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BROKEN AND UNBROKEN 
IN'I'ERVAL CYCLES AND THEIR USE 

IN DETERMINING 
PITCH-CLASS SET RESEMBLANCE 

4?jAz 
MICHAEL BUCHLER 

HE THIRD SONG of Dallapiccola's Quattro Liriche di Antonio Machado 
ends with a series of six-note chords in the piano part (Example 1).1 

The first chord, repeated and held through measure 80, is a member of 
set class (SC) 6-Z28 [013569]; the second chord is its literal comple- 
ment, a member of SC 6-Z49 [013479] (they form the two halves of a 
twelve-tone series). The third and fourth distinct chords (from the end of 
measure 81 to the end of the excerpt) reverse this pattern at a different 
transpositional level. While these chords types all have the same interval- 
class (ic) content (as is the nature of Z-related SCs), the subsets and inter- 
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vals that they project differ greatly. The two realizations of 6-Z49 
prominently feature two closely-spaced realizations of 3-5 [016]-one in 
each hand. In these chords, ics 1, 5, and 6 are most salient. By contrast, 
both realizations of 6-Z28 prominently feature a close-position aug- 
mented triad (3-12 [048]) in the right-hand part and an open-position 
diminished triad (3-10 [036]) in the left-hand part. Or, taking the lowest 
four notes of these 6-Z28 chords (including the lowest note in the right 
hand) yields a complete diminished seventh chord (4-28 [0369]), spaced 
as two tritones, nine semitones apart. 
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EXAMPLE 1: DALLAPICCOLA, QUATTRO LIRICHE DI ANTONIO 

MACHADO, SONG 3, PIANO PART, LAST FIVE MEASURES 

These differences between the 6-Z28 and 6-Z49 chords are not merely 
products of spacing. Even though both set types share the same interval- 
lic profile, 6-Z49 embeds neither 3-12 nor 4-28. Because 6-Z28 does 
embed these two set types, both of which are complete interval cycles, I 
will argue that it has the potential of projecting ics 4 and 3 (their cyclic 
progenitors) more strongly than does its Z-equivalent, 6-Z49. This article 
will propose a series of pitch-class-based analytical tools (including a sim- 
ilarity index) that differentiate such set pairs, while still acknowledging 
their intervallic affinities. 

Marcus Castren's recent work on measures of pitch-class set resemblance 
establishes a dichotomy between methods that compare only the sets' 
interval-class content and those that consider all subset classes.2 Exam- 
ples of interval-class-based resemblance measures include Morris's ASIM, 
Isaacson's IcVSIM and more recent ISIM, my own interval-class satura- 
tion similarity measure-or SATSIM(2),3 and the new ANGLE measure 
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by Damon Scott and Eric Isaacson. Examples of subset-based measures, 
which Castren calls "total" measures, include Rahn's ATMEMB, 
Castren's RECREL, and potentially Lewin's REL (depending on which 
subset classes are included in the TEST group).4 

Castren, among others, objects to interval-class-based measures 
because they tend to produce a smaller number of distinct values than do 
total measures, and because they do not distinguish between Z-related 
set classes.5 Total subset-based measures such as the ones mentioned 
above do distinguish Z-related set classes, and each of them produces a 
greater number of values than do any of the aforementioned interval- 
class based measures. However, I'm not convinced that there is any cor- 
relation between the number of distinct values produced and the qual- 
ity-or effectiveness-of a particular measure. The measure that will be 
presented later in this article produces hundreds more values than any of 
these total measures, but I don't believe that this is necessarily an advan- 
tage. 

Total measures, almost by definition, use different criteria in compar- 
ing sets that are not the same size. For example, if one wanted to com- 
pare two hexachords using a total measure, one would examine their 
mutual pentachord-, tetrachord-, trichord-, and dyad-class embeddings. 
If, however, one wanted to compare a hexachord to a trichord, one could 
only compare the mutual dyad-class (and perhaps trichord-class) content 
of the two sets. While each of these so-called total measures includes an 
algorithm to bring such unequal comparisons into a common range of 
values, they still create scenarios where different means are used to com- 
pare sets of unequal size. 

Rather than judging resemblance by comparing interval classes or all 
available subset classes, I will propose a method that is based upon how 
each set is partitioned with respect to the six distinct interval-cycles. 
(Because interval 7- through 11-cycles may be understood as either ret- 
rogrades or inversions of interval 5- through 1-cycles, they will not be 
considered distinct.) This information serves as the basis for a new 
weighted six-argument vector that resembles the interval-class vector 
(ICV) in function (or at least in its function as data for similarity indices) 
but not in design. Each argument of the vector represents the degree to 
which instances of corresponding interval-class n are found in unbroken 
n-cycle segments. The assumption behind the weighting is that, for any 
set class X, the more that instances of interval-class n form a particular n- 
cycle, the more likely that X will project interval-class n. For example, 
one might reasonably claim that a four-note quartal (or quintal) chord 
projects ic5 more strongly than does a chord with three cyclically non- 
adjacent ic5s. Although I am addressing only pitch-class sets and not 
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their particular orientations in pitch space, I believe that it is still 
legitimate to assert that many-or even most-realizations of set class 
[0257] will project ic5 to a great extent. 

Before introducing the new vector types and similarity index, it will be 
useful to make a few comments on the cycles themselves and the ways in 
which they can be segmented and concatenated to form "cyclic sets." 
The group of cyclic sets has been discussed elsewhere in the theoretical 
literature,6 but I will be undertaking an approach that is rather different 
in nature from these studies. My approach will lead toward a method for 
comparing two set classes based upon their shared and different cyclical 
construction. 

Let us define an n-cycle (where n is a variable that represents any inter- 
val class in standard twelve-pc space) as a closed and finite ordered collec- 
tion of pitch classes where one element maps onto the next (and the last 
onto the first) under transposition at a constant interval n.7 The members 
of an n-cycle are defined as (x+n, x+n2, x+n3, ... x+nP = x) where p is the 

period of the n-cycle. For most values of n, there are several distinct n- 
cycles in the 12-pc aggregate. For example, there are four 4-cycles: 
(048), (159), (26a), and (37b). Because each n-cycle has p elements, 
there must be 12/p distinct cycles formed by interval n (we call this value 
m). The complete n-cycles are shown in Example 2. 

1 cycle: (0123456789ab) 

2 cycles: (02468a) (13579b) 

3 cycles: (0369) (147a) (258b) 

4 cycles: (048) (159) (26a) (37b) 

5 cycles: (05a3816b4927) 

6 cycles: (06) (17) (28) (39) (4a) (5b) 

EXAMPLE 2: CYCLIC SETS IN TWELVE-PC SPACE 

Because all instances of ic n occur segmentally within the n-cycle(s), 
any pitch-class set that simply is a complete n-cycle naturally features the 
maximal amount of a given ic n for a set of its cardinality. {0, 2, 4, 6, 8, 
al, for example, is maximally ic2 saturated; {0, 3, 6, 9} is maximally ic3 
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saturated, and so forth. The same is true of pcsets that are wholly the 
union of two n-cycles (for a single given n). Both (0, 1, 4, 5, 8, 9} and 
(0, 2, 4, 6, 8, a} can be formed by the union of two 4-cycles,8 and conse- 
quently both hexachords maximally include ic4. For an interval n whose 
cycles have periodicity p, then, we know how to identify the "maximally 
n-saturated set types" whose cardinalities are p or integer multiples of p. 

A pcset that is smaller than p will maximally saturate ic n if it is (again, 
wholly) a continuous n-cycle segment. For n = 2 (with p = 6), the two- 
through five-element set classes that maximally saturate ic2 are [02], 
[024], [0246], and [02468]. A pcset that is larger than p will maximally 
saturate ic n if it is the combination of however many complete n-cycles 
cardinality permits (possibly just one) and an incomplete n-cycle of what- 
ever length cardinality requires. For n = 4 (with p = 3), any combination 
of, for example, (0, 4, 8} and some segment from one of the other three 
4-cycles will produce sets that are maximally saturated with ic4 (e.g., (0, 
1, 4, 8}, {0, 1, 4, 5, 8}, (0, 4, 8, 8}, and (0, 2, 4, 6, 8}). 

We can condense the above conditions for maximal n-saturation into a 
single definition of what we shall call an n-set (for interval n). An n-set is 
comprised of some number of complete n-cycles (possibly none, one, or 
more than one) and, at most, one incomplete n-cycle segment. The com- 
plete list of all n-sets is the same as Tore Ericksson's maxpoint series.9 All 
n-sets are maximally saturated with interval n and all pcsets that are max- 
imally saturated with interval n are n-sets. 

We will now return to the creation of several new vector types that 
reflect how the elements of a pcset are distributed with regard to the 
interval cycles. We will first examine such cyclic distribution, focusing on 
the number and position of any cyclic adjacencies. Next, we will create a 
version of the interval-class vector that distinguishes the size and quantity 
of all n-cycle segments. This amounts to a subdivided interval-class vec- 
tor, the arguments of which will be weighted using a procedure that gives 
cyclic strings of intervals more prominence than equal numbers of the 
same intervals that are not all cyclically adjacent. My final construct will 
be derived by comparing these cyclically weighted interval-class vector 
arguments to what is possible given any set of the same size. This is what 
I have elsewhere called a measure of saturation.0l These adjusted values 
will provide us with a relatively cardinality-neutral means of relating sets 
based upon their n-cycle subsets. 

We will begin our transformation from an objective inventory of the 
intervals within a set to a weighted cyclic saturation vector by examining 
the manner in which elements of a pitch-class set are distributed among 
the n-cycles. Example 3 shows the cyclic distribution of set class 6-Z28 
[013569] (interval-class vector: <224322>). Each line of the example 
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shows adjacencies within a particular n-cycle simply by ordering the 
elements of the "most normal" form of 6-Z28 along the cycle. Parenthe- 
ses delineate the cycles, and adjacent pitch classes within the parentheses 
(including the wraparound) are n-cycle adjacencies, each producing a 
single embedded interval-class n. Dashes indicate vacant places in each n- 
cycle. 

1-cycle distribution of 6-Z28: (01-3-56--9--) 

2-cycle distribution of 6-Z28: (0--6--) (135-9-) 

3-cycle distribution of 6-Z28: (0369) (1---) (-5--) 

4-cycle distribution of 6-Z28: (0--) (159) (-6-) (3--) 

5-cycle distribution of 6-Z28: (05-3-16--9--) 

6-cycle distribution of 6-Z28: (06) (1-) (--) (39) (--) (5-) 

EXAMPLE 3: DISTRIBUTION OF (SET CLASS) 6-z28 [013569] 
AMONG THE SIX DISTINCT n-CYCLES 

Example 3 illustrates how the pcset's elements are distributed among 
the cycles of any given interval. As a means of summarizing this data, we 
will create an array called CycleSeg,(X). This construct lists the cardinali- 
ties of the n-cycle segments of X from longest to shortest. The sum of 
CycleSeg,(X) numbers equals the cardinality of set X. Example 4 shows 
the cyclic segment lengths of our set, 6-Z28; compare these numbers 
with the patterns in Example 3. In Example 3, we can see that 6-Z28's 
elements fall into four disjunct segments of the 1-cycle, two of two ele- 
ments and two of one; these are now represented by the array <2, 2, 1, 
1>. Any realization of the set class (for example, (C, C#, E;, F, F#, A}) 
will have two two-note 1-cycle segments ({C, C#} and (F, F#}) and two 
one-note segments ({El} and (A}). 

The lengths of the various segments indirectly tell us the interval-class 
content of a pcset. We can see, for example, that the two-note 1-cycle 
segments are the source of the two icls in the set, and also that a single 
unbroken three-note 2-cycle segment is the source of 6-Z28's two ic2s. 
Similarly, the three ic4s in 6-Z28 arise from a single complete 4-cycle 
subset. We will now create a new vector-the "ic-cycle vector" (abbrevi- 
ated as ICCV)-that conveys not only that there are two icls and two 
ic2s in set class 6-Z28, but also that those two icls arise from disjunct 1- 
cycle segments and that the two ic2s arise from a single 2-cycle segment. 
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CycleSegl(6-Z28): <2,2,1,1> 

CycleSeg2(6-Z28): <3,1,1,1> 

CycleSeg3(6-Z28): <4,1,1> 

CycleSeg4(6-Z28): <3,1,1,1> 

CycleSeg5(6-Z28): <2,2,1,1> 

CycleSeg6(6-Z28): <2,2,1,1> 

EXAMPLE 4: THE LENGTHS OF IC n-CYCLE SEGMENTS (CycleSeg ) 
OF 6-z28 [013569] 

Each of the ic-cycle vector's six arguments is derived from the corre- 
sponding CycleSeg, values. Instead of showing the number ofpcs in each 
n-cycle segment, the ICCV lists the number of ic n found in each n-cycle 
segment. For the most part, deriving the number of ic n in an n-cycle 
segment simply amounts to subtracting 1 from the size of each segment 
(for example, a one-note n-cycle segment yields no interval ns, a two- 
note segment yields a single interval n, and so on). This holds true for all 
cyclic fragments (i.e., incomplete n-cycles); in cases where a complete n- 
cycle is embedded in a set, the number of instances of interval n is equal 
to the period of the cycle, not the length minus one. Consider, for ex- 
ample, a complete 4-cycle such as (0, 4, 8}. Here the period of the 
cycle-the number of steps until the last element maps onto the first-is 
3; therefore, this cycle yields three, not two, interval class 4s. This holds 
true for all n-cycles except 6-cycles; two-element cycles yield only one 
interval each. Example 5 shows the interval-class-cycle vector of set class 
6-Z28. 

ICCV(6-Z28): <(1,1} 2, 42} , {4} , 3}, 1,1}, (1,1}> 

EXAMPLE 5: INTERVAL-CLASS-CYCLE VECTOR (ICCV) 
OF 6-z28 [013569] 

For any given set (or SC), the sum of the numbers in each ICCV argu- 
ment equals the parallel ICV argument; more formally, 

ICVn(X) = (I CCVn(X)) 
t T t 
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where T is the set of interval strings of ic n and t are the elements of T 
This elaboration on the interval-class vector will be essential in develop- 
ing the notion that two ic n from different n-cycle segments produce a 
different degree of ic n salience than two ic n from the same n-cycle seg- 
ment. 

Our new vector lists the icl content of 6-Z28 as (1,1}, which tells us 
that the two icls appear in disjunct locations along the single 1-cycle; the 
ic3 content of 6-Z28 is listed as {4}, which tells us that the four ic3s are 
all from a complete embedded 3-cycle. Of course, we only know that an 
ICCV3 entry of {4} indicates a complete 3-cycle because we know that 
the period of a 3-cycle is 4. That same entry would indicate a cyclic frag- 
ment for icl, ic2, and ic5 (and for ic4 and ic6, it wouldn't even be pos- 
sible). Cyclic periodicity must also be taken into account in order to 
understand the degree to which a cycle can be fragmented. An ICCV 
entry of {1,1}, for example, represents cyclic fragments for any ic but 6, 
for which it represents two complete cycles. 

Accordingly, we need to understand how many fragments are possible 
for the cycles of various ics, with their various periods. Obviously, more 
fragments will be possible when their lengths are shortest; and the short- 
est possible fragments-single pcs-can be extracted from a cycle in the 
greatest number by simply taking every other cyclic element. A maximally 
fragmented n-cycle, then, would contain On, 2n, 4n, and so on, as far as 
the cycle permits. The maximum number of n-cycle fragments equals the 
greatest integer that does not exceed half the period of ic n. Of course 
these one-element fragments produce exactly no occurrences of ic n; and 
we are at least as interested in finding out how uncyclic some actual ic-n 
content can be. The process of determining this would be to skip every 
third element along an n-cycle. By taking two n-cycle adjacencies, we 
form a single ic n, but by skipping the third, we avoid cyclic segments 
longer than two notes (and ic n strings longer than one). Thus, the max- 
imum number of unconnected ic n instances in an n-cycle is the largest 
integer that does not exceed one-third of the period. The product of this 
figure and the number of distinct n-cycles (again we call this variable m) 
equals the maximum number of arguments in each ICCV,. This can be 
represented more formally as mo round(p/3). These values (i.e., the max- 
imum number of two-element or larger n-cyclic fragments for each dis- 
tinct n) are provided in Example 6. 

A 1-cycle, for example, can be broken into as many as four disjunct 
two-note or larger fragments. There is only one set class that has four 
icls, none of which are conjunct: 8-28 [0,1,3,4,6,7,9,a], the octatonic 
collection. Since it is impossible to add another pc to this pcset without 
adjoining two of the cyclic fragments, there will never be any more than 
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four elements in ICCV1. In contrast to the single 1-cycle, there are three 
possible ic3 cycles. Fragmentation of these cycles is not an issue, how- 
ever, since it is only possible to have two nonadjacent fragments within 
the same 3-cycle, and both fragments could only be one-pc long, pro- 
ducing no ic3. Therefore, there can only ever be three elements in the 
ICCV3 vector (representing the three distinct 3-cycles). 

n-cycle p m m*(p/3)(rounded) 

1 12 1 1 (12/3) =4 

2 6 2 2 (6/3) = 4 

3 4 3 3 (4/3) = 3 

4 3 4 4 (3/3) =4 

5 6 1 1 (12/3) =4 

6 12 6 6 (2/3) = 6 

EXAMPLE 6: CALCULATION OF THE NUMBER OF POSSIBLE 

ARGUMENTS IN EACH ICCV INTERNAL VECTOR 

* * * 

Let us now return to our analysis of 6-Z28's cyclic distribution. For the 
sake of comparison, we will also examine the cyclic distribution and 
interval-class-cycle vectors for set class 6-Z49 (prime form [013479]), the 
set class Z-related to 6-Z28. These are shown in Example 7 below. While 
each interval-class occurs the same number of times in 6-Z49 and 6-Z28, 
as is the nature of Z-related SCs, their arrangement differs for three of 
the six ics. Later, we will define an index to compare SC similarity based 
upon respective ICCVs; to do so, we will clearly need to differentiate val- 
ues such as (4} and {2,2} (these are the ICCV3 values for 6-Z28 and 6- 
Z49, respectively). 

The premise of this article-that a single n-cycle segment projects ic n 
more strongly (or at least differently) than do multiple shorter ones- 
necessitates adjusting the ICCV arguments accordingly. Larger numbers 
in the ic-cycle vector, which indicate a significant cyclic presence, should 
be weighted more heavily than groups of smaller numbers, which denote 
fragmentation. For example, the ic-cycle vector argument {3} should be 
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1-cycle distribution of 6-Z49: (01-34--7-9--) 

2-cycle distribution of 6-Z49: (0-4---) (13-79-) 

3-cycle distribution of 6-Z49: (03-9) (147-) (----) 

4-cycle distribution of 6-Z49: (04-) (1-9) (---) (37-) 

5-cycle distribution of 6-Z49: (0--3-1--49-7) 

6-cycle distribution of 6-Z49: (0-) (17) (--) (39) (4-) (-) 

ICCV(6-Z49): <{1,1}, {1,1}, {2,2}, {11,1,1}, {1,1}, {1,1}> 

EXAMPLE 7: CYCLIC DISTRIBUTION AND IC-CYCLE VECTOR 

OF 6-z49 [013479] 

weighted more heavily than {1,1,1}, because the latter indicates a greater 
degree of cyclic fragmentation. 

This brings us to our next step: the weighting procedure. Perhaps the 
easiest method would be to square all the values, then add them 
together. This would create elements with values of 

f {32} = 9and 
{ 
{ 12221}= 3 

n N n NN 

Any similarity index that examined the difference between these two val- 
ues (as do all commonly-used indices) would find that ic4 is three times 
as salient in the former set as in the latter. While I want to differentiate 
between longer and shorter cyclic segments and establish a bias favoring 
the former, I do not want create an exaggerated comparison by weight- 
ing the former too heavily.11 Therefore, I believe that simply squaring 
theICCVi values produces a distorted weighting system. Taking the 
square root of the sum of the squared ICCVi arguments 

nNICCVi 
(x)2 

n N 

is one way to temper this roughness.12 The difference between19 and 
r3 (or 3-1.73) is 1.27-a much smaller number, and one that would 

still allow for a fairly close relation of these two Z-related hexachords. Yet 
even with this adjustment, the former SC still appears to have 73% more 
ic4 salience. While this seems more tenable than claiming that it has 
300% more ic4 salience (as would be the case if we only used the 
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squares), the relationship still seems quite exaggerated; and this discrep- 
ancy is considerably magnified in cyclic vectors of larger SCs. 

We will therefore adopt a variable weighting system that is capable of 
more linear scaling. This system, designated WEIGHT, is a simple addi- 
tive formula. We begin with the number 1, which we multiply by a con- 
stant value (either a real number or an integer). For the sake of this 
demonstration, the constant that I will be using is 1.2. The weighted 
value of the number 1 is 1 times 1.2, or, simply 1.2. If the number we are 
weighting is 2, we begin with the weighted value of 1 (again, 1.2), add 1 
to it, then multiply the sum by 1.2. So, 1.2 plus 1 equals 2.2; the product 
of 2.2 and 1.2 is 2.64, and this is our weighted value for 2. To weight the 
number 3, we start with the weighted value of 2, add 1 to it, then multi- 
ply that sum by 1.2, and so forth.13 The values produced by WEIGHT 
are provided in Example 8. 

WEIGHT(0)= 0.00 WEIGHT(7)= 15.50 

WEIGHT(1) = 1.20 WEIGHT(8) = 19.80 

WEIGHT(2)= 2.64 WEIGHT(9)= 24.96 

WEIGHT(3)= 4.37 WEIGHT(10)= 31.15 

WEIGHT(4) = 6.44 WEIGHT(11) = 38.58 

WEIGHT(5)= 8.93 WEIGHT(12) = 47.50 

WEIGHT(6) = 11.92 

EXAMPLE 8: VALUES RETURNED BY FUNCTION 
WEIGHT WHERE THE CONSTANT IS 1.2 

With Example 9, we return to the problem of weighting the two ic- 
cycle arguments {3} and {1,1,1}. As Example 8 shows, WEIGHT(3) = 
4.37 and WEIGHT(1) = 1.2. There are three ls in the latter vector, so 
we multiply 1.2 by 3, totaling 3.6. These weighted values, 4.37 and 3.6, 
will replace the respective arguments of the ic-cycle vector in our new 
weighted ic-cycle vector (abbreviated WICCV). The derivation of the 
weighted ic-cycle vectors for both 6-Z28 and 6-Z49 is shown in Example 
10. 

The weighted ic-cycle vector is an interpretation of both the interval- 
class vector and the manner in which the elements of a pcset fall among 
the six distinct ic cycles. In its current state, it could be used in place of 
the interval-class vector in any ic-based similarity measure, including 
Teitelbaum's similarity index, Morris's ASIM, Isaacson's IcVSIM and 
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ICCV(6-Z28): <{1,1) , {2}, (4 }, 3, 1,1}, (1,1}> 

ICCV(6-Z49): <(1,1}, 11,1}, 12,2}, (1,1,1}, 11,1}, (1,1}> 

WICCV4(6-Z28) = WEIGHT(3) = 4.37 

WICCV4(6-Z49) = WEIGHT(1) + WEIGHT(1) + WEIGHT(1) = 3.60 

EXAMPLE 9: WEIGHTED INTERVAL-CLASS 4 (WICCV4) 
CONTENT OF 6-z28 [013569] AND 6-z49 [013479] 

WHERE THE WEIGHTING CONSTANT IS 1.2 

ISIM, and Scott's and Isaacson's ANGLE measure. But before using this 
new vector as fodder for a similarity index, we will add one more degree 
of interpretation to it. The ICCV and WICCV numbers should carry dif- 
ferent meaning depending upon the cyclic period and set cardinality. For 
example, the 3-cycle ICCV value {4} (WICCV3 = 4.37), indicates a com- 
plete cycle; if the set is reasonably small (e.g., a tetrachord or penta- 
chord), then a high degree of ic3 salience is indicated. That same value 
({4}) referring to the icl content of an octachord suggests considerably 
less-salient cyclic presence. 

We will therefore compare each argument of the weighted vector to 
the minimal and maximal possible values for that particular interval class 
in any set class of the same cardinality. This will help us understand the 
weighted ic-cycle values in the context of what is possible, and also what 
is trivial, for any given cardinality. This new comparison forms the "cyclic 
saturation vector," or CSATV for short. To derive it, simply compare 
each weighted ic-cycle vector argument to the minimum and maximum 
values for any set of the same cardinality (these are easily derived by 
examining all the n-sets). These minimum and maximum weighted val- 
ues are given in Example 11. 

Comparing each of the six weighted ic-cycle arguments to the mini- 
mum and maximum possible values produces a total of twelve compari- 
sons. These are arranged into two six-place vectors in Example 12. The 
top vector, abbreviated CSATVA, shows the comparisons of the weighted 
arguments to either their respective minima or maxima, whichever is 
closer; the bottom vector, marked CSATVB, shows the more distant 
comparisons-that is, the comparisons that were not represented in row 
A.14 A walk through Example 12 will demonstrate how CSATV is cre- 
ated. The top of this figure shows the minimal and maximal possible 
values for each ic-cycle vector argument in any hexachord (these are 
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ICCV(6-Z28): 

WICCV1(6-Z28) 

WICCV2(6-Z28) 

WICCV3(6-Z28) 

WICCV4(6-Z28) 

WICCV5(6-Z28) 

WICCV6(6-Z28) 

WICCV(6-Z28) 

ICCV(6-Z49): 

WICCV1(6-Z49) 

WICCV2(6-Z49) 

WICCV3(6-Z49) 

WICCV4(6-Z49) 

WICCV5(6-Z49) 

WICCV6(6-Z49) 

WICCV(6-Z49) 

<f1,1}, (2), 14}, {3}, {1,1}, (1,1}> 

= WEIGHT(1) + WEIGHT(1) = 2.40 

= WEIGHT(2) = 2.64 

= WEIGHT(4) = 6.44 

= WEIGHT(3) = 4.37 

= WEIGHT(1) + WEIGHT(1) = 2.40 

= WEIGHT(1) + WEIGHT(1) = 2.40 

= <2.40, 2.64, 6.44, 4.37, 2.40, 2.40> 

<(1,1), 1,1}, (2,2), 11,1,1), {1,11, (1,1)> 

= WEIGHT(1) + WEIGHT(1) = 2.40 

= WEIGHT(l1) + WEIGHT(l) = 2.40 

= WEIGHT(2) + WEIGHT(2) = 5.28 

= WEIGHT(1) + WEIGHT(1) + WEIGHT(1)= 3.60 

= WEIGHT(1) + WEIGHT(1) = 2.40 

= WEIGHT(1) + WEIGHT(1) = 2.40 

= <2.40, 2.40, 5.28, 3.60, 2.40, 2.40> 

EXAMPLE 10: DERIVATION OF THE COMPLETE WICCVS OF 6-z28 

[013569] AND 6-z49 [013479] WHERE THE WEIGHTING 
CONSTANT IS 1.2 

taken directly from Example 11). For example, the icl column shows 
that it is possible to have as small a value as zero and as large a value as 
8.93, which would represent 6 pcs adjacent within a single id-cycle (as 
in set class 6-1 [012345]). The third line in Example 12 contains the 
weighted ic-cycle vector of our now-familiar set class, 6-Z28. The value 
2.40 in the icl column is 6.53 less than the maximum and 2.40 more 
than the minimum for a hexachord. The comparative value "min+2.40" 
is therefore entered in the icl column of CSATV's top row and "max- 
6.53" is entered in CSATV's bottom row. In its ic3 content, we see that 
6-Z28 is closer to maximal than it is to minimal saturation. In that case, 
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Minimum possible weighted ic-cycle vector values 

1 2 3 4 5 6 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 1.2 0 0 

6 0 0 0 2.4 0 0 

>c 7 2.4 2.4 2.64 3.6 2.4 1.2 

8 4.8 4.8 5.28 4.8 4.8 2.4 

9 7.92 8.84 7.92 7.92 7.92 3.6 

10 12.88 12.88 11.72 11.14 12.88 4.8 

11 31.15 18.36 15.52 14.30 31.15 6.0 

12 47.50 23.84 19.32 17.47 47.50 7.2 

Maximum possible weighted ic-cycle vector values 

1 2 3 4 5 6 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 1.2 1.2 1.2 1.2 1.2 1.2 

3 2.64 2.64 2.64 4.37 2.64 1.2 

4 4.37 4.37 6.44 4.37 4.37 2.4 

=~ 5 6.44 6.44 6.44 5.57 6.44 2.4 

;: 6 8.93 11.92 7.64 8.74 8.93 3.6 
U 7 11.92 11.92 9.08 8.74 11.92 3.6 

8 15.50 13.12 12.88 9.94 15.50 4.8 

9 19.80 14.56 12.88 13.10 19.80 4.8 

10 24.96 16.29 14.08 13.10 24.96 6.0 

11 31.15 18.36 15.52 14.30 31.15 6.0 

12 47.50 23.84 19.32 17.47 47.50 7.2 

EXAMPLE 1 : MINIMUM AND MAXIMUM WICCV VALUES FOR ALL 

CARDINALITIES (ROWS) AND INTERVAL CLASSES (COLUMNS) 
WHERE THE WEIGHTING CONSTANT IS 1.2 
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- 

8.93 

WICCV(6-Z28)= < 

CSATVA(6-Z28) 

CSATVB(6-Z28) 

< min+2.40, 

< max-6.53, 

min+2.64, 

max-9.28, 

max-1.20, 

min+6.44, 

min+1.97, 

max-4.37, 

min+2.40, 

max-6.53, 

max-1.20 > 

min+2.40 > 

WICCV(6-Z49)= < 

CSATVA(6-Z49) 

CSATVB(6-Z49) 

< min+2.40, 

< max-6.53, 

min+2.40, 

max-9.52, 

max-2.36, 

min+5.28, 

min+1.20, 

max-5.14, 

min+2.40, 

max-6.53, 

max-1.20 > 

min+2.40 > 

EXAMPLE 12: GENERATION OF CSATV(6-Z28) [013569] AND CSATV(6-Z49) [013479] 

WHERE THE WEIGHTING CONSTANT IS 1.2 

min(1.2, 6) 

max(1.2, 6) 

0 

11.92 

2.64, 2.40, 

0 

7.64 

6.44, 

2.40 

8.74 

4.37, 

ON 

0 

8.93 

2.40, 

0 

3.60 

2.40 > 

2.40, 2.40, 5.28, 3.60, 2.40, 2.40 > 

-O0 
CD 

n 

CD 
0 
0 

z 
CD 

c 
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the max-related value is shown in the top row, and the min-related value 
in the bottom row, and so forth. 

One of the reasons for segregating min- and max-related values like 
this, and not putting all the min-related values in one row of the vector 
and all the max-related values in the other row, is to make it easier, by a 
quick glance at the top row, to determine whether each WICCV value is 
closer to minimal or maximal saturation. A more formal reason for doing 
do will arise shortly when we define our similarity index. Briefly, though, 
this alignment will allow us to discriminate on behalf of the nearer com- 
parisons. Unlike other such indices, WICCV will be constructed to inter- 
pret arguments that reflect the nearer degree of saturation (those in the 
top row) as more valuable when comparing two CSATVs. 

I have, to this point, been using the terms "min" and "max" rather 
casually. More properly, I should have notated a value such as 
"min+2.40" (as in Example 12 above) in a way that indicates which 
"min" is being used. Doing so involves specifying the weighting value, 
cardinality of set, and the weighted ic-cycle vector argument being com- 
pared. If we use the variables w, c, and i to represent these three items 
(respectively), then "min+2.40" should properly be written as "min(w, c, 
i) + 2.40." In this specific case where w = 1.2, c = 6, and i = 1, min(w, c, 
i) = 0. 

Having just explained the longer, more precise, way of expressing this 
measure of cyclic saturation, I will now move in the opposite direction 
and introduce a couple of abbreviations that are warranted for the sake of 
space and clarity-the first is trivial, the second more substantive. The 
trivial change will simply be to drop the "min" and "max" designations 
altogether. The signed numbers alone will tell us whether each value is 
min- or max-related, and their placement within particular saturation 
vectors will implicitly contextualize them (providing the interval cycle 
information and set cardinality). This means that we will have to distin- 
guish between -0.00 and +0.00. While they are numerically equal, in our 
abbreviated system, these two arguments represent opposite ends of the 
spectrum: the first indicating maximal and the latter indicating minimal 
saturation of a particular WICCV value. Our strictly numerical represen- 
tation will also simplify the formalization of our similarity index. That 
matter will be addressed later, however. 

The more substantial shortcut involves folding our two-part cyclic sat- 
uration vector into a single six-argument vector in which each value rep- 
resents the relative distance from both min and max. This can be 
accomplished, but not without some loss of specificity. We begin with 
our max(w, c, i) value and subtract min(w, c, i) from it. This gives us a 
"min-adjusted" maximum saturation value. We then take the appropriate 
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WICCV argument and subtract min(w, c, i) from it, producing a min- 
adjusted WICCV value. Dividing the min-adjusted WICCV value by the 
min-adjusted max value produces a percentage that indicates how close a 
particular WICCV argument is to min(w, c, i) or max(w, c, i). We could 
not simply divide the WICCV value by max(w, c, i), because the result 
would not account for the possibility that min(w, c, i) is greater than 
zero. For example, if max (w, c, i) = 4, min(w, c, i) = 2, and WICCV (w, i) 
= 2, then simply dividing WICCV by max(2/4) indicates 50% saturation. 
If we take the min (w, c, i) value into account as described above, how- 
ever, we get 

2-2 0 
4-2 2 50, 

indicating minimal saturation. 
We will call the complete vector derived using this shorter system the 

cyclic proportional saturation vector, or CPSATV. The derivation of a 
CPSATV for our familiar hexachords, 6-Z28 [013569] and 6-Z49 
[013479] are shown in Example 13 below.'5 Formally, CPSATV is 
defined as follows: 

WICCVi(X) - min(w, c, i) 
CPSATVi(X) = 

max(w, c, i)- min(w, c, i) 

While this new form of the cyclic saturation vector seems much more 
convenient and certainly less clumsy than our two-part CSATV (and, two 
CPSATVs can be related to each other rather easily using any vector- 
based similarity index), I generally prefer the extra degree of specificity 
provided by CSATV, and I worry that perhaps too much information has 
been packed into each of our CPSATV arguments. As I mentioned ear- 
lier, I will shortly introduce a similarity index that is biased in favor of the 
upper values (A parts) of each CSATV (the "closer" relations)-some- 
thing that would be impossible with this shorter alternative. The single- 
part vector is, however, very convenient for obtaining a quick cyclic pro- 
file of a particular set class, and pairs of these vectors can be more easily 
compared in one's head while analyzing a particular piece of music (even 
if the vectors themselves cannot be derived on the fly). For this reason, I 
prefer to use the CPSATV while forming my initial analytical opinions 
and opt for the longer CSATV when drawing more specific analytical 
conclusions. 

We have nearly arrived at the end of our trail of definitions and are 
almost ready to put this new saturation vector to analytic use. In doing 
so, we will feed the cyclic saturation vectors into a similarity index and 
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min(1.2,6) = 0 0 2.40 0 0 

max(1.2,6) = 8.93 11.92 7.64 8.74 8.93 3.60 

WICCV(6-Z28) = < 2.40, 2.64, 6.44, 4.37, 2.40, 2.40 > 

WICCV- min(1.2, 6, i):< 2.40, 2.64, 6.44, 1.97, 2.40, 2.40 > 

max(1.2,6, i)-min(1.2,6, i): 8.93 11.92 7.64 6.34 8.93 3.60 ? 

CPSATV(6-Z28): < 0.27, 0.22, 0.84, 0.31, 0.27, 0.67 > 
C 

0 

WICCV(6-Z49) = < 2 2.40240, 5.28, 3.60, 2.40, 2.40 > 7 

WICCV-min(1.2,6,i):< 2.40 2.40, 5.28, 1.20, 2.40, 2.40 > D 

max(1.2, 6, i) - min(1.2, 6, i): 8.93 11.92 7.64 6.34 8.93 3.60 

CPSATV(6-Z49): < 0.27, 0.20, 0.69, 0.19, 0.27, 0.67 > 

EXAMPLE 13: GENERATION OF CPSATV(6-Z28) [013569] AND CPSATV(6-Z49) [013479] 
WHERE THE WEIGHTING CONSTANT IS 1.2 
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examine the results. Almost any ic-based similarity index-including 
those named earlier-may be adapted to work with a saturation vector. 
The index which I will use is an extension of my own SATSIM.16 
Explained briefly, SATSIM compares the arguments in each of the top 
(A) rows of one saturation vector to the corresponding minimum- or 
maximum-related value of the other vector. This similarity index, which 
we will now call the cyclic saturation similarity index (or CSATSIM), is a 
function that compares saturation vectors of two sets, returning a real 
number between 0 and 1 that serves as an indicator of the two sets' 
degree of resemblance, following the model set by Morris's ASIM(X, 
y).17 The principal difference between the construction of ASIM(X, T) 
and CSATSIM(X, T) is that the former deals with one-part interval-class 
vectors while the latter uses values in a two-part saturation vector. 

When relating two set classes X and Yusing their cyclic saturation vec- 
tors, it is necessary to allow for the possibility (in fact, the likelihood) that 
the respective rows (A and B) of the two vectors might feature different 
patterns of max- and min-related values. The values in row A of the 
CSATV always reflect the "closest" comparison between the WICCV(X)i 
or WICCV(T)i value and either min(w, c, i) or max(w, c, i), and those 
comparative values will play most heavily in our relation. To relate two 
CSATVs, we first compare each value in row A of pcset X's saturation 
vector to the corresponding min- or max-related value in either row A or 
B of pcset T's saturation vector. We must then compare each value in row 
A of pcset Y's saturation vector to the corresponding min- or max-related 
value in either row A or B of pcset X's saturation vector. Because the 
comparison of pcset X to pcset Y frequently yields different values from 
the comparison of pcset Yto pcset X, it is necessary to perform both to 
insure symmetry.18 

To compare two vectors using the CSATSIM index, we add the abso- 
lute values of the numerical differences found in the above comparison, 
and divide this sum by the combined vector totals. Vector totals are 
obtained by adding together the distances between the numerical values 
in the respective arguments of both vector lines. If, for example, a partic- 
ular argument in CSATVA is +4 and the parallel argument in CSATVB is 
-1, the distance between +4 and -1 = 5.19 Cyclic saturation vector total 

(: CSATV) is formally defined in Example 14. Saturation vectors will 
always total the same number for sets of the same cardinality, just as they 
do in ic vectors.20 These values are provided in Example 15. 
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6 

ECSATV(X) = |CSATVA(X)n- CSATV(X)nl) 

EXAMPLE 14: FORMAL DEFINITION OF CSATV TOTALS (cCSATV) 

c Y,CSATV(X) 

0 0.00 

1 0.00 

2 7.20 

3 16.13 

4 26.32 

5 32.53 

6 47.36 

7 42.54 

8 44.86 

9 40.77 

10 33.09 

11 0.00 

12 0.00 

EXAMPLE 15: (sCSATV) FOR ALL SET-CLASS CARDINALITIES (C) 
WHERE WEIGHT (w)=1.2 

For a demonstration of how CSATSIM values are derived, consider 
two cyclic pcsets, Xand Twhere X= [012678] and r= [0369]. These 
are shown with their CSATV values in Example 16. X has the value 
(max)-3.65 in the icl column of CSATVA, while Yhas +0.00 in the par- 
allel place. Because pcsets X and Tare of different cardinalities, min(w, c, 
i) and max(w, c, i) will represent different extremes for each i. It is there- 
fore impossible to compare a min-related value directly with a max- 
related value; in this case, we must look to line B of pcset Y's cyclic satu- 
ration vector, which shows that [0369] is (max)-4.37 saturated with 
ic1.21 The absolute value of the difference between -3.65 and -4.37 (i.e., 
0.72) is the value returned for the icl column. In the ic2 column, 
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CSATVA(X) has the value (min)+2.40, while CSATVA(Y) row has the 
value (min)+0.00, yielding a difference of 2.40. In this case, one need 
not check the value in CSATVB(T) since row A had the necessary min- 
related value. This procedure (step 1 in Example 16) is repeated for each 

argument of CSATVA(X). One then compares each argument of 

CSATVA(Y) to either row A or B of pcset X's saturation vector, creating 
a two-part difference vector.22 

Because only the "A" row entries of one saturation vector are com- 

pared to whichever entries match them in the other vector, not all the 
max- and min-related values are necessarily employed in the comparison. 
In fact, when both sets have, for example, a max-related value in some ic 
column of row A, the corresponding min-related values in the B rows are 
never compared. While an index that does not always consider all avail- 
able arguments might be viewed as incomplete, by comparing only the 
closest arguments in the CSATVs we greatly reduce the effect of cardinal- 

ity. If, for example, we compared all the CSATVA and CSATVB values of 
ic4 in sets X and Y, we would see that they are 

1+0.00 - +0.00 + 1-6.34 - -4.371 1.97 184% 
6.34 + 4.37 10.71 

different with respect to their WICCV4 values (I added the differences 
between the min-related values and max-related values and divided that 
sum by the sum of the distance betweenCSATVB andCSATVA for 

4 4 
each pcset). Considering that these two sets are maximally similar with 

regard to their 4-cycle segmentation (for a hexachord and a tetrachord), 
this difference, occurring solely as a product of their difference in cardi- 

nality, seems rather extreme. I therefore chose to omit the CSATVB com- 

parison when both parallel arguments of the two CSATVA rows are 
related to the same extreme (min or max). 

As mentioned, the sum of the differences between CSATVA(X) and 
the corresponding min- or max-related values in either row of 
CSATV(T) are not necessarily the same as the differences between 
CSATVA(T) and CSATV(X).24 This was illustrated in step 1 of Example 
16. In order to obtain the same value from a comparison ofXto Yand Y 
to X, it is therefore necessary to add all the difference values together, 
creating a composite that reflects both comparisons (step 2 in Example 
16). 

This dual comparison produces a context-free similarity index that has, 
in large part, dealt with the problem of comparing sets with different car- 
dinalities a priori. However, an even greater degree of cardinal-neutrality 
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Set class 

X [012678] 

ICV 

<420243> CSATVA: < 

CSATVB: < 

Y[0369] <004002> CSATVA: < 

CSATVB: < 

-3.65 

+5.28 

+0.00 

-4.37 

+2.40 +0.00 

-9.52 -7.64 

+0.00 -0.00 

-4.37 +6.44 

Step 1: Compare the vectors, creating a two-part difference vector: 

CSATVA(X): CSATVrow(T) = 0.72 + 2.40 + 6.44 + 0.00 + 0.72 + 

CSATVA(T): CSATVro(X) = 5.28 + 2.40 + 7.64 + 0.00 + 5.28 + 

Step 2: Add together the values in the difference vectors: 

Step 3: Add together all the numerical distances between CSATVA and CSATVB for each set: 

(These values are also given in Example 15) 

>CSATV(X) = 8.93 + 11.92 + 7.64 + 6.34 + 8.93 + 

ICSATV(Y)= 4.37 + 4.37 + 6.44 + 4.37 + 4.37 + 

0.00 = 10.28 

0.00 = 20.60 

= 30.88 

3.60 

2.40 

(D 

0 

D 

CL 

c 

"3 

n m 

717 

= 47.36 

= 26.32 
= 73.68 

Step 4: Divide the sum from step 2 by the sum from step 3 to complete the SATSIMfunction: 

CSATSIM(X, Y) = 30.88/73.68 = 0.42 

EXAMPLE 16: CSATSIM(X, Y) COMPARISON OF [012678] AND [0369] 
w-J 

+0.00 

-6.34 

+0.00 

-4.37 

-3.65 

+5.28 

+0.00 

-4.37 

-0.00> 

+3.60> 

-0.00> 

+2.40> 
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is attained by dividing the sum of the differences by the combined totals 
of the two vectors (step 4 in Example 16).24 This cardinality adjustment 
better allows us to compare CSATSIM(X, Y) and CSATSIM(S, T)where 
#S or #Tare not necessarily equal to #X or #y25 CSATSIM is formally 
defined in Example 17. 

6 

(|ATV^(X)-CSAT Vrow(TY)l + 
ICSATVA (Y)n-CSATVrow(X)n ) 

n= 1 
CSATSIM(X, T) = 

6 

V (|csATvA(x)n-csATvg(x)n[ + CSATVA(Y)n-CSATVg(Y)n ) 

n= 1 

Where CSATVA(X) represents the numerical value found in CSATVA's nth 
entry for pcset X. Row is a function that determines which row of the 
CSATV to use. 

Function row: 
If CSATVA(X)n is a max-related value and CSATVA(Y). is also a max- 
related value, then the function row returns row A (CSATVA(X), is com- 
pared to CSATVA(T),); otherwise, row returns row B (CSATVA(X) is 
compared to CSATVB(Y)n). 

EXAMPLE 17: FORMAL DEFINITION OF THE CYCLIC SATURATION 

SIMILARITY INDEX-CSATSIM(X,Y) 

The value 0.42 that CSATSIM yields comparing [012678] and [0369] 
(step 4 in Example 16) represents the very great differences in their icl, 
ic3, and ic5 content and cyclic fragmentation. It also represents the con- 
gruence of values in the ic4 and ic6 columns and the more moderate dif- 
ference in their ic2 columns, returning a value which indicates that 42% 
of the WICCV values are equivalent. As mentioned, the number zero 
indicates an equivalence relation, while the number one indicates maxi- 
mal dissimilarity. As in many similarity measures, however, maximal dis- 
similarity is impossible to achieve because no two set classes are 
completely different with regard to their interval class occurrences and 
cyclic distribution. 

There are a number of equivalences yielded by CSATV and, more nar- 
rowly, CSATVA.26 When two different set classes can be represented by 
the same CSATV, we will call them CSATV Z-related, following Allen 
Forte's well-known ICV protocol. There is only one (traditional) ICV Z- 
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pair that is also a CSATV Z-pair: the two all-interval tetrachords, 4-Z15 
[0146] and 4-Z29 [0137]. Since they both feature one and only one of 
each interval class, each n-cycle is segmented to the same degree. There 
are a few cases of CSATVA equivalences: they are all relations between set 
classes of different cardinalities (this is obviously impossible in ICV Z- 
relations), and they are all n-sets. The list of CSATVA Z-relations is pro- 
vided in Example 18 (the ICVs and complete CSATVs are also shown). 
Despite the very small number of Z-relations found using CSATVA, there 
is one case of a Z-triple and one of a Z-quadruple. These Z-relations are 
all independent of my particular weighting constant. While changing 
WEIGHT clearly affects the CSATSIM values, these cases of CSATSIM 
equivalence will always remain invariant because the values in CSATVA 
represent minimal saturation, maximal saturation, or one cyclic fragment 
away from minimal or maximal saturation. Just as these CSATV Z- 
relations persist with all values for WEIGHT, so will the distribution of 
relatively large and small values across all pcset comparisons. For these 
reasons, it seems unnecessary to demonstrate CSATSIM using different 
WEIGHT constants. 

* * * 

We will now return to the third song of Luigi Dallapiccola's Quattro 
Liriche di Antonio Machado, the final section of which is provided in 
Example 19. My segmentation (shown in Example 19) is rather simple, 
drawing upon the piece's conservative metrical structure. I treat each 
half-measure as a separate group, with only a few exceptions-mostly 
because of notes held over briefly from one group to the next. The pc 
content of each of the fifteen groups is labeled using both prime form 
and Forte designation. Three pairs within the groups present members of 
the same set class: numbers 1 and 3 (set class 5-31), 11 and 15 (6-Z28), 
and 13 and 14 (7-26). The remaining groups are all members of different 
set classes. 

Example 20 provides a comparison matrix listing the CSATSIM values 
between all possible pairs of these fifteen groups. The smallest non-zero 
number in the matrix is 0.072, found between groups 5 and 11 (or, triv- 
ially, 5 and 15); the largest number in the matrix is 0.539, between 
groups 9 and 10. To provide a frame of reference, I have underlined all 
the CSATSIM values in the matrix that are higher than the average 
CSATSIM value for all #4 to #8 SCs (underlined values thus represent 
less than average similarity).27 Of course, using this average as the divid- 
ing point for similar versus dissimilar sets is arbitrary. Rather than the 
average value for all comparably-sized set classes, I might just as 
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Set Classes Forte #CSATV(both rows) 

CSATSIM group #1 (1/2/3/4/5/6-cyclic sets) (CSATVZ-quadruple) 
A [ ] 0-1 < -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 > 

< +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 > 
B [0] 0-1 < -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 > 

< +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 > 
C [0123456789a] 11-1 < -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 > 

< +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 > 
D [0123456789ab] 12-1 < -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 > 

< +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 > 

CSATSIM group #2 
A [0146] 

B [0137] 

CSATSIM group #3 
A [04] 

B [048] 

CSATSIM group #4 
A [036] 

B [0369] 

C [0134679a] 

(all-interval tetrachords; non-cyclic sets) (CSATVZ-pair) 
4-ZZ15< +1.20 +1.20 +1.20 +1.20 +1.20 -1.20 > 

< -3.17 -3.17 -5.24 -3.17 -3.17 +1.20 > 
4-Z29 < +1.20 +1.20 +1.20 +1.20 +1.20 -1.20 > 

< -3.17 -3.17 -5.24 -3.17 -3.17 +1.20 > 

(4-cyclic sets) (CSATVAZ-pair) 
2-4 < +0.00 +0.00 +0.00 -0.00 +0.00 +0.00 > 

< -1.20 -1.20 -1.20 +1.20 -1.20 -1.20 > 
3-12 < +0.00 +0.00 +0.00 -0.00 +0.00 +0.00 > 

< -2.64 -2.64 -2.64 +4.37 -2.64 -1.20 > 

(3/6-cyclic sets) (CSATVAZ-triple) 
3-10 < +0.00 +0.00 -0.00 +0.00 +0.00 -0.00 > 

< -2.64 -2.64 +2.64 -4.37 -2.64 +1.20 > 
4-28 < +0.00 +0.00 -0.00 +0.00 +0.00 -0.00 > 

< -4.37 -4.37 +6.44 -4.37 -4.37 +2.40 > 
8-28 < +0.00 +0.00 -0.00 +0.00 +0.00 -0.00 > 

<-10.70 -8.32 +7.60 -5.14 -10.70 +2.40 > 

CSATSIM group #5 (3/6-cyclic sets) (CSATVAZ-double) 
A [01369] 5-31 < +1.20 +1.20 -0.00 +0.00 +1.20 -0.00 > 

< -5.24 -5.24 +6.44 -4.37 -5.24 +2.40 > 
B [0134679] 7-31 < +1.20 +1.20 -0.00 +0.00 +1.20 -0.00 > 

< -8.32 -8.32 +6.44 -5.14 -8.32 +2.40 > 

CSATSIM group #6 
A [02468] 

B [02468a] 

(2/4/6-cyclic sets) (CSATVAZ-pair) 
5-33 < +0.00 -0.00 +0.00 -0.00 +0.00 -0.00 > 

< -6.44 +6.44 -6.44 +4.37 -6.44 +2.40 > 
6-35 < +0.00 -0.00 +0.00 -0.00 +0.00 -0.00 > 

< -8.93 +11.92 -7.64 +6.34 -8.93 +3.60 > 

EXAMPLE 18: SPECIAL CSATSIM EQUIVALENCE GROUPS 

(CSATV OR CSATVAZ-RELATIONS) 
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7. 5-30[01468] 8. 6-21[023468] 9. 6-18[012578] 10. 8-24[0124568A] 11. 6-Z28[013569] 12. 7-16[0123569] 

._ a.. _ , , Tempo I.(.J 4) 

y!? -Si~... ,. '": 1 - I 

cui3r _'_ 

4 :: 
y V ;'v 

13. 7-26[0134579] 14. 7-26[0134579] 15. 6-Z28[013569] 

EXAMPLE 19: LUIGI DALLAPICCOLA, QUATTRO LIRICHE DI 

ANTONIO MACHADO, SONG NUMBER 3, LAST TEN MEASURES 

reasonably have chosen the average-or the mean-for the group at 
hand. Alternatively, it would also seem reasonable to examine the distri- 
bution of values and look for naturally occurring dividing points. Each of 
these methods is arbitrary, of course, and the manner in which one 
interprets data from similarity indices is as subjective as one's choice of a 
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particular index.28 Like all analytical decisions, these should be made with 
a musical context in mind. 

In this comparison matrix, there is a slight dearth of values right 
around 0.2. Since that largely conforms to what I hear as a close relation, 
it will serve as the cutoff for what I will call a close relation. Another such 
ebb occurs at 0.1, but this is a very high standard for relatedness, met by 
only four of our pairs (discounting the set class duplications). We might 
reasonably say that set pairs yielding a number smaller than 0.1 deserve 
to be called very closely related. 

CSATSIM is particularly useful in the last subsection of this song, 
which begins in m. 80 and encompasses groups 11 through 15 (and the 

piano part of which was shown in Example 1). This portion of the 
CSATSIM comparison matrix has been excerpted in Example 20. There 
are two set-class duplications in this short span of music: between groups 
11 and 15, which present the only sets that trivially match because of 

Dallapiccola's use of a particular row (we'll discuss that in a moment), 
and between groups 13 and 14, which present the same set class despite 
being the products of two rows from different row classes.29 The values 
in Example 21 indicate that all the sets are similar, using our definition, 
and that the first or last set and number 12 are very similar indeed. The 
CSATV similarity between sets 11 and 12 results from their rather close 
affinity to 3-cycle sets and their relative lack of ic 1-, 2-, 4- and 5-cycle 
segments.30 Sets 13 and 14 also contain heavily segmented 1-, 2-, and 5- 
cycles, and are close to neither the minimal nor maximal saturation of 3- 
cycle adjacencies. This explains the very close resemblance of sets 11 and 
12, and the somewhat less close, but still similar, relations among the 
other sets in this short excerpt. 

Example 22 compares the sets presented in groups 1 through 6 (from 
the first three measures of Example 1) in another excerpt from the overall 
matrix with CSATSIM values greater than 0.2 underlined. As one can see 
from the amount of underlining, quite a few set pairs are dissimilar under 
our criteria. Notice, however, that sets 1, 3 (trivially), and 5 are all similar 
to each other and are dissimilar only to sets 2, 4, or 6. In more musical 
terms, the first halves of these measures are all similar to each other. The 
second halves of these measures are a bit harder to generalize. Sets 2, 4, 
and 6 are both dissimilar to the odd numbered sets and to each other. 
They (and particularly set 2) are, however, relatively much more closely 
related to all the sets at the end of the song. 

An examination of the first six groups' cyclic subsets reveals the distin- 
guishing feature of group 2. Its most salient cyclic subset is a complete 4- 
cycle, expressed compositionally as a close-position augmented triad in 
the pianist's right hand. Group 6 is the only other one that also embeds a 
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1. 2. 3.(=1.) 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. (=13.) 15. (=11.) 
5-31 6-Z24 5-31 4-18 6-30 7-3 5-30 6-21 6-18 8-24 6-Z28 7-16 7-26 7-26 6-Z28 
[01369] [01368] [01369] [0147] [013679] [0123458] [01468] [023468] [012578] [0124568A] [013569] [0123569] [0134579] [0134579] [013569] 

1. 0.000 

2. 0.365 0.000 
3. 0.000 0.365 0.000 
4. 0.251 0.276 0.251 0.000 
5. 0.120 0.219 0.120 0.282 0.000 - 

0 6. 0.376 0.217 0.376 0.235 0.304 0.000 - 

7. 0.384 0.224 0.384 0.255 0.292 0.246 0.000 
8. 0.300 0.203 0.300 0.168 0.288 0.197 0.226 0.000 
9. 0.315 0.178 0.315 0.231 0.203 0.252 0.254 0.270 0.000 c 
10. 0.501 0.401 0.501 0.359 0.527 0.440 0.228 0.294 0.539 0.000 
11. 0.206 0.147 0.206 0.245 0.072 0.229 0.207 0.216 0.224 0.453 0.000 
12. 0.182 0.194 0.182 0.190 0.154 0.208 0.266 0.189 0.263 0.422 0.089 0.000 XD 
13. 0.296 0.144 0.296 0.177 0.274 0.209 0.135 0.099 0.286 0.234 0.198 0.191 0.000 
14. 0.296 0.144 0.296 0.177 0.274 0.209 0.135 0.099 0.286 0.234 0.198 0.191 0.000 0.000 (D 
15. 0.206 0.147 0.206 0.245 0.072 0.229 0.207 0.216 0.224 0.453 0.000 0.089 0.198 0.198 0.000 

n 
r> CO 

Ordinal numbers at the top and left represent the temporal placement of the SCs in the music; Forte numbers and 
prime forms are provided just beneath the ordinal numbers at the top of the page. Underlined CSATSIM values corre- 
spond to SC pairs that are less similar than average (numbers greater than 0.267). 

EXAMPLE 20: CSATSIM COMPARISON MATRIX FOR SET CLASSES IN THE DALLAPICCOLA EXCERPT 
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11. 12. 13. 14. 15. 
6-Z28 7-16 7-26 7-26 6-Z28 
[013569] [0123569] [0134579] [0134579] [013569] 

11. 0.000 

12. 0.089 0.000 

13. 0.198 0.191 0.000 

14. 0.198 0.191 0.000 0.000 

15. 0.000 0.089 0.198 0.198 0.000 

EXAMPLE 21: CSATSIM COMPARISON MATRIX FOR THE LAST FIVE 
GROUPS IN THE DALLAPICCOLA EXCERPT (MM. 80-84) 

1. 2. 3. 4. 5. 6. 
5-31 6-Z24 5-31 4-18 6-30 7-3 
[01369] [013468] [01369] [0147] [013679] [0123458] 

1. 0.000 

2. 0.365 0.000 

3. 0.000 0.365 0.000 

4. 0.251 0.276 0.251 0.000 

5. 0.120 0.219 0.120 0.282 0.000 

6. 0.376 0.217 0.376 0.235 0.304 0.000 

EXAMPLE 22: CSATSIM COMPARISON MATRIX FOR THE FIRST SIX 
GROUPS IN THE DALLAPICCOLA EXCERPT (MM. 75-77). CSATSIM 

VALUES LARGER THAN 0.20 ARE UNDERLINED 

4-cycle, and that 4-cycle is much less salient, both in abstract terms 
because it occurs within a larger set (and therefore represents a smaller 
percentage of the set's overall content), and in compositional terms 
because it is not in as close a position and also because the pitches that 
form the augmented triad (C, E, G#) are not struck simultaneously (as 
was the augmented triad in group 2). The first and third sets, by contrast, 
are comprised of a complete 3-cycle ([0369]) plus one other note, yield- 
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ing as many ic3s as possible in a pentachord. The fifth set is formed by a 
complete 3-cycle (found in the pianist's left-hand part) plus a tritone 
from another 3-cycle (we can also think of this as three complete 6- 
cycles), and the fourth set can be described as an almost-complete 3-cycle 
with an additional note from another 3-cycle. Sets 1, 3, and 5 are the 
only ones with complete 3-cycles, and CSATSIM finds them the most 
closely related of the lot. Sets 2 and 6 are the next-most closely related 
pair among the first six sets; they are also the only other pair that mutu- 
ally embed a complete n-cycle of the same type (4-cycles). The connec- 
tions between the beginning and end of Example 19 are also quite 
strong. In Example 20, we can see that the last five groups are similar to 
most of the other groups in the excerpt. Additionally, there are very clear 
set-class connections between the beginning and ending of the song.31 

The cyclic saturation similarity measure-or any similarity measure that 
uses the weighted interval-class cycle vectors or cyclic saturation vectors 
as data-is particularly helpful for a piece such as this one. Dallapiccola 
used row-classes that divide into Zrelated hexachords, and, as discussed 
at the beginning of this article, he compositionally realized the hexa- 
chords in ways that take particular advantage of the available cyclic adja- 
cencies. The set class of the last chord is 6-Z28; the set class of the 
penultimate chord is, of course, its complement, 6-Z49. Looking back to 
their 3- and 4-cycle distribution in particular (see Examples 3, 7, and 
10), you will recall that the final chord (6-Z28) contains a complete 3- 
and 4-cycle, while the penultimate chord contains two incomplete 3- 
cycles and three incomplete 4-cycles. It is exactly because of the last set's 
affinities to both 3- and 4-cycles that CSATSIM finds it relatively closely 
related to each of the sets at the beginning of the excerpt.32 

My interval-class cycle vector and weighted cycle vector were designed 
to illustrate the subtle, yet important, differences between just these sorts 
of sets by focusing on their cyclic subsets. Anyone so inclined can fine 
tune these vectors and their employment to reflect other notions of set- 
class resemblance. One could, for example, simply replace my weighting 
constant with a different number, replace my particular weighting system 
with a different algorithm, or compare the cyclically-derived data using a 
different similarity index. Alternatively, one could use a different (wider 
or narrower) assortment of cycles33 or even apply such cycle-based 
notions of labeling and similarity to other spaces.34 And, if performing an 
analysis where you want to equate or more sharply differentiate Z-related 
or complementary sets, there are other systems of resemblance in the 
waters. My hope is that these cyclic additions to the mix will help 
diversify the ways in which we think about and compare pitch-class sets in 
atonal music analysis. 
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APPENDIX: CSATSIM VALUE GROUP MATRIX 

Castren (1994) provides what he calls "value group matrices" to help 
compare a variety of similarity measures with his own RECREL. I also 
find such a statistical summary helpful in understanding the range of val- 
ues that is both possible and average for a given measure of resemblance. 
Following his format, I provide a similarly drawn CSATSIM (with 
weighting constant 1.2) value group matrix representing comparisons 
among all SCs larger or equal to dyad classes and smaller or equal to 
decachord classes. Each cell of Example 23 represents a statistical sum- 
mary of the values possible using CSATSIM(X, T) where X is a pcset of 
the X-axis cardinality and r is a pcset of the r-axis cardinality (or vice 
versa). The upper left corner of each cell is the lowest CSATSIM value 
possible in the value group;35 the upper right corner is the highest 
CSATSIM value possible in the value group; the middle left value is the 
lowest non-zero CSATSIM value (this value is not included in Castren's 
value group matrices); the lower left corner contains the average of all the 
values in the group; and the lower right corner contains the number of 
distinct CSATSIM values in the value group. 

The matrix exhibits some patterns. The smallest average CSATSIM 
value between #X and #TSCs tends to occur where #X = #Y The next 
smallest average value tends to occur between SCs of #X and #X (i.e., 
the compliment of cardinality X). The average CSATSIM value tends to 
increase the greater the difference between either I#Y- #X1 or I#Y- #X . 
Examine, for example, the #3 : #Tcomparisons (i.e., all CSATSIM com- 
parisons that include a trichord) on the matrix. The smallest average 
comparison (and also the smallest maximal and minimal CSATSIM val- 
ues) is between SC pairs X and Twhere #X = #r= 3. The next smallest 
average value in this case happens to be between #3 and #4 SCs. The 
third closest average, however is between #3 and #9 SCs. The largest 
average CSATSIM comparison in the #3 value group is between #3 and 
#6, which constitutes the largest possible difference between either #3 or 
#9 and any other size SC. 

With the exception of the single case cited above in Example 18 (SC 5- 
31:SC 7-31), CSATSIM does not suggest equivalence relations between 
complementary SC pairs, but it does reflect the similar degree of poten- 
tial cyclic distribution among SCs of complementary cardinalities. It 
bears reiteration that these values are specific to the weighting value 1.2. 
Changing the weighting alters the actual CSATSIM values, but does not 
alter the distribution of relatively large and small values through all value 
groups. 
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#7 

0.000 0.524 
0.011 
0.227 418 

0.056 0.552 
0.056 
0.256 727 

0.042 0.615 
0.042 
0.294 335 

#8 

0.000 0.543 
0.028 
0.258 299 

0.043 0.583 
0.043 
0.296 269 

7- 
0 

(D 

3 

c 
3 

D 

C 

(D 

(3 

(D 

n 
r< 

#9 

0.000 0.543 
0.147 
0.292 48 #10 

0.021 0.743 0.066 0.657 0.119 0.647 0.157 0.696 0.133 0.703 0.155 0.745 0.111 0.686 0.064 0.669 0.000 0.705 
0.021 0.066 0.119 0.157 0.133 0.155 0.111 0.064 0.210 
0.441 30 0.379 49 0.386 130 0.364 170 0.375 209 0.368 175 0.366 138 0.346 53 0.359 13 

EXAMPLE 23: CSATSIM VALUE GROUP MATRIX (WHERE WEIGHT = 1.2) 00 
UJ 

#2 
0.000 0.333 
0.333 
0.278 2 

0.000 0.597 
0.103 
0.359 18 

0.107 0.574 
0.107 
0.413 51 

0.231 0.730 
0.231 
0.520 102 

0.226 0.795 
0.226 
0.579 195 

0.217 0.779 
0.217 
0.540 156 

0.069 0.727 
0.069 
0.502 128 

0.116 0.688 
0.116 
0.450 56 

#2 

#3 

#4 

#5 

#6 

#7 

#8 

#9 

#10 

#3 

0.000 0.509 
0.149 
0.295 19 

0.000 0.561 
0.082 
0.297 157 

0.148 0.638 
0.148 
0.368 204 

0.206 0.733 
0.206 
0.431 324 

0.123 0.660 
0.123 
0.399 272 

0.000 0.673 
0.154 
0.382 237 

0.056 0.670 
0.056 
0.348 102 

#4 

0.000 0.557 
0.091 
0.258 81 

0.062 0.582 
0.062 
0.287 406 

0.080 0.634 
0.080 
0.351 757 

0.099 0.629 
0.099 
0.327 606 

0.000 0.601 
0.042 
0.328 557 

0.055 0.668 
0.055 
0.345 245 

#5 
0.000 0.567 
0.015 
0.232 176 

0.000 0.650 
0.066 
0.254 1067 

0.000 0.581 
0.013 
0.250 768 

0.058 0.579 
0.058 
0.278 702 

0.048 0.584 
0.048 
0.313 320 

#6 

0.000 0.604 
0.010 
0.201 477 

0.011 0.617 
0.011 
0.232 1148 

0.040 0.580 
0.040 
0.271 979 

0.125 0.593 
0.125 
0.312 408 
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NOTES 

The author would like to thank Joseph Dubiel for his very careful 
reading of this manuscript and for his helpful comments. 

1. At the end of this article, we will be dealing with the full texture of 
this excerpt. 

2. Marcus Castren, RECREL: A Similarity Measure for Set-Classes, 
Studia Musica 4 (Helsinki: Sibelius Academy, 1994), 8. 

3. SATSIM(2) is a particular case of the SATSIM measure that exam- 
ines only cardinality 2 subset classes (this is tantamount to saying 
interval classes). 

4. Robert D. Morris, "A Similarity Index for Pitch-Class Sets," 
Perspectives of New Music 18 (1979-80): 445-60; Eric Isaacson, 
"Similarity of Interval-class Content Between Pitch-class Sets: The 
IcVSIM Relation," Journal of Music Theory 34 (1990): 1-28; and 
"Issues in the Study of Similarity in Atonal Music," Music Theory 
Online 2,7 (1996); Michael Buchler, "Relative Saturation of Subsets 
and Interval Cycles as a Means for Determining Set-Class Similarity" 
(Ph.D. diss., University of Rochester, 1997): 75-79; Damon Scott 
and Eric Isaacson, "The Interval Angle: A Similarity Measure for 
Pitch-Class Sets," Perspectives of New Music 36, no. 2 (Summer 
1998): 107-42; John Rahn, "Relating Sets," Perspectives of New 
Music 18 (1979-80): 483-97; Castren, 101-43; and David Lewin, 
"A Response to a Response: On Pcset Relatedness," Perspectives of 
New Music 18 (1979-80): 498-502. 

5. My SATSIM measure is even less discriminating than the other ic- 
based measures since, in addition to Z-related set classes, it also can- 
not distinguish complementary set classes. 

6. Some notable examples include: Tore Ericsson, "The IC Max Point 
Structure, MM Vectors and Regions," Journal of Music Theory 30,1 
(1986): 95-111; Robert D. Morris, Composition with Pitch Classes: A 
Theory of Compositional Design (New Haven: Yale University Press, 
1987), 128-35; George Perle, Twelve-Tone Tonality, 2d ed. 
(Berkeley: University of California Press, 1996), 7-11; and Dave 
Headlam, The Music of Alban Berg (New Haven: Yale University 
Press, 1996), 13-31. 

7. In abstract algebra, this is called a "ring." 
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8. The former is the union of (0, 4, 8} and (1, 5, 9} and the latter is in 
the union of (0, 4, 8} and {2, 6, a} 

9. Ericksson, 96-100. 

10. Buchler, 37-48. 

11. "Too heavily" is, of course, entirely subjective; when constructing 
these vectors and the associated similarity index, I never wanted the 
weighted value for any single n-cycle segment to equal more than 
twice the sum of the weighted values of any possible smaller n-cycle 
segments that total the same number of ic n. For example, {4} 
should be weighed more heavily than (1,1,1,1}, {2,1,1}, (2,2}, or 
{3,1 }, but not by a factor of 2 or more. This meant moving toward a 
weighting scaling that increased more gradually than an exponential 
scale. 

12. This resembles the system to compare differences used by Richard 
Teitelbaum, "Intervalic Relations in Atonal Music," Journal of Music 
Theory 9 (1965): 72-127. 

13. While I believe that WEIGHT is easiest to understand as a recursive 
function, it can also be modeled as a simple formula. Let n represent 
the number that is being weighted and k represent the weighting 
constant. 

WEIGHT(n) = -k [- 1] k - 1 

My sincere thanks to Panayotis Mavromatis for constructing this 
equation. 

14. In the case of a tie between minima- and maxima-related values, 
CSATVA will show the comparison to the maxima-related value. 

15. CPSATV(6-Z28) might also have been expressed as percentages: 
<27%,22%, 84%,31%,27%,67%>. 

16. Buchler, 51-62. 

17. Since a high CSATSIM(X, T) value indicates a lack of similarity 
among pcsets X and Y, one might more properly call this a "dissimi- 
larity index," though it could easily be transformed into a true simi- 
larity index by subtracting CSATSIM(X, T) values from 1. 
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18. While symmetry might not be a necessary pre-condition for such a 
measure, all context-free similarity measures of which I am aware 
exhibit this property. 

19. I am using integers in this demonstration for the sake of simplicity; 
actual CSATVs will not primarily contain integer values. 

20. In fact, one could arrive at the same vector totals by adding the dis- 
tances between min(w, c, i) and max(w, c, i) for i = 1 to 6. 

21. Function row, described formally in Example 17, provides a mecha- 
nism for determining which row in CSATV(Y) should be compared 
to CSATVA(X) for each of the six arguments. 

22. The term "difference vector," which refers to an ordered list of dif- 
ferences between two vectors being compared is introduced in 
Isaacson 1990, 16. 

23. I.e., SATVA(X): SATVrow(T) ; SATVA() : SATVrow(X) for all values 
of X and Y: 

24. Again, saturation vector totals are obtained by adding together the 
distances between the rows for every argument of the vector (step 3 
in Example 16 or Example 14). 

25. The basic construction of CSATSIM is similar to Morris's ASIM 
index. (Morris, 1979-80.) 

26. If two sets are equivalent in only the CSATVA vector and not the 
CSATVB vector, they will still yield the value 0.00 from CSATSIM. 

27. In our analytic example, we are only presented with four- through 
eight-note sets. The CSATSIM values for sets with four to eight ele- 
ments ranges from 0.00 for the most similar pairs to 0.65 for the 
most dissimilar pairs. The average CSATSIM value for cardinalities 
four through eight is 0.267. Average and extreme CSATSIM values 
for all cardinality comparisons are provided in an appendix to this 
paper. 

28. And, ultimately every similarity index and method of labeling is also 
ontologically subjective. 

29. Unfortunately, the interesting play of invariance that facilitates such 
similarity is not within the scope of this paper. 

30. One might imagine that sets 11 and 12 are also very closely related 
because the former (6-Z28) is abstractly embedded in the latter (7- 
16). While it is true that none of 6-Z28's three (abstract) seven-note 
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supersets (7-16, 7-28, and 7-32) significantly disturb the cyclic com- 
position, an embedding/covering relation does not guarantee (or 
even necessarily imply) a close CSATSIM relation. For example, 6- 
Z3 [012356] is (abstractly) covered by/embedded in six different 
heptachord classes. 6-Z3 is related to one of its supersets (7-4 
[0123467]) by a CSATSIM value of 0.070, whereas it is related to 
another of its supersets (7-16 [0123569]) by a CSATSIM value of 
0.236. 

31. There are also close SC connections from one song in the cycle to 
the next, despite the fact that different row classes are used in all but 
the first and last (fourth) songs of this cycle. 

32. Of course, no relation that operates in pitch-class space can be influ- 
enced by a composer's particular spacing or instrumentation. None- 
theless, Dallapiccola's setting of the final chord (and also the piano 
chord in m. 80), which registrally segregates the embedded aug- 
mented triad from the embedded diminished seventh chord, makes 
these analytical results more vivid. By comparison, his setting of the 
penultimate-and also the antepenultimate-piano chords brings 
out their interval-class 1 and 6 content. 

33. C.f., Morris 1987: 128-35. 

34. For example, pitches (in P-space) or beat classes. 

35. The value in the upper left corner is italicized if it is 0.000 and that 
number only represents the trivial case of one SC compared with 
itself (in cases where #X = #Y). If the upper left number is 0.000 and 
there is some CSATSIM Z-relation in the value group then the value 
is not italicized. 
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