ |
T
dseg = <0012> cseg=<l(‘)3_‘3> s¢ 3-5

csubseg = <012 > (twice)
pes = {4,9,10}

3

cseg = <01234> sc 5-5
pes = {4,8,9,10,11}

(d) m. 55 T—% E
& T
P———pP
dseg = <012> cseg = <012> sc 3-3
pes = {4,7,9}
g ke e F2 = E
(e)mm. 58-61 FonC—bp—1F T —1 R i
ANIv4 T 1y T 1 T
Y £
L ] L J
dsegs = <1012>,<012> segmented by slurs
cseg (entire excerpt) = <0123456> s¢ 7-Z37
pes = {10,11,1,2,3,5,6}

Further, the melody that concludes the entire composition,
melody (e) of Example 11, is the longest continuously rising
contour of the work, composed of contour pitches
<0123456>. Although this duration succession does
not represent continuously longer durations, the subseg-
ments (as indicated by the composer’s slurring) contain two
embedded statements of dsegment <0 1 2>. Thus, the final
melody of the work has been prepared aurally by similar
gestures, with both its contour and rhythmic structure heard
previously in other cadential contexts. Finally, segments (b),
(c). and (e) also feature a continuous crescendo. Each pitch
in the bracketed successions is higher, longer, and louder
than the previous. Thus <0 1 2 3> is also represented in a
“dynamic space,” measured from soft to loud.

In summary, generalization of contour theory into other
domains enables the analyst to compare diverse facets of
musical structure along a single sequential scale. The ana-
lytical examples drawn from Octandre and Density 21.5 have
shown ways in which analysis of duration successions as
rhythmic contours may clarify some aspects of one compos-
er's musical language.

ABSTRACT
This paper develops a theory that models nonbeat-based rhythms
as “‘rhythmic contours™ of relative longs and shorts, drawing upon
discussions of temporal spaces appearing in recent work of Robert
Morris and David Lewin and upon various music-psychological in-
vestigations of rhythmic perception. A new type of temporal space
is proposed: a duration space (d-space) analogous to Morris’s con-
tour space. in which elements are ordered sequentially from short
to long. After developing equivalence relations for d-space seg-
ments, illustrated by excerpts from Edgard Varese's Octrandre. the
paper concludes with an analysis of Density 21.5 that focuses upon
relationships among rhythmic contours.



