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Preface

The formalization that I attempted in trying to reconstruct part of the
musical edifice ex nihilo has not used, for want of time or of capacity, the
most advanced aspects of philosophical and scientific thought. But the
escalade is started and others will certainly enlarge and extend the new thesis.
This book is addressed to a hybrid public, but interdisciplinary hybridiza-
tion frequently produces superb specimens.

I could sum up twenty years of personal efforts by the progressive
filling in of the following Table of Coherences. My musical, architectural,
and visual works are the chips of this mosaic. It is like a net whose variable
lattices capture fugitive virtualitics and entwine them in a multitude of
ways. This table, in fact, sums up the true coherences of the successive
chronological chapters of this book. The chapters stemmed from mono-
graphs, which tricd as much as possible to avoid overlapping.

But the profound lesson of such a table of coherences is that any
theory or solution given on one level can be assigned to the solution of
problems on another level. Thus the solutions in macrocomposition on the
Families level (programmed stochastic mechanisms) can engender simpler
and more powerful new perspectives in the shaping of microsounds than the
usual trigonometric (periodic) functions can. Therefore, in considering
clouds of points and their distribution over a pressure-time planc, we can
bypass the heavy harmonic analyscs and syntheses and create sounds that
have never before existed. Only then will sound synthesis by computers and
digital-to-analoguc converters find its truc position, frce of the rooted but
ineffectual tradition of clectronic, concrete, and instrumental music that
makes use of Fourier synthesis despite the failure of this theory. Hence, in
this book, questions having to do mainly with orchestral sounds (whicl are
more diversified and more manageable) find a rich and immediate applica-
tion as soon as they are transferred to the Microsound level in the pressure-
time space. All music is thus automatically homogenized and unified.

vii
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Preface to Musiques Formelles

This book is a collection of explorations in musical composition pursued in
several directions. The effort to reduce certain sound sensations, to under-
stand their logical causes, to dominate them, and then to use them in wanted
constructions ; the effort to materialize movements of thought through sounds,
then to test them in compositions; the effort to understand better the pieces
of the past, by searching for an underlying unit which would be identical
with that of the scientific thought of our time; the effort to make “art”
while “geometrizing,” that is, by giving it a reasoned support less perishable
than the impulse of the moment, and hence more serious, more worthy of
the fierce fight which the human intelligence wages in all the other domains
—all these efforts have led to a sort of abstraction and formalization of the
musical compositional act. This abstraction and formalization has found,
as have so many other sciences, an unexpected and, I think, fertile support
in certain areas of mathematics. It is not so much the inevitable use of
mathematics that characterizes the attitude of these experiments, as the
overriding need to consider sound and music as a vast potential reservoir in
which a knowledge of the laws of thought and the structured creations of
thought may find a completely new medium of materialization, i.c., of
communication.

For this purpose the qualification *‘beautiful” or “ugly” makes no
sense for sound, nor for the music that derives from it; the quantity of
intelligence carried by the sounds must be the true criterion of the validity
of a particular music.

This does not prevent the utilization of sounds defined as pleasant or
beautiful according to the fashion of the moment, nor even their study in
their own right, which may enrich symbolization and algebration. Eficacy
is in itself a sign of intelligence. We are so convinced of the historical
necessity of this step, that we should like to see the visual arts take an
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Preface to the Pendragon Edition

Here is a new expanded edition of Formalized Music. It invites two fundamen-
tal questions:

Have the thcoretical propositions which I have made over the past
thirty-five years

a) survived in my music ?
b) been acsthetically efficient ?

To the first question, [ will answer a general “yes.” The theories which I
have presented in the various chapters preceding this new edition have
always been present in my music, even if some theories have been mingled
with others in a same work. The exploration of the conceptual and sound
world in which I have been involved necessitated an harmonious or even
conflicting synthesis of earlier theses. It necessitated 2 more global
architectural view than a mere comparative confrontation of the various
procedures. But the supreme criterion always remained the validation, the
aesthetic efficiency of the music which resulted.

Naturally, it was up to me and to me alone to determine the aesthetic
criteria, consciously or not, in virtue of the first principle which onc can not
get around. The artist (man) has the duty and the privilege to decide, radically
alone, his choices and the value of the results. By no means should he choose
any other means; those of power, glory, money, ...

Each time, he must throw himself and his chosen criteria into question
all while suriving to start from scratch yet not forget. We should not
“monkey” ourselves by virtue of the habits we so easily acquire due to our
own “echolalic” properties. But to be reborn at each and every instant, like a
child with a new and “independent” view of things.

All of this is part of a second principle: It is absolutely necessary to free
oneself, as much as possible, from any and all contingencies.

x1



xii Preface

This may be consideréed man’s destiny in particular, and the universe’s
in general. Indeed, the Being’s constant dislocations, be they continuous or
not, deterministic or chaotic (or both simultancously) arc manifestations of
the vital and incessant drive towards change, towards freedom without
return.

An artist can not remain isolated in the universal occan of forms and
their changes. His interest lies in embracing the most vast horizon of
knowledge and problematics, all in accordance with
presented above. From hence comes the new chapter in
“Concerning Time, Space and Music.”

the two principles
this edition entitled

Finally, to finish with the first question, I have all along continued to
develop certain theses and to Open up some new ones. The new chapter on
“Sieves” is an example of this along with the computer program presented in

Appendix III which represents a long aesthetic and theoretical search. This
research was developed as well as its a

pplication in sound synthesis on
UPIC.*

Another approach to the mystery of sounds is the use of cellular
automata which I have employed in several instrumental compositions these
past few years. This can be explained by an observation which I made: scales
of pitch (sieves) automatically establish a kind of global musical style, a sort of
macroscopic “synthesis” of musical works, much like a “spectrum of
frequencies, or iterations,” of the physics of particles. Internal symmetries or
their dissymmetries are the reason behind this. Therefore, through a
discerning logico-aesthetic choice of “non-octave” scales, we can obtain very
rich simultaneities (chords) or linear successions which revive and generalize
tonal, modal or serial aspects. It is on this basis of sieves that cellular
automata can be useful in harmonic progressions which create new and rich

timbric fusions with orchestral instruments. Examples of this can be found in
works of mine such as Ata, Horos, etc.

Today, there is a whole new ficld of investigation called “Experimental
Mathematics,” that gives fascinating insights especially in automatic dynamic
systems, by the use of math and computer graphics. Thus, many structures
such as the already- mentioned cellular automata or those which possess self-

*UPIC—Unité Polygogique Informatique du CEMAMu. A sort of musical drawing
board which, through the digitalization of a drawing,
music, teach acoustics, engage in musical pedagogy at a

developed at the Centre d’Etudes de Mathémati
Paris.

enables one ta compose
ny age. This machine was
qucs et Automatiques Musicales de
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similarities such as Julia or Mandelbrot sets, are stu.dif:d and vi'sualized. .Tl.lese
studies lead one right into the frontiers of determinism and‘mde.termlms‘m(i
Chaos to symmetry and the reverse oricntation are once again being stt}]ldlfe
and are even quite fashionable! They open up new horlz.o.ns, although for
me, the results are novel aspects of the equivalent compositional probl.ems I
started dealing with about thirty-five years ago. The theses presented in the
carlier editions of this book bear witness to this fact although the dynamic of
musical works depends on several levels simultaneously and not only on the
calculus level. '

An important task of the research program at CEMAMu is to d(l:)'\{elopf
synthesis through quantified sounds but with u.p-.to.-date tools capah et‘tzs
involving autosimilitudes, symmetries or deterministic chaos, or stoch a§ 1e]
within a dynamic evolution of amplitude frequency frames whe‘re eac SD;
corresponds to a sound quantum or “phonon,” as filready 1magine ly
Einstcin in the 1910s. This research, which I started in 1958 and wrongly
attributed to Gabor, can now be pursued with much more powerful and
modern means. Some surprises can be expected! '

In Appendix IV of this edition, a new, more precise formulation oi:
stochastic sound synthesis can be found as a follow-up of the last chapterf
the preceding edition of Formalized Music (presented .herc as Chapter I?(). n
the interim, this approach has been tested and used in my work La Legem.le
d’Eer for seven-track tape. This approach was developed at the CEMAMu 1'n
Paris and worked out at the WDR, the West-German National Radio studio
in Cologne. This work was part of the Diatope wh.ich wa's installed for the
inauguration of the Pompidow/Beaubourg Center in Paris. The event was
entirely automated with a complete laser installation and 1600 electronic
flashes. This synthesis is part of CEMAMu'’s permanent research program.

In this same spirit, random walks or Brownian movemen_ts have been
the basis for several of my works, especially instrumental pieces 51.1ch as
N’Shima, which means “breath” or “spirit” in Hebrew; for 2 female voices, 2
JFrench Horns, 2 trombones and 1 'cello. This piece was written at the request
of Recha Freier, founder of the “Aliya movement” and premiered at the
Testimonium Festival in Jerusalem.

The answer to the second question posed at the beginning of this
Preface is not up to me. In absolute terms, the artisan musician (not to say
creator) must remain doubtful of the decisions he has made, douf)tﬁlll,
however subtly, of the result. The percentage of do.ubt should not ex1‘st in
virtue of the principles elaborated above. But in relative te.rms, the public, o’r
connoisseurs (either synchronic or diachronic), alone decide upon a work’s
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efficiency. However, any culture’s validation follows “seasonal” rules, varying
between periods of a few years to centuries or even millennia. We must never
forget the nearly-total lack of consideration Egyptian art suffered for over
2000 years, or Meso-American art.

One can assimilate a work of art, or, let us say, just a work, to the
information we can put on a document, seal in a bottle which we will throw
into the middle of the ocean. Will it ever be found? When and by whom and
how will it be read, interpreted?

My gratitude and thanks go to Sharon Kanach, who translated and

supervised the new material in this updated edition of Formalized Music and to
Robert Kessler, the courageous publisher.

Formalized Music
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Preliminary sketch Analogique B (1959). See Chapter III,
pp- 103-09.

Preliminary sketch Analogique B (1959). See Chapter III, pp.
103-09.



Chapter |

Free Stochastic Music

Art, and above all, music has a fundamental function, which is to catalyze
the sublimation that it can bring about through all means of expression. It
must aim through fixations which are landmarks to draw towards a total
exaltation in which the individual mingles, losing his consciousness in a
truth immediate, rare, enormous, and perfect. If a work of art succeeds in
this undertaking even for a single moment, it attains its goal. This tremen-
dous truth is not made of objects, emotions, or sensations; it is beyond these,
as Beethoven’s Seventh Symphony is beyond music. This is why art can lead
to realms that religion still occupies for some people.

But this transmutation of every-day artistic material which transforms
trivial products into meta-art is a secret. The,* possessed”” reach it without
knowing its ““mechanisms.” The others struggle in the ideological and tech-
nical mainstream of their epoch which constitutes the perishable climate”
and the stylistic fashion. Keeping our eyes fixed on this supreme meta-artistic
goal, we shall attempt to define in a more modest manner the paths which
can lead to it from our point of departure, which is the magma of contra-
dictions in present music.

There exists a historical parallel between European music and the
successive attempts to explain the world by reason. The music of antiquity,
causal and deterministic, was already strongly influenced by the schools of
Pythagoras and Plato. Plato insisted on the principle of causality, “for it is
impossible for anything, to come into being without cause” (Timaeus).
Strict causality lasted until the nineteenth century when it underwent a

The English translation of Chaps. I-V1 is by Christopher A. Butchers.
1
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4 Formalized Music

brutal and fertile transformation as a result of statistical theories in physics.
Since antiquity the concepts of chance (tyche), disorder (ataxia), and dis-
organization were considered as the opposite and negation of rcason (logos),
order (faxis), and organization (systasis). It is only recently that knowledge
has been able to penetrate chance and has discovered how to separate its
degrees—in other words to rationalize it progressively, without, however,
succeeding in a definitive and total explanation of the problem of “pure
chance.”

After a time lag of several decades, atonal music broke up the tonal
function and opened up a new path parallel to that of the physical sciences,
but at the same time constricted by the virtually absolute determinism of
serial music.

It is therefore not surprising that the presence or absence of the principle
of causality, first in philosophy and then in the sciences, might influence
musical composition. It caused it to follow paths that appeared to be diver-
gent, but which, in fact, coalesced in probability theory and finally in
polyvalent logic, which arc kinds of generalization and enrichments of the
principle of causality. The explanation of the world, and consequently of the
sonic phenomena which surround us or which may be created, necessitated
and profited from the enlargement of the principle of causality, the basis of
which enlargement is formed by the law of large numbers. This law implies
an asymptotic evolution towards a stable state, towards a kind of goal, of
stochos, whence comes the adjective *stochastic,”

But everything in pure determinism or in less pure indeterminism is
subjected to the fundamental operational laws of logic, which were disen-
tangled by mathematical thought under the title of general algebra.
These laws operate on isolated states or on sets of elements with the aid of
operations, the most primitive of which arc the union, notated U, the
intersection, notated N, and the negation. Equivalence, implication, and
quantifications are elementary relations from which all current science can
be constructed.

Music, then, may be defined as an organization of thesc elementary
operations and relations between sonic entities or between functions of
sonic entities. We understand the first-rate position which is occupied by
set theory, not only for the construction of new works, but also for analysis
and better comprehension of the works of the past. In the same way a
stochastic construction or an investigation of history with the help of
stochastics cannot be carried through without the help of logic—the queen
of the sciences, and I would even venture to suggest, of the arts—or its
mathematical form algebra. For everything that is said here on the subject

Free Stochastic Music 5

is also valid for all forms of art (painting, sculpture, architecture, films,
ctc.).

From this very general, fundamental point of view, from which we wish
to examine and make music, primary time appears as a wax or clay on which
operations and relations can be inscribed and engraved, first for the purposes
of work, and then for communication with a third person. On this level, the
asymmetric, noncommutative character of time is use (B after 4 # 4 after
B, i.e., lexicographic order). Commutative, metric time (symmetrical) is
subjected to the same logical laws and can therefore also aid organizational
speculations. What is remarkable is that these fundamental notions, which
are necessary for construction, are found in man from his tenderest age, and
it is fascinating 1o follow their cvolution as Jean Piaget! has done.

After this short preamble on generalities we shall enter into the details
of an approach to musical composition which I have developed over several
years. I call it “stochastic,” in honor of probability theory, which has served
as a logical framework and as a method of resolving the conflicts and knots
encountered.

The first task is to construct an abstraction from all inherited conven-
tions and to exercise a fundamental critique of acts of thought and their
materialization. What, in fact, does a musical composition offer strictly on
the construction level ? It offers a collection of sequences which it wishes to
be causal. When, for simplification, the major scale implied its hierarchy of
tonal functions—tonics, dominants, and subdominants—around which the
other notes gravitated, it constructed, in a highly deterministic manner,
linear processes, or melodies on the one hand, and simultaneous events, or
chords, on the other. Then the serialists of the Vienna school, not having
known how to master logically the indeterminism of atonality, returned to
an organization which was extremely causal in the strictest sense, more ab-
stract than that of tonality; however, this abstraction was their great con-
tribution. Messiaen generalized this process and took a great step in sys-
tematizing the abstraction of all the variables of instrumental music. What
1s paradoxical is that he did this in the modal field. He created a multimodal
music which immediately found imitators in serial music. At the outset
Messiaen’s abstract systematization found its most justifiable embodiment
in a multiserial music. It is from here that the postwar neo-serialists have
drawn their inspiration. They could now, following the Vienna school and
Messiaen, with some occasional borrowing from Stravinsky and Debussy,
walk on with ears shut and proclaim a truth greater than the others. Other
movements were growing stronger; chief among them was the systematic
exploration of sonic entities, new instruments, and ““noises.”” Varése was the
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structed through the ground profile
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(rising from the left extremity of the
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produces the first “peak’ of the
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curve bounding the right haif of the
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passes through the first pcak, and the
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a triangular exit with the generatrix of
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through a second peak and is joined
by an arc to the directrix of d.

This basic form is the one used in
the first design and was retained, with
some modifications, in the final
structure. The main problem of the
design was to establish an acsthetic
balance between the two peaks.
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the two ruled surfaces of the first
design by flat surfaces (which might
serve as projection walls).

Fig. I-3. Stages in the Development of the First Design of the
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entrance channel a small triangular
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the whole is covered with a horizontal
top surface.
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E. Elaboration of D. The third peak
begins to take shape (shyly).

3rd Pogy
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F. The first design completed (see 3rd Peak

also the first model, Fig. [-4). There
are no longer any flat surfaces. The
third peak is fully developed and
creates, with its opposing sweep, a
counterbalance for the first two peaks.
The heights of the three peaks have
been established. The third peak and
the small arc connecting the straight
directrixes of conoids # and d (see B.)
form, respectively, the apex and the
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base of a part of a cone /,
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8 Formalized Music

pioneer in this field, and electromagnetic music has been the beneficiary
(electronic music being a branch of instrumental music). However, in
electromagnetic music, problems of construction and of morphology were not
faced conscientiously. Multiserial music, a fusion of the multimodality of
Messiaen and the Viennese school, remained, nevertheless, at the heart of
the fundamental problem of music.

But by 1954 it was already in the process ol deflation, for the completely
deterministic complexity of the operations of composition and of the works
themselves produced an auditory and ideological nonsense. I described the
Inevitable conclusion in “The Crisis of Serial Music”’:

Linear polyphony destroys itself by its very complexity; what one
hears is in reality nothing but a mass of notes in various registers. The
enormous complexity prevents the audience from following the inter-
twining of the lines and has as its macroscopic effect an irrational
and fortuitous dispersion of sounds over the whole extent of the sonic
spectrum. There is consequently a contradiction between the poly-
phonic linear system and the heard result, which is surface or mass.
This contradiction inherent in polyphony will disappear when the
independence of sounds is total. In fact, when lincar combinations
and their polyphonic superpositions no longer operate, what will
count will be the statistical mean of isolated states and of transforma-
tions of sonic components at a given moment. The macroscopic effect
can then be controlled by the mean of the movements of elements
which we select. The result is the introduction of the notion of proba-
bility, which implies, in this particular case, combinatory calculus.
Here, in a few words, is the possible escape route from the “linear
category’” in musical thought.?

This article served as a bridge to my introduction of mathematics in
music. For if, thanks to complexity, the strict, deterministic causality which
the neo-serialists postulated was lost, then it was necessary to replace it by
a more general causality, by a probabilistic logic which would contain strict
serial causality as a particular casce. This is the function of stochastic science.
“Stochastics™ studies and formulates the law of large numbers, which has
alrecady been mentioned, the laws of rare events, the different aleatory
procedures, etc. As a result of the impasse in serial music, as well as other
causes, I originated in 1954 a music constructed from the principle of
indeterminism; two years later I named it *“Stochastic Music.” The laws
of the calculus of probabilities entered composition through musical
necessity.

But other paths also led to the same stochastic crossroads—first of all,
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natural events such as the collision of hail or rain with hard surfaces, or the
song of cicadas in a summer field. These sonic events are made out of thou-
sands of isolated sounds; this multitude of sounds, seen as a totality, is a new
sonic event. This mass event is articulated and forms a plastic mold of time,
which itself follows aleatory and stochastic laws. If one then wishes to form a
large mass of point-notes, such as string pizzicati, one must know these
mathematical laws, which, in any case, are no more than a tight and concise
expression of chain of logical rcasoning. Everyone has observed the sonic
phenomena of a political crowd of dozens or hundreds of thousands of
people. The human river shouts a slogan in a uniform rhythm. Then another
slogan springs from the head of the demonstration; it spreads towards the
tail, replacing the first. A wave of transition thus passes from the head to the
tail. The clamor fills the city, and the inhibiting force of voice and rhythm
reaches a climax. It is an event of great power and beauty in its ferocity.
Then the impact between the demonstrators and the enemy occurs. The
perfect rhythm of the last slogan breaks up in a huge cluster of chaotic
shouts, which also sprcads to the tail. Imagine, in addition, the reports of
dozens of machine guns and the whistle of bullets adding their punctuations
to this total disorder. The crowd is then rapidly dispersed, and after sonic
and visual hell follows a detonating calm, full of despair, dust, and death.
"The statistical laws of these events, separated from their political or moral
context, are the same as those of the cicadas or the rain. They are the laws of
the passage from complete order to total disorder in a continuous or explo-
sive manner. They are stochastic laws.

Here we touch on one of the great problems that have haunted human
intelligence since antiquity: continuous or discontinuous transformation.
The sophisms of movement (e.g., Achilles and the tortoise) or of definition
(e.g., baldness), especially the latter, are solved by statistical definition; that
is to say, by stochastics. One may produce continuity with either continuous
or discontinuous elements. A multitude of short glissandi on strings can give
the impression of continuity, and so can a multitude of pizzicati. Passages
from a discontinuous state to a continuous state are controllable with the
aid of probability theory. For some time now 1 have been conducting these
fascinating experiments in instrumental works; but the mathematical char-
acter of this music has frightened musicians and has made the approach
especially difficult.

Here is another direction that converges on indeterminism. The study
of the variation of rhythm poses the problem of knowing what the limit of
total asymmetry is, and of the consequent complete disruption of causality
among durations. The sounds of a Geiger counter in the proximity of a
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radioactive source give an impressive idea of this. Stochastics provides the
necessary laws.

Before ending this short inspection tour of events rich in the new logic,
which were closed to the understanding until recently, I would like to in-
clude a short parenthesis. If glissandi are long and sufficiently interlaced,
we obtain sonic spaces ol continuous evolution. It is possible to produce
ruled surfaces by drawing the glissandi as straight lines. I performed this
experiment with Metastasis (this work had its premiere in 1955 at Donau-
eschingen). Several years later, when the architect Le Corbusier, whose
collaborator I was, asked me to suggest a design for the architecture of the
Philips Pavilion in Brussels, my inspiration was pin-pointed by the experi-
ment with Metastasis. Thus I belicve that on this occasion music and archi-
tecture found an intimate connection.? Figs. I-1-5 indicate the causal chain

of ideas which led me to formulate the architecture of the Philips Pavilion
from the score of Metastasis.

Fig. i-4. First Model of Philips Pavilion

Free Stochastic Music
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Fig. I-5. Philips Pavilion, Brussels World's Fair, 1958
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STOCHASTIC LAWS AND INCARNATIONS

I shall give quickly some of the stochastic laws which I introduced into
composition several years ago. We shall examine one by one the independent
components of an instrumental sound.

DURATIONS

Time (metrical) is considered as a straight line on which the points
corresponding to the variations of the other components are marked. The
interval between two points is identical with the duration. Among all the
possible sequences of points, which shall we choose? Put thus, the question
makes no sense.

Ifa mean number of points is designated on a given length the question
becomes: Given this mean, what is the number of segments equal to a length
fixed in advance?

The following formula, which derives from the principles of continuous
probability, gives the probabilities for all possible lengths when one knows
the mean number of points placed at random on a straight line.

P, = 8¢=9% dx, (See Appendix 1.)

in which § is the linear density of points, and x the length of any segment.

If we now choose some points and compare them to a theoretical
distribution obeying the above law or any other distribution, we can deduce
the amount of chance included in our choice, or the more or less rigorous
adaptation of our choice to the law of distribution, which can even be
absolutely functional. The comparison can be made with the aid of tests,
of which the most widely used is the y2 criterion of Pearson. In our case,
where all the components of sound can be measured to a first approxima-
tion, we shall use in addition the correlation coefficient. It is known that if
two populations are in a linear functional relationship, the correlation
coefficient is one. If the two populations are independent, the coefficient is
zero. All intermediate degrees of relationship are possible.

Clouds of Sounds

Assume a given duration and a set of sound-points defined in the
intensity-pitch space realized during this duration. Given the mean super-
ficial density of this tone cluster, what is the probability of a particular
density occurring in a given region of the intensity-pitch space? Poisson’s
Law answers this question:

I3
P, = ’i: e Fo,
[
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where pg is the mean density and p is any particular density. As with
durations, comparisons with other distributions of sound-points can fashion
the law which we wish our cluster to ohey.

INTERVALS OF INTENSITY, PITCH, ETC.

Yor these variables the simplest law is

a

0(y) dy 2 (1 ~ %) dy, (See Appendix 1.)

which gives the probability that a segment (interval of intensity, pitch, etc.)
within a segment of length «, will have a length included within y and
y +dy, forO<y<a.

SPEEDS

We have been speaking of sound-points, or granular sounds, which are
in reality a particular case of sounds of continuous variation. Among these
let us consider glissandi. Of all the possible forms that a glissando sound can
take, we shall choose the simplest—the uniformly continuous glissando. This
glissando can be assimilated sensorially and physically into the mathematical
concept of speed. In a one-dimensional vectorial representation, the scalar
size of the vector can be given by the hypotenuse of the right triangle in
which the duration and the melodic interval covered form the other two
sides. Certain mathematical operations on the continuously variable sounds
thus defined are then permitted. The traditional sounds of wind instruments
are, for example, particular cases where the speed is zero. A glissando
towards higher frequencies can be defined as positive, towards lower fre-
quencies as negative.

We shall demonstrate the simplest logical hypotheses which lead us
to a mathematical formula for the distribution of speeds. The arguments
which follow are in reality one of those ““logical poems” which the human
intelligence creates in order to trap the superficial incoherencies of physical
phcnomena, and which can serve, on the rebound, as a point of departure
for building abstract entities, and then incarnations of these entities in
sound or light. It is for these reasons that I offer them as examples:

Homogeneity hypotheses [11]*

1. The density of speed-animated sounds is constant; i.e., two regions
of equal extent on the pitch range contain the same average number of
mobile sounds (glissandi).

* The numbers in brackets correspond to the numbers in the Bibliography at the
end of the book.
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2. The absolute value of speeds (ascending or descending glissandi) is
spread uniformly; i.e., the mean quadratic speed of mobilc sounds is the
same in diffcrent registers.

3. There is isotropy; that is, there is no privileged direction for the
movements of mobile sounds in any register. There is an equal number of
sounds ascending and descending.

From these three hypotheses of symmetry, we can definc the [unction
J(v) of the probability of the absolute speed v. (f(v) is the relative frequency
of occurrence of v.)

Let n be the number of glissandi per unit of the pitch range (density
of mobile sounds), and 7 any portion taken from the range. Then the number
of speed-animated sounds between » and v + dv and positive, is, from
hypotheses 1 and 3:

nr%f(v) dv (the probability that the sign is + is 1).

From hypothesis 2 the number of animated sounds with speed of
absolute value || is a function which depends on 12 only. Let this function
be g(v%). We then have the equation

nrif(v) dv = nrg(v?) do.

Moreover if x = o, the probability function g(v?) will be equal to the law
of probability Hof x, whence g(v?) = H(x), or log g(v?) = h(x).

In order that £(x) may depend only on x2 = 22, it is necessary and
sufficient that the differentials d log g(v?) = &' (x) dx and v dv = x dx havc a
constant ratio:

dlog g(v®)  A'(x) dx

= = constant = —2j
v dv x dx Js

whence #'(x) = —2jx, h(x) = —jx® + ¢, and H(x) = ke=7*",

But H(x) is a function of elementary probabilities; therefore its integral
from —o0 to 400 must be cqual to 1. j is positive and £ = 4/j/+/m. If
J = 1/a? it follows that

1

1 — 2y — — —v¢/a2
/) = g") = Hls) = 7
and
— —v2/a?
o) = 2
for v = x, which is a Gaussian distribution.
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This chain of reasoning borrowed from Paul Lévy was established after
Maxwell, who, with Boltzmann, was responsible for the kinetic theory of
gascs. The function () gives the probability of the speed v; the constant a
defines the “temperature” of this sonic atmospherc. The arithmetic mean
of v is cqual to a/4/m, and the standard deviation is a/4/2.

We offer as an example several bars from the work Pithoprakia for string
orchestra (Fig. I-6), written in 1955-56, and performed by Prof. Hermann
Scherchen in Munich in March 1957.% The graph (Fig. I-7) represents a
set of specds of temperature proportional to @ = 35. The abscissa represents
lime in units of 5 cm = 26 MM (Malzel Metronome). This unit is sub-
divided into three, four, and five equal parts, which allow very slight
differences of duration. The pitches are drawn as the ordinates, with the
unit I semitone = 0.25 cm. 1 cm on the vertical scale corresponds to a major
third. There are 46 stringed instruments, cach represented by a jagged line.
Each of the lines represents a speed taken from the table of probabilities
calculated with the formula

2
T an/m

A total of 1148 speeds, distributed in 58 distinct values according to Gauss’s
law, have been calculated and traced for this passage (measures 52-60, with
a duration of 18.5 sec.). The distribution being Gaussian, the macroscopic
configuration is a plastic modulation of the sonic material. The same passage
was transcribed into traditional notation. To sum up we have a sonic
compound in which:

—p2/q2

J@)

e

. The durations do not vary.
. 'The mass of pitches is freely modulated.
. The density of sounds at each moment is constant,
. The dynamic is ff without variation.
. The timbre is constant.
6. The speeds determine a ““temperature” which is subject to local
fluctuations. Their distribution is Gaussian.

O OO N —

As we have already had occasion to remark, we can establish more or
less strict relationships between the component parts of sounds.® The most
useful coefficient which measures the degree of correlation between two
variables x and y is

SE-Ay-g)
VI - VIl -5

r =
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where X and # are the arithmetic means of the two variables.
Here then, is the technical aspect of the starting point for a utilization

of the theory and calculus of probabilities in musical composition. With
the above, we already know that:

1. We can control continuous transformations of large sets of granular
and/or continuous sounds. In fact, densities, durations, registers, speeds,
etc., can all be subjected to the law of large numbers with the necessary
approximations. We can therefore with the aid of means and deviations
shape these sets and make them evolve in different directions. The best
known is that which goes from order to disorder, or vice versa, and which
introduces the concept of entropy. We can conceive of qther continuous
transformations: for example, a set of plucked sounds transforming con-
tinuously into a set of arco sounds, or in electromagnetic music, the passage
from one sonic substance to another, assuring thus an organic connection
between the two substances. To illustrate this idea, I recall the Greek
sophism about baldness: “How many hairs must one remove from a hairy
skull in order to make it bald?” It is a problem resolved by the theory of
probability with the standard deviation, and known by the term statistical
definition.

2. A transformation may be explosive when deviations from the mean
suddenly become exceptional.

3. We can likewise confront highly improbable events with average
events.

4. Very rarified sonic atmospheres may be fashioned and controlled
with the aid of formulae such as Poisson’s. Thus, even music for a solo
instrument can be composed with stochastic methods.

These laws, which we have met before in a multitude of fields, are
veritable diamonds of contemporary thought. They govern the laws of the
advent of being and becoming. However, it must be well understood that
they are not an end in themselves, but marvelous tools of construction and
logical lifelines. Here a backfire is to be found. This time it is these stochastic
tools that pose a fundamental question: “What is the minimum of logical
constraints necessary for the construction of a musical process?” But before
answering this we shall sketch briefly the basic phases in the construction of
a musical work.

B.4H.19583

Fig. 1-6. Bars 52-57 of Pithoprakta
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Fig. I-7. Graph of Bars 52-57 of Pithoprakia
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FUNDAMENTAL PHASES OF A MUSICAL WORK

1. Initial conceptions (intuitions, provisional or definitive data);

2. Definition of the sonic entities and of their symbolism communicable
with the limits of possible means (sounds of musical instruments, electronic
sounds, noises, sets of ordered sonic elements, granular or continuous
formations, etc.);

3. Definition of the transformations which these sonic entities must undergo
in the course of the composition (macrocomposition: general choice of
logical framework, i.e., of the elementary algebraic operations and the set-
ting up of relations between entities, sets, and their symbols as defined in
2.); and the arrangement of these opcrations in lexicographic time with the
aid of succession and simultaneity); ‘

4. Mucrocomposition (choice and detailed fixing of the functional or
stochastic relations of the elements of 2.), i.e., algebra outside-time, and
algebra in-time;

5. Sequential programming of 3. and 4. (the schema and pattern of the
work in its entirety);

6. Implemeniation of calculations, verifications, fecedbacks, and definitive
modifications of the sequential program;

7. Final symbolic result of the programming (setting out the music on
paper in traditional notation, numcrical expressions, graphs, or other means
of solfeggio) ;

8. Sonic realization of the program (direct orchestral performance,
manipulations of the type of electromagnetic music, computerized construc-
tion of the sonic entities and their transformations)

The order of this list is not really rigid. Permutations are possible in
the course of the working out of a composition. Most of the time these
phases are unconscious and defective. However, this list does establish ideas
and allows speculation about the future. In fact, computers can take in hand
phascs 6. and 7., and even 8. But as a first approach, it seems that only
phases 6. and 7. are immediately accessible. That is to say, that the final
symbolic result, at least in France, may be realized only by an orchestra or
by manipulations of electroacoustic music on tape recorders, emitted by the
existing electroacoustic channels; and not, as would be desirable in the very
near future, by an elaborate mechanization which would omit orchestral or
tape interpreters, and which would assume the computerized fabrication of
the sonic entitics and of their transformations.

Here now is an answer to the question put above, an answer that is
true for instrumental music, but which can be applicd as well to all kinds of
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sound production. For this we shall again take up the phases described:

2. Definition of sonic entities. The sonic entities of the classical orches-
tra can be represented in a first approximation by vectors of four usually
independent variables, E, (¢, &, g, u):

¢, = timbre or instrumental family

hy = pitch of the sound

g; = intensity of the sound, or dynamic form
;. = duration of the sound.

The vector £, defines a point M in the multidimensional space provided
by a base (¢, h, g, u). This point M will have as coordinates the numbers
¢as Iy, g5, 1y For example: ¢ played arco and forte on a violin, one eighth
note in length, at one eighth note = 240 MM, can be rcpresented as
Cotor. arcos Mas (= C3), g4 (= forte), ugs (= } sec.). Suppose that these points
M are plotted on an axis which we shall call E,, and that through its origin
we draw another axis ¢, at right angles to axis E,. We shall represent on this
axis, called the axis of lexicographic iime, the lexicographic-temporal succession
of the points M. Thus we have dcfined and convenicntly represented a
two-dimensional space (£,, ). This will allow us to pass to phase 3., defini-
tion of transformation, and 4., microcomposition, which must contain the
answer to the problem posed concerning the minimum of constraints.

To this end, suppose that the points A/ defined above can appear with
no necessary condition other than that of obeying an aleatory law without
memory. This hypothesis is equivalent to saying that we admit a stochastic
distribution of the events E, in the space (£, ¢). Admitting a sufficiently
weak superficial distribution n, we enter a region where the law of Poisson
is applicable:

E

=ﬁe

-n

Py

Incidentally we can consider this problem as a synthesis of several
conveniently chosen linear stochastic processes (law of radiation from radio-
active bodies). (The second method is perhaps more favorable for a mecha-
nization of the transformations.)

A sufficiently long fragment of this distribution constitutes the musical
work. The basic law defined above generates a whole family of compositions
as a function of the superficial density. So we have a formal archetype of
composition in which the basic aim is to attain the greatest possible asym-
metry (in the ctymological sense) and the minimum of constraints, causalities,
and rules. We think that from this archetype, which is perhaps the most
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general one, we can redescend the ladder of forms by introducing progres-
sively more numerous constraints, i.e., choices, restrictions, and negations.
In the analysis in several linear processes we can also introduce other pro-
cesses: those of Wiener-Lévy, P. Lévy’s infinitely divisibles, Markov
chains, etc., or mixtures of several. It is this which makes this second
method the more fertile,

The exploration of the limits @ and 4 of this archetype @ < n < b is
equally interesting, but on another level—that of the mutual comparison of
samples. This implics, in effect, a gradation of the increments of # in order
that the differences between the families n; may be recognizable. Analogous
remarks are valid in the case of other linear processes.

If we opt for a Poisson process, there are two necessary hypotheses
whi'ch answer the question of the minimum of constraints: 1. there exists in
a given space musical instruments and men; and 2. there exist means of
contact between these men and these instruments which permit the emission
of rare sonic events.

This is the only hypothesis (cf. the ekklisis of Epicurus). From these
two constraints and with the aid of stochastics, I built an entire composition
without admitting any other restrictions. Achorripsis for 21 instruments was
composed in 1956-57, and had its first performance in Buenos Aires in 1958
under Prof. Hermann Scherchen. (See Fig. 1-8.)

At that time I wrote :*

\ \ 3y A3 , v
TO YUpP QUTO VOELY €TTLV TE KO EVOU

Y \
70 yap avto elvar éotiv Te kol otk elvaut
ONTOLOGY

In a universe of nothingness. A brief train of waves, so brief thatits end
and beginning coincide (negative time) disengaging itself endlessly.

Nothingness resorbs, creates.
It engenders being.
Time, Causality.

These rare sonic events can be something more than isolated sounds.
They can be melodic figurcs, cell structures, or agglomerations whose

* The following excerpt (through p. 37) is from ““In Search of a Stochastic Music,”’
Gravesaner Blatter, no. 11/12, '

« o .
. T' I'?or 1tis the same to think as to be” (Poem by Parmenides) ; and my paraphrase,
For it is the same to be as not to be.”
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characteristics are also ruled by the laws of chance, for example, clouds of
sound-points or speed-temperatures.® In each case they form a sample of a
succession of rare sonic events.

This sample may be represented by either a simple table of probabilities
or a double-entry table, a matrix, in which the cells are filled by the fre-
quencies of events. The rows rcpresent the particular qualifications of the
events, and the columns the dates (see Matrix M, Fig. I-9). The frequencies
in this matrix are distributed according to Poisson’s formula, which is the
law for the appearances of rare random events.

We should further deline the sense of such a distribution and the manner
in which we realize it. There is an advantage in defining chance as an
aesthetic law, as a normal philosophy. Chance is the limit of the notion of
evolving symmetry. Symmetry tends to asymmetry, which in this sense is
equivalent to thc negation of traditionally inherited behavioral frameworks.
This negation not only operates on details, but most importantly on the
composition of structures, hence tendencies in painting, sculpture, architec-
ture, and other realms of thought. For example, in architecture, plans worked
out with the aid of regulating diagrams are rendered more complex and
dynamic by exceptional events. Everything happens as if there were one-to-
one oscillations between symmetry, order, rationality, and asymmetry,
disorder, irrationality in the reactions between the epochs of civilizations.

At the beginning of a transformation towards asymmetry, exceptional
events are introduced into symmetry and act as aesthetic stimuli. When
these exceptional events multiply and become the general case, a jump to a
higher level occurs. The level is one of disorder, which, at lcast in the arts
and in the expressions of artists, proclaims itself as engendered by the com-
plex, vast, and rich vision of the brutal encounters of modern life. Forms
such as abstract and decorative art and action painting bear witness to this
fact. Consequently chance, by whose side we walk in all our daily occupa-
tions, is nothing but an extreme case of this controlled disorder (that which
signifies the richness or poverty of the connections between cvents and which
engenders the dependence or independence of transformations); and by
virtue of the negation, it conversely enjoys all the benevolent characteristics
of an artistic regulator. It is a rcgulator also of sonic cvents, their appcarance,
and their life. But it is here that the iron logic of the laws of chance inter-
venes; this chance cannot be created without total submission to its own
laws. On this condition, chance checked by its own force becomes a hydro-
electric torrent.
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Flute
Oboe

String
gliss.
Perc.
Brass
String
arco
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However, we are not speaking here of cases where one merely plays

2]

heads and tails in order to choose a particular alternative in some trivial

20

circumstance. The problem is much more serious than that, It is a matter
here of a philosophic and aesthetic concept ruled by the laws of probability
and by the mathematical functions that formulate that theory, of a coherent
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concept in a new region of coherence.
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The analysis that follows is taken from Achorripsis.
For convenience in calculation we shall choose a priori a mean density
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we obtain the table of probabilities:
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P, is the probability that the event will occur ¢ times in the unit of
volume, time, etc. In choosing a priori 196 units or cells, the distribution of
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the frequencies among the cells is obtained by multiplying the values of
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The 196 cells may be arranged in one or several groups of cells, quali-

y

fied as to timbre and time, so that the number of groups of timbres times
the number of groups of durations = 196 cells. Let there be 7 distinct
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No events

Fig. I-9. Vector Matrix M, Matrix of Achorripsis
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timbres; then 196/7 = 28 units of time. Thus the 196 cells are distributed

over a two-dimensional space as shown in (3).
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Timbre &

Flute
Oboe

String gliss.

Percussion (3)

Pizzicato

Brass

String arco

gf the musi_cal sample is to last 7 minutes (a subjective choice) the unit of
1\1,3,(; if,Q\g.lll equal 15 sec., and each U, will contain 6.5 measures at
How shall we distribute the frequencies of zero, single, double, triple,
and quadruple events per cell in the two-dimensional space of Matrix 3)?
C.on51der the 28 columns as cells and distribute the zero, single, double,
triple, and qutadruple events from table (2) in these 28 new cells. Take as an
ixample the' single event; from table (2) it must occur 65 times. Everything
appens as if one were to distribute events in the cells with a mean density
A = 65/28 = 2.32 single events per cell (here cell = column).

In applying anew Poisson’s formula with the mean density A = 2.32
(2.32 « 30) we obtain table 4).

Poisson Distribution Arbitrary Distribution

Frequency No. of Product Frequency No. of Product

K Columns col x K K Columns col x K
0 3 0 0 10 0
1 6 6 | 3 3
g 8 16 2 0 0
5 15 3 9 27
4 3 g @ 4 0 o ©®
5 2 10 5 1 5
6 1 6 6 5 30
7 0 0 7 0 0
Totals 28 65 Totals 28 65
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One could choose any other distribution on condition that the sum of
single events equals 65. Table (5) shows such a distribution.

But in this axiomatic research, where chance must bathe all of sonic
space, we must reject every distribution which departs from Poisson’s
law. And the Poisson distribution must be eflective not only for the columns
but also for the rows of the matrix. The same reasoning holds true for the
diagonals, etc.

Contenting ourselves just with rows and columns, we obtain a homo-
geneous distribution which follows Poisson. It was in this way that the
distributions in rows and columns of Matrix (M) (Fig. I-9) were calculated.

So a unique law of chance, the law of Poisson (for rare events) through
the medium of the arbitrary mean A is capable of conditioning, on the one
hand, a whole sample matrix, and on the other, the partial distributions
following the rows and columns. The a priori, arbitrary choice admitted at
the beginning therefore concerns the variables of the “vector-matrix.”

Variables or entries of the ‘vector-matrix’’

1. Poisson’s Law

2. The mean A

3. The number of cells, rows, and columns

The distributions entered in this matrix are not always rigorously
defined. They really depend, for a given A, on the number of rows or col-
umns. The greater the number of rows or columns, the more rigorous is the
definition. This is the law of large numbers. But this indeterminism allows
free will if the artistic inspiration wishes it. It is a second door that is open
to the subjectivism of the composer, the first being the ‘‘state of entry” of
the “Vector-Matrix”’ defined above. .

Now we must specify the unit-events, whose frequencies were adjusted
in the standard matrix (M). We shall take as a single event a cloud of sounds
with linear density 8 sounds/sec. Ten sounds/sec is about the limit that a
normal orchestra can play. We shall choose § = 5 sounds/measure at MM
26, so that § = 2.2 soundsfsec (= 10/4).

We shall now set out the following correspondence:
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Cloud of density § = Mean number of sounds/cell
Event Sounds/ Sounds/ (15 sec)
measure 26MM sec

zcro 0 0 0
single 3 2.2 325
double 10 44 65
triple 15 6.6 7.5
quadruple 20 8.8 130

The hatchings in matrix (M) show a Poisson distribution of frequencies,
homogeneous and verified in terms of rows and columns. We notice that
the rows are interchangeable (= interchangeablc timbres). So are the
columns. This leads us to admit that the determinism of this matrix is weak
in part, and that it serves chiefly as a basis for thought—for thought which
manipulates frequencies of events of all kinds. The true work of molding
sound consists of distributing the clouds in the two-dimensional space of the
matrix, and of anticipating a priori all the sonic encounters before the
calculation of details, eliminating prejudicial positions. It is a work of
patient research which exploits all the creative faculties instantaneously.
"This matrix is like a game of chess for a single player who must follow certain
rules of the game for a prize for which he himself is the judge. This game
matrix has no unique strategy. It is not even possible to disentangle any
balanced goals. It is very general and incalculable by pure reason.

Up to this point we have placed the cloud densities in the matrix. Now
with the aid of calculation we must proceed to the coordination of the
aleatory sonic elements.

HYPOTHESES OF CALCULATION

Let us analyze as an example cell III, .z of the matrix: third row,
sounds of continuous variation (string glissandi), seventeenth unit of time
(measures 103-11). The density of the sounds is 4.5 sounds/measure at
MM 26 (8 = 4.5); so that 4.5 sounds/measure times 6.5 measures = 29
sounds for this cell. How shall we place the 29 glissando sounds in this cell ?

Hypothesis 1. The acoustic characteristic of the glissando sound is
assimilated to the speed v = dffdt of a uniformly continuous movement.
(See Fig. 1-10.)

Hypolhesis 2. The quadratic mean « of all the possible values of v is
proportional to the sonic density 8. In this case « = 3.38 (temperature).

Hypothesis 3. The values of these speeds are distributed according to the
most completc asymmetry (chance). This distribution follows the law of
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NOTES 4

<f

Fig. I-10 I

Gauss. The probability f{v) for the existence of the speed v is given by the
function

O

and the probability P(A) that v will lie between », and »,, by thc function
P(X) = 0(x) — 6(%y),

in which A; = 2,/a and
A
() = — f ¢~ d)  (normal distribution).
v Jo

Hypothesis 4. A glissando sound is essentially characterized by a. the
moment of its departure; 6. its speed v,, = dfjdt, (v, < v, < vp); and ¢ its
register.

Hypothesis 5. Assimilate time to a line and make each moment of
departure a point on that line. It is as if one were to distribute a number of
points on a line with a linear density 8 = 4.5 points at MM = 26. This,
then, is a problem of continuous probabilities. These points define segments
and the probability that the i-th segment will have a length x; between
xand x + dxis

P, = 8e7% dx.

Hypothesis 6. The moment of departure corresponds to a sound. We
shall attempt to define its pitch. The strings have a range of about 80 semi-
tones, which may be represented by a linc of length @ = 80 semitones. Since
between two successive or simultaneous glissandi there exists an interval
between the pitches at the moments of departure, we can define not only
the note of attack for the first glissando, but also the melodic interval which
separates the two origins.
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Put thus, the problem consists of finding the probability that a segment
s within a line segment of length a will have a length between j and j + dj
(0 <j < a). This probability is given by the formula

06)dj =2 (1 -2 4. (See Appendix T)

Hypothesis 7. The three essential characteristics of the glissando sound
defined in Hypothesis 4 are independent.

From thesc hypotheses we can draw up the three tables of probability:
a table of durations, a table of speeds, and a table of intervals.

All these tables furnish us with the elements which materialize in
cell II1, +z. The reader is encouraged to examine the score to see how the
results of the calculations have been used. Here also, may we emphasize,
a great liberty of choice is given the composer. The restrictions are more of
a general canalizing kind, rather than peremptory. The theory and the
calculation define the tcndencies of the sonic entity, but they do not con-
stitute a slavery., Mathematical formulac arc thus tamed and subjugated
by musical thought. We have given this example of glissando sounds

because it contains all the problems of stochastic music, controlled, up to a
certain point, by calculation.

Table of Durations

8 = 4.5 sounds/measure at MM 26
Unit x = 0.10 of the measure at 26 MM
4.5-6.5 = 29 sounds/cell, i.c., 28 durations
x Sx e ox Se~0x Se~%% dr  28P,

0.00 0.00 1.000 4.500 0.362 10
0.10 0.45 0.638 2.870 0.231 7
0.20 0.90 0.407 1.830 0.148 4
0.30 1.35 0.259 1.165 0.094 3
0.40 1.80 0.165 0.743 0.060 2
0.50 2.25 0.105 0.473 0.038 1
0.60 2,70 0.067 0.302 0.024 1
0.70 3.15 0.043 0.194 0.016 0
Totals 12.415 0.973 28
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An approximation is made by considering dx as a constant factor.
z Se=9% dy = 1.

[0}
Therefore
dx = l/z de= 0%,
[0}
In this case dx = 1/12.415 = 0.805.
Table of Speeds
8 = 4.5 glissando sounds/measure at 26 MM
« = 3.88, quadratic mean of the speeds
v Is expressed in scmitones/measure at 26 MM
Up 15 the mean speed (v; + v5)/2
4.5-6.5 = 29 glissando sounds/cell.
v A=yl 6(A) P(A) = 0(Ay) — 6(\y) 29 P(A) Un
0 0.000 0.0000
0.2869 9 0.5
1 0.258 0.2869
0.2510 7 1.5
2 0.516 0.5379
0.1859 5 2.5
3 0.773 0.7238
0.1310 4 3.5
4 1.032 0.8548
0.0771 2 4.5
5 1.228 0.9319
0.0397 1 5.5
6 1.545 0.9716
0.0179 1 6.5
7 1.805 0.9895
0.0071 0 7.5
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Table of Intervals

8 = 4.5 glissandi/measure at 26 MM.

a = 80 semitones, or 18 times the arbitrary unit of 4.5 semitones.

J 1s expressed in multiples of 4.5 semitones.

dj is considered to be constant. Therefore dj =1/30(j)ordi = af(m + 1),
and we obtain a step function. Forj = 0, 8(j)dj = 2/(m + 1) = 0.105; for
J =18, 6(j)dj = o.

4.5-6.5 = 29 glissando sounds per cell.

We can construct the table of probabilities by means of a straight line.

J () df = P(j) 29 P(j)

0€¢——0.105———+3

O~ Y O W N

e N e L )
o 0N = O

16
17
18

{e
O O O O = e = NN NN NN LG W

We shall not speak of the means of verification of liaisons and correla-
tions between the various values used. It would be too long, complex, and
tedious. For the moment let us affirm that the basic matrix was verified by
the two formulae:

Free Stochastic Music 37
yo 2 =9y -7
V2 =252 (y —7)*°
and
I +r
z= %log1 —

Let us now imagine music composed with the aid of matrix (M). An
observer who perceived the frequencies of cvents of the musical sample
would deduce a distribution duc to chance and following the laws of
probability. Now the question is, when heard a number of times, will this
music keep its surprisc effect? Will it not change into a set of foreseeable
phenomena through the existence of memory, despite the fact that the law
of frequencies has been derived from the laws of chance?

In fact, the data will appear aleatory only at the first hearing. Then,
during successive rehearings the relations between the events of the sample
ordained by ““chance” will form a network, which will take on a definite
meaning in the mind of the listener, and will initiate a special ““logic,” a
new cohesion capable of satisfying his intellect as well as his aesthetic sense;
that is, if the artist has a certain flair.

If, on the other hand, we wish the sample to be unforeseeable at all
times, it is possible to conceive that at each repetition certain data might
be transformed in such a way that their deviations from theoretical fre-
quencies would not be significant. Perhaps a programming uscful for a first,
second, third, ete., performance will give aleatory samples that are not identi-
calin an absolute sense, whose deviations will also be distributed by chance.

Or again a system with clectronic computers might permit variations
of the parameters of entrance to the matrix and of the clouds, under certain
conditions. There would thus arise a music which can be distorted in the
course of time, giving the same observer 7 results apparently due to chance
for n performances. In the long run the music will follow the laws of proba-
bility and the performances will be statistically identical with each other, the
identity being defined once for all by the “vector-matrix.”

The sonic scheme defined under this form of vector-matrix is consec-
quently capable of establishing a more or less self-determined regulation of
the rare sonic events contained in a musical composition sample. It repre-
sents a compositional attitude, a fundamentally stochastic behavior, a unity
of superior order. [1956-57].

If the first steps may be summarized by the process vision — rules —»
works of art, the question concerning the minimum has produced an inverse
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path: rules — vision, In fact stochastics permits a philosophic vision, as the
example of Achorripsis bears witness.

CHANCE—IMPROVISATION

Before generalizing further on the essence of musical composition, we
must speak of the principle of improvisation which caused a furore among
the nco-serialists, and which gives them the right, or so they think, to speak
of chance, of the aleatory, which they thus introduce into music. They
write scores in which certain combinations of sounds may be freely chosen
by the interpreter. It is evident that these composers consider the various
possible circuits as equivalent. Two logical infirmities are apparent which
deny them the right to speak of chance on the one hand and “composition*’
on the other (composition in the broad sense, that is):

1. The interpreter is a highly conditioned being, so that it is not possible
to accept the thesis of unconditioned choice, of an interpreter acting like a
roulette game. The martingale betting at Monte Carlo and the procession
of suicides should convince anyone of this. We shall return to this.

2. The composer commits an act of resignation when he admits several
possible and equivalent circuits. In the name of a “scheme’ the problem of
choice is betrayed, and it is the interpreter who is promoted to the rank of
composer by the composer himself., There is thus a substitution of authors.

The extremist extension of this attitude is one which uses graphical
signs on a picce of paper which the interpreter reads while improvising the
whole. The two infirmities mentioned above are terribly aggravated here.
I'would like to pose a question: If this sheet of paper is put before an inter-
preter who is an incomparablc expert on Chopin, will the result not be
modulated by the style and writing of Chopin in the same way that a per-
former who is immersed in this style might improvise a Chopin-like cadenza
to another composer’s concerto? From the point of view of the composer
there is no interest.

On the contrary, two conclusions may be drawn: first, that serial
composition has become so banal that it can be improvised like Chopin’s,
which confirms the general impression; and second, that the composer
resigns his function altogether, that he has nothing to say, and that his
function can be taken over by paintings or by cuneiform glyphs.

Chance needs to be calculated

To finish with the thesis of the roulette-musician, I shall add this:
Chance is a rare thing and a snare. It can be constructed up to a certain
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point with great difficulty, by means of complex reasoning which is sum-
marized in mathematical formulae; it can be constructed a little, but never
improvised or intellectually imitated. I refer to the demonstration of th'c
impossibility of imitating chance which was made by the great mathemaFl-
cian Emile Borel, who was one of tle specialists in the calculus of probabil-
ities. In any case—to play with sounds like dice—what a truly simplistic
activity! But once one has emerged [rom this primary field of chancc wor.th-
less to a musician, the calculation of the aleatory, that is to say stochastics,
guarantees [irst that in a region of precise definition slips will not be mad.e,
and then furnishes a powerful method of reasoning and enrichment of sonic
processes.

STOCHASTIC PAINTING?

In line with these ideas, Michel Philippot introduced the calculus of
probabilities into his painting scveral years ago, thus opening new direc-
tions for investigation in this artistic realm. In music he recently endeavored
to analyze the act of composition in the form of a flow chart for an imaginary
machine. It is a fundamental analysis of voluntary choice, which leads to a
chain of aleatory or deterministic events, and is based on the work Composi-
tion pour double orchesire (1960). The term imaginary machine mcans th.at the
composer may rigorously define the entities and operating methods, just as
on an electronic computer. In 1960 Philippot commented on his Composition
pour double orchestre :

If, in connection with this work, I happcned to use the term
““experimental music,” I should specify in what scnse it was meant in
this particular case. It has nothing to do with concrctc or clectronic
music, but with a very banal score written on the usual ruled paper
and requiring none but the most traditional orchestral instruments.
However, the experiment of which this composition was in some sense
a by-product does exist (and one can think of many industries that
survive only through the exploitation of their by-products).

The end sought was merely to effect, in the context of a work
which I would have written independent of all experimental ambi-
tions, an exploration of the processes followed by my own cerebral
mechanism as it arranged the sonic elements. I therefore devised the
following steps:

1. Make the most complete inventory possiblc of the set of my
gestures, ideas, mannerisms, decisions, and choices, ctc., which were
mine when I wrote the music.
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2. Reduce this set to a succession of simple decisions, binary, if
possible; i.e., accept or refuse a particular note, duration, or silence in
a situation determined and defined by the context on one hand, and
by the conditioning to which I had been subjected and my personal
tastes on the other.

3. Establish, if possible, from this sequence of simple decisions, a
scheme ordered according to the following two considerations (which
were sometimes contradictory): the manner in which these decisions
cmerged from my imagination in the course of the work, and the
manner in which they would have to ecmerge in order to be most
useful.

4. Present this scheme in the form of a flow chart containing the
logical chain of these decisions, the operation of whi¢h could easily
be controlled.

3. Set in motion a mechanism of simulation respecling the rules
of the game in the flow chart and note the result.

6. Compare this result with my musical intentions.

7. Check thedifferences between result and intentions, detcct their
causes, and correct the operating rules.

8. Refer these corrections back to the sequence of experimental

phases, i.e., start again at 1. until a satisfactory result has been ob-
tained.

If we confine ourselves to the most general considerations, it
would simply be a matter of proceeding to an analysis of the complex-
ity, considered as an accumulation, in a certain order, of single events,
and then of reconstructing this complexity, at the same time verifying
the nature of the elements and their rules of combination. A cursory
look at the flow chart of the first movement specifies quite well by a
mere glance the method I used. But to confine oneself to this first
movement would be to misunderstand the essentials of musical
composition.

In fact the “preludial’® character which emerges from this
combination of notes (elementary constituents of the orchestra)
should remind us of the fact that composition in its ultimate stage is
also an assembly of groups of notes, motifs, or themes and thcir
transformations. Conscquently the task revealed by the flow charts
of the following movements ought to make conspicuous a grouping of
a higher order, in which the data of the first movement were used as
a sort of “‘prefabricated’” material. Thus appeared the phenomenon,
a rathcr banal one, of autogeneration of complexity by juxtaposition
and combination of a large number of single events and operations.

At the end of this experiment I posscssed at most some insight into
my own musical tastes, but to me, the obviously interesting aspect of
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Fig. I-11. Composition for Double Orchestra, by Michel Philippot, 1959

Flow Chart of the First Movement
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it (as long as there is no error of omission!) was the analysis of the
composcr, his mental processes, and a ccrtain liberation of the
imagination.

The biggest difficulty encountered was that of a conscious and
voluntary split in personality. On onc hand, was the composer who
already had a clear idca and a precise audition of the work he wished
to obtain; and on the other was the experimenter who had to maintain
a lucidity which rapidly became burdensome in these conditions—a
lucidity with respect to his own gestures and decisions. We must not
ignore the fact that such experiments must be cxamined with the
greatest prudence, for everyonc knows that no observation of a
phenomenon exists which does not disturb that phenomenon, and I
fear that the resulting disturbance might be particularly strong when
it concerns such an ill-defined domain and such a delicate activity.
Moreover, in this particular case, I fear that observation might pro-
voke its own disturbance. If I accepted this risk, I did not under-
estimate its extent, At most, my ambition confined itself to the attempt
to project on a marvelous unknown, that of acsthetic creation, the
timid light of a dark lantern. (The dark lantern had the reputation
of being used especially by housebreakers. On several occasions T have
been able to verily how much my thirst for investigation has made me

appear in the eyes of the majority as a dangerous housebrcaker of
inspiration.)

Chapter Il

Markovian Stochastic Music—Theory

Now we can rapidly generalize the study of musical composition with the
aid of stochastics.

The first thesis is that stochastics s valuable not only in instrumen.tal
music, but also in electromagnetic music. We have demonstrated thi.s with
several works: Diamorphoses 1957-58 (B.A.M. Paris), Concret PH (in ll'fe
Philips Pavilion at the Brussels Exhibition, 1958) ; and Orient-Occident, music
for the film of the same name by E. Fulchignoni, produced by UNESCO in
1960.

The second thesis is that stochastics can lead to the creation of new
sonic materials and to new forms. For this purpose we must as a preamble
put forward a temporary hypothesis which concerns the nature of sound, of
all sound [19].

BASIC TEMPORARY HYPOTHESIS (lemma) AND DEFINITIONS

All sound is an intcgration of grains, of clcmentary sonic particles, of
sonic quanta. Each of these elementary grains has a thrcc‘fold natur(?,:
duration, frequency, and intensity.! All sound, cven all continuous sonic
variation, is conceived as an assemblage of a large number of elementary
grains adequately disposed in time. So every sonic complex can be ‘analy.zed
as a series of pure sinusoidal sounds even il the variations of these sinusoidal
sounds are infinitely close, short, and complcx. In the attack., body, and
decline of a complex sound, thousands of pure sounds appear in a morc or
less short interval of time, Af. Hecatombs of pure sounds are necessary for
the creation of a complex sound. A complex sound may be imagined as a
multi-colored firework in which cach point of light appears and instan-
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taneously disappears against a black sky. But in this firework there would
be such a quantity of points of light organized in such a way that their rapid
and teeming succession would create forms and spirals, slowly unfolding, or
conversely, brief explosions setting the whole sky aflame. A linc of light would
be created by a sufficiently large multitude of points appearing and dis-
appearing instantaneously.

If we consider the duration At of the grain as quite small but invariable,
we can ignore it in what follows and consider frequency and intensity only.
The two physical substances of a sound are frequency and intensity in
association. They constitute two sets, F and G, independent by their nature,
They have a set product F x G, which is the elementary grain of sound. Set £
can be put in any kind of correspondence with G: mdny-valued, single-
valued, one-to-one mapping, . . . . The correspondence can be given by an
extensive representation, a matrix representation, or a canonical represen-
tation,

EXAMPLES OF REPRESENTATIONS
Extensive (term by term):

Frequencies lfl fo fs fa

Intensities 8 & 8 &

Matrix (in the form of a table):

VA fo s fs s fo S
g+ 0 4+ 0 0 0 +

g&|0 + 0 0 0
&0 0 0 + +

Canonical (in the form of a function):

VS =Kg
J = frequency
g = intensity
K = cocfficient.

The correspondence may also be indeterminate (stochastic), and here
the most convenient representation is the matrical one, which gives the
transition probabilities.
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Example:

VA h A A

8105 0 02 0

g1 0 03 03 1

& 05 07 05 0

The table should be interpreted as follows: for each value f; of f there are
one or several corresponding intensity values g, defined by a probability.
For example, the two intensities g, and g; correspond to the frequency f;,
with 30%, and 70%, chance of occurrence, respectively. On the other hand,
each of the two sets F and G can be furnished with a structure—that is to
say, internal relations and laws of composition.

Time ¢ is considered as a totally ordered set mappcd onto F or G in a
lexicographic form.

Examples:

afi fo fs --- b. fos f3 S S
=12 ... t = 0.5, 3, /11, x,

. SlA 2| A So|Lo|Su| S| |0

t=|A{B|CI{DI|E]|---|- 4 e ]eet]...
At |At| At| At AtLAE| Aef- - |- -]
At = At

Example ¢. is the most general since continuous evolution is sectioned
into slices of a single thickness A¢, which transforms it in discontinuity; this
makes it much easier to isolate and examine under the magnifying glass.

GRAPHICAL REPRESENTATIONS

We can plot the values of pure frequencies in units of octaves or semi-
tones on the abscissa axis, and the intensity values in decibels on the ordinate
axis, using logarithmic scales (see Fig. II-1). This cloud of points is the
cylindrical projection on the plane (FG) of the grains contained in a thin
slice At (see Fig. I1-2). The graphical representations Figs. IT-2 and II-3
make more tangible the abstract possibilities raised up to this point.

Psychophysiology

We are confronted with a cloud of evolving points. This cloud is the
product of the two sets F and G in the slice of time At. What are the possible




46

(d5)

Fig. 1I-1

Formalized Music

Elementary grain
considered as an
. instantaneous associ-
" ation of an intensity
g and a frequency £

Frequencies in logarithmic
units (e.g., semitones)

F

< Projection on the plane (FG)

<— Grain of sound

At

Fig. 11-2

Fig. 1I-3

«— Point i
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restrictive limits of human psychophysiology? What are the most general
manipulations which may be imposed on the clouds and their transforma-
tions within psychophysiological limits?

The basic abstract hypothesis, which is the granular construction of all
possible sounds, gives a very profound meaning to these two questions. In
fact within human limits, using all sorts of manipulations with these grain
clusters, we can hope to produce not only the sounds of classical instruments
and elastic bodies, and those sounds generally preferred in concrete music,
but also sonic perturbations with evolutions, unparallcled and unimaginable
until now. The basis of the timbre structures and transformations will have
nothing in common with what has been known until now.

We can even express 2 more general supposition. Suppose that each
point of these clusters represents not only a pure frequency and its satellite
intensity, but an already present structure of elementary grains, ordered a
priori. We believe that in this way a sonority of a second, third, or higher
order can be produced.

Recent work on hearing has given satisfactory answers to certain
problems of perception. The basic problems which concern us and which
we shall suppose to be resolved, even if some of thc solutions are in part
lacking, are {2, 3]: 1. What is the minimum perceptible duration (in com-
fort) of a sinusoidal sound, as a [unction of its frequency and its intensity ?
2. What are the minimum values of intensities in decibels compatible with
minimum frequencies and durations of sinusoidal sounds? 3. What are the
minimum melodic interval thresholds, as a function of register, intensity,
and duration? A good approximation is the Fletcher-Munson diagram of
equal loudness contours (see Fig. I1-4).

The total number of elementary audible grains is about 340,000. The
car is morc scnsitive at the center of the audible area. At the extremities it
perceives less amplitude and fewer melodic intervals, so that if one wished to
represent the audible area in a homogeneous manner using the coordinates
Fand G, i.c., with cach surface element AFAG containing the same density
of grains of perceptible sounds, one would obtain a sort of mappa mundi
(Fig. I1-5).

In order to simplify the reasoning which will follow without altering it,
we shall base our argument on Fletcher’s diagram and suppose that an
appropriate one-to-one transformation applied to this group of coordinates
will change this curved space into an ordinary rectangle (Fig. I1-6).

All the above experimental results were established in ideal conditions
and without reference to the actual complexity of the natural sounds of the
orchestra and of clastic bodies in general, not to mention the more complex
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sounds of industry or of chaotic nature [4]. Theoretically [5] a complex
sound can only be exhaustively represented on a three-dimensional diagram
F, G, i, giving the instantaneous frequency and intensity as a function of
time. But in practice this boils down to saying that in order to represent a
momentary sound, such as a simple noise made by a car, months of calcula-
tions and graphs are necessary. This impasse is strikingly reminiscent of
classical mechanics, which claimed that, given sufficient time, it could
account for all physical and even biological phenomena using only a few
formulae. But just to describe the state of a gaseous mass of greatly reduced
volume at one instant ¢, even if simplifications are allowed at the beginning
of the calculation, would require several centuries of human work !

This was a false problem because it is useless; and as far as gaseous
masses are concerned, the Maxwell-Boltzmann kinetic theory of gases,
with its statistical method, has been very fruitful [6]. This method re-
established the value of scales of observation. Fora macroscopic phenomenon
it is the massed total result which counts, and each time a phenomenon is
to be observed the scale relationship between observer and phenomenon
must first be established. Thus if we observe galactic masses, we must decide
whether it is the movement of the whole mass, the movement of a single star,
or the molecular constitution of a minute region on a star that interests us.

The same thing holds true for complex as well as quite simple sounds.
It would be a waste of effort to attempt to account analytically or graphi-
cally for the characteristics of complex sounds when they are to be used in
an electromagnetic composition. For the manipulation of these sounds
macroscopic methods are necessary.

Inversely, and this is what particularly intercsts us here, to work like
architects on the sonic material in order to construct complex sounds and
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evolutions of these entities means that we must use macroscopic methods of
analysis and construction. Microsounds and elementary grains have no
importance on the scale which we have chosen. Only groups of grains and
the characteristics of these groups have any meaning. Naturally in very
particular cases, the single grain will be reestablished in all its glory. In a
Wilson chamber it is the elementary particle which carries theoretical and
experimental physics on its shoulders, while in the sun it is the mass of
particles and their compact interactions which constitute the solar object.

Our field of evolution is therefore the curved space described above,
but simplified to a rectilinear space by means of complete one-to-one
transformation, which safeguards the validity of the reasoning which we
shall pursue.

SCREENS

The graphical representation of a cloud of grains in a slice of time Atz
examined earlier brings a new concept, that of the density of grains per unit
of volume, AFAGAt (Fig. 1I-7). Every possible sound may therefore be cut
up into a precise quantity of elements AFAGA(AD in four dimensions,
distributed in this space and following certain rules defining this sound,
which are summarized by a function with four variables: 5(F, G, D, £).

G
AF Plane of

reference (FG)
at moment ¢

AG

/
A s
Y -

the dimension
of the density

Fig. 11-7
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The scale of the density will also be logarithmic with its base between
2 and 3.2 To simplify the explanation we will make an abstraction of this
new coordinate of density. It will always be present in our mind but as an
entity associated with the three-dimensional element AFAGAL,

If time is considered as a proccdure of lexicographic ordering, we can,
without loss, assume that the At are equal constants and quite small. We can
thus reason on a two-dimensional space defined by the axes F and G, on
condition that we do not lose sight of the fact that the cloud of grains of
sound exists in the thickness of time Af and that the grains of sound are only
artificially flattened on the plane (FG).

Definition of the screen. The screen is the audible area (FG) fixed by a
sufficiently close and homogeneous grid as defined above, the cells of which
may or may not be occupied by grains. In this way any sound and its
history may be described by means of a sufficiently large number of sheets
of paper carrying a given screen . These sheets are placed in a fixed lexi-
cographic order (see Fig. 1I-8).

-

e

Cell full of grains

Fig. 1I-8 A book of screens equals
the life of a complex sound

The clouds of grains drawn on the screens will differ from one screen
to another by their geographical or topographical position and by their
surface density (see Fig. II-9). Screen 4 contains a small elemental rectan-
gle with a small cluster of density d of mean frequency fand mean amplitude
g- 1tis almost a pure sound. Screen B represents a morc complex sound with
strong high and low areas but with a weak center. Screen C represents a
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“white” sound of weak density which may therefore be perceived as a sonic
sheen occupying the whole audible area.

What is important in all the statements made up to now is that nothing
has been said about the topographic fixity of the grains on the screens. All
natural or instrumental sounds are¢ composed of small surface elements filled
with grains which fluctuate around a mean frequency and intensity. The
same holds for the density. This statement is fundamental, and it is very
likely that the failure of electronic music to create new timbres, aside from
the inadequacy of the serial method, is largely due to the fixity of the grains,
which form structures like packcts of spaghetti (Fig. 11-10).

Topographic fixity of the grains is a very particular case, the most
general case being mobility and the statistical distribution of grains around
positions of equilibrium. Consequently in the majority of cases real sounds
can be analyzed as quite small rectangles, AFAG, in which the topographic
positions and the densities vary from one screen to another following more
or less well-defined laws.

Thus the sound of example D at this precise instant is formed by the

collection of rectangles ( f2¢4), (fags), (fage), (faga), (fag1), (fogo)s (fogr)s
(foga)s (fags)s (faga)s (figa)s (faga)s (fags)s (fuga)s (foga), (fags), and in each
of the rectangles the grains are disposed in an asymmetric and homogeneous
manner (see Fig, II-11).

CONSTRUCTION OF THE ELEMENTS AFAG OF THE SCREENS

1. By caleulation. We shall examine the means of calculating the elements
AFAGAIAD.

How should the grains be distributed in an elemental volume? If we
fix the mean density of the grains (= number of grains per unit of volume)
we have to resolve a problem of probability in a four-dimensional space. A
simpler method would be to consider and then calculate the four coordinates
independently.,

For the coordinate ¢ the law of distribution of grains on the axis of time
is:

P,o=ce™de or P, =e®cAx,. (r) (See Appendix I.)

Yor the coordinates G, F, D the stochastic law will be:

a a

fiydi=3(1-1) 4 (x)

2 i .
or P = 7107 (1 ~ 5gr = 1)- (See Appendix 1.)
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From these formulae we can draw up tables of the frequencies of the
values ¢, G, F, D (see the analogous problem in Chapter I). These formulae
are in our opinion privileged, for they arise from very simple reasoning,
probably the very simplest; and it is essential to start out with a minimum
of terms and constraints if we wish to keep to the principle of the tabula rasa
(1st and 3rd rules of Descartes’s Discourse on Method).

Let there be one of these elemental volumes AfADAFAG of the screen
at the moment £ This volume has a density D taken from the table derived
from formula (). Points on A are defined with a linear density D = ¢
according to the table defined by formula (r). To each point is attributed a
sonic grain of frequency f and intensity g, taken from within the rectangle
AFAG by means of the table of frequencies derived from fprmula (r’). The
correspondences are made graphically or by random successive drawings
from urns composed according to the above tables.

2. Mechanically. a. On the tape recorder: The grains are realized from
sinusoidal sounds whose durations are constant, about 0.04 sec. These
grains must cover the selected elemental area AFAG. Unfolding in time is
accomplished by using the table of durations for a minimum density ¢ = D.
By mixing sections of this tape with itsclf, we can obtain densities varying
geometrically with ratio 1:2:3 ... according to the number of tracks that
we use. b. On computers: The grains are realized from wave forms duly
programmed according to Gabor’s signals, for a computer to which an
analogue converter has been coupled. A second program would provide for

the construction of the elemental volumes AfADAFAG from formulac (r)
and (r').

First General Comment

Take the cell AFAGA¢. Although occupied in a homogeneous manner
by grains of sound, it varies in time by fluctuating around a mean density
dn. We can apply another argument which is more synthetic, and admit that
these fluctuations will exist in the most general case anyhow (if the sound is
long enough), and will therefore obey the laws of chance. In this case, the
problem is put in the following manner:

Given a prismatic cloud of grains of density d,,, of cross section AFAG
and length > Az, what is the probability that d grains will be found in an
elemental volume AFAGA¢? If the number d,, is small enough, the probabil-
ity is given by Poisson’s formula:
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For the definition of each grain we shall again use the methods de-
scribed above,

Second General Comment (Vector Space) [8]

We can construct elemental cells AFAG of the screens not only with
points, but with elemental vectors associated with the grains (vector space).
The mean density of 0.04 sec/grain really implies a small vector. The partic~
ular case of the grain occurs when the vector is parallel to the axis of time,
when its projection on the plane (FG) is a point, and when the frequency of
the grain is constant. In general, the frequencies and intensities of the grains
can be variable and the grain a very short glissando (see Fig. 11-12).

G . al
g /
Q — -
— 7 L
11 A
_____ql/ F AF F

Fig. I-12

In a vector space (FG) thus defined, the construction of screens would
perhaps be cumbersome, for it would be necessary to introduce the idea of
speed and the statistical distribution of its values, but the interest in the
undertaking would be enormous. We could imagine screens as the basis of
granular fields which are magnetized or completely neutral (disordered).

In the case of total disorder, we can calculate the probability f(v) of
the existence of a vector v on the plane (FG) using Maxwell’s formula as
applied to two dimensions [11]:

2u 21q2
F0) = B e
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For the mean value v, < 2, < v,,

Plan) = X {an) - 00}

in which A = »,/a and

+A

8(\,) = \_};f_A e d),

for Ay < A < A, (normal Gaussian law) [12]. In any case, whether it is a
matter of a vector space or a scalar space does not modify the arguments

[13].
Summary of the Screens

1. A screen is described by a set of clouds that are themselves a set of
elemental rectangles AFAG, and which may or may not contain grains of
sound. These conditions exist at the moment ¢ in a slice of time A4 as small
as desired.

2. The grains of sound create a density peculiar to each elemental
rectangle AFAG and are generally distributed in the rectangles in an er-
godic manner. (The ergodic principle states that the capricious effect of an
operation that depends on chance is regularized more and more as the
operation is repeated. Here it is understood that a very large succession of
screens is being considered [14].)

3. The conception of the elemental volume AFAGATAD is such that
no simultaneity of grains is generally admitted. Simultaneity occurs when
the density is high enough. Its frequency is bound up with the size of the
density. It is all a question of scale and this paragraph refers above all to
realization. The temporal dimension of the grain (vector) being of the order
of 0.04 sec., no systematic overlapping of two grains (vectors) will be accepted
when the clementary density is, for example, D, = 1.5 grains/sec. And as
the surface distribution of the grains is homogeneous, only chance can
create this overlapping.

4. The limit for a screen may be only one pure sound (sinusoidal),
or even no sound at all (empty screen).

ELEMENTARY OPERATIONS ON SCREENS

Let there be a complex sound. At an instant ¢ of its life during a
thickness At it can be represented by one or several clouds of grains or
vectors on the planc (FG). This is the definition which we gave for the

Markovian Stochastic Music—Theory 97

screen. The junction of scveral of these screens in a given order describes
or prescribes the life of this sonic complex. It would be interesting to envisage
in all its generality the manner of combining and juxtaposing screens to
describe, and above all to construct, sonic evolutions, which may be con-
tinuous or discontinuous, with a view to playing with them in a composition.
To this end we shall borrow the terminology and symbolism of modern
algebra, but in an elementary manner and as a form of introduction to a
further development which we shall not undertake at the moment.

Comment: It does not matter whether we place ourselves on the plane
of physical phenomena or of perception. In general, on the plane of per-
ception we consider arithmetically that which is geometrical on the physical
plane. This can be expressed in a more rigorous manner. Perception
constitutes an additive group which is almosi isomorphic with a physical
excitation constituting a multiplicative group. The “‘almost” is necessary to
exorcise approximations,

Grains or vectors on the plane (FG) constitute a cloud. A screen can be
composed of no grain at all or of several clouds of grains or vectors (see

Fig. 11-13).

Screen 1 Screen 2 Screen 3
Fig. I1-13

To notate that a grain or vector a belongs to a cloud E, we write a € £
the contrary is written a ¢ E. If all the grains of a cloud X are grains of
another cloud 7Y, it is said that X is included in Y or that X is a part or
sub-cloud of Y. This relation is notated X = Y (inclusion).

Consequently we have the following properties:

X < X forany X
Xc¥Y and Y< Z imply X <= Z

When X < Yand ¥ < X, the clouds X and ¥ consist of the same grains;
they are indistinguishable and the relation is written: X = ¥ (equation).

A cloud may contain as little as a single grain. A cloud X is said to b-e
empty when it contains no grain g, such that ae X. The empty cloud is
notated &.
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ELEMENTARY OPERATIONS

These operations apply equally well to clouds and to screens. We can
therefore use the terms “screen” and “cloud” indiscriminately, with cloud
and grain as “constitutive elements.”

The intersection of two screens 4 and B is the screen of clouds which
belong to both 4 and B. This is notated as 4 N B and read as “ 4 inter B”
(Fig. II-14). When AN B = o, 4 and B are said to be digjoint (Fig.
I1-15). The union of two screens 4 and B is the set of clouds which belong
to both 4 and/or B (Fig. IT-16). The complement of a screen 4 in relation to
a screen £ containing 4 is the set of clouds in £ which do not belong to
A. This is notated Cz4 when there is no possible uncertainty about E
(Fig. 11-17). The difference (4 — B) of A and B is the sét of clouds of 4
which do not belong to B. The immediate consequence is 4 — B = 4 —
(4N B) =C,(A4n B) (Fig. 11-18).

We shall stop this borrowing here; however, it will afford a stronger,
more precise conception on the whole, better adapted for the manipu-
lations and arguments which follow.

DISTINCTIVE CHARACTERISTICS OF THE SCREENS

In our desire to create sonic complexcs from the temporary accepted
primary matter of sound, sine waves (or their replacements of the Gabor
sort}, and to create sonic complexes as rich as but more extraordinary
than natural sounds (using scientifically controlled evolutions on very
general abstract planes), we have implicitly recognized the importance of
three basic factors which seem to be able to dominate both the theoretical
construction of a sonic process and its sensory effectiveness: 1. the density
of the elementary elements, 2. the topographic situation of events on
the screens, and 3. the order or disorder of events.

At first sight then the density of grains or vectors, thcir topography,
and their degree of order are the indirect entities and aspects perceived by
our macroscopic ears. It is wonderful that the ear and the mind follow
objective reality and react directly in spite of gross inherent or cultural
imperfections. Measurement has been the foundation of the experimental
scicnces. Man voluntarily treats himself as a sensory invalid, and it is for this
rcason that he has armed himself, justifiably, with machines that measure
other machines. His cars and eyes do measure entities or physical phen-
omena, but they are transformed as if a distorting filter came between im-
mediate perception and consciousness. About a century ago the logarithmic
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law of sensation was discovered; until now it has not been contradicted.
But as knowledge never stops in its advance, tomorrow’s science will with-
out doubt find not only a greater flexibility and cxactitude for this law,
but also the beginnings of an explanation of this distorting filter, which is so
astonishing,

This statistical, but none the less quasi-one-to-one transformation of
excitation into perception has up to now allowed us to argue about physical
entities, such as screens, all the while thinking “perceived events.” A
reciprocity of the same kind between perception and its comprehension
permits us to pass from the screens to the consequent distinctive characteris-
tics. Thus the arguments which we shall pursue apply equally well to pure
concepts and to those resulting from perception or sensory cvents, and we
may take the attitude of the craftsman or the listener.

We have already remarked on the density and the topography of
grains and cells and we have acknowledged the concepts of order and dis-
order in the homogeneous superficial distribution or grains.

We shall examine closely the concept of order, for it is probably hidden
behind the other two. That is to say, density and topography are rather
palpably simplified embodiments of this fleeting and many-sided concept
of disorder.

When we speak of order or disorder we imply first of all “objects” or
“elements.” Then, and this is already more complex, we define the very
“elements” which we wish to study and from which we wish to construct
order or disorder, and their scale in relation to ours. Finally we qualify
and endeavor to measure this order or disorder. We can even draw up a list
of all the orders and disorders of thesc entities on all scales, from all aspects,
for all measurements, even the characteristics of order or disorder of this
very list, and establish anew aspects and measurements.

Take the example of the gases mentioned above. On the molecular
scale (and we could have descended to the atomic level), the absolute values
of the speeds, directions, and distributions in space are of all sorts. We can
distinguish the “elements” which carry order or disorder. Thus if we could
theoretically isolate the element “dircctions” and assume that there is an
obligation to follow certain privileged directions and not all directions, we
could impose a certain degree of order which would be independent of the
other elements constituting the concept “gas.” In the same way, given
enough time, the values of the speeds of a single molecule will be distributed
around a mean value and the size of the deviations will follow Gauss’s law.
Therc we will have a certain order since these values are vastly more
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numerous in the neighborhood of their mean than anywhere else, from in-
finitely small to infinitely large.

Let us take another example, more obvious and equally true. A crowd
of 500,000 persons is assembled in a town square. If we examinc the group
displacement of this crowd we can prove that it does not budge. However,
each individual moves his limbs, his head, his eyes, and displaces his center
of gravity by a few centimeters in every direction. If the displacements of the
centers of gravity were very large the crowd would break up with yells of
terror because of the multiple collisions between individuals. The statistical
values of these displacements normally lie between very narrow limits which
vary with the density of the crowd, From the point of view of these values as
they affect immobility, the disorder is weak.

Another characteristic of the crowd is the orientation of the faces. If an
orator on a balcony were to speak with a calming effect, 499,000 faces would
lock at the balcony and 998,000 ears would listen to the honeyed words. A
thousand or so faces and 2000 ears would be distracted for various reasons:
fatigue, annoyance, imagination, scxuality, contempt, theft, etc. We could
confirm, along with the mass media, without any possible dispute, that
crowd and speaker were in complete accord, that 500,001 people, in fact,
were unanimous. The degree of order that the speaker was after would attain
a maximum for a few minutes at least, and if unanimity were expressed
equally strongly at the conclusion of the meeting, the orator could be per-
suaded that the ideas were as well ordered in the heads of the crowd as in his
own.

We can establish from these two extreme examples that the concept of
order and disorder is basic to a very large number of phenomena, and that
even the dcfinition of a phenomenon or an object is very often attributable to
this concept. On the other hand, we can establish that this concept is
founded on precise and distinct groups of elements; that the scale is impor-
tant in the choice of elements; and finally, that the concept of order or dis-
order implies the relationship between effective values over all possible
values that the elements of a group can possess. This introduces the concept
of probability in the quantitative estimate of order or disorder.

We shall call the number of distinct elements in a group its variety. We
shall call the degree of order or disorder definable in a group of elements its
entropy. Entropy is linked with the concept of variety, and for that very
reason, it is linked to the probability of an element in the group. These
concepts are those of the theory of communications, which itself borrows
from the second law of thermodynamics (Boltzmann’s theorem H) [15].
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Variety is expressed as a pure number or as its logarithm to the base 2.
Thus human sex has two elements, male and female, and its variety 1s 2,
or 1 bit: 1 bit = log, 2.

Let there he a group of probabilitics (a group of real numbers p,
positive or zero, whose sum is 1). The entropy H of this group is defined as

H= —K?3 plog p;.

If the logarithmic base is 2, the cntropy is expressed in bits. Thus if we
have a sequence of heads and tails, the probability of each is 4, and the
entropy of this sequence, i.e., its uncertainty at cach throw, will be 1 bit. If
both sides of the coin were heads, the unccrtainty would bg removed and the
entropy H would be zero.

Let us suppose that the advent of a head or a tail is not controlled by
tossing the coin, but by a fixed, univocal law, e.g., heads at each even toss
and tails at each odd toss. Uncertainty or disorder is always absent and the
entropy is zero. If the law becomes very complex the appearance of heads or
tails will seem to a human observer to be ruled by the law of chance, and
disorder and uncertainty will be reestablished. What the observer could do
would be to count the appearances of heads and tails, add up their respective
frequencies, deduce their probabilities, and then calculate the entropy in
bits. If the frequency of heads is equal to that of tails the uncertainty will be
maximum and equal to 1 bit.

This typical example shows roughly the passage from order to disorder
and the means of calibrating this disorder so that it may be compared with
other states of disorder. It also shows the importance of scale. The intelli-
gence of the observer would assimilate a deterministic complexity up to a
certain limit. Beyond that, in his eyes, the complexity would swing over into
unforesceability and would become chance or disorder; and the visible (or
macroscopic would slide into the invisible (or microscopic). Other methods
and points of view would be necessary to observe and control the pheno-
mena.

At the beginning of this chapter we admitted that the mind and especi-
ally the ear were very sensitive to the order or disorder of phenomena. The
laws of perception and judgment are probably in a geometrical or logarith-
mic relation to the laws of excitation. We do not know much about this, and
we shall again confine ourselves to examining general entities and to tracing
an overall orientation of the poetic processes of a very general kind of music,
without giving figures, moduli, or determinisms., We are still optimistic
enough to think that the interdependent experiment and action of abstract
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hypotheses can cut biologically into the living conflict between ignorance
and reality(if there is any reality).

Study of Ataxy (order or disorder) on the Plane of a
Cloud of Grains or Vectors

Axis of time: The degree of ataxy, or the entropy, is a function of thc
simultaneity of the grains and of the distinct intervals of time between the
emission of each grain. If the variety of the durations of the emissions is weak,
the entropy is also weak. If, for example, in a given At each grain is emitted
at regular intervals of time, the temporal variety will be 1 and the entropy
zero. The cloud will have zero ataxy and will be completely ordered. Con-
versely, if in a fairly long succession of A¢ the grains are emitted according
to the law P, = 8¢~%* dx, the degree of ataxy will be much larger. The limit
of entropy is infinity, for we can imagine all possible values of time intervals
with an equal probability. Thus, if the variety is n — 00, the probability
for each time interval is p, = 1/n, and the entropy is

n
H = —Kzzopi log p:
v 1 1 1 1 1
H= KZO Jlog~ = —Kn_log— = —Klog~ = Klogn
for n = o0, H — 0.

'This is less true in practice, for a Af will never offer a very great variety
of durations and its entropy will be weak. Furthermore a sonic composition
will rarely have more than 100,000 Af’s, so that H < log 100,000 and
H < 16.6 bits.

Axis of frequencies (melodic) : The same arguments are valid here but with
greater restriction on the variety of melodic intervals and on the absolute
frequencies because of the limits of the audible area.

Entropy is zero when the variety of frequencies of grains is 1, i.e., when
the cloud contains only one pure sound.

Axis of intensity and density: The above observations are valid. There-
fore, if at the limit, the entropies following the three axes of an element
AFAGAtAD are zero, this element will only contain one pure sound of
constant intensity emitted at regular intervals.

In conclusion, a cloud may contain just one single pure sound emitted
at regular intervals of time (see Fig. II-19), in which case its mean entropy
(arithmetic mean of the three entropies) would be zero. It may contain
chaotically distributed grains, with maximum ataxy and maximum mean
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entropy (theoretically o). Between these two limits the grains may be
distributed in an infinite number of ways with mean entropics between 0
and the maximum and able to produce both the Marseillaise and a raw,
dodecaphonic series.

Fig. 11-19 /

A single grain emitted at regular intervals of time

Parentheses

GENERAL OBSERVATIONS ON ATAXY

‘Taking this last possibility as a basis, we shall examine the very general
formal processes in all realms of thought, in all physical and psychic realities.

To this end we shall imagine a “Primary Thing,” malleable at will;
capable of deforming instantaneously, progressively, or step-by-step; extend-
ible or retractable; unique or plural; as simple as an electron (!) or as com-
plex as the universe (as compared to man, that is).

It will have a given mean entropy. At a defined time we will cause it to
undergo a transformation. From the point of view of ataxy this transforma-
tion can have one of three effects:

1. The degree of complexity (variety) does not change; the transforma-
tion is neutral; and the overall entropy does not change.

2. The degree of complexity increases and so does the entropy.

3. The transformation is a simplifying one, and the entropy dimin-
ishes.

Thus the neutral transformation may act on and transform: perfect
disorder into perfect disorder (fluctuations), partial disorder into partial
disorder, and perfect order into perfect order.

Multiplicative transformation transforms: perfect disorder into perfect
disorder, partial disorder into greater disorder, and perfect order into partial
disorder.
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And simplifying transformation transforms: perfect disorder into partial
disorder, partial order into greater order, and partial order into perfect
order. Fig. 1I-20 shows these transformations in the form of a kinematic
diagram,

Perfect TDegree of order
disorder |&— Max.

entropy

Partial Entropy
disorder ' = & max.
t
l
Perfect Entropy O
order
Fig. 11-20 Time

STUDY OF ATAXY AT THE LEVEL OF SCREENS (SET OF CLOUDS)

From the above discussion, a screen which is composed of a set of
cclls AFAG associated with densities during a slice of time At, may be
dissociated according to the two characters of the grains, frequency and
amplitude, and affected by a mean entropy. Thus we can classify screens
according to the criterion of ataxy by means of two parameters of disorder:
the variety of the frequencies and the variety of the intensities. We shall
make an abstraction of the temporal distribution of the grains in A¢ and of
the density, which is implicitly bound up with the varieties of the two
fundamental sizes of the grain. In symbolic form:

Perfect disorder = oo
Partial disorder =z or m
Partialorder =m or =
Perfect order = (.

From the point of view of ataxy a screen is formulated by a pair of
entropy values ascribed to a pair of frequencies and intensities of its grains.
Thus the pair (1, 00) means a screen whose frequencies have quite a small
entropy (partial order or disorder) and whose intensities have maximum
entropy (more or less perfect disorder).
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CONSTRUCTION OF THE SCREENS

We shall quickly survey some of the screens in the entropy table in
Fig. 11-21.

Z:Z:Zr d/;sa;::e/r P‘fr,;‘;:t Symbol Description Diagram Diagram
F G| F G|F @6
F G 0, Unique screen
Infinite number
F G 0, n of screens
F G w0, 0 Unique screen
Infinite number »
G| F n, @ of screens
Unique screen,
G F 0, © pure sounds
Infinite number e
F G n,m of screens s ~
Infinite number
F G n, 0 of screens - Trwrere
Infinite number :
G | F o, n of screens .
Unique screen, .
F G 0,0 pure sound ’

Fig. 11-21. Screen Entropy Table
SCREEN (00, )

Let there be a very large number of grains distributed at random over
the whole range of the audible area and lasting an interval of time equal to
At. Let there also be a grid fine enough so that the average density will not
be more than 30 grains per cell. The distribution law is then given by

Poisson’s formula
k
AL

i G

where d,, is the mean density and P, the probability that there will be &
grains in a cell. I 4,, becomes greater than about 30, the distribution law
will become normal.

Fig. 11-22 is an example of a Poisson distribution for a mean density
dn = 0.6 grains/cell in a grid of 196 cells for a screen (o0, o0).

‘Thus we may construct the (0, o) screcns by hand, according to the
distributions for the rows and columns, or with suitable computer programs.
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G

joval

Fig. 11-22 F

For a very high mean density the screens in which disorder is perfect
(maximum) will give a very rich sound, almost a white sound, which will
never be identical throughout time. If the calculation is done by hand we can
construct a large number of (co, 0o screens from the first (00, 00) screen in
order to avoid work and numerical calculation for each separate screen, To
this end we permute the cells by column and row (see Fig. I1-23).

] [

a b F b a F
Fig. 11-23. Example of Permutation by Columns

Discussion. It is obvious that for a high mean density, the greater the
number of cells, the more thc distribution of grains in onc region of the
screcn tends to regularize (ergodism) and the weaker are the fluctuations
from one cell or cloud to another. But the absolute limits of the density in
the cells in the audible area will be a function of the technical means
available: slide rulcs, tables, calculating machincs, computers, ruled paper,
orchestral instruments, tapc recorders, scissors, programmed impulses of
pure sounds, automatic splicing devices, programmed recordings, analogue
convcerters, etc.

If cach cell is considered as a symbol dcfined by the number of grains £,
the entropy of the screen (for a given fineness of grid) will naturally be
affected by the mean density of the grains per cell and will grow at the same
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time. It is here that a whole series of statistical experiments will have to
circumscribe the perceptible limits of ataxy for these screens (oo, o) and
even express the color nuances of white sound. It is very possible that the
car classifies in the same file a great number of screens whose entropies vary
tremendously. There would result from this an impoverishment and a
simplification of the communication: physical information — perception,
but at least there will be the advantage that the work involved in construct-
ing screens will be considerably reduced.

ALL SCREENS

Starting from a few screens and applying the elementary operations we
can construct all the screens of the entropy table. See Fig. 11-24 for a few
examples. In practice, frequency and intensily filters imitate these elemen-
tary operations perfectly.

N

7 2

AN Ml =1 | e

Z = 7, = —
(o0 00) (o0 @) o
H = Mz -MZEm=
- (nm v m T
- Z
s =z -lli= = N
T o) o

Fig. 11-24
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LINKING THE SCREENS

Up to now we have admitted that any sound or music could be de-
scribed by a number of screens arranged in the lexicographic order of the
pages of a book. If we represent each screen by a specific symbol (one-to-one

coding), the sound or the music can be translated by a succession of symbols
called a protocol:

abgkab ---bg-..

cach letter identifying screens and moments ¢ for isochronous A#’s.

Without seeking the causes of a particular succession of screens, 1.e.,
without entering into either the physical structure of the sound or the logical
structure of the composition, we can disengage certain modes of succession
and species of protocols [16]. We shall quickly review the elementary
definitions.

Any matter or its unique symbol is called a term. Two successive terms
cause a transition to materialize. The second term is called the fransform and
the change effected is represented by term 4 — term B, or 4 — B.

A transformation is a collection of transitions. The following example is
drawn from the above protocol:

labgk
b g k a

another transformation with musical notes:

I3 o s
lJ Ipw I
h J o .

A transformation is said to be closed when the collection of transforms
contains only elements belonging to the collection of terms, for example:

the alphabet,

labc---z
b ¢ d .. qa
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musical notes,

l C Dp D Ep E F Gp G A Bp B
D Gpb G C F B A Dp Ep E Bp
musical sounds,

1. Cloud of sound-points,
e.g., pizzicati

2. Network of parallel
glissandi in one
direction

3. Network of parallel
glissandi in two
directions.

an infinity of terms,

1 23 4 5 6
l67410012

A transformation is univocal or single-valued (mapping) when each term
has a single transform, for example:

l b a ¢ e
a b ¢ d
The following are examples of transformations that are not univocal:

la b c
bye d mn, p

—5—
J J PEED! b
L
b. , . ,
br f b r !
43
¢. timbre change of a group of values
clarinets oboes strings timpani brass
Timbres timpani, timpani, brass oboes strings,
strings  bassoon oboes
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and 4. concrete music characteriology [4, 5]

nil vibrated trembled cyclical irregular
“Manner” | €yclical or irregular nil or trembled nil or
trembled irregular vibrated or
cyclical

A transformation is a one-to-one mapping when each term has a single
transform and when each transform is derived from a single term, for
example:

labcd
b a d ¢

MATRICAL REPRESENTATION

A transformation:

a b ¢
l a ¢ ¢
can be represented by a table as follows:
J I a b ¢
al+ 0 O
0 0 O or
c | 0 + +

This table is a matrix of the transitions of the collection of terms to a
collection of transforms,

PRODUCT

Let there be two transformations 7" and U:

a b ¢ d a b ¢ d
T: and U:
b d a b d ¢ d b

In certain cases we can apply to a term n of 1" a transformation T, then
a transformation U. This is written: U[T(n)], and is the product of the two
transformations 7 and U, on condition that the transforms of T are terms
of U. Thus, first T: a— b, then U: b—¢, which is summarized as
V=UT:a—c
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To calculate the product applied to all the terms of 7" we shall use the
following matrical representation:

Y|la b ¢ d {la b ¢ d
e |0 01 O a |0 0 0 O
T: 4|11 0 0 1 U:. 610 0 01
¢c !0 0 0 O c 01 0 O
d|01 00 djl1 01 0

the total transformation ¥ equals the product of the two matrices T and U/
in the order U,T.

U T v
0000 (0010 [000 0
0o0o01| [1oo01] o100
o100/ fooool 1001
1010 0100 o010

KINEMATIC DIAGRAM

The kinematic or transition diagram is a graphical expression of
transformation. To draw it each term is connected to its transform by an
arrow pointed at the transform. The representative point of a kinematic dia-
gram is an imaginary point which moves in jumps from term to term
following the arrows of the diagram; for an example see Fig. 11-25.

T l A C DI L NP 4

D DI A N A NN

P c

e
Ve N/

Fig. 1-25 L
A transformation is really a mechanism and theoretically all the
mechanisms of the physical or biological universes can be represented by
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transformations under five conditions of correspondence:

1. Each state of the mechanism (continuity is broken down into discrete
states as close together as is desired) is in a one-to-one correspondence with
a term of the transformation.

2. Each sequence of states crossed by the mechanism by reason of its
internal structure corresponds to an uninterrupted sequence of the terms of
the transformation.

3. If the mechanism reaches a state and remains there (absorbing or
stationary state), the term which corresponds to this state has no transform,

4. If the states of a mechanism reproduce themselves in the same man-
ner without end, the transformation has a kinematic diagram in closed
circuit.

5. A halt of the mechanism and its start from another state is repre-
sented in the diagram by a displacement of the representative point, which
is not due to an arrow but to an arbitrary action on the paper.

The mechanism is determined when the corresponding transformation
is univocal and closed. The mechanism is not determined when the corre-
sponding transformation is many-valued. In this case the transformation is
said to be stochastic. In a stochastic mechanism the numbers 0 and 1 in the
transformation matrix must be replaced by relative frequencies. These are
the alternative probabilities of various transformations. The determined
mechanism is a particular case of the stochastic mechanism, in which the
probabilities of transition are 0 and 1.

Example: All the harmonic or polyphonic rules of classical music could
be represented by mechanisms. The fugue is one of the most accomplished
and determined mechanisms. One could even generalize and say that the
avant-garde composer is not content with following the mechanisms of his
age but proposes new ones, for both detail and general form.

If these probabilities are constant over a long period of time, and if they
are independent of the states of origin, the stochastic sequence is called,
more particularly, a Markov chain,

Let there be two screens A4 and B and a protocol of 50 transitions:

ABABBBABAABABABABBBBABAABABBAABABBABAAABABBA
ABBABBA.

The real frequencies of the transitions are:

A— B 17 times B—A 17 times
A—>+A 6 times B— B 10 tmes

23 times 27 times
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a diminution of the entropy. If melodic or harmonic liaisons are effected
and perceived in the same distribution, unpredictability and entropy are
both diminished.

Rate of ataxy

Time

N F

Fig. 1-26

A. The evolution is nil. B, The rate of disorder and the richness
increase. C. Ataxy decreases. D. Ataxy increases and then
decreases. E. Ataxy decreases and then increases. F. The
evolution of the ataxy is very complex, but it may be analyzed
from the first three diagrams.

Thus after the first unfolding of a series of twelve sounds of the tem-
pered scale, the unpredictability has fallen to zero, the constraint is maxi-
mum, the choice is nil, and the entropy is zero. Richness and hence interest
are displaced to other fields, such as harmonies, timbres, and durations, and
many other compositional wiles are aimed at reviving entropy. In fact sonic
discourse is nothing but a perpetual fluctuation of entropy in all its forms
[17].

However, human sensitivity does not necessarily follow the variation
in entropy even if it is logarithmic to an appropriate base. It is rather a
succession or a protocol of strains and relaxations of cvery degree that often
excites the listener in a direction contrary to that of centropy. Thus Ravel’s
Bolero, in which the only variation is in the dynamics, has a virtually zero
entropy after the third or fourth repetition of the fundamental idea, How-
ever, the interest, or rather the psychological agitation, grows with time
through the very fact of this immobility and banality.

All incantatory manifestations aim at an effect of maximum tension
with minimum entropy. The inverse is equally true, and scen from a certain
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angle, white noise with its maximum entropy is soon tiresome. It would
seem that there is no correspondence aesthetics < entropy. These two
entities are linked in quite an independent manner at each occasion. This
statement still leaves some respite for the free will of the composer even if
this free will is buried under the rubbish of culture and civilization and is
only a shadow, at the least a tendency, a simple stochasm.

The great obstacle to a too hasty generalization is chiefly one of logical
order; for an object is only an object as a function of its definition, and there
is, especially in art, a near-infinity of definitions and hence a near-infinity
of entropies, for the notion of entropy is an epiphenomenon of the definition.
Which of these is valid? The ear, the eye, and the brain unravel sometimes
inextricable situations with what is called intuition, taste, and intelligence.
T'wo definitions with two different entropies can be perceived as identical,
but it is also true that the set of definitions of an object has its own degree
of disorder. We are not concerned herc with investigating such a difficult,
complex, and unexplored situation, but simply with looking over the
possibilities that connected realms of contemporary thought promise, with a
view to action,

To conclude briefly, since the applications which follow are more elo-
quent than explanatory texts, we shall accept that a collection or book of
screens can be cxpressed by matrices of transition probabilities having
parameters. They are aflected by a degree of ataxy or entropy which is
calculable under certain conditions. However, in order to render the
analysis and then the synthesis of a sonic work within reach of understanding
and the slide rule, we shall establish three criteria for a screen:

I. TOPOGRAPHIC CRITERION

The position of the cells AFAG on the audible arca is qualitatively
important, and an enumeration of thcir possible combinations is capable of
creating a group of well defined terms to which we can apply the concept
of entropy and its calculation.

2. DENSITY CRITERION

The superficial density of the grains of a ccll AFAG also constitutes a
quality which is immediately perceptible, and we could equally well define
terms to which the concept and calculation of entropy would be applicable,

3. CRITERION OF PURE ATAXY (defined in relation to the grains of a
screen)

A cell has threc variables: mean frequency, mean amplitude, and mean
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density of the grains. For a screen we can thercfore establish three indepen-
dent or connected protocols, then three matrices of transition probabilities
which may or may not be coupled. Each of the matrices will have its entropy
and the three coupled matrices will have a mean entropy. In the procession
of sound we can establish several scrics of three matrices and hence several
series of mean entropies, their variations constituting the criterion of ataxy.

The first two criteria, which are general and on the scale of screens or
cells, will not concern us in what follows. But the third, more conventional
criterion will be taken up in detail in the next chapter.

Chapter Il

Markovian Stochastic Music—
Applications

In.this chapter we will discuss two musical applications: Analogique A, for
string orchestra, and Analogique B, for sinusoidal sounds, both com 08 ,d i
1958-59. , P

We shall confine ourselves to a simple case in which each of the com-
ponents G, F, D of the screen take only two values, following matrices of
transition probability which will be coupled by means of parameters. In
addition, the choice of probabilities in the matrices will be made in su<;h a
way that we shall have only the regular case, conforming to the chain of
events t.heory as it has been defined in the work of Maurice Fréchet [14]

. It is obvious that richer and more complex stochastic mechanisms a;c
highly interesting to construct and to put in work, but in view of the con-
siderable volume of calculations which they necessitate it would be useless
to undertake them by hand, hut very desirable to program them for the
computer.

Nevertheless, despite the structural simplicity of what follows, the
§tochastic mechanism which will emerge will be a model. a standard’sub-
Jacent to any others that are far more complex, and will’serve to catalyze
further studies of greater elaboration. For although we confine ourscl)\]’(‘:s
here to the study of screens as they have been defined in this study (sets of
clcn}cnt.ary grains), it goes without saying that nothing prevents the gen-
eralization of this method of structuralization (composition) for deﬁnitic;ns
of sonic entities of more than three dimensions. Thus, let usnolonger suppose
screens, but criteria of definitions of a sonic entity, such that for the timbre
degree of order, density, variation, and even the ¢riteria of more or les;
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Fig. I-1. Syrmos for 18 strings
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complex elementary structures (e.g., melodic and temporal structures of
groups of sounds, and instrumental, spatial, and kinematic structures) the
same stochastic scheme is adaptable. It is enough to define the variations
well and to be able to classify them even in a rough manner.

"The sonic result thus obtained is not guaranteed a priori by calculation.

Intuition and expericnce must always play their part in guiding, deciding,
and testing.

ANALYSIS
(definition of the scheme of a mechanism)

We shall define the scheme of a mechanism as the “analogue” of a
stochastic process. It will serve for the production of sonic entities and for
their transformations over time. These sonic entities will have screens which
will show the following characteristics freely chosen:

I. They will permit two distinct combinations of frequency regions
Jo and f, (see Fig. II1-2).

fe

E Half axis
of frequencies
in semitones

T 7

>

udible frequencies

Im,ﬁt‘ ’ ]('1 l Half axis
]

of frequencies
} —

. in semitones
m‘ Audible frequencies
\ % Fig. -2

Syrmos, written in 1959, is built on stochastic transformations of
eight basic textures : paraliel horizontal bowed notes, parallel
ascending bowed glissandi, parallel descending bowed glissandi,
crossed (ascending and descending) paraliel bowed notes,
pizzicato clouds, atmospheres made up of col legno struck notes
with short col legno glissandi, geometric configurations of
cenvergent or divergent glissandi, and glissando configurations
treated as undevelopable ruled surfaces. The mathematical struc-
ture of this work is the same as that of Analogique A and
Analogique B.

4

’

f\lPr— O’}
f
o~
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9. They will permit two distinct combinations of intensity regions
(see Fig. II1-3).

G (Phones) ‘i {Phones)
2 3
. 2 & g
E E
53 Y
2 2
o a
Q @
l 1< o
D QO
a Py o
Fig. l1I-3

3. They will permit two distinct combinations of density regions
(see Fig. 111-4).

(Terts* or sounds/sec) p (Terts* or sounds/sec) D

d,

. *Ternary logarithms
Fig. lil-4

4. Each of these three variables will present a protocol which may be
summarized by two matrices of transition probabilities (M'TP).

The letters (p) and (o) constitute the parameters of the (MTP).
MTPF (of frequencies)

Yl fo A N I A1
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MTPG (of intensities)

V| & & V|l & &

g |02 08 g | 0.85 04
(')’) e)

g |08 02 g | 0.15 06

MTPD (of densities)

V| 4 4 V| 4 4

dy | 0.2 0.8 dy, | 0.85 04
™ W

d, | 0.8 0.2 d, | 0.15 0.6

5. The transformations of the variables are indeterminate at the
interior of each (MTP) (digram processes), but on the other hand their
(MTP) will be connected by means of a determined coupling of paramcters.
The coupling is given by the following transformations:

(o) lfo fH o do dy g8 & 8 & Sfo i do 4y
A p e B X p B oa vy & y e

By these rules we have described the structurc of a mechanism. It is
thus constituted by three pairs of (MTP): (MTPF), (MTPG), (MTPD),
and by the group (¢y) of the six couplings of these (MTP).,

Significance of the coupling. Let f, be the state of the frequencies of the
screen at an instant ¢ of the sonic evolution of the mechanism during a slice
of time At. Let g, and d; be the values of the otlier variables of the screen
at the moment #. At the next moment, ¢ + A¢, the term fj is bound to change,
for it obeys one of the two (MTPF), («) or (8). The choice of (a) or (8) is
conditioned by the values g, and 4; of the moment ¢, conforming to the
transformation of the coupling. Thus g, proposes the parameter («) and d,
the parameter (8) simultaneously. In other words the term f, must either
remain f or yield its place to f; according to mechanism (&) or mechanism
(B). Imagine the term f; standing before two urns («) and (B), each con-

taining two colors of balls, red for f; and blue for f;, in the following
proportions:

Urn («) Urn (B)
red balls (f;), 0.2 red balls (fg), 0.85
blue balls (f;), 0.8 blue balls (f;), 0.15

The choice 1s frec and the term f; can take its successor from either urn («)
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or urn (f) with a probability equal to % (total probabilities).

Once the urn has been chosen, the choice of a blue or a red ball will
have a probability equal to the proportion of colors in the chosen urn.
Applying the law of compound probabilities, the probability that f; from
moment ¢ will remain f; at the moment ¢ + Atis (0.20 + 0.85)/2 = 0.525,
and the probability that it will change to f; is (0.80 + 0.15)/2 = 0.475.

The five characteristics of the composition of the screens have estab-
lished a stochastic mechanism. Thus in each of the slices At of the sonic
evolution of the created mechanism, the three variables f, g, d; follow a
round of unforeseeable combinations, always changing according to the
three (MTP) and the coupling which connects terms and parameters.

We have established this mechanism without taking into consideration
any of the screen criteria. That is to say, we have implied a topographic
distribution of grain regions at the time of the choice of f;, f1 and g, g1, but
without specifying it. The same is true for the density distribution. We shall
give two examples of very different realizations in which these two criteria
will be effective. But before setting them out we shall pursue further the
study of the criterion of ataxy.

We shall neglect the entropics of the three variables at the grain level,
for what matters is the macroscopic mechanism at the screen level. The
fundamental questions posed by these mechanisms are, “Where does the
transformation summarized by an (MTP) go? What is its destiny ?”’

Let us consider the (MTP):

VXY
X |02 08
Y |08 02

and suppose one hundred mechanisms identified by the law of this single
(MTP). We shall allow them all to set out from X and evolve freely. The
preceding question then becomes, ““Is there a general tendency for the states
of the hundred mechanisms, and if so, what is it?” (See Appendix II.)

After the first stage the 100X will be transformed into 0.2 (100X) —
20X, and 0.8 (100X) — 80Y. At the third stage 0.2 of the X’s and 0.8 of the
¥’s will become X’s. Conversely 0.8 of the X’s will become Y’s and 0.2 of
the Y’s will remain Y’s. This general argument is true for all stages and can
be written:

X' = 02X + 08Y
Y = 0.8X + 0.27F.
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Ifthisis to be applied to the 100 mechanisms X as above, we shall have:

Mechanisms Mechanisms

Stage X Y
0 100 0
1 20 80
2 68 32
3 39 61
4 57 43
5 46 54
6 52 48
7 49 51
8 50 50
9

50 50

We notice oscillations that show a general tendency towards a station-
ary state at the Bth stage. We may conclude, then, that of the 100 mecha-
nisms that leave from X, the 8th stage will in all probability send 50 to X
and 50 to Y. The same stationary probability distribution of the Markov
chain, or the fixed probability vector, is calculated in the following manner:

At equilibrium the two probability values X and ¥ remain unchanged
and the preceding system becomes

X =02X + 0.8Y
Y = 0.8Y + 0.2Y

or

0= -08X+ 0.8Y
0= +08X - 0.87.

Since the number of mechanisms is constant, in this case 100 {or 1), one of

the two cquations may be replaced at the stationary distribution by
Il = X + Y. The system thcn becomes

= 0.8X — 0.8Y
l=X+Y%

and the stationary probability values X, ¥ are X = 0.50 and ¥ = 0.50.

The same method can be applied to the (MTP)(q), which will give us
stationary probabilities X = 0.73 and ¥ = 0.97.
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Another method, particularly interesting in the case of an (MTP) with
many terms, which forces us to resolve a large system of linear equations in
order to find the stationary probabilitics, 1s that which makes use of matrix
calculus.

Thus the first stage may be considered as the matrix product of the

(MTP) with the unicolumn matrix 8
X: |02 0.8 100] |20
Y: ‘0.8 02| | o ’_‘80\.
The second stage will be
0.2 0.8 20 _ 4+ 64 B 68
‘0.8 02| 80\_‘16+16‘~132<’
and the nth stage
‘0.2 0.8|» {100
x .
0.8 0.2 0

Now that we know how to calculate the stationary probabilities of a
Markov chain we can casily calculate its mean entropy. The definition of
the entropy of a system is

H = ~2 pilog ;.

The calculation of the entropy of an (MTP) is made frst by columns
(Z p; = 1), the p; being the probability of the transition for the (MTP) ;
then this result is weighted with the corresponding stationary probabilities.
Thus for the (MTP)(0):

V| X Y
X |08 04
Y |015 06

The entropy of the states of X will be —0.85 log 0.85 — 0.15 log 0.15 =
0.611 bits; the entropy of the states of ¥, —0.4 log 0.4 — 0.6 log 0.6 =
0.970 bits; the stationary probability of X = 0.73; the stationary proba-
bility of 'Y = 0.27; the mean entropy at the stationary stage is

Hs = 0.611(0.73) + 0.970(0.27) = 0.707 bits;
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and the mean entropy of the (MTP)(p) at the stationary stage is
Hp = 0.722 Dits.

The two entropies do not differ by much, and this is to be expected,
for if we look at the respective (MTP) we observe that the great contrasts
of probabilities inside the matrix (p) are compensated by an external equality
of stationary probabilities, and conversely in the (MTP)(s) the interior
quasi-equality, 0.4 and 0.6, succceds in counteracting the interior contrast,
0.85 and 0.15, and the exterior contrast, 0.73 and 0.27.

At this level we may modify the (MTP) of the three variables f;, g;, d;
in such a way as to obtain a new pair of entropies. As this operation is
repeatable we can form a protocol of pairs of entropics and therefore an
(MTP) of pairs of entropies. These speculations and investigations are no
doubt interesting, but we shall confine ourselves to the first calculation made
above and we shall pursue the investigation on an even more general plane.

MARKOV CHAIN EXTENDED SIMULTANEOUSLY FOR f;, g, d;

On p. 83 we analyzed the mechanism of transformation of f; to f; or f;
when the probabilities of the two variables g; and d; arc given. We can apply
the same arguments for each of the three variables f;, g, 4, when the two
others are given.

Example for g;. Let there be a screen at the moment ¢ whose variables
have the values (fy, g4, 41). At the moment ¢ + At the value of g, will be
transformed into g; or go. From f; comes the parameter (y), and from d;
comes the parameter (&).

With (MTP)(y) the probability that g; will remain g, is 0.2. With
(MTP) (&) the probability that g; will remain g; is 0.6. Applying the rules
of compound probabilities and/or probabilities of mutually exclusive events
as on p. 83, we find that the probability that g, will remain g, at thc moment
t + Atunder the simultaneous effects of fj and &, is equal to (0.2 + 0.6)/2 =
0.4. The same holds for the calculation of the transformation from g, into g,
and for the transformations of d;.

We shall now attempt to emerge from this jungle of probability com-
binations, which is impossible to manage, and look for a morc gencral
viewpoint, if it exists.

In general, cach screen is constituted by a triad of specific values of
the variables F, G, D so that we can enumerate the different screens cmer-
ging from the mechanism that we are given (see Fig. II1-5). The possible
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combinations are: (fogodo), (fo80d), (fog1do), (fogrdy), (/180do)s (f18041),
(fr81do), (f18:41); 1.e., eight different screcns, which, with their protocols,
will make up the sonic evolution. At each moment ¢ of the composition we
shall encounter one of these eight screens and no others.

What are the rules for the passage from onc combination to another ?
Can one construct a matrix of transition probabilities for these eight
screens?

Let there be a screen (fyg,d;) at the moment £ Can one calculate the
probability that at the moment ¢ + At this screen will be transformed into
(J/14145) ? The above operations have enabled us to calculate the probability
that /o will be transformed into f; under the influence of g, and &, and that
g1 will remain g; under the influence of f, and d;. These operations are

schematized in Fig. III-6, and the probability that screen ( fyg,d;) will be
transformed into (f; g,d,) is 0.114.

Screen at the moment ¢: fo g1 d,
Parameters derived from the coupling b € #
transformations : B Y A
Screen at the moment t 4 Af: f g: o
Values of probabilities taken from the (MTP) 0.80 06 04
corresponding to the coupling parameters : 0.15 02 08
Compound probabilities : 0475 04 06

Compound probabilities for independent events: 0.475 - 0.4 - 0.6 = 0.114

Fig. IlI-6

We can therefore extend the calculation to the eight screens and construct

the matrix of transition probabilities. It will be square and will have eight
rows and eight columns.
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MTPZ
l A B c D £ F G H
(fogodo) (fogoth) (fog1do) (fog1d1) (F1godo) (figody) (f191d0) (f19:d))

Alfogodo) 0.021 0.357 0.084 0.189 0.165 0.204 0.408 0.096
B(fogodh) 0.084 0.089 0.076 0.126 0.150 0.136 0.072 0.144
C(fog1do) 0.084 0.323 0.021 0.126 0.150 0.036 0.272 0.144
D(fo01d1) 0.336 0.081 0.019 0.084 0135 0.024 0.048 0.216
E(f190d) 0.019 0.063 0.336 017 0.110 0.306 0.102 0.064
F(f1g0d1) 0.076 0.016 0.304 0.114 0.100 0.204 0.018 0.096
G(f19:4d0) 0.076 0.057 0.084 0.114 0.100 0.054 0.068 0.096
H(fig:1d4) 0.304 0.014 0.076 0.076 0.090 0.036 0012 0.144

Does the matrix have a region of stability? Let there be 100 mecha-
nisms Z whose scheme is summarized by (MTPZ). At the moment ¢, d,

mechanisms will have a screen 4, dg a screen B, . . ., d;; a screen H. At the

moment ¢ + At all 100 mechanisms will produce screens according to the
probabilities written in (MTPZ). Thus,

0.021 d, will stay in 4,
0.357 dy will be transformed to A4,
0.084 d, will be transformed to 4,

0.096 d,; will be transformed to 4.

The d, screens at the moment ¢ will become d), screens at the moment
t + At, and this number will be equal to the sum of all the screens that will

be produced by the remaining mechanisms, in accordance with the corre-
sponding probabilities,
Therefore:

dy = 0.021d, + 0.357d, + 0.084d, + -~ + 0.096d,,
dy = 0.084d, + 0.089d, + 0.076d, + --- + 0.144d,,
(er) {dfy = 0.084d, + 0.323d, + 0.021dg + --- + 0.144dy

dj = 0.304d, + 0.014d, + 0.076d; + --- + 0.144d,,.

At the stationary state the frequency of the screens 4, B, C, . . ., H will
remain constant and the eight preceding equations will become:

(d}’l = dA’ dzla = de, dé = dc, T dﬁ{ = dH)
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0 = —0.979d, + 0.357d, + 0.084dy + --- + 0.096d,
0= 0.084d, — 0.911d, + 0.076dg + --- + 0.144d,,
(es) {0 = 0.084d, + 0.323d; — 0.979d; + --- + 0.144d,,

0= 0.304d, + 0.014dy + 0.076d; + .. — 0.856dy
On the other hand

dy +dg +dec + - +dy = 1.

If we replace one of the eight equations by the last, we obtain a system
of eight linear equations with eight unknowns. Solution by the classic
method of determinants gives the values:

() [4=017,d5 =013, dp = 0.13, dp = 011, d; = 0.14, d; = 0.12,
) 1dg = 0.10, dy = 0.10,

which are the probabilities of the screens at the stationary stage. This
method is very laborious, for the chance of error is very high (unless a
calculating machine is available).

The second method (see p. 85), which is more approximate but
adequate, consists in making all 100 mechanisms Z sct out from a single
screen and letting them evolve by themselves. After several more or less
long oscillations, the stationary state, if it exists, will be attained and the
proportions of the screens will remain invariable.

We notice that the system of equations (¢;) may be broken down into:

1. Two vectors ¥" and V which may be represented by two unicolumn
matrices:
dy
dg

N
I

dg
dy

and V =
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2. A linear operator, the matrix of transition probabilities Z. Conse-
quently system (e;) can be summarized in a matrix equation:

() V'=2ZV.

To cause all 100 mechanisms Z to leave screen X and evolve “freely”
means allowing a linear operator:

0.021 0.357 0.084 0.189 0.165 0.204 0.408 0.096
0.084 0.089 0.076 0.126 0.150 0.136 0.072 0.144
0.084 0.323 0.021 0.126 0.150 0.036 0.272 0.144
7 _ 0.336 0.081 0.019 0.084 0.135 0.024 0.048 0.216
0.019 0.063 0.336 0.171 0.110 0.306 0.102 0.064
0.076 0.016 0.304 0.114 0.100 0.204 0.018 0.096
0.076 0.057 0.084¢ 0.114 0.100 0.054 0.068 0.096
0.304 0.014 0.076 0.076 0.090 0.036 0.012 0.144

to perform on the column vector

in a continuous manner at each moment ¢ Since we have broken down
continuity into a discontinuous succession of thickness in time A¢, the equa-
tion (e,) will be applicd to cach stage Az

Thus at the beginning (moment ¢ = 0) the population vector of the
mechanisms will be F°. After the first stage (moment 0 + A#) it will be
V' = ZV°; after the second stage (moment 0 + 2Af), V' = ZV' = Z2]°;
and at the ath stage (moment nAz), V'™ = Z"V°, In applying these data to
the vector

o
I

CO OO0 OO

—
(]
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after the first stage at the after the sccond stage at the

moment Al: moment 2A¢:

9.6 18.941

14.4 10.934

14.4 14.472

, 21.6 . . _|11.146

= z 0 = = z = N

Vi Vi 6.4 Vi = 2V 15.164

9.6 11.954

9.6 8.416

14.4 8.966

after the third stage at the
moment JA¢:

and after the fourth stage at the
moment 4A¢:

16.860 17.111
10.867 11.069
13.118 13.792
" _ . _ {13.143 _— . |12.942
Vi = ZVi =\ 4575 Vii = ZVii = | 14,558
12,257 12,111
8.145 8.238
11.046 10.716
Thus after the fourth stage, an average of 17 out of the 100 mechanisms will
have screen 4, 11 screen B, 14 screen C, .. ., 11 screen H.

If we compare the components of the vector ¥ with the values (e3)
we notice that by the fourth stage we have almost attained the stationary
state. Consequently the mechanism we have built shows a very rapid abate-
ment of the oscillations, and a very great convergence towards final stability,
the goal (stochos). The perturbation Py, which was imposed on the mecha-
nism (MPTZ) when we considered that all the mechanisms (here 100) left
from a single screen, was onc of the strongest we could create.

Let us now calculate the state of the 100 mechanisms Z after the first
stage with the maximal perturbations P applied.
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Ve =

100

O oo OO

o O

100

[l e e Bl w3 o)

O O OO

100

O O O

P,

Vy=

2.1
8.4
8.4
33.6
1.9
7.6
7.6
30.4

8.4
7.6
2.1
1.9
33.6
30.4
8.4
7.6

16.5
15.0
15.0
13.5
11.0
10.0
10.0

9.0

OO O O OO

100

Vi

V5

Il

100

OO O O OO

[ e B an ]

10

[«

OO OO

OO O OO

100

(o)

40.8
7.2
27.2
4.8
10.2
1.8
6.8
1.2

Vi

Pp

35.7
8.9
32.3
8.1
6.3
1.6
5.7
1.4

18.9
12.6
12.6

8.4
17.1
11.4
11.4

7.6

20.4
13.6
3.6
2.4
30.6
20.4
5.4
3.6
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Recapitulation of the Analysis

Having arrived at this stage of the analysis we must take our bearings.
On the level of the screen cells we now have: 1. partial mechanisms of
transformation for frequency, intensity, and density ranges, which are
expressed by the (MTPF), (MTPG), (MTPD); and 2. an interaction
bcthcen the three fundamental variables F, G, D of the screen (transfor-
mations of the coupling (g,)).

On the level of the screens we now have: 1. cight different screens,
4, B., C, D, E, F, G, H; 2. a gencral mechanism, the (MTPZ), which sum-
marizes all the partial mechanisms and their interactions; 3. a final state of
equilibrium (the goal, stochos) of the system Z towards which it tends quite
quickly, the stationary distribution; and 4. a procedure of Hiscquilibrium in
system Z with the help of the perturbations P which are imposed on it.

SYNTHESIS

Mechanism Z which we have just constructed does not imply a real
evolution of the screens. It only establishes a dynamic situation and a
po.tential evolution. The natural process is that provoked by a perturbation
P 1m}?oscd on the system Z and the advancement of this system towards its
goal, its stationary state, once the perturbation has ceased its action. We can
therefore act on this mechanism through the intermediary of a perturbation
such as P, which is stronger or weaker as the case may be. From this it is
onl?r a brief step to imagining a whole series of successive perturbations
wh{ch would force the apparatus Z to be displaced towards exceptional
regions at odds with its behavior at equilibrium.

.In effect the intrinsic value of the organism thus created lies in the fact
.that it must manifest itself, be. The perturbations which apparently change
its StI‘UCtl.]I‘C represent so many negations of this existence. And if we create
a succession of perturbations or negations, on the one hand, and stationary
states or existences on the other, we are only gffirming mechanism Z. In
otbcr words, at first we argue positively by proposing and offering as
f:Vldencc the existence itself; and then we confirm it negatively by opposing
it with perturbatory states.

'The bi-pole of being a thing and not being this thing creates the whole
—the object which we intcnded to construct at the beginning of Chapter
III. A dual dialectics is thus at the basis of this compositional attitude, a dia-
lectics that sets the pace to be followed. The *“ experimental” sciences,are an
c.xpression of this argument on an analogous plane. An experiment estab-
lishes a body of data, a web which it disentangles from the magma of
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objective reality with the help of negations and transformations imposed
on this body. The repetition of thesc dual operations is a fundamental
condition on which the whole universe of knowledge rests. To state some-
thing once is not to define it; the causality is confounded with the repetition
of phenomena considered to be identical.

In conclusion, this dual dialectics with which we are armed in order
to compose within the framework of our mechanism is homothetic with that
of the experimental sciences; and we can extend the comparison to the
dialectics of biological beings or to nothing more than the dialectics of
being. This brings us back to the point of departure.

Thus an entity must be proposed and then a modification imposed on
it. It goes without saying that to propose the entity or its modification in
our particular case of musical composition is to give a human observer the
means to perceive the two propositions and to compare them. Then the
antitheses, entity and modification, are repeated enough times for the entity
to be identified.

What does identification mean in the case of our mechanism Z?

Parenthesis. We have supposed in the course of the analysis that 100
mechanisms Z were present simultaneously, and that we were following the
rules of the game of thesc mechanisms at each moment of an evolution
created by a displacement beyond the stationary zone. We were therefore
comparing the states of 100 mechanisms in a A with the states of these
100 mechanisms in the next £, so that in comparing two successive stages of
the group of 100 simultancous states, we enumerate 100 states twice. Enumera-
tion, that is, insofar as abstract action implies ordered operations, means to
observe the 100 mechanisms one by one, classify them, and test them; then
start again with 100 at the following stage, and finally compare the classes
number by number. And if the observation of each meclianism necessi-
tates a fraction of time x, it would take 200x of time to enumerate 200
mechanisms.

This argument therefore allows us to transpose abstractly a simultan-
city into a lexicographic (temporal) succession withoult subtracting any-
thing, however little, from the definition of transformations cngendered by
scheme Z. Thus to compare two successive stages of the 100 mechanisms Z
comes down to comparing 100 states produced in an interval of time 100x
with 100 others produced in an equal interval of time 100x (sce Fig. IT1-7).

MATERIAL IDENTIFICATION OF MECHANISM Z

Identification of mechanism Z means essentially a comparison between
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all its possibilities of being: perturbed states compared to stationary states,
independent of order.

Identification will be established over equal periods of time 100x
following the diagram:

Phenomenon: Py—» FE— P,— E
Time: 100x  100x 100x 100x

in which Py and P,, represent any perturbations and E is the state of Z at
equilibrium (stationary state).

An alternation of P and E is a protocol in which 100x is the unit of
time (100x = period of the stage), for example:

P, P, EEE P, P, P, E P,

A new mechanism W may be constructed with an (MTP), etc., which
would control the identification and evolution of the composition over more
general time-sets. We shall not pursue the investigation along these lines for
it would lead us too far afield.

A realization which will follow will use a very simple kinematic diagram
of perturbations P and equilibrium £, conditioned on one hand by the
degrees of perturbation P, and on the other by a freely agreed selection.

(es) E—>Py—>Pi—>E—>P;—>Pl—>P}—P, >E-—>P,
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Definition of State £ and of the Perturbations P

From the above, the stationary statec £ will be expressed by a sequence
of screens such as:

Protocol £(Z)

ADFFECBDBCFEFADGCHCCHBEDFEFFECFEHBFFFBC
HDBABADDBADADAHHBGADGAHDADGFBEBGABEBB. - -,

'To carry out this protocol we shall utilize eight urns [4], [B], [C], [D],
[E], [F], [G], [H], each containing balls of eight different colors, whose
proportions are given by the probabilities of (MTPZ). For example, urn
[G] will contain 40.8%, red balls 4, 7.2, orange balls B, 27.2%, yellow balls
C, 4.8%, maroon balls D, 10.2%, green balls E, 1.8%, blue balls F, 6.8%,
white balls G, and 1.2%, black balls 4. The composition of the other seven
urns can be read from (MTPZ) in similar fashion.

We take a yellow ball C at random from urn [G]. We note the result
and return the ball to urn [G]. We take a green ball E at random from urn
[C]. We note the result and return the ball to urn [C]. We take a black ball
H at random from urn [E], note the result, and return the ball to urn [E].
From urn [H] we take . . .. The protocol so far is: GCEH . . ..

Protocol P} (V3) is obviously

4444

Protocol Py (V). Consider an urn [¥] in which the eight colors of balls
are in the following proportions: 2.19, color 4, 8.4%, color B, 8.4%, color
C, 33.6%, color D, 1.9, color E, 7.6%, color F, 7.6%, color G, and 30.4%,
color H. After each draw return the ball to urn Y. A likely protocol might
be the following:

GFFGHDDCBHGGHDDHBBHCDDDCGDDDDFDDHHHBF
FHDBHDHHCHHECHDBHHDHHFHDDGDAFHHHDEDG . - -,

Protocol Py, (V). The same method furnishes us with a protocol of P*:

EEGFGEFEEFADFEBECGEEAEFBFBEADEFAAEEFH
ABFECHFEBEFEEFHFAEBFFFEFEEAFHFBEFEEB- - -,

Protocol P§ (V9):

ceee.- - -,
Protocol P§ (V3):

BBBB- - ..
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Protocol P; (V§):

AAADCCECDAACEBAFGBCAAADGCDDCGCADGAAGEC
CAACAAHAACGCDAACDAABDCCCGACACAACACE. - -,

REALIZATION OF ANALOGIQUE A FOR ORCHESTRA

The instrumental composition follows the preceding exposition point
by point, within the limits of orchestral instruments and conventional
execution and notation. The mechanism which will be used is system Z,
which has already been treated numerically. The choice of variables for the
screens are shown in Figs. 111-8, 9, 10.

4 Z Vd Y4 Ja'g
o) Regions ©= t t + + t } * Frequencies
1 2 3 4 5 6 (semitones)
& 31 D, Db, C, B,y As
X2 N
[7’.' ) Regions o~ } + 4 4 T px 4 » Frequencies
1 4 2 3 4 (semitones)
Dy Db, Cy
(A; = 440 Hz)

Fig. I-8. Frequencies

Nuances of intensity Nuances of intensity

t !
%, }E} %™

T R

2RI p R
~| & S~

=] L
Regions Regions

Fig. lli-9. Intensities
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Fig. IN-10. Densities

This choice gives us the partial screens FG (Fig. I1I-11) and FD
(Fig. I11-12), the partial screens GD being a consequence of FG and FD.
‘The Roman numerals are the liaison agents between all the cells of the
three planes of reference, FG, FD, and GD, so that the different combinations
(/i &3> di) which are perceived theoretically are made possible.

For example, let there be a screen (f;, g1, d,) and the sonic entity Cg
corresponding to frequency region no. 3. From the partial screens above,
this entity will be the arithmetic sum in three dimensions of the grains of
cclls I, 11, and II1, lying on frequency region no. 3. C3 = I 4 II + III.

The dimensions of the cell corresponding to I are: AF = region 3,
AG = region 1, AD = region 2. The dimensions of the cell corresponding
to IT are: AF = region 3, AG = region 2, AD = region 1. The dimensions
of the cell corresponding to III are: AF = region 3, AG = region 2,
AD = region 1. Consequently in this sonic entity the grains will have frc-
quencies included in region 3, intensities included in regions | and 2, and they
will form densities included in regions 1 and 2, with the correspondences

set forth above. sgmeversit

(5

o
5

1 Dnnee o Blaishothek

N
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Fig. 1l1-12. Partial Screens for FD
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The eight principal screens 4, B, C, D, E, F, G, H which derive from
the combinations in Fig. ITI-5 are shown in Fig. I1I-13. The duration At
of each screen is 1.11 sec. (1 half note = 54 MM). Within this duration the
densities of the occupied cells must be realized. The period of time necessary
for the exposition of the protocol of each stage (of the protocol at the station-
ary stage, and of the protocols for the perturbations) is 30A¢, which becomes

15 whole notes (1 whole note = 27 MM).

Screen A /9( °J/o f{O)
#
12
#_ |1 a
Ey Ey Dy Dpy C; B, Ag
Screen C (% o d.)
&
7

3
# Z
£o £1 D, Dp3 C, B, Ag

Ne

Na
8.

Rw

144
¥’ J4

3
b I

E £ D, Db; €, B, As
Fig. I-13

Heo

Screen B (o focl1)

# &
£ 7
3 3
i /4 S|
Eo Ey D3 Db; Cs B, As
Screen D ﬁ‘vé’@‘{/
£
3 3
Ao\ r y/4
9 7
b Va o
Eo & D; Dby C4 By A
Screen F /f/ £o dﬂ
¢# &
9
Fd T
2+3
fad ]WI
£, £y D3 Dps Cy By As
Screen H ﬂnf’/ y)
rd
373
r Z:
9|1
P4 I |
Eo Ey Dy Dby Cq4 By As

NOTE: The numbers written in the celis are the mean densities in grains/sec.
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‘The linkage of the perturbations and the stationary state of (MTPZ) is
given by the following kinematic diagram, which was chosen for this
purpose:

Fig. lil-14. Bars 10515 of Analogique A
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Fig. I1I-14, bars 105-15 of the score of Analogique A, comprises a section
of perturbations P§ and Pj. The change of period occurs at bar 109. The
disposition of the screens is given in Fig. ITI-15. For technical reasons
screens E, F, G, and H have been simplified slightly.

105 109 115
... | BB | BB | BB | BB | AA | GE| CC | AA | CA| AH | ---

End of the period of —>|<— Beginning of return to equi-
perturbation P3 librium (perturbation Pg)

Fig. llI-15

Analogique A replaces elementary sinusoidal sounds by very ordered
clouds of elementary grains, restoring the string timbres. In any case a
realization with classical instruments could not produce screens having a
timbre other than that of strings because of the limits of human playing.
The hypothesis of a sonority of a second order cannot, therefore, be con-
firmed or invalidated under these conditions.

On the other hand, a realization using electromagnetic devices as
mighty as computers and adequate converters would enable one to prove
the existence of a second order sonority with elementary sinusoidal grains
or grains of the Gabor type as a base.

While anticipating some such technique, which has yct to be developed,
we shall demonstrate how more complex screens are realizable with the
resources of an ordinary electroacoustic studio equipped with several mag-
netic tapes or synchronous recorders, filters, and sine-wave generators.

ELECTROMAGNETIC MUSIC (sinusoidal sounds)—EXAMPLE
TAKEN FROM ANALOGIQUE B

We choose: 1. Two groups of frequency regions f,, f1, as in Fig. I11-16.
The protocols of these two groups will be such that they will obey the
preceding (MTP)’s:

VS A Y| S A

£ 102 08 fo | 0.85 04

@ s los 02 ® rlois os

in which («) and (B) are the parameters.
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2. Two groups of intensity regions g, g,, as in Fig. III-17. The
protocols of this group will again obey the same (MTP)’s with their
parameters (y) and (¢):

Jr_ o & { &o &1
) & |02 038 @ g | 0.85 04
€
g |08 0.2 g | 015 0.6
G G
4 ©
o '8\
1- -
-2 2
&y m 5]
& W "
5 & o T°
N .
E E 1 Q
-~ |§ g‘ 2
c g 8
o e S
& 3 £

<N Regions
A

~—r

—

)

S’

Fig. 17
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3. Two groups of density regions dy, 4y, as in Fig. II1-18. The protocols

of this group will have the same (MTP)’s with parameters (A) and () :

V)d 4 V| do 4y
d, | 02 0.8 d, | 0.85 04

4, | 08 0.2 (k) 4 | 015 06

4
gV
e

o ]
& o
o \e
& o &)
(9@\ & 4 (_»)(b\o e@
D o 4 .
Q. .oo 4 &
& N )
& & S
> <& & &F
S
o &
N
Fig. 111-18

This choice gives us the principal screens 4, B, C, D, £, F, G, H, as
shown in Fig. IT1I-19. The duration A¢ of each screen is about 0.5 sec.
The period of exposition of a perturbation or of a stationary state is about
15 sec.

We shall choose the same protacol of exchanges between perturba-
tions and stationary states of (MTPZ), that of Analogique A.

e E—->P° 5P, ~E P, >PS>P > P, > FE P
5 A A c c B B A

The screens of Analogique B calculated up to now constitute a special
choice. Later in the course of this composition other screens will be used
more particularly, but they will always obey the same rules of coupling
and the same (MTPZ). In fact, if we consider the combinations of regions
of the variable f; of a screen, we notice that without tampering with the
name of the variable f; its structure may be changed.
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Thus for f, we may have the regions shown in Fig. III-20. The Roman
numerals establish the liaison with the regions of the other two variables.
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Fig. 111-20
But we could have chosen another combination f,, as in Fig. III-21.
G434, T, 1, X, N8RS
— — s — 0
Hz 42 8y 118 255 222 1o afs0 sy wbeo  F

i 2 3 & 5 6 7 9 do y 11 3 ¥ A5 I

Regions 8
Fig. lll-21 [j{’/

This prompts the question: ““Given n divisions AF (regions on F) what
is the total number of possible combinations of AF regions?

Ist case. None of the n areas is used. The screen corresponding to this
combination is silent. The number of these combinations will be

n!
XL (=1).
2nd case. Onc of the n areas is occupied. The number of combinations
will be :
n!
3rd case. Two of the n areas are occupied. The number of combinations
will be
n!
mth case. m of the n areas are occupied. The number of combinations
will be
n!

FIG. 1I1-19: The Arabic numbers above the Roman numerals in the cells indicate the density in
logarithmic units. Thus celt (10,1) will have a density of [(log 1.3/log 3) + 5] terts, which is 315.9
grains/sec on the average.
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nth case. n of the areas are occupied. The number of the combinations
will be
n!
(n —n)ln!
The total numbcr of combinations will be equal to the sum of all the
preceding:

n! n! n!

w0l T T moym T

n! n!
IR

=2n

The same argument operates for the other two variables of the screen.
Thus for the intensity, if £ is the number of available regions AG, the total
number of variables g, will be 2*; and for the density, if  is the number of
available regions AD, the total number of variables 4; will be 2.

Consequently the total number of possible screens will be

T = 9n+k+n

In the case of Analogigue B we could obtain 2016+¢+7 — 927
134,217,728 different screens.

Important comment. At the start of this chapter we would have accepted
the richness of a musical evolution, an evolution based on the method of
stochastic protocols of the coupled screen variables, as a function of the
transformations of the entropies of these variables. From the preceding
calculation, we now see that without modifying the entropies of the (MTPF),
(MTPG), and (MTPD) we may obtain a supplementary subsidiary evo-
lution by utilizing the different combinations of regions (topographic
criterion).

Thus in Analogiqgue B the (MTPF), (MTPG), and (MTPD) will not
vary. On the contrary, in time the f;, g, 4, will have new structures, corol-
laries of the changing combinations of their regions.

Complementary Conclusions about Screens and Their
Transformations

1. Rule. To form a screen one may choose any combination of regions
on F, G, and D, the f}, g,, d,.

2. Fundamental Criterion. Each region of one of the variables F, G, D
must be associable with a region corresponding to the other two variables
in all the chosen couplings. (This is accomplished by the Roman numerals.)
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3. The preceding association is arbitrary (free choice) for two pairs,
but obligatory for the third pair, a consequence of the first two, For example,
the associations of the Roman numerals of f; with those of g; and with those
of d; are both free; the association of the Roman numerals of g; with those
of dy, is obligatory, because of the first two associations.

4, The components f;, g;, d, of the screens generally have stochastic
protocols which correspond, stage by stage.

5. The (MTP) of these protocols will, in general, be coupled with the
help of parameters.

6. If ¥, G, D are the “variations” (number of components f, g, d,
respectively) the 'maximum number of couplings between the components
and the parameters of (MTPT), (MTPG), (MTPD) is the sum of the
products GD + FG + FD. In an example from Analogique A or B:

F =2{(fyand f;) the parameters of the (MTP)’s are: «, 8
G =2(gandg) Vs €
D =2 (d, and d;) Ap

and there are 12 couplings:

lfo Si fo i 8 &1 8 & do di dy dy
y € A p B oo A op oa B oy e

Indeed, FG + FD + GD =4 + 4 + 4 = 12,

7. If F, G, D are the “variations” (number of components f,, g;, d,
respectively), the number of possible screens 7" is the product FGD. For
example, if F =2 (f, and f;), G = 2 (g, and g,), D = 2 (d, and d,),
T=2x2x2=28.

8. The protocol of the screens is stochastic (in the broad sense) and can
be summarized when the chain is ergodic (tending to regularity), by an
(MTPZ). This matrix will have FGD rows and FGD columns.

SPATIAL PROJECTION

No mention at all has been made in this chapter of the spatialization
of sound. The subject was confined to the fundamental concept of a sonic
complex and of its evolution in itself. However nothing would prevent
broadening of the technique set out in this chapter and “leaping” into
space. Wc can, for example, imagine protocols of screcns attached to a
particular point in space, with transition probabilities, space-sound coup-
lings, etc. The method is ready and the general application is possible,
along with the reciprocal enrichments it can create.




Chapter IV

Musical Strategy—Strategy, Linear
Programming, and Musical
Composition

Before passing to the problem of the mechanization of stochastic music by
the use of computers, we shall take a stroll in a more enjoyable realm, that
of games, their theory, and application in musical composition.

AUTONOMOUS MUSIC

The musical composer establishes a scheme or pattern which the con-
ductor and the instrumentalists are called upon to follow more or less rigor-
ously. From the final details—attacks, notes, intensities, timbres, and styles of
performance—to the form of the whole work, virtually everything is written
into the score. And even in the case where the composer leaves a margin of
improvisation to the conductor, the instrumentalist, the machine, or to all
three together, the unfolding of the sonic discourse follows an open line
without logps. The score-model which is presented to them once and for
all does not give rise to any conflict other than that between a “good ™ per-
formance in the technical sense, and its “musical expression” as desired or
suggested by the writer of the score. This opposition between the sonic
realization and the symbolic schema which plots its course might be called
internal conflict; and the role of the conductors, instrumentalists, and their
machines is to control the output by feedback and comparison with the
input signals, a role analogous to that of scrvo-mechanisms that reproduce
profiles by such mcans as grinding machines. In general we can state that
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the nature of the technical oppositions (instrumental and conductorial) or
even those relating to the aesthetic logic of the musical discourse, is internal
to the works written until now. The tensions are shut up in the score even
when more or less defined stochastic processes are utilized. This traditional
class of internal conflict might be qualificd as aulonomous musie.

Fig. Iv-1

Canductar

. Orchestra 3
. Score

. Audience

FNFAN NI

HETERONOMOUS MUSIC

It would be interesting and probably very fruitful to imagine another
class of musical discourse, which would introduce a concept ol external
conflict between, for instance, two opposing orchestras or instrumentalists,
One party’s move would influence and condition that of the other. The sonic
discourse would then be identified as a very strict, although often stochastic,
succession of sets of acts of sonic opposition. These acts would derive (rom
both the will of the two (or more) conductors as well as from the will of the
composer, all in a higher dialcctical harmony.
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Let us imagine a competitive situation between two orchestras, each
having one conductor. Each of the conductors dirccts sonic operations
against the operations of the other. Each operation represents a move or a
tactic and the encounter between two moves has a numcrical andfor a
qualitative value which benefits one and harms the other. This value is
written in a grid or matrix at the intersection of the row corresponding to
move i of conductor 4 and the column corresponding to move j of conductor
B, This is the partial score i, representing the payment onc conductor gives
the other. This game, a duel, is defined as a fwo-person zero-sum game.

The external conflict, or heteronomy, can take all sorts of forms, but can
always be summarized by a matrix of payments ij, conforming to the mathe-
matical theory of games. The theory demonstrates that therc is an optimum
way of playing for A, which, in the long run, guarante;:s him a minimum
advantage or gain over B whatever B might do; and that conversely there
exists for B an optimum way of playing, which guarantees that his disad-
vantage or loss under 4 whatever A might do will not exceed a certain
maximum. 4’s minimum gain and B’s maximum loss coincide in absolute
value; this is called the game value.

The introduction of an external conflict or keteronomy into music is not
entirely without precedent. In certain traditional folk music in Europe and
other continents there exist competitive forms of music in which two instru-
mentalists strive to confound one another. One takes the initiative and
attempts either rhythmically or melodically to uncouple their tandem
arrangement, all the while remaining within the musical contcxt of the
tradition which permits this special kind of improvisation. This contra-
dictory virtuosity is particularly prevalent among the Indians, especially
among tabla and sarod (or sitar) players.

A musical heteronomy based on modern science is thus legitimate even to
the most conformist eye. But the problem is not the historical justification of
a new adventure; quite the contrary, it is the enrichment and the leap
forward that count. Just as stochastic processes brought a beautiful gen-
eralization to the complexity of linear polyphony and the dcterministic
logic of musical discourse, and at the same time disclosed an unsuspected
opening on a totally asymmetric acsthetic form hitherto qualified as non-
sense; in the same way heteronomy introduces into stochastic music a comple-
ment of dialectical structure.

We could equally well imagine setting up conflicts between two or more
instrumentalists, between one player and what we agree to call natural
environment, or between an orchestra or several orchestras and the public.
But the fundamental characteristic of this situation is that there exists a gain
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and a loss, a victory and a defeat, which may be expressed by a moral or
material reward such as a prize, medal, or cup for one side, and by a penalty
for the other.

A degenerate game is one in which the parties play arbitrarily following
a more or less improvised route, without any conditioning for conflict, and
therefore without any new compositional argument. This is a false game.

A gambling device with sound or lights would have a trivial sense if it
were made in a gratuitous way, like the usual slot machines and juke boxes,
that is, without a new competitive inner organization inspired by any
heteronomy. A sharp manufacturer might cash in on this idea and produce
new sound and light devices based on heteronomic principles. A less trivial
use would be an educational apparatus which would require children (or
adults) to react to sonic or luminous combinations. The aesthetic interest,
and hence the rules of the game and the payments, would be determined by
the players themselves by means of special input signals.

In short the fundamental interest set forth above lies in the mutual
conditioning of the two parties, a conditioning which respects the greater
diversity of the musical discourse and a certain liberty for the players, but
which involves a strong influence by a single composer. This point of view
may be generalized with the introduction of a spatial factor in music and
with the extension of the games to the art of light.

In the field of calculation the problem of games is rapidly becoming
difficult, and not all games have received adequate mathematical clar-
ification, for example, games for several players. We shall therefore con-
fine ourselves to a relatively simple case, that of the two-person zero-sum
game.

ANALYSIS OF DUEL

This work for two conductors and two orchestras was composed in
1958-59. It appeals to relatively simple concepts: sonic constructions putinto
mutual correspondence by the will of the conductors, who are themselves
conditioned by the composer. The following events can occur:

Event I: A cluster of sonic grains such as pizzicati, blows with the
wooden part of the bow, and very brief arco sounds distributed stochastic-
ally.

Event 1I: Parallel sustained strings with fluctuations.

Event III: Networks of intertwined string glissandi.

Eyvent IV: Stochastic percussion sounds,
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Euzent V: Stochastic wind instrument sounds.
Event VI Silence.

Each of these events is written in the score in a very precise manner and
with sufficient length, so that at any moment, following his instantaneous
choice, the conductor is able io cut out a slice without destroying the iden-
tity of the event. We therefore imply an overall homogeneity in the writing
of each event, at the same time maintaining local fluctuations.

We can make up a list of couples of simultaneous events x, y issuing
from the two orchestras X and Y, with our subjective evaluations. We can
also write this list in the form of a qualitative matrix (M, ).

Table of Evaluations

Couple Evaluation
(*,9) = (¥, %)

(L1 passable (%)
(L II) = (I, 1)  good (2)
(I, ITI) = (III, I) good* (g*)
(I, IV) = (IV,I) passable* (p*)

(I, V) = (V,I)  verygood (g*")
(I1, IT) passable ()
(IL, III) = (IIL, II) passable  (p)
(IL, IV) = (IV, 11) good (g)
*)

(II, V) = (V,II)  passable* (p
(111, I1I) passable  (p

(I11, IV) = (IV, III) good*

(g

(111, V) = (V, 111} good (g)
IV, IV) passable  (p)
(IV,V) = (V,1V)  good (2)
(V,V) passable  (p)
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Conductor Y

1 I I IV Minimum

per row

I [p |g |&" |p" lg*%| #

II g (2 ¢ |& |p* | ¢

Conductor X IIT |g* |p b gt g b (M)
IV [p* g g% |2 |¢g J4
Vo lg*t et g (g P ?

Maximum per g** g gt gv gt*
column

In (M,) the largest minimum per row and the smallest maximum per
column do not coincide (g # p), and consequently the game has no saddle
point and no pure strategy. The introduction of the move of silence (VI)
modifies (M), and matrix (M) results.

Conductor ¥

1 I m 1v v VI

I \p |eg |g*" g |g" |# b

It g |p | g |7 |p | #

HI Jg**1p |p (&5 &8 P b
Conductor X (M)

IV (gt lg et |p |g |p | 2

V olg* [pt e g (¢ |p | 2
?

VI p |p |2 |P
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This time the game has several saddle points. All tactics are possible,
but a closer study shows that the conflict is still too slack: Conductor Y is
interested in playing tactic VI only, whereas conductor X can choose freely
among I, IT, IIT, IV, and V. It must not be forgotten that the rules of this
matrix were established for the benefit of conductor X and that the game in
this form is not fair. Moreover the rules are too vague. In order to pursue
our study we shall attempt to specify the qualitative values by ordering them
on an axis and making them correspond to a rough numerical scale:
AN A AN A

{ | 1 ] |
T T

|
1 T T T
0 1 2 3 4 5

If, in addition, we modify the value of the couple (VI, VI) the matrix
becomes (Mj).

Conductor ¥
I II III11IV V VI

I [1]3(514|4|1} 1

Ir (3j1;1(3|12(1] 1

IIT 5|1 |1(4|3]1] 1
Conductor X (M)

IV 141341131 1

V [4]2]3|3|1;1{ 1

VI {1]1]1§1]1(3] 1

5 3 5 4 4 3

(M;) has no saddle point and no recessive rows or columns. To find
the solution we apply an approximation method, which lends itself easily to
computer treatment but modifies the relative equilibrium of the entries as
little as possible. The purpose of this method is to find a mixed strategy;
that is to say, a weighted multiplicity of tactics of which none may be zero.
It is not possible to givce all the calculations here [21], but the matrix that
results from this method is (M,), with the two unique strategies for X and
for ¥ written in the margin of the matrix. Conductor X must therefore play
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Conductor Y
I II 11 IV V VI

I |2(3|4) 213] 2] 18

II |3(2(2) 313 2| 4

I |42 (1| 43¢ 1 5
Conductor X (M)
IV (2|44 2|2 2 5

V 131213} 312 2] 11

VI (2]2]1} 212 4] 15

9 6 8 12 9 14 58 Total

tactics I, IT, III, IV, V, VI in proportions 18/58, 4/58, 5/58, 5/58, 11/58,
15/58, respectively; while conductor ¥ plays these six tactics in the propor-
tions 9/58, 6/58, 8/58, 12/58, 9/58, 14/58, respectively. The game value from
this method is about 2.5 in favor of conductor X (game with zero-sum but
still not fair).

We noticc immediately that the matrix is no longer symmetrical about
its diagonal, which means that the tactic couples are not commutative,
e.g., (IV, Il = 4) # (II, IV = 3). There is an orientation derived from
the adjustment of the calculation which is, in fact, an enrichment of the
game. _

The following stage is the experimental control of the matrix.

Two methods are possible:

I. Simulate the game, i.e., mentally substitute oneself for the two
conductors, X and ¥, by following the matrix entries stage by stage, without
memory and without bluff, in order to test the least interesting case.

stages: | 1]2]3]4]5[6]7[8]o]10]11]12]13]14]15]16]17] 18] 19]20]21

Cond. X|I| III | T |VI I l m | vi | 1v ‘ 11 l ur | v

Gond. ¥| v |mr|vifm| 1t | vi|m | v | oo | om|w

scores: |2]4|1[4]2]a1]a]2[« [t [«| 1 [4]2]a]2]2]1]4]2]
Game value: 52/20 = 2.6 points in X’’s favor.
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2. Choose tactics at random, but with frequencies proportional to the
marginal numbers in (M,).

stages: |1]2]|3]4]5]6]7[8]0]10]11]12]13]14]15]16]17]18|19]20] 21
Cond. X|1| vi|vi| 1| 1 ‘ II v | v | 1 l v v
Cond. Y| vi|vi|v|m| 1| v |vi| v ]| vi]um

scores: [2]4]4]4]2]3]2]4|2] 3]s ]3] 2|2 ]2]3]2]3]2]2]3

Game value: 57/21 = 2.7 points in X’s favor.

We now establish that the experimental game values are very close to
the value calculated by approximation. The sonic processes derived from
the two experiments are, moreover, satisfactory.

We may now apply a rigorous method for the definition of the optimum
strategies for X and ¥ and the value of the game by using methods of linear
programming, in particular the simplex method [22]. This method is based
on two theses:

1. The [undamental theorem of game theory (the “ minimax theorem ")
is that the minimum score (maximin) corresponding to X’s optimum
strategy is always equal to the maximum score (minimax) corresponding to
Y’s optimum strategy.

2. The calculation of the maximin or minimax value, just as the
probabilities of the optimumstrategies of a two-person zero-sum game, comes
down to the resolution of a pair of dual problems of linear programming
(dual simplex method).

Here we shall simply state the system of linear equations for the player
of the minimum, Y. Lety,, ¥, s, ¥4, ¥s, ¥¢ be the probabilitics corresponding
to tactics I, II, 111, IV, V, VI of ¥; y+, ys, Yes ¥10s Y11, Y12 bE the “slack”’
variables; and » be the game value which must be minimized. We then have
the following liaisons:

Yi+ya+ys+ystys +ys =1

To arrive at a unique strategy, the calculation leads to the modification

2y, + 3y; + 4y
3y1 + 2y, + 2y5
2y; + 4y, + 4y,
3y, + 2y, + 3ys
29y + 2y, + ys
4y, + 2y + y3

+ 2y, + ys + 2y
+ 2y, + 3ys + 296
+ 2y, + 2ys + 2y
+ 3Y4 + 25 + 2ys
+ 2y, + 2ys + 4ye
+ 4y, + 3ys + ye

+ Yy =

+ Ys
+ Yo

+ Y10 =

+ ¥
+ Y19

I
<

i
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of the score (ITI, IV = 4) into (IIL, IV = 5). The solution gives the follow-
ing optimum strategies:

For X For Y
Tactics Probabilities Tactics Probabilities

| 2/17 | 5/17

11 6/17 11 2/17
111 0 111 2/17
v 3/17 v 1/17
\Y 2/17 A" 2/17
VI 4/17 VI 5/17

and for the game value, v = 42/17 ~ 2.47. We have established that X
must completely abandon tactic III (probability of III = 0), and this we
must avoid.

Modifying score (II, IV = 3) to (II, IV = 2), we obtain the following
optimum strategies:

For X For Y
Tactics Probabilities Tactics Probabilities

1 14/56 I 19/56

1I 6/56 11 7/56
111 6/56 111 6/56
v 6/56 v 1/56
A" 8/56 Vv 7/56
VI 16/56 VI 16/56

and for the game value, v = 138/56 ~ 2.47 points,

Although the scores have been modified a little, the game value has,
in fact, not moved. But on the other hand the optimum strategies have
varied widely. A rigorous calculation is therefore necessary, and the final
matrix accompanied by its calculated strategies is (Ms).
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Conductor Y
I IIIIIIV V VI

I { 2|3 (4]2(3]| 2| 14

II 31212213 2] 6

II1 4121115[3]| 1 6
Conductor X (M)

v 2(414(212| 2] 6

V | 312]3]3|2} 2] 8

VI 212|112(2) 4| 16

19 7 6 1 7 16 56 Total

By applying the elementary matrix operations to the rows and columns
in such a way as to make the game fair (game value = 0), we obtain the
equivalent matrix (Mg) with a zero game value.

Conductor ¥
I II I  1v A% VI

I {—13f 15| 48} -13| 15| -13| 4%
11 15 —13| —13] —-13| 15| —-13| &
111 431 —13¢ —41 71 15} —-41| &
Conductor X (M)
IV | 13| 43| 43| -13| -13| 13| -&
v 15] -18) 15| 15| —13] —13| -&
VI |13} —13| —41| —13}| ~13| 43| 4i¢
8 1. & 1 1 16
s6 36 36 $6 36 56

As this matrix is difficult to read, it is simplified by dividing all the
scores by + 13. It then becomes (M) with a game value v = —0.07, which
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Conductor ¥
1 I 1mxr v v VI

I

I (-1 +1]| +3| =1]| +1}| -1} 1%

tn|
o

I | +1] =1 ~1} =1} +1| 1] &

I | +3| =1 | =3 | +5| +1| =3| <%
Conductor X (M)
IV | -1 43| +3| 1| 1| 1| &

P

Vol | =1 1| +1 | =1 =1] +

(=

VI | 1] 1| =3} 1| 1| +3]| 1&
19 e _6_ 1 1 16
56 56 56 56 56 56

means that at the end of the game, at the final score, conductor Y should
give 0.07m points to conductor X, where m is the total number of moves.

If we convert the numerical matrix (M;) into a qualitative matrix
according to the correspondence:

-1 -3 ﬁl +3 +5
l 11 |
¥4 pt g gt g

we obtain (My), which is not very different from (M), except for the silence
couple, VI, VI, which is the opposite of the first value. The calculation is
now finished.

? pt gttt b g

AR/ p p A

=)
+
+
s
>
9+
+
+
)
+
> > > > >

pr s AN AN
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Mathematical manipulation has brought about a refinement of the
duel and the emergence of a paradox: the couple VI, VI, characterizing
total silence. Silence is to be avoided, but to do this it is necessary to aug-
ment its potentiality.

It is impossible to describe in these pages the fundamental role of the
mathematical treatment of this problem, or the subtle arguments we are
forced to make on the way. We must be vigilant at every moment and over
every part of the matrix area. It is an instance of the kind of work where
detail is dominated by the whole, and the whole is dominated by detail. It
was to show the value of this intellectual labor that we judged it useful to
set out the processes of calculation.

The conductors direct with their backs to each other, using finger or
light signals that are invisible to the opposing orchestra. If the conductors
use illuminated signals operated by buttons, the successive partial scores
can be announced automatically on lighted panels in the hall, the way the
score is displayed at football games. If the conductors just usc their fingers,
then a referee can count the points and put up the partial scores manually
so they are visible in the hall. At the end of a certain number of exchanges
or minutes, as agreed upon by the conductors, one of the two is declared
the winner and is awarded a prize.

Now that the principle has been set out, we can envisage the interven-
tion of the public, who would be invited to evaluate the pairs of tactics of
conductors X and Y and vote immediately on the make-up of the game
matrix. The music would then be the result of thc conditioning of the
composer who established the musical score, conductors X and ¥, and the
public who construct the matrix of points.

RULES OF THE WORK STRATEGIE

‘The two-headed flow chart of Duel is shown in Fig. IV-2. It is equally
valid for Stratégie, composed in 1962. The two orchestras are placed on
either side of the stage, the conductors back-to-back (Fig. IV-3), or on
platforms on opposite sides of the auditorium. They may choose and play
one of six sonic constructions, numbered in the score from I to VI. We call
them tactics and they are of stochastic structure. They were calculated on
the IBM-7090 in Paris. In addition, each conductor can make his orchestra
play simultaneous combinations of two or three of these fundamental tactics.
The six fundamental tactics are:
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I. Winds
I1. Percussion
II1. String sound-box struck with the hand
IV. String pointillistic effects
V. String glissandi
VI. Sustained string harmonics.

The following are 13 compatible and simultaneous combinations of these
tactics:

T&II =VII IT&III =XIT T&II&III = XVI
T&II =VIII II&IV = XIII I&II&IV = XVII
I1&IV =1X &V =XIV I&II&V = XVIII
I&V =X IH&VI =XV  TI&II&VI = XIX
I1&VI =XI

Il

Thus there exist in all 19 tactics which each conductor can make his orches-
tra play, 361 (19 x 19) possible pairs that may be played simultaneously.

The Game

1. Choosing tactics. How will the conductors choose which tactics to
play?

a. A first solution consists of arbitrary choice. For example, conductor
X chooses tactic I. Conductor ¥ may then choose any one of the 19 tactics
including I. Conductor X, acting on ¥’s choice, then chooses a new tactic
(see Rule 7 below). X’s second choice is a function of both his taste and ¥’s
choice. In his turn, conductor ¥, acting on X’s choice and his own taste,
either chooses a new tactic or keeps on with the old onc, and plays it for a
certain optional length of time. And so on. We thus obtain a continuous
succession of couplings of the 19 structures.

b. The conductors draw lots, choosing a new tactic by taking one card
from a pack of 19; or they might make a drawing from an urn containing
balls numbered from I to XIX in different proportions. Thesc operations can
be carried out before the performance and the results of the successive draws
set down in the form of a sequential plan which each of the conductors will
have before him during the performance.

¢. The conductors get together in advance and choose a fixed succession
which they will direct.

d. Both orchestras are directed by a single conductor who establishes
the succession of tactics according to one of the above mecthods and sets
them down on a master plan, which he will follow during the performance.
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forming device)
7. Orchestra B (human or electronic trans-

forming device)

8. Audience

decision)
3. Conductor B (device for comparison and

1. Game matrix (dynamostat, dual regulator)
decision)
4. Score A (symbolic excitation)

2. Conductor A (device for comparison and
6. Orchestra A (human or electronic trans-

5. Score B (symbolic excitation)
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e. Actually all these ways constitute what one may call “degenerate
competilive situations. The only worthwhile setup, which adds something
new in the case of more than onc orchestra, is one that introduces dual
conflict between the conductors. In this case the pairs of tactics are per-
formed simultancously without interruption from one choice to the next
(scc Fig. IV—4), and the decisions made by the conductors are conditioned
by the winnings or losses contained in the game matrix.

GAINS 78 2 48 36
or X -
TACTICS /X X Vil Xiv XV 174
GAINS 52 40 48 28 4“5
orRY
TACTICS v/ X /X Xy Y
Fig. IV-4

2. Limiting the game. The game may be limited in several ways: a. The
conductors agree to play to a certain number of points, and the first to reach
it is the winner. 4. The conductors agree in advance to play z cngagements.
The one with more points at the end of the nth engagement is the winner.
¢. The conductors decide on the duration for the game, m seconds (or
minutes), for instance. The one with more points at the end of the mth
second (or minute) is the winner.

3. Awarding points.

a. One method is to have one or two referees counting the points in
two columns, one for conductor X and one for conductor ¥, both in positive
numbers. The referees stop the game after the agreed limit and announce
the result to the public.

6. Another method has no referees, but uses an automatic system that
consists of an individual board for cach conductor. The board has the
n x ncells of the game matrix used. Each cell has the corresponding partial
score and a push button. Suppose that the game matrix is the large one of
19 % 19 cells. If conductor X chooses tactic XV against ¥’s IV, he presses
the button at the intersection of row XV and column IV, Corresponding to
this intersection is the cell containing the partial score of 28 points for X and
the button that X must push. Each button is connected to a small adding
machine which totals up the results on an electric panel so that they can be
seen by the public as the game proceeds, just like the panels in the football
stadium, but on a smaller scale.

4. Assigning of rows or columns is made by the conductors tossing a coin.

5. Deciding who starts the game is determined by a second toss.
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6. Reading the tactics. The orchestras perform the tactics cyclically on a
closed loop. Thus the cessation of a tacticis made instantaneously at a bar
line, at the discretion of the conductor. The subsequent eventual resumption
of this tactic can bc made either by: a. reckoning from thc bar line defined
above, or . reckoning from a bar line identified by a particular letter. The
conductor will usually indicate the letter he wishes by displaying a large
card to the orchestra. If he has a pile of cards bearing the letters 4 through
U, he has available 22 different points of entry for each one of the tactics.
In the seore the tactics have a duration of at least two minutes. When the
conductor reaches the end of a tactic he starts again at the beginning, hence
the “da capo” written on the score.

7. Duration of the engagements. The duration of each engagement is
optional. Itis a good idea, however, to fix a lower limit of about 10 seconds;
i.e., if a conductor engages in a tactic he must keep it up for at least 10
seconds. This limit may vary from concert to concert. It constitutes a wish
on the part of the composer rather than an obligation, and the conductors
have the right to decide the lower limit of duration for each engagement
before the game. There is no upper limit, for the game itself conditions
whether to maintain or to change the tactic.

8. Result of the contest. To demonstrate the dual structure of this compo-
sition and to honor the conductor who more faithfully followed the con-
ditions imposed by the composer in the game matrix, at the end of the
combat one might a. proclaim a victor, or 4. award a prize, bouquet of
flowers, cup, or medal, whatever the concert impresario might care to
donate.

9. Choice of matrix. In Stratégie there exist three matrices. The large one,
19 rows x 19 columns (Fig. IV~5), contains all the partial scores for pairs
of the fundamental tactics I to VI and their combinations. The two smaller
matrices, 3 x 3, also contain these but in the following manner: Row 1 and
column 1 contain the fundamental tactics from I to VI without discrimina-
tion; row 2 and column 2 contain the two-by-two compatible combinations
of the fundamental tactics; and row 3 and column 3 contain the three-by-
three compatible combinations of these tactics. The choice between the
large 19 x 19 matrix and one of the 3 x 3 matrices depends on the ease
with which the conductors can read a matrix. The cells with positive scores
mean a gain for conductor X and automatically a symmetrical loss for
conductor Y. Conversely, the cells with negative scores mean a loss for
conductor X and automatically a symmectrical gain for conductor Y.

The two simpler, 3 x 3 matrices with different strategies are shown in
Fig. IV-6.
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Fig. IV-5. Strategy

Two-person Game. Value of the Game = 0.

~A Woodwinds

® Normal percussion

F~ Strings striking sound-boxes
s> Strings pizzicato

4F Strings glissando

® Combinations
of two and three
different tactics

Kotk

= Strings sustained
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Two-person Zero-sum Game.
Value of the Game = 0.
This game is fair for both

Two-person Zero-sum Game.
Value of the Game = 1/11.
This game is not fair for Y.

conductors.
¥ Wooowinos ; ': Combinations : s H Combinations
o Normal percussion v - of two dis- v of three dis-
H Strings striking sound-boxes :’ﬁ tinct tactics Y ®il  tinct tactics
s Strings pizzicato oH
#¥ Strings glissando :ik
il Strings sustained L3l

Simplification of the 19 x 19 Matrix
To make first performances easier, the conductors might use an equiva-
lent3 x 3 matrix derived from the 19 x 19 matrix in the following manner:
Let there be a fragment of the matrix containing row tactics

r+1,..., 7+ mand column tactics s + 1, ..., s + n with the respective
probabilities g, 43, « o, Gram and kgy 1y« o Kgine
ks+1 ka+/ k.+n
fre1 Greig+1 ryv,a4g Gra154n
Gret Gregs+1 Grriaty Crigs4n
Irem Grems+1 "7 Grima+s Gy emstn
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This fragment can be replaced by the single score

A = Zf.?é"ii=" (ar+i.s+f)<qr+i)(ks+!)
rrmeE 28 Qrer 20 Ky

and by the probabilitics

Q = 271'+l
i=1
and
K= kyy
i=1

Operating in this way with the 19 x 19 matrix we obtain the following
matrix (the tactics will be the same as in the matrices in Fig. IV-6):

7704 | 8296 592 95
25 x 25 49 x 25 25 x 26

14522 17610 3088 45
75 x 45 49 x 45| 45 x 26

6818 9314 2496 30
25 x 30 | 49 x 30 30 x 26

25 49 26

2465 | —1354 1821 25

or —2581 1597 | —528| 45

1818 | —1267 640 | 30

25 49 26

Chapter V

Free Stochastic Music by Computer

After this interlude, we return to the treatment of composition by machines.

The theory put forward by Achorripsis had to wait four years before
being realized mechanically. This realization occurred thanks to M.
Frangois Génuys of IBM-France and to M. Jacques Barraud of the Régie
Autonome des Transports Parisiens.

THE PARADOX: MUSIC AND COMPUTERS
A STOCHASTIC WORK EXECUTED BY THE IBM-70Q0

The general public has a number of different reactions when faced by
the alliance of the machinc with artistic creation, They fall into three
categories:

“It is impossible to obtain a work of art, since by definition it is a handi-
craft and requires moment-by-moment ““creation” for each detail and for
the entire structure, while a machine is an inert thing and cannot invent.”

“Yes, one may play games with a machine or use it for speculative
purposes, but the result will not be “finished”: it will represent only an
experiment—interesting, perhaps, but no more.”

The enthusiasts who at the outset accept without flinching the
whole frantic brouhaha of science fiction. “The moon? Well, yes, it’s
within our reach. Prolonged life will also be with us tomorrow—why not a
creative machine ?” These people arc among the credulous, who, in their
idiosyncratic optimism, have replaced the myths of Icarus and the fairies,
which have decayed, by the scientific civilization of the twenticth century,
and science partly agrees with them. In reality, science is neither all
paradox nor all animism, for it progresses in limited stages that arc not
foreseeable at too great a distance.
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There exists in all the arts what we may call rationalism in the etymo-
logical sense: the scarch for proportion. The artist has always called upon 1t
out of necessity. The rules of construction have varied widely over the cen-
turies, but there have always been rules in cvery cpoch because of the
necessity of making onesclfunderstood. Those who believe the first statement
above are the first to refuse to apply the qualification artistic to a product
which they do not understand at all.

Thus the musical scale is a convention which circumscribes the area of’
potentiality and permits construction within those limits in its own particu-
lar symmetry. The rules of Christian hymnography, of harmony, and of
counterpoint in the various ages have allowed artists to construct and to
make themselves understood by those who adopted the same constraints—
through traditions, through collective taste or imitation, or through sym-
pathetic resonance. The rules of serialism, for instance, those that banned
the traditional octave doublings of tonality, imposed constraints which were
partly new but none the less real,

Now everything that is rule or repeated constraint is part of the mental
machine, A little “imaginary machine,” Philippot would have said—a
choice, a set of decisions. A musical work can be analyzed as a multitude
of mental machines. A melodic theme in a symphony is a mold, a mental
machine, in the same way as its structure is. These mental machines are
something very restrictive and deterministic, and sometimes very vague and
indecisive. In the last few years we have seen that this idea of mechanism is
really a very general one. It flows through every area of human knowledge
and action, from strict logic to artistic manifestations.

Just as the wheel was once one of the greatest products of human
intelligence, a mechanism which allowed one to travel farther and faster
with more luggage, so is the computer, which today allows the transforma-
tion of man’s ideas. Computers resolve logical problems by heuristic methods.
But computers are not really responsible for the introduction of mathematics
into music; rather it is mathematics that makes use of the computer in
composition. Yet if people’s minds are in general ready to recognize the
usefulness of geometry in the plastic arts (architecture, painting, etc.), they
have only one more stream to cross to be able to conceive of using more
abstract, non-visual mathematics and machines as aids to musical composi-
tion, which is more abstract than the plastic arts.

To summarize:

. The creative thought of man gives birth to mental mechanisms,
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which, in the last analysis, are merely sets of constraints and choices. This
process takes place in all realms of thought, including the arts.

2. Some of these mechanisms can be expressed in mathematical terms.

3. Some of them are physically realizable: the wheel, motors, bombs,
digital computers, analogue computers, etc.

4, Certain mental mechanisms may correspond to certain mechanisms
of nature.

5. Certain mechanizable aspects of artistic creation may be simulated
by certain physical mechanisms or machines which exist or may be created.

6. It happens that computers can be useful in certain ways.

Here then is the theoretical point of departure for a utilization of
electronic computers in musical composition.

‘We may further establish that the role of the living composer seems to
have evolved, on the one hand, to one of inventing schemes (previously
forms) and exploring the limits of these schemes, and on the other, to effect-
ing the scientific synthesis of the new methods of construction and of sound
emission. In a short while these methods must comprise all the ancient and
modern means of musical instrument making, whether acoustic or electronic,
with the help, for example, of digital-to-analogue converters; thesc have
already been used in communication studies by N. Guttman, J. R. Pierce,
and M. V. Mathews of Bell Telephone Laboratories in New Jersey. Now
these explorations necessitate impressive mathematical, logical, physical,
and psychological impedimenta, especially computers that accelerate the
mental processes necessary for clearing the way for new fields by providing
immediate experimental verifications at all stages of musical construction.

Music, by its very abstract nature, is the first of the arts to have at-
tempted the conciliation of artistic creation with scientific thought. Its
industrialization is inevitable and irreversible. Have we not already seen
attempts to industrialize serial and popular music by the Parisian team of
P. Barbaud, P. Blanchard, and Jeanine Charbonnier, as well as by the
musicological research of Hiller and Isaacson at the University of Illinois?

In the preceding chapters we demonstrated some new areas of musical
creation: Poisson, Markov processes, musical games, the thesis of the mini-
mum of constraints, etc. They are all based on mathematics and especially
on the theory of probability. They therefore lend themselves to being
treated and explored by computers. The simplest and most meaningful
scheme is one of minimum constraints in composition, as exemplified by
Achorripsis.

Thanks to my friend Georges Boudouris of the C.N.R.S. T made the
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acquaintance of Jacques Barraud, Engineer of the Ecole des Mines, then
director of the Ensemble Electroniques de Gestion de la Société des Petroles
Shell-Berre, and Frangois Génuys, agrégé in mathematics, and head of the
Etudes Scientifiques Nouvelles at IBM-France. All three are scientists, yet
they consented to attempt an experiment which scemed at first far-fetched—
that of a marriage of music with one of the most powcerful machines in the
world.

In most human relations it is rarcly pure logical persuasion which is
important; usually the paramount consideration is material interest. Now
in this case it was not logic, much lcss sclf-intercst, that arranged the be-
trothal, but purely expcriment for experiment’s sake, or game for game’s
sake, that induced collaboration. Stochastically speaking, my venture should
have encountered failure. Yet the doors were opened, and at the end of a
year and a half of contacts and hard work ““the most unusual event wit-
nessed by the firm or by this musical season [in Paris]*’ took place on 24
May 1962 at the headquarters of IBM-France. It was a live concert pre-
senting a work of stochastic instrumental music entitled S7/10-1, 080262,
which had been calculated on the IBM-7090. It was brilliantly performed
by the conductor C. Simonovic and his Ensemble de Musique Contem-
poraine de Paris. By its passage through the machine, this work made
tangible a stochastic method of composition, that of the minimum of
constraints and rules.

Position of the Problem

The first working phase was the drawing up of the flow chart, i.e.,
writing down clearly and in order the stages of the operations of the scheme
of Achorripsis,! and adapting it to the machine structure. In the first chapter
we set out the entire synthetic method of this minimal structure. Since the
machine is an iterative apparatus and performs these iterations with extra-
ordinary speed, the thesis had to be broken down into a sequential series of
operations reiterated in loops. An excerpt from the first flow chart is shown
in Fig. V-1.

The statement of the thesis of Achorripsis rcccives its first machine-
oriented interpretation in the following manner:

L. The work consists of a succession of sequences or movements each a; seconds
long. Their durations are totally independent (asymmetric) but have a fixed
mean duration, which is introduced in the form of a parameter. These
durations and their stochastic succession are given by the formula

P, = ce=°% da,.

(See Appendix I.)
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2. Definition of the mean density of the sounds during a;. During a sequence
sounds are emitted from several sonic sources. If the total number of these
sounds or points during a sequence is N,, the mean density of this point-
cluster is N, /a; sounds/sec. In general, for a given instrumental ensemble
this density has limits that depend on the number of instrumentalists, the
nature of their instruments, and the technical difficulties of performance.
For a large orchestra the upper limit is of the order of 150 sounds/sec. The
lower limit (¥'3) isarbitrary and positive. We choose (#'3) = 0.11 sounds/sec.
Previous experiments led us to adopt a logarithmic progression for the
density sensation with a number between 2 and 3 as its base. We adopted
¢ = 2.71827. Thus the densities are included between (F3)e® and (V'3)e?
sounds/scc., which we can draw on a linc graduated logatithmically (base ¢) .2
As our purpose is total independence, we attribute to each of the sequences
a; calculated in 1. a density represented by a point drawn at random from
the portion of the line mentioned above. However a certain concern for
continuity leads us to temper the independence of the densities among
sequences a;; to this end we introduce a certain “memory” from sequence
to sequence in the following manner:

Leta;_, be a sequence of duration a,_;, (DA),_, its density, and g, the

next scquence with duration g; and density (D4),;. Density (DA); will be
given by the formula:

(DA); = (DA);- e*%,

in which x is a segment of line drawn at random from a line segment s of
length equal to (R — 0). The probability of x is given by

P, = % (1 - ;) dx (see Appendix I)

and finally,
Na, = (DA)

a4

3. Composition Q of the orchestra during sequence a;. First the instruments
are divided into r classes of timbres, e.g., flutes and clarinets, oboes and
bassoons, brasses, bowed strings, pizzicati, col legno strokes, glissandi, wood,
skin, and metal percussion instruments, etc. (See the table for Atrées.) The
composition of the orchestra is stochastically conceived, i.e., the distribution
of the classes is not deterministic. Thus during a sequence of duration a; it
may happen that we have 807, pizzicati, 10%, percussion, 7%, keyboard,
and 37, flute class, Under actual conditions the determining [actor which
would condition the composition of the orchestra is density. We therefore

Free Stochastic Music by Computer

Composition of the Orchestra for Atrées (ST/10-3,060962)
Timbre classes and instruments as on present input data

Class Timbre Instrument Instrument No.

1 Percussion Temple-blocks 1—5

Tom-toms 6—9
Maracas 10
Susp. cymbal 11
Gong 12
2 Horn French horn 1
3 Flute Flute 1
4 Clarinet Clarinet Bp 1
Bass clar. Bp 2
N] Glissando Violin 1
Cello 2
Trombone 3
6 Tremolo Flute 1
or Clarinet Bp 2
flutter- Bass clar. Bp 3
tongue French horn 4
Trumpet 5
Trombone a 6
Trombone & 7

(pedal notes)
Violin 8
Cello 9
7 Plucked Violin 1
strings Cello 2
8 Struck Violin 1
strings*® Cello 2
9 Vibraphone Vibraphone 1
10 Trumpet Trumpet 1
11 Trombone Trombone a 1
Trombone & 2
(pedal notes)
12 Bowed Violin 1
strings Cello 2
* col legno
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connect the orchestral composition with density by means of a special
diagram. An example from S7]10-1, 080262 is shown in Fig. V-2.
Fig. V-2 is expressed by the formula

Qr = (ﬂ - x) (gn.r - en+1.r) + ey

inwhich7 = the number of the class,x = log,[(DA),/(V3)],n = 0,1,2,..., R,
such thatz < x < n + 1,and ¢,, and ¢,,,, arc the probabilities of class
as a function of 7. It goes without saying that the composition of this table
is a precise task of great complexity and delicacy. Once these preliminaries
have been completed, we can define, one after the other, the N,, sounds of
sequence a,.

4. Definition of the moment of occurrence of the sound N within the sequence a;.
The mean density of the points or sounds to be distributed within a, is
k = N, la,. The formula which gives the intervals separating the sound
attacks is

Py = ke~  di. (See Appendix I.)

5. Attribution to the above sound of an instrument belonging to orchestra Q,
which has already been calculated. First class 7 is drawn at random with proba-
bility ¢, from the orchestra ensemble calculated in 3. (Consider an urn with
balls of 7 colors in various proportions.) Then from within class r the number
of the instrument is drawn according to the probability p, given by an
arbitrary table (urn with balls of n colors). Here also the distribution of
instruments within a class is delicate and complex,

6. Attribution of a pitch as a function of the instrument. Taking as the zero
point the lowest B} of the piano, we establish a chromatic scale in semitones
of about 85 degrees. The range s of each instrument is thus expressed by a
natural number (distance). But the pitch 4, of a sound is expressed by a
decimal number of which the whole number part is related to a note of the
chromatic scale within the instrument’s range.

Justas for the density in 2., we accept a certain memory of or dependence
on the preceding pitch played by the same instrument, so that we have

hu = hu—l t+ z

where z is given by the probability formula

P, 2 (1 - é) dz. (See Appendix I1.)

T

P, is the probability of the interval z taken at random from the range s, and
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s is expressed as the difference between the highest and lowest pitches that
can be played on the instrument.

1. Attribution of a glissando speed if class r is characterized as a glissando. The
homogeneity hypotheses in Chap. I led us to the formula

J0) = e,

a/m
and by the transformation v/a = u to its homologue:
2 J‘ Yo
TW) = —| e *du
) vV Jo

for which there are tables. f{1) is the probability of octurrence of the speed v
(which is expressed in semitones/sec.); it has a parameter a, which is pro-
portional to the standard deviation s (a = 54/2).

a 1s defined as a function of the logarithm of the density of sequence a,
by: an inversely proportional function

o= \/11'(30 -2 L[(DA),/(V3)]),

or a directly proportional function

o= vw(lo + %L[(DA),/(V'&)]),
or a function independent of density

a = 17.7 + 35%,

where £ is a random number between 0 and 1.

"The constants of the preceding formulae derive from the limits of the
speeds that string glissandi may take.

Thus for (DA); = 145 sounds/sec.
a = 53.2 semitones/sec.
25 = 75 semitones/sec.,
and for (D4); = 0.13 sounds/sec.

a = 17.7 semitones|sec.

25 = 25 semitones/sec.

8. Attribution of a duration x to the sounds emitted. To simplify we establish
a mean duration for each instrument, which is independent of tessitura and
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nuance. Consequently we reserve the right to modify it when transcribing
into traditional notation. The following is the list of constraints that we take
into account for the establishment of duration x:

G, the maximum length of respiration
or desired duration

(DA4);, the density of the sequence

qr, the probability of class r

pn, the probability of the instrument #

Then if we define z as a parameter of a sound’s duration, z could be
inversely proportional to the probability of. the occurrence of the
instrument, so that ]

(DA)ipnqr.

z will be at its maximum when (DA4),$,g, is at its minimum, and in this case
we could choose z,,, = G.

Instead of letting z,,,, = G, we shall establish a logarithmic law so as
to freeze the growth of z. This law applies for any given value of z.

Zz =

z =Glnz/lnz,,,

Since we admit a total independence, the distribution of the durations
x will be Gaussian:

x) = g~ (x—m)2[252
J6) == ,
where m is the arithmetic mean of the durations, s the standard deviation,
and

. m—425=0
m 4 4255 = z'

the linear system which furnishes us with the constants m and s. By assuming
u = (x — m)/sa/2 we find the function 7'(u), for which we consult the
tables.

Finally, the duration x of the sound will be given by the relation

x = tusy/2 + m.

We do not take into account incompatibilities between instruments, for
this would needlessly burden the machine’s program and calculation.

9. Attribution of dynamic _forms to the sounds emitted. We define four zones
of mean intensities: ppp, p, f, f- Taken three at a time they yield 4° = 64
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permutations, of which 44 are different (an urn with 44 colors) ; for example,
bbo<f>p.

10. The same operations are begun again for each sound of the cluster N,

11. Recalculations of the same sort are made for the other sequences.

An extract from the sequential statement was reproduced in Fig. V—1.
Now we must proceed to the transcription into Fortran IV, a language
“understood” by the machine (see Fig. V-3).

It is not our purpose to describe the transformation of the flow chart
into Fortran. However, it would be interesting to show an example of the
adaptation of a mathematical expression to machine methods.

Let us consider the elementary law of probability (density function)

f(x) de = ce—°* dx, [20]

How shall we proceed in order for the computer to give us lengths x with
the probability f(x) dx? The machine can only draw random numbers Yo
with equiprobability between 0 and 1. We shall “modulate” this proba-
bility: Assume some length x,; then we have

prob. (0 < x < x;) = f"’f(x) dr =1~ =% — F(sy),
0

where F(x,) is the distribution function of x. But
F(xo) = prob. (0 <y < 3,) =y,
then

I — 7% =y,
and

_In (1 —y)

[

xo =
for all x, = 0.

Once the program is transcribed into language that the machine’s
internal organization can assimilate, a process that can take several months,
we can proceed to punching the cards and setting up certain tests. Short
sections are run on the machine to detect errors of logic and orthography
and to determine the values of the entry parameters, which are introduced
in the form of variables. This is a very important phase, for it permits us to
explore all parts of the program and determine the modalities of its opera-
tion. The final phase is the decoding of the results into traditional notation,
unless an automatic transcriber is available,
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Table of the 44 Intensity Forms Derived from 4 Mean Intensity

Values, ppp, p. f, ff
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=t/
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P
£ 4
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p—f P

I ——"7
p—— ¥
p— ="
Y B ——
M ===
H Tty ——
fIm—pp——
R e
;I p—
==
T
B p—
A 2
Sf I =
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Conclusions

A large number of compositions of the same kind as ST/10-1, 080262
is possible for a large number of orchestral combinations. Other works have
already been written: ST/48-1, 240162, for large orchestra, commissioned
by RTF (France III); Atrées for ten soloists; and Moerisma-Amorisima, for four
soloists.

Although this program gives a satisfactory solution to the minimal
structure, it is, however, necessary to jump to the stage of pure composition
by coupling a digital-to-analogue converter to the computer. The numerical
calculations would then be changed into sound, whose internal organization
had been conceived beforehand. At this point one ¢ould bring to fruition
and generalize the concepts described in the preceding chapters.

The following are several of the advantages of using electronic compu-
ters in musical composition:

1. The long laborious calculation madc by hand is reduced to nothing.
The speed of a machine such as the IBM-7090 is tremendous—of the order
of 500,000 elementary operations/sec.

2. Freed from tedious calculations the composer is able to devote him-
self to the general problems that the new musical form poses and to explore
the nooks and crannies of this form while modifying the values of the input
data. For example, he may test all instrumental combinations from soloists
to chamber orchestras, to large orchestras. With the aid of electronic com-
puters the composer becomes a sort of pilot: he presses the buttons, intro-
duces coordinates, and supervises the controls of a cosmic vessel sailing in
the space of sound, across sonic constellations and galaxies that he could
formerly glimpse only as a distant dream. Now he can explore them at his
ease, seated in an armchair.,

3. The program, i.c., the list of sequential operations that constitute
the new musical form, is an objective manifestation of this form. The
program may consequently be dispatched to any point on the earth that
possesses computers of the appropriate type, and may be exploited by any
composer pilot.

4. Because of certain uncertainties introduced in the program, the
composer-pilot can instill his own personality in the sonic result he obtains.
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Fig. V—3. Stochastic Music Rewritten in Fortran v

c PROGRAM FREE STOCHASTIC MUSIC (FORTRAN 1V) XEMN &
c XEN 7
[ GLOSSARY OF THE PRINCIPAL ABBREVIATIONS XEN a
(4

c A - DURATION OF £ACH SEQUENCE IN SECONDS XEN 9
c A10+A204A17+A35.A30 ~ NUMBERS FOR GL1SSANDO CALCULATION XEN 10
c ALEA ~ PARAMETER USED TO ALTER THE RESULT OF A SECOND RUN WITH THEXEN 1
c SAME INPUT DATA XEN 12
[« ALFA(3) - THREE EXPRESSIONS ENTERING INTO THE THREE SPEED VALUES XEN 13
[ OF THE SLIDING TONES ( GLISSAND! ) XEN 1a
c ALIM - MAXIMUM LIMIT OF SEQUENCE DURATION A XEN 15
[ (AMAX (1) s1=1+KTR} TABLE OF AN EXPRESSION ENTERING INTO THE XEN 16
(4 CALCULATION OF THE NOTE LENGTH IN PART 8 XEN 17
C BF - DYNAMIC FORM NUMBER. THE LIST 15 ESTABLISHED INDEPENDENTLY XEN 18
c OF THIS PROGRAM AND 15 SUBJECT TO MODIFICATION XEN 19
[« DELTA - THE RECIPROCAL OF THE MEAN DENSITY OF SOUND EVENTS DURING XEN 20
(4 A SEQUENCE OF DURATION A XEN 21
c (E(1+J) +1=14KTReJ=11KTE) — PROBABILITIES OF THE KTR TIMBRE CLASSESXEN 22
[4 INTRODUCED AS INPUT DATA« DEPENDING ON THE CLASS NUMBER I=KR AND XEN 23
c ON THE POWER J=U ORTAINED FROM V3*EXPF{(U)=DA XEN 24
c EPSI - EPSILON FOR ACCURACY IN CALCULATING PN AND E(l1eJ)eWHICH XEN 25
(4 IT 1S ADVISABLE TO RETAIN. XEN 26
c (GN{1sJ)al=1sKTR1J=1+KTS) — TABLE OF THE GIVEN LENGTH OF BREATH XEN 27
c FOR EACH INSTRUMENTs DEPENDING ON CLASS 1 AND INSTRUMENT J XEN 28
c GTNA -~ GREATEST NUMBER OF NOTES IN THE SEQUENCE OF DURATION A XEN 29
[« GTNS — GREATEST NUMBER OF NOTES IN Kw LOOPS XEN 30
c (HAMINC T o J) «HAMAX (T oJ) sHBMINCT ¢ J) +HBMAX (1 1J) 1121 KTR2J=1¢KTS) XEN 31
c TABLE OF INSTRUMENT COMPASS LIMITSe DERPENDING ON TIMBRE CLASS 1 XEN 32
c AND INSTRUMENT J, TEST INSTRUCTION a80 IN PART & DETERMINES XEN 33
c WHETHER THE HA OR THE HB TABLE !S FOLLOWED. THE NUMBER 7 IS XEN 34
c ARBITRARY. XEN 35
[ JW - ORDINAL NUMBER OF THE SEQUENCE COMPUTEDS. XEN 36
c KNL — NUMBER OF LINES PER PAGE OF THE PRINTED RESULT:KNL=50 XEN 37
c KR1 = NUMBER IN THME CLASS KR=1 USED FOR PERCUSSION OR INSTRUMENTS XEN 38
c WITHOUT A DEFINITE PITCH. XEN 39
c KTE - POWER OF THE EXPONENTIAL COEFFICIENT E SUCH THAT XEN a0
c DA(MAX)=V3* (EX* (KTE=1)) XEN a1
c KTR — NUMBER OF TIMBRE CLASSES XEN 42
c KW - MAXIMUM NUMBER OF JW XEN 43
(4 KTEST1+TAVI+ETC ~ EXPRESSIONS USEFUL IN CALCULATING HOw LONG THE XEN 44
c VARIOUS PARTS OF THE PROGRAM WILL RUN. XEN 45
(4 KT — ZERO IF THE PROGRAM 1S BEING RUN. NONZERO DURING DEBUGGING XEN 46
c KT2 - NUMBER OF LOOPS: EQUAL TO 15 BY ARBITRARY DEFINITION. XEN 47
c {MODI(IX8)+[XB=7+1) AUXILIARY FUNCTION TO INTERPOLATE VALUES IN XEN a8
c THE TETA(256) TABLE (SEE PART 7) XEN 4%
c NA - NUMBER OF SDUNDS CALCULATED FOR THE SEQUENCE A(NA=DARA) XEN 50
c (NT(1)+yI=1+KTR) NUMBER OF INSTRUMENTS ALLOCATED TO EACH OF THE XEN  S1
c KTR TIMBRE CLASSES. XEN 52
c (PN(T oJ) v 121 eKTRyJ=1+KTS) s (KTS=NT (1) +1=1.KTR) TABLE OF PROBABILITYXEN  S3
c OF EACH INSTRUMENT OF THE CLASS I. XEN 54
c (Q(1)+1=1+KTR) PROBABILITIES OF THE KTR TIMBRE CLASSESs CONSIDEREDXEN 55
c AS LINEAR FUNCTIONS OF THE DENSITY DA XEN 56
(4 (S(1)«1=1+KTR) SUM OF THE SUCCESSIVE Gi{1) PROBABILITIES: USED TO XEN 57
(4 CHOOSE THE CLASS KR BY COMPARING 1T TO A RANDOM NUMBER X! (SEE XEN S8
4 PART 3+ LOOP 380 AND PART S+ LOOP 430} XEN 59
[« SINA - SUM OF THE COMPUTED NOTES IN THE Jw CLOUDS NAs ALWAYS LESS XEN 60
c THAN GTNS ¢ SEE TEST IN PART 10 ). XEN 61
c SOP] - SQUARE ROOT OF Pl ( 3.18159sss) XEN &2
c TA - SOUND ATTACK TIME ABCISS5Ae XEN &3
c TETA(256) - TABLE OF THE 256 VALUES OF THE INTEGRAL OF THE NORMAL XEN 64
c DISTRIBUTION CURVE WHICH IS USEFUL IN CALCULATING GLISSANDO SPEED XEN 65



146

[aXaNaNa N NaWala Nala Wala Vsl

o

AND SOUND EVENT DURATIONa XEN
VIGL = GLISSANDO SPEED (VITESSE GLISSANDO)s WHICH CAN VARY AS5. BE XEN
INDEPENDENT OF+ OR VARY INVERSELY AS THE DENSITY OF THE SEQUENCE« XEN
THE ACTUAL MODE OF VARIATION EMPLOYED REMAINING THE SAME FOR THE XEN

ENTIRE SEQUENCE (SEF PART 7). XEN
VITLIM = MAXIMUM LIMITING GL ISSANDO SPEED (IN SEMITONES/SEC)s XEN
SUBJECT TO MODIFICATION. XEN

V3 ~ MINIMUM CLOUD DENSITY DA XEN
(Z111)+Z2(1)s1=148) TABLE COMPLEMENTARY TO THE TETA TABLE. XEN
XEN

XEN

READ CONSTANTS AND TABLES XEN
XEN

DIMENSION Q(12)+5(12)1F(12+12)¢PN(124S0)sSPNI12e50) ¢eNT{12) s XEN
FHAMIN( 124501 s HAMAX (12450 ) 1 HBMIN{ 124 50) »HBMAX [ 1250) sGN{12+50) s M 12XEN
*+50) s TETA(256) 4 VIGLI3) sMODI(7)1Z1(8) ¢Z2(B)+ALFA(3 ) s AMAX(12) XEN
XEN

XEN

XEN

1=1 XEN

00 10 IX=1e7 XEN
1X8=8-1X XEN
MODT tIXAY=T XEN

10 I=141 XEN
XEN

READ 20+ (TETA(I)s1=1:256} XEN

20 FORMAT(12F6.6) XEN
READ 30+(Z1(1)+Z22(1)+121,8) XEN

30 FORMATIO(F3e2¢F9¢8)/F342+FFeBsF6:21FF.8) XEN
PRINT 40sTETAWZ1422 XEN

40 FORMAT(#1 THE TETA TABLE = #4/421(12F10.64/)884F10ebe/ /7770 XEN

*% THE Z1 TABLE = #4/+7F642+E12.3+///+% THE Z2 TABLE = %+/+8F1448+/XEN
*e1H1) XEN
READ SO+DELTA+VIeAlI0+A20+A17+A30+A354BF «SAPIIEPS] «VITLIMeALEAS AXEN
*LIM

XEN

SO FORMAT(F3ea0+sF34345F3411F2e04FB.7+FBe84FAe2¢FBeBsFS5e2) XEN
READ GO KT +AKT24KWIKNL 4 KTRIKTE «KR1 1GTNASGTNS o (NT(I)e1=1KTR) XEN

60 FORMATISI32I2¢2F64041212) XEN
PRINT 70vDELTA'V3-AIOvA20-A17'A30nASS'BFnSQPIvEPSluVlTLlM-ALEA‘ AXEN
HLIMIKTL ¢KT24KWeKNL IKTRAKTESKRIsGTNASGTNS s ( (FaNTC1) ) al=1+KTR)- XEN
70 FORMAT(¥IDELTA = *3sFQeOv/o¥ V3 = %¥iFGa3e/o® A1Q = ¥+Fdalerss XEN

¥® A20 = ¥aFQal4/s® AL1T = #iF8als/a% A30 = *+Faela/+% ADS5 = %,.Fdel s XEN
*/9% BF = %¥,F340e/v¥ SOP1 =H4F1laBe/e* EPS] =%eF1248e¢/ % VITLIM = #XEN

#IFSe2e/e% ALEA =%:F12480/¢% ALIM = #,FGe2¢/0% KT1 = #4134/ XEN
*E KT2 = %4130 /9% KW = ¥4130/¢*® KNL = ¥413¢/2% KTR = %4134/ XEN
*R KTE = *#4124/9% KR] = ¥4,124/4% GTNA = R F7.0+/% GINS = ¥.F740+ XEN
*/4120% IN CLASS *+12.%, THERE ARE *+12.% INSTRUMENTS.%4/)) XEN

READ BOCKTEST3.KTEST1+KTEST2

XEN

B0 FORMAT{513) XEN
PRINT QO0+KTESTIIKTESTI +KTEST2 XEN

90 FORMAT(# KTEST3 = #+13+/+% KTEST! = *#413¢/¢% KTEST2 = *413) XEN
XEN

IFIKTEST3«NELO) PRINT B30 XEN
R=KTE=1 XEN
A10=A10%50P1 XEN
A20=A20#SQP1/R XEN
A30=A30850P1 XEN

IF ALEA IS NON=-ZERO«THE RANDOM NUMBER 1S5 GENERATED FROM THE TIME XEN
WHEN THE FOLLOWING INSTRUCTION IS EXECUTED. IF ALEA 15 NON-ZERO XEN
EACH RUN OF THIS PRDGRAM WILL PROOUCE DIFFERENT OUTPUT DATA. XEN
IF(ALEACNE.0,0) CALL RANFSET(TIMEF(1)) XEN
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PRINT 830
DO 130 1=1+KTR
¥=0.0
KTS=NT([)
READ 1004 (HAMINI{T sJ) sHAMAX (1 ¢J) «HEBMINCGT ¢ J) « HBMAX( 1+ ) s GNET e ) e
APN(T e J) e S=14KTS)
100 FORMAT{S5(SF2e04F3e31)

XEN
XEN
XEN
XEN
XEN
XEN
XEN

PRINT 11061« tJeHAMINGE o J) s HAMAX( T o) sHEBMINC 1 ¢J) sHBMAX (1 +J) sGN I T+ J)XEN

*9PNUTaJ) 1J=14KTS)
110 FORMAT(////+% IN CLASS NUMBER *:12¢(/+% FOR INSTRUMENT NO. *:12+
*% HAMIN = #3F3,04% HAMAX = %*¢F3.0+%+sHBMIN = #eF3aDe*dHBMAX = ¥4
% F3,04#4GN = %4F3.0e%¢ AND PN = #:F643))
DO 120 J=1KTS
Y=Y+PN(TaJ)
120 SPN(ladd=Y
130 IF (ABSF{Y=1,0)eGE+EPSI) CALL EXIT

C
DO IS0 I=1:KTR
READ 1402 (E(TaJ) s J=1KTEY
140 FORMAT(12F2.2)
15C PRINT 160414 (JaECTsd)eJ=1+KTE)
160 FORMATI(////7/7«% CLASS NUMBER *4¢12e¢/¢(% IN DENSITY LEVEL *s12.
*#% HAS A PROBABILITY OF %:F6e2+/))
DO 180 JU=1+KTE
Y¥=0,0
DO 170 1=1eKTR
170 ¥Y=Y4E(l+J)
180 1IF (ABSFIY=-1.03«GE.EPSI) CALL EXIT
DO 700 1=1+KTR
AMAX(13=1.0/EC(T 1)
B0 200 JU=2.KTE
Ad=y=1
AX=1e0/(EL1+J)REXPF(AJY)
IF {(KT1.NEaO) PRINT 190¢AX
190 FORMAT(IH «9E1248)
200 IF (AXaGT.AMAX(I)} AMAX(I1)=AX
IF (KT1eNE+O) PRINT 2104AMAX
210 FORMAT{ 1H +GQE12.8)
C
Jw=1
SINA=04.0
IF (KTEST1aNE«O) TAVI=TIMEF(1)
220 NLINE=S0
g PARTS 1 AND 2+ DEFINE SEQUENCE A SECONDS AND CLOUD NA DURING A
C
KNA=0
K1=0

230 X1=RANF(-1)
A=—DELTA ®* LOGFI(X1)
IF(A.LE-ALIM)} GO TG 250
IF (K1aGEWsKT2) GO TO 240
Kl=K14+1
GO TO 230
240 A=ALIM/2.0
Xt=0e0
250 Kk2=0
260 X2=RANF(-1)
IF (JW.GTe1) GO TC 280
270 UX=R%X2
GO TO 310
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XEN
XEN
XEN
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XEN
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XEN
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XEM
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159
160
161
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164
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168
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171
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173
174
17
176
177
178
179
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181
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183
184
185
186
187
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iB8g9
150
i91
192
193
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196
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199
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201
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200
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290
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a1o

320

330
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360

370

3a0

390

410
az20
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IF (RANF({~1}:GEeOe5}) GO TO 290 XEN
UX=UPR + R ¥ (]1¢0-SQRTF({X2})) XEN
GO TO 300 XEN
UX=UPR =~ R ® [ 1,0-SQRTF{X2)} XEN
IF ({UXeGEe«Da0)sANDe (UXsLE+R)) GO TO 310 XEN
IF {K2.,GE.KT2) GO TO 270 XEN
K2=K2+1 XEN
60 TO 260 XEN
U=UX XEN
DA=V3 % EXPF(U) XEN
NA=XINTF{A * DA + 0.5) + 1| XEN
IF (GTNACGT.FLOATF{(NA})) GO TO 330 XEN
IF (KNALGE.KT2) GO TO 320 XEN
KNATKNA+1 XEN
GO TO 230 XEN
A=DELTA XEN
GO TO 260 XEN
UPR=U XEN
IF (KT1.,EQ.0) GO TO 360 XEN
PRINT 3404 JWeKNAGK]+K2eX1+X2¢AsDANA XEN
FORMAT(1H! ¢4T18.3X+4E18.843X%. 18) XEN
NA=KT1 XEN
IF (KTEST3.NE.D0) PRINT 350+JW+NAA XEN
FORMAT(1HO2194F1942) XEN

XEN
PART 34 DEFINE CONSTITUTION OF ORCHESTRA DURING SFQUENCE A XEN

XEN
SINA=SINA + FLOATF(NA) XEN
XLOGDA=U XEN
XALOG=A20 #XLOGDA XEN
M=XINTF { XLOGDA) XEN
IF ((M+2) s GTLKTE) M=KTE-2 XEN
SR=040 XEN
M1=M+1 XEN
M2=M+2 XEN
DO 380 I=1«KTR XEN
ALFX=E(1M1) XEN
BETA=E( [ «M2) XEN
XM=M XEN
OR=(XLOGDA-XM) * (BETA-ALFX) + ALFX XEN
IF (KT14NEeD) PRINT 370+XM+ALFX4BETA XEN
FORMAT(IH +3F20.8) XEN
Q(11=0R XEN
SR=SR+0R XEN
S(1)=SR XEN
IF {KT1.NEeO) PRINT 3904(Q(1)s1=1+KTRI+(S(T)+I=1+KTR) XEN
FORMAT(1H +12F9ea) XEN

XEN
PART 4+DEFINE INSTANT TA OF EACH POINT [N SEQUENCE A XEN

XEN
1F (KTEST2.NE.O) TAVR=TIMEF(1) XEN
N=1 XEN
T=0,0 XEN
TA=0.0 XEN
GO TO 410 XEN
N=N+1 XEN
X=RANF(-1) XEN
T=~LOGF (X1 /DA XEN
TA=TA+T XEN
IF (KT1eNEsO) PRINT 420¢N+XsTeTA XEN
FORMAT(//+1B+3E20+8) XEN

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
23s
236
23T
238
239
2a0
241
242
243
2aa
245
2as8
247
248
249
250
251
252
253
25a
25%
256
257
258
259
260
261
262
263
26a
265
266
267
268
269
270
271
a2rza
273
274
275
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ooo

ono

n

on

430

450

460

470

480

490

500

510

520

530

540
550

560

PART S(DEFINE CLASS AND INSTRUMENT NUMBER TO EACH POINT OF A

X1=RANF (-1}

00 430 1=1.KTR

IF (X1e4LE=S(1)) GO TO 440
1=KTR

KTSeNT(T1}

KR=1

X2=RANF(-1)

DO A4S0 J=1.KTS
SPIEN=SPNI{KR.J)

INSTRM=J

IF {X2.LE«SPIEN) GO TO a&0
INSTRMeKTS
FPIEN=PN({KR ¢« INSTRM}

IF (KT1uNEeO)} PRINT 4701X1+4S(KR)sKR1X2eSPIENINSTRM

FORMAT( 1M +2E20.8+16+2E20.8416 )

PART 6+DEFINE PITCH HN FOR EACH POINT OF SEQUENCE A

IF (KR.GTe1) GO TO 480
IF (INSTRM.GE+KR1) GO TO 490
HXE2040

GO TO 560

IF (KR+LTe7) GO TO 490
HSUP=HBMAX (KR s INSTRM)
HINF=HBMIN(KR s INSTRM)

GO TO 500
HSUP2HAMAX (KR« [INSTRM )
HINF=HAMIN(KR INSTRM)
HMeEHSUP-H INF
HPR=H (KR« INSTRM)

K=0

IF (HPR.LE.0.0) GO TO 520
X=RANF(=1)

IF (NeGT+1) GO TO 530

HX=H INF4HM*X RANF (=1 )

GO TO 560

1IF (RANF(=11+GEa0aS) GO TO 540
HX=HPR+HM % { 140-SOGRTF(X))
GO TO %50

HX=HPR~HM # (140-SQRTF(X})

IFC{HX s GE«HINF ) e ANDs (HXoLE<HSUP)) GO TO 560
IF (KeGEsKT2) GO TO 520

K=K+1

GO TO 510

H(KRs INSTRM) =HX
1F (KT1eNEsO) PRINT S570+KsXsHX
FORMAT(1H «1612E20,.8)

PART 7+DEFINE SPEED VIGL TO EACH POINT OF A

IFf (KReEGsS) GO TO 580
VIGL(13)=0.0
VIGL{2)=0.0
VIGL(31=0.0

X1=0.0

X2=040

XLAMBDA=0.0

GO TO 740
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610

620
630

650
660
670

680

700

710

720

730
7a0
750

760

1IF (X1=049997)
1=128

DO 630 1IX=1.7
IF(TETACL)=X1)
1=14MODT ¢ IX)
GO TO 630
I=1~MODT(IX)
CONTINUE
IF(TETA(1)-X1) 670:640:1660
XLAMBDA=FLOATF(1~1)/100.0

6004650680

6104:.640.620

GO TO (7204760)4 KX
XLAMBDA=? .55
GO TO (72047601 ¢KX

1=1=~1

TX1=TETA(I)
XLAMBDA=(FLOATF(I=1)4(XI=TXII/(TETA(1+1)=-TX1)} /1000
GO TO ( 720760 Yo KX

DO /90 1=2+7

TX1=2Z2¢1)
1IF(X1=TX1)
CONT INUE
1=8
TX1=z1,0
TX2=2Z1(1)
XLAMBDA=TX2=({ TXI=Xt )/ (TX1=Z2( 11} )1 %{TX2-Z21C1=1))

7007101690

GO TO ( 7204760 )s KX
XLAMBDA=Z1 (1)
GO TOt 7204760 )e KX

ALFA(1)=A10+XALOG

ALFA(3)=A30-XALOG

X2=RANF(-1)

ALFA(2)1=A1T7+A35¥X2

DO 730 1=143
VIGLITI=INTF(ALFA(])*XLAMBDA+0.5)

IF (VIGL(1)sLTe040) VIGL(I)==VIGL (1}
IF (VIGLITI)«GT«VITLIM) VIGLIT)=VITLIM
IF (RANF(—1)¢LTs0sS) VIGL{1)==VIGL(I}
IFIKTI«NELO) PRINT 7504X1+X2+4XLAMBDAVIGL
FORMAT(IH +16E19.8)

PART B«DEFINE DURATION FOR EACH POINT OF A

IF ((KR+EQe7)s0R4 (KR4F0eB}) GO TO 780
ZMAX=AMAX(KR) /(Y3 *PIEN)
G=GN(KR+INSTRM)
RO=G/LOGF ( ZMAX)
QGPNDA=1s0/(Q(XR)*PIEN*DA)
GE=ABSF (RO*LOGF (QPNDA ) )
XMU=GE/ 240

SIGMA=GE/4,.0

KX=2

GO TO 590

TAU=S IGMA¥XLAMBDA® 1 +4142
X2=RANF (~1)

IF (X24GE«0s5) GO TO 770
XDUR=XMU+ TAU

GO TO 790

XDUR=XMU=TAU

IF (XDUR+GEe«0«0) GO TO 790
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000

nno

an

C

c
C

780
790
8OO

aio

820

830

840

850
860

a70

880
890

900

910 1F

XDUR=0a0
IF(KT1NE«OIPRINT 800 s ZMAX s XMUy S TGMA v X1 + XLAMBDA + X 24 XDUR
FORMAT(1H +5E1548:E11.24E15.8)

PART 9Q+DEFINE INTENSITY FORM TO EACH POINT OF A

1IFORM=XINTF (RANF (-11 ¥BF4+0.5}
IF (XT1.EQ.0} GO TOD 840

IF (NLINE.LT.KNL) GO Ta 810

IF (NLINE.EQ.KNL) GO TO 820

NLINE=1

GO TO 900

NL INE=NLINE+1

GO TO 900

PRINT 830

FORMAT (1H1)

NL INE=0

GO TO 900

IF (NLINE+GE+KNL) GO TO 8S0

NL INE=NL INE+1

GO TO 880

PRINT 860« JWeAWNALICITIel=]1+KTR)

FORMAT (%] JWsH¢[301aX*A=#FBa2aaAX s RNASH 161X *G(1)=%312(Fae2s
L 3RYZ4)

PRINT 870

FORMAT (6X ¢ #N% 4 AX s # START® 4 SX s ¥CLASS# 04X s # INSTRM¥ 24 X o #P T TCH* 16X
FEGLISS 1 * 24X #GLISS 2% 44X + #GL 1 SS3% 18X+ #DURAT[ONK® 45X + BOYNAMK )
NLINE=1

PRINT B90 +N+TA KR+ INSTRMsHXa (VIGLII1)11=143) +XOURY IFORM

FORMAT(IH al174F1242419¢1BsF11al F13¢142F10s1+F18424111)
PART 10REPEAT SAME DEFINITIONS FOR ALL POINTS OF A

IF (NsLTaNA} GO TO 400

PART 11« REPEAT SEQUENCES A
IF (KTEST2.FQ.0) GO TO 310
TAP2=TIMEF (1)-TAV2
TAP2=TAP2/FLOATF (NA)

PRINT 750.TAP2

{JWGELKW) GO TO @30

020 Jw=Jw+1

93C IF

IF (GTNS.GT.SINA) GO TO 220
(KTEST14FGe0) CALL FXIT

940 TAPt=TIMEF(-1)-TAV1

TAP]1=TAP1/FLOATF (KW)
PRINT 7S50.TAP1

END
0609621

DATA FOR ATREFS (ST/10=3.
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7651007707007761NN781400786700791800796500801900806800811600816300820900
82540082990083420083850084270084680085080085489708586008624008661008B69800
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255099970000263099980000275099990000313099999000346099999900377099999990
4060699999991 00E 30100000000
04005010020017730035563177245390100000071000000000012000
0000150500500120720001600025000120101020309020201010202

01010000100700101000010090010100001012001016000101100101000010090
010106000101200101000010080010100001008001010000101200101000010080
01010000150200101000020020

1755000010999

3975000015999

29710000206001754000010400
348500001540015630000154001953000010200
397500001515029710000100901754000007090 175500001 0090336300001 0050
1953000010070101300001020034850000152001563000015020
00003467005000000154800500

00003467005000000154800800

000032681099a

0000336310999

00001953108000000101307200

00003487155000000157215500

2508040801 1309

08071602010110

03030420010110

02050325010112

03350315801 1%505

02100302103907

02020203150207

02020202410207

03090317041609

03132003200509

02052801030409
450112020P0106
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Jh= 1 A= 9.12 NA= S5
QU1)=0.12/0.04/0.04/0.05/0,12/0.29/0.04/0.04/0.14/0.06/0.06/0.03/

N START CLASS INSTRM PITCH GLISSL GLISS2 GLISS3 OURATION DYNAM
7

1 0.00 1 34.0 0.0 0.0 0.0 0.00 53
2 0.10 1C 1 43,2 0.0 .0 0.0 N.41 o
3 N.ll 6 8 8l1.3 0.0 N.0 0.0 0.63 21
4 0.13 6 3 47.0 0.0 Ne0 0.0 0.1 29
5 0.18 1 4 0.0 0.0 0.0 0.0 1.90 29
€ 0.25 9 1 48.7 2.0 0.0 0.0 0.51 o
7 0.33 6 7 11.4 0.0 0.0 0.0 0.3‘7’ b
g8 n.3¢4 S 1 38.1 0.0 0.0 0.0 N.00 R
S G.4h 1 1 0.0 0.0 0.0 0.0 2.20 ;

10 Q.41 € 9 55.0 n.0 0.0 0.0 1.03 0

1) C.7¢ 6 7 11.5 0.0 Q.0 c.0 D.4 19

1z 0.%0 8 2 23,2 0.0 0.0 0.n 0.00 .

12 1.00 7 2 2649 0.0 0.0 0.0 0.00 o

14 1.69 1€ 1 46.2 n.0 0.0 0.0 DN.32 °
£ 1.09 6 2 €8.5 0.0 c.0 0.0 n.71 2

1¢ 1.23 & 3 46,9 0.0 0.0 Q.0 N.b6A4 2

17 1.42 6 1 44.0 0.0 c.n n.n N.44 o

18 1.57 1¢ 1 36.2 .0 0.0 a.n 0,22 2

15 1.65 4 2 32.5 0.9 0.0 0.0 1.05 12

20 1.78 6 8 7246 0.0 0.0 0.0 n.0¢ 60

21 1.92 [ 3 38.9 0.0 Q.0 n.¢ N.55 o

22 1.94 5 1 14.6 71.0 -2%5.0 ~71.0 n.80 o

22 2.18 4 1 2.6 n.o 0.0 0.0 1.sg >0

24 2.18 & 6 50.9 0.0 a.0 0.0 0.60 26
£ Z.19 1 12 0.0 0.0 0.0 0.0 4058 2

2¢ 2.20 9 1 49.3 0.0 0.0 .0 n.n2 0

27 2.%3 9 1 51.0 0.0 0.0 0.0 0.22 1

2€ 2.32 7 1 36.9 0.0 0.0 0.0 0.00 43

25 2.33 4 1 31.8 n.0n 0.0 0.0 1.38 o

30 2.54 1 6 0.0 n.0 0.0 0.0 n.28 14

31 2.57 11 2 12.2 0.0 0.0 0.0 1.66 s

2z 2.71 S 1 4845 0.0 €.0 n.0 0.37 >

33 2.80 1 5 N0 2.0 0.0 0.0 1.50 >

34 2,28 5 2 15.4 49,0 5.0 -3l.0 0.52 :

ag 3,33 1 7 n.n 0.0 0.0 Q.0 1.38

2¢ 2,38 5 2 47.3  -71.0 =—17.0 4640 1.05 22

37 3.s85 1C 1 37.6 0.0 0.0 0.0 0.14 .

ag 2,56 1 9 Q.0 0.0 0.0 0.0 1.30 S

39 2,¢n S 1 €4.3 0.0 0.0 0.0 0.16 3

40 3.64 12 2 5242 0.0 0.0 n.n 3.72 oy

41 3.65 € 5 59.0 0.0 0.0 n.o 0.83 28

42 3.71 5 3 38.8 25.0 2.0 ~15.0 g.ce 1

42 2,80 6 8 715.6 0.0 c.0 0.0 0e.43 ?

44 3,87 [ 2 51.5 0.0 0.0 0.0 0.77 52

4% 3.89 € 7 12,1 0.0 Cc.0 0.0 0.39 2

4€ 4,15 S 2 43.0 -Tl«0 24.0  71.0 1.16 o

47 4.15 5 1 £80.3 36.0 4.0 22.0 0.85 =

48 4.25 9 1 59.9 0.0 0.0 0.0 r.10 1

45 4,31 12 2 40.1 0.0 0.0 0.0 2.4S 33

50 4.313 1 1n n.0 1.0 c.0 0.0 0.4¢

Fig. V—4. Provisional Results of One Phase of the Analysis
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an entity, and this overall perception is sufficient for the moment. Because
of our amnesia, we decide that it is neuter—neither pleasant nor unpleasant.

Postulate. We shall systematically refuse a qualitative judgment on
every sonic cvent. What will count will be the abstract relations within the
event or between several events, and the logical operations which may be
imposed on them. The emission of the sonic event is thus a kind of statement,
inscription, or sonic symbol, which may be notated graphically by the
letter a.

Ifit is emitted once it means nothing more than a single existence which
appears and then disappears; we simply have a.

If it is emitted several times in succession, the events are compared and
we conclude that they are identical, and no more. Identity and tautology
are therefore implied by a repetition. But simultaneously another phe-
nomenon, subjacent to the first, is created by reason of this very repetition :
modulation of time. If the event were a Morse sound, the temporal abscissa
would take a meaning external to the sound and independent of it. In addi-
tion to the deduction of tautology, then, repetition causes the appearance
of a new phenomenon, which is inscribed in time and which modulates time.

To summarize: If no account is taken of the temporal element, then a
single sonic event significs only its statement. The sign, the symbol, the
generic element a have been stated. A sonic event actually or mentally
repeated signifies only an identity, a tautology:

avavava---Va=a.

V is an operator that means “put side by side without regard to time.”
The = sign means that it is the same thing. This is all that can be done with
a single sonic event.

CASE OF TWO OR MORE GENERIC ELEMENTS

Let there be two sonic events 4 and 4 such that a is not identical with 2,
and such that the two are distinct and easily recognizable, like the letters
a and b, for example, which are only confused by a near-sighted person or
when they are poorly written.

If no account is taken of the temporal element, then the two elements
are considered as a pair. Consequently emitting first ¢ then &, or first b
then a, gives us no more information about these distinct events than when
they are heard in isolation after long intervals of silence. And since no
account is taken of the relation of similitude or of the time factor, we can
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write for a # &

av b=>bva

which means that a and & side by side do not create a new thing, having the
same meaning as before. Therefore a commutative law exists.

In the case of three distinguishable events, a, b, ¢, a combination of two
of these sonic symbols may be considcred as forming another element, an
entity in relation to the third:

{av b)) ve
But since this associational operation produces nothing more we may write
(avbd)ve=av (bVo.

This is an associative law.

The exclusion of the time factor leads therefore to two rules of compo-
sition outside-time—the commutative and the associative. (These two rules
are extensible to the case of a single event.)

On the other hand, when the manifestations of the generic events

a, b, care considered in time, then commutativity may no longer be accepted.
Thus

aTb#bTa

T being the symbol of the law of composition which means “anterior to.”
This asymmetry is the result of our traditional experience, of our cus-
tomary one-to-one correspondence between events and time instants. It
is raised when we consider time by itself without events, and the conse-
quent metric time which admits both the commutative and the associative
properties:
aTb=bTa commutative law
@Td)Te=aT (bTe) associative law.

CONCEPT OF DISTANGE (INTERVAL)

The consideration of generic elcments 4, b, ¢, . . . as entities does not
permit much of an advance. To exploit and clarify what has just been said,
we must penetrate the internal organization of the sonic symbols.

Every sonic event is perceived as a set of qualities that is modified dur-
ing its life. On a primary level we perceive pitch, duration, timbre, attack,
rugosity, etc. On another level we may distinguish complexities, degrees of
order, variabilities, densitics, homogeneities, fluctuations, thicknesses, etc.
Our study will not attempt to elucidate these questions, which are not only
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difficult but at this moment sccondary. They are also secondary because
many of the qualities may be graduated, even if only broadly, and may be
totally ordered. We shall thercfore choosc one quality and what will be
said about it will be extensible to others.

Let us, then, consider a series of events discernible solcly by pitch, such
as is perceived by an observer who has lost his memory. Two elcments, a, b,
are not enough for him to create the notion of distance or interval. We must
look for a third term, ¢, in order that the observer may, by successive com-
parisons and through his immediate scnsations, form first, the concept of
relative size (4 compared to @ and ¢), which is a primary expression of rank-
ing; and then the notion of distancc, of interval. This mental toil will end
in the totally ordered classification not only of pitches, but also of melodic
intervals. Given the set of pitch intervals

H = (hy, by, bey o . .)
and the binary relation § (greater than or equal to), we have

L. hSk for all i € H, hence reflexivity;
2. hyShy, # hySh, except for h, = h,, hence antisymmetry;
3. hoSh, and hy,Sh, entail h,Sh,, hence transitivity.

Thus the different aspects of the sensations produced by sonic events
may cventually totally or partially constitute ordered sets according to the
unit interval adopted. For example, if we adopted as the unit interval of
pitch, not the relationship of the semitone (= 1.059) but a relationship of
1.00001, then the sets of pitches and intervals would be very vague and
would not be totally ordered because the differential sensitivity of the human
car is inferior to this relationship. Generally for a sufficiently large unit
distance, many of the qualities of sonic events can be totally ordered.

To conform with a first-degree acoustic experience, we shall suppose
that the ultimate aspects of sonic events are frequency! (experienced as
pitch), intensity, and duration, and that every sonic event may be constructed
from these three when duly interwoven. In this case the number three is
irreducible. For other assumptions on the microstructure of sonic events see

the Preface and Chapter IX.

Structure of the Qualities of Sonic Events*

From a naive musical practice we have defined the concept of interval
or distance. Now let us examinc sets of intervals which are in fact isomorphic
to the equivalence classes of the N x N product set of natural numbers.
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1. Let there be a set H of pitch intervals (melodic). The law of internal
composition states that to every couple (g, fy € H)a thifd element may be
made to correspond. This is the composite of &, by Ay, which we shall notate
h, + h, = he, such that ;e H. For example, let there be thre? sounds
characterized by the pitches I, II, III, and let Ag m), hgs ym b€ thf: intervals
in semitones separating the couples (I, II) and (II_, I1I), respectively. The
interval A 1y, scparating sound I and sound IIT will be e.qual to the sum of
the scmitones of the other two. We may therefore establish that the law of
internal composition for conjuncted intervals is addition.

2. The law is associative:
l + (b + he) = (ha + k) + ho = ko + by + Fe:
3. There exists a neutral element %, such that for every 4, € H,
ho + by = hy + by = Byt

For pitch the neutral element has a name, unison, or th(? zero mtcrval'; for
intensity the zero interval is nameless; and for duration it 1s sn:nultanelty.
4. For every h, there exists a special element /g, called the inverse, such
that
B, 4 hy = hg + Hy, = hg = 0.

Corresponding to an ascending melodic interval ha, thf‘:re may be a descend—f
ing interval A}, which returns to the unison; to an increasing {ntfzr}/al' o
intensity (expressed in positive decibels) may be added another diminishing
interval (in negative db), such that it cancels the oth.er’s effect' ; correspond-
ing to a positive time interval there may be a negative duration, such that
the sum of the two is zero, or simultaneity.

5. The law is commutative:

hy + hy = hy + A

* Following Peano, we may state an axiomatics of pitch and construct the ghtr}c])-
matic or whole-tonc scale by means of three primary terms—origin, note, an e
succcssor of . . .—and five primary propositions:

1. the origin is a note;

9. the successor of a note is a note;

3. notes having the same successor are identical;

4. the origin is not the successor of any note; and ] ) s

5. if a property applies to the origin, and if wh.cn it appllles to any note it also
applies 1o its successor, then it applies to all notes {principal of induction).

See also Ghap. VII, p. 194,
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These five axioms have been established for pitch, outside-time. But
the examples have extended them to the two other fundamental factors of
sonic events, and we may state that the scts /7 (pitch intervals), G (intensity
intervals), and U (durations) are furnished with an Abelian additive group
structure,

To specify properly the difference and the relationship that exists
between the temporal set T and the other sets examined outside-time,
and in order not to confuse, for example, set U (durations characterizing a
sonic event) with the time intervals chronologically separating sonic
events belonging to set T, we shall summarize the successive stages of our
comprehension.

SUMMARY

Let there be three events g, 4, ¢ emitted successively.

First stage: Three events are distinguished, and that is all.

Second stage: A ““temporal succession” is distinguished, i.e., a corre-
spondence between events and moments, There results from this

a before b # b before a (non-commutativity),

Third stage: Three sonic events are distinguished which divide time into
two sections within the events. These two sections may be compared and then
expressed in multiples of a unit. Time becomes metric and the sections
constitute generic elements of set 7. They thus enjoy commutativity.

According to Piaget, the concept of time among children passes through
these three phases (see Bibliography for Chapter VI).

Fourth stage: Three sonic events are distinguished; the time intervals
are distinguished; and independence between the sonic events and the
time intervals is recognized. An algebra outside-time is thus admitted for sonic
events, and a secondary temporal algebra exists for temporal intervals; the
two algebras are otherwise identical. (It is useless to repeat the arguments
in order to show that the temporal intervals between the events constitute
a set T, which is furnished with an Abeclian additive group structure.)
Finally, one-to-one correspondences are admitted between algebraic func-
tions outside-time and temporal algebraic functions, They may constitute
an algebra in-time.

In conclusion, most musical analysis and construction may be based on:
1. the study of an entity, the sonic event, which, according to our temporary
assumption groups three characteristics, pitch, intensity, and duration, and
which possesses a structure outside-time; 2. the study of another simpler entity,
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time, which possesses a temporal structure; and 3. the correspondence between
the structure outside-time and the temporal structure: the structure in-time.

Vector Space

Sets H (melodic intervals), G (intensity intervals), U (time intervals),
and T (intervals of time separating the sonic events, and independent of
them) are totally ordered. We also assume that they may be isomorphic
under certain conditions with set R of the real numbers, and that an external
law of composition for each of them may be established with set R. For every
ac E (E is any one of the above sets) and for every element 4 € R, there
exists an element b = Aa such that b € E. For another approach to vector
space, see the discussion of sets of intervals as a product of a group times a
field, Chap. VIII, p. 210.

Let X be a sequence of three numbers x;, x3, X3, corresponding to the
elements of the sets H, G, U, respectively, and arranged in a certain order:
X = (%, %o, %3). This sequence is a vector and x;, xg, x5 are its components.
The particular case of the vector in which all the components are zero is a
zero vector, O. It may also be called thc origin of the coordinates, and by
analogy with elementary geometry, the vector with the numbers (x,, x5, %3)
as components will be called point A1 of coordinates (x;, *g, x3). Two points
or vectors are said to be equal if they are defined by the same sequence:
X = Yi

The set of these sequences constitutes a vector space in three dimensions,
E,. There exist two laws of composition relative to Eq: 1. An internal law of
composition, addition: If X = (x, x,, x3) and ¥ = (41, ¥u, ¥s), then

X+ Y=(x1 + Y1y X2 + Yo, X3 + ¥3)-

The following properties are verified: a. X + ¥ = ¥ + X (commutative);
b. X+ (Y4 Z) = (X + 7) + Z (associative); and c. Given two vectors
X and ¥, there exists a single vector Z = (2, z,, 25) such that X = ¥ +
Z.We have z; = x; — y,; Z is called the difference of X and ¥ and is nota-
ted Z = X — 7. In particular X + 0 = 0 + X = X; and each vector X
may be associated with the opposite vector(— X), with components (—x,,
—X,, —Xy), such that X + (- X) = O.

2. An external law of composition, multiplication by a scalar: If
peRand XeE, then

f)X = (Px)_, DPxas an) € Es.
The following properties are verified for (p, ¢) € R:a. 1- X = X; b. p(¢X) =
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(09) X (associative);andc. (p + ¢).X = pX + ¢Xandp(X + ¥) = pX + p¥
(distributive).

BASIS AND REFERENT OF A VEGTOR SPACE

If it is impossible to find a system of p numbers a,, a4, ag, . . ., a, which
are not all zero, such that

ale + azXz + -+ apo = O,

and on the condition that the p vectors X;, Xy, .. ., X, of the space E, are
not zero, then we shall say that these vectors arc linearly independent.

Suppose a vector of E,, of which the ith component is 1, and the others
are 0. This vector ¢ is the ith unit vector of E,. There exist then 3 unit vectors
of £;, for example, 4, g, i, corresponding to the sets h;, G, U, respectively;
and these three vectors are lincarly independent, for the relation

ah + ayf + azt = 0

entails 4; = a, = a3 = 0. Moreover, every vector X = (xy, x,, x5) of E
may be written

X = xfi + %7 + x5i0.

It immediately results from this that there may not exist in £5 more than
3 linearly independent vectors. The set £, g, i, constitutes a basis of E. By
analogy with elementary geometry, we can say that O, Og, Ou, arc axes
of coordinates, and that their set constitutes a referent of Eg. In such a space,
all the referents have the same origin 0.

Linear vectorial multiplicity. We say that a set V of vectors of £, which is
non-empty constitutes a linear vectorial multiplicity if it possesses the following
properties:

1. If Xis a vector of ¥, every vector p.X¥ belongs also to ¥ whatever the
scalar # may be.

2. If X and Y are two vectors of ¥, X + ¥ also belongs to ¥. From this
we deduce that: a. all linear vectorial multiplicity contains the vector
0(0-X = 0); and é. every lincar combination ¢, X, + X, + ...+ a, X,
of p vectors of V is a vector of V,

REMARKS

1. Every sonic event may be expressed as a vectorial multiplicity.

2. There exists only one base, £, g, @ Every other quality of the sounds
and every other more complex component should be analyzed as a linear
combination of these three unit vectors, The dimension of V is therefore 3.
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3. The scalars p, g, may not in practice take all values, for we would
then move out of the audible area. But this restriction of a practical order
does not invalidate the generality of these arguments and their applications.

For example, let O be the origin of a trihedral of reference with Ok,
Og, Ou, as referent, and a base £, g, i, with the following units:

for £, 1 = scmitone;
for z, 1 = 10 decibels;
for i, 1 = second.

The origin O will be chosen arbitrarily on the “absolute’ scales established
by tradition, in the manner of zero on the thermometer. Thus:

for £, O will be at Cg; (A; = 440 Hz)
for g, O will be at 50 db;
for i, O will be at 10 sec;

and the vectors

X, =5k — 35 + 5
Xo=7h+ 17— la
may be written in traditional notation for 1 sec = J.
X, = t t o

P ~ (50=-30 = 20 oB)

X, = k

rﬂi

f ~ (50+410 =60 dB)

>

In the same way

X+ X=06+N+(1-3)z+ (5 Da=12F—27 + 4.

X1+X= 7 [~ &){
¢ mp~ (50-20=30dB)

We may similarly pursue the verification of all the preceding propositions.

We have established, thanks to vectorial algebra, a working language
which may permit both analyses of the works of the past and new construc-
tions by setting up interacting functions of the components (combinations
of the sets H, G, U). Algebraic research in conjunction with experimental
research by computers coupled to analogue converters might give us
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information on the lincar relations of a vectorial multiplicity so as to obtain
the timbres of existing instruments or of other kinds of sonic events.

The following is an analysis of a fragment of Sonata, Op. 57 (Appas-
sionata), by Becthoven (see Fig. VI-1). We do not take the timbre into
account since the piano is considered to have only one timbre, homogeneous
over the register of this fragment.

A

|

Fig. VI-1

Assume as unit vectors: %4, for which 1 = semitone; 7, for which
1 2 10 db; and 7, for which 1 & }. Assume for the origins

% on the £ axis,

Jf = 60 db (invariable) on the 7 axis, and
5¢& on the # axis.

ALGEBRA OUTSIDE-TIME (OPERATIONS AND RELATIONS IN SET 4)

The vector X, = 184 + 0g + 5& corresponds to G.

The vector X; = (18 + 3)k + 07 + 4 corresponds to Bp.
The vector X, = (18 + 6)% + 0g + 3i corresponds to Dp.
The vector X3 = (18 + 9)/ + 0g + 2# corresponds to E.
The vector X; = (18 + 12)k + 07 + 1& corresponds to G.
The vector X5 = (18 + 0)f + 0F + 14 corresponds to G.

(See Fig. VI-2.)
Let us also admit the free vector 7 = 34 + 0Z — li; then the vectors
X, (fori=0,1,2 3, 4) are of the form X, = X, + 7.
We notice that set 4 consists of two vector families, .X; and 7, combined
by means of addition.
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Fig. Vi-2

A second law of composition exists in the set (i = 0, 1, 2, 3, 4); it is
an arithmetic progression.

Finally, the scalar ¢ leads to an antisymmetric variation of the com-
ponents & and @ of X,, the second # remaining invariant.

TEMPORAL ALGEBRA (IN SET T)

The sonic statement of the vectors X; ol set 4 is successive:
NT1XT1TXT--

T being the operator “before.”

This boils down to saying that the origin O ofthebasc of 4 & E; = V
is displaced on the axis of time, a shifting that has nothing to do with the
change of the base, which is in fact an operation within space £ of base
k, g, @. Thus in the case of a simultaneity (a chord) of the attacks of the six
vectors described for set 4, the displacement would be zero.

In Fig. VI-3 the segments designated on the axis of time by the origins
O of X, are equal and obey the function Af = At;, which is an internal law
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of composition in set 7; or consider an origin O’ on the axis of time and a
segment unit equal to Af; thent, = a + iAf, fori = 1,2, 3, 4, 5.

Fig. Vi-3

ALGEBRA IN-TIME (RELATIONS BETWEEN SPACE E3 AND SET 7))

We may say that the vectors X, of 4 have components H, G, U, which
may be expressed as a function of a parameter ¢, Here ¢, = A¢; the values
are lexicographically ordered and defined by the increasing order i = 1, 2,
3, 4, 5. This constitutes an association of each of the components with the
ordered set 7'. It is therefore an algebration of sonic events that is indepen-
dent of time (algebra outside-time), as well as an algebration of sonic events
as a function of time (algcbra in-time).

In general we admit that a vector X is a function of the parameter of
time ¢ if its components are also a function of ¢. This is written

X(t) = Hk + G(1)E + Uz

When these functions are continuous they have differentials. What is
the meaning of the variations of X as a function of time ¢? Suppose

dX_dHﬁ dG _  dU _
A A

If we neglect the variation of the component G, we will have the following
conditions: For dH[dt = 0, H = ¢,, and dUJdt = 0, U = ¢,, H and U will
be independent of the variation of ¢; and for ¢, and ¢, # 0, the sonic event
will be of invariable pitch and duration. If ¢, and ¢, = 0, there is no sound
(silence). (See Fig, VI-4.)

For dH|dt =0, H = ¢,, and dUjdt = ¢,, U = ¢c,t + k, if ¢, and
¢, # 0, we have an infinity of vectors at the unison. If ¢, = 0, then we have
a single vector of constant pitch ¢, and duration U = . (See Fig. VI-5).
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For dH|dt = 0, H = ¢,, and dUjdt = f(t), U = F(t), we have an
infinite family of vectors at the unison. )
For dH|dt = ¢,, H= ¢t + k, and dU/dt =0, U=¢, if ¢, <&
lim & = 0, we have a constant glissando of a single sound. If ¢, > 0, then
we have a chord composed of an infinity of vectors of duration ¢, (thick
constant glissando). (See Fig. VI=-6.)

7

C o eeeenenn [———

h cu

t, @

Fig. VI-4

h

Ch S S = - . R p—

Cu-t‘ +k

Fig. VI-5 t,u

Fig. VI-6 z,

iy
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For dH[dt = ¢,, H = ¢,t + k, and dUjdt = ¢,, U = ¢,t + 7, we have a
chord of an infinity of vectors of variable durations and pitches. (See

Fig. VI-7.)

[ % Y

S

Fig. VI-7

t,4
For dH|dt = ¢,, H = ¢t + k, and dU/Jdt = f(t), U = F(t), we have a
chord of an infinity of vectors. (See Fig. VI-8.)
C

Fig. VI-8

. For dH[dt = f(t), H=F(¢), and dUjdt =0, U = ¢,, if ¢, < e,
lim & = 0, we have a thin variable glissando. If ¢, > 0, then we have a

chord of an infinity of vectors of duration ¢, (thick variable glissando). (See
Fig. VI-9.)

H=F(t)

Uz Cu

Fig. VI-9

(aad}
sy

Formalized Music

Symbolic Music 169

For dH|dl = f(t), H = F(1), and dU/dt = s(t), U = §(t), we have a
chord of an infinity of vectors. (See Fig. VI-10.)

M E —
:’é J7J
"/g: F 4
= T uesw
Fig. VI-10 —
t,%

In the example drawn from Beethoven, set 4 of the vectors X is not a
continuous function of ¢ The correspondence may be written

X% X X X X X
o Lty ty ty g

Because of this correspondence the vectors are not commutable.

Set B is analogous to set 4. The fundamental difference lies in the change
of base in space Ej relative to the base of 4. But we shall not pursue the
analysis.

Remark

If our musical space has two dimensions, e.g., pitch-time, pitch-intensity,
pressure-time, efc., it is interesting to introduce complex variables. Let x be
the time and y the pitch, plotted on the i axis. Then z = x + yiis a sound of
pitch y with the attack at the instant x. Let there be a plane us with the
following equalities: u = u(x,y), v = v(x,y), and w = u + vi. They define
a mapping which establishes a correspondence between points in the uv
and xy planes. In general any w is a transformation of z.

The four forms of a melodic line (or of a twelve-tone row) can be
represented by the following complex mappings:

w = z, withu = xand » = y, which corresponds to identity (original form)

w = |z|?/z, with u = x and » = —y, which corresponds to inversion

w = |z|*/—zwithu = —xand v = y, which corresponds to retrogradation
w = —z withu = —xand » = —y, which corresponds to inverted retro-
gradation.
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These transformations form the Klein group.?
Other transformations, as yet unknown, even to present-day musicians,

could be envisaged. They could bhe applied to any product of two sets of

sound characteristics. For example,w = (422 + Bz + ¢)/(Dz® + Ez + ry,
which can be considered as a combination of two bilinear transformations
separated by a transformation of the type p = o2. Furthermore, for a
musical space of more than two dimensions we can introduce hypercomplex
systems such as the system of quaternions.

EXTENSION OF THE THREE ALGEBRAS TO SETS OF
SONIC EVENTS (an application)

We have noted in the above three kinds of algebras:

1. The algebra of the components of a sonic event, with its vector
language, independent of the procession of time, therefore an algebra
outside-time.

2. A temporal algebra, which the sonic events create on the axis of metric
time, and which is independent of the vector space.

3. An algebra in-time, issuing from the correspondences and functional
relations between the clements of the set of vectors X and of the sct of metric
time, 7', independent of the set of X.

All that has been said about sonic events themselves, their components,
and about time can be generalized for sets of sonic events ¥ and for sets T.

In this chapter we have assumed that the reader is familiar with the
concept of the set, and in particular with the concept of the class as it is
interpreted in Boolean algebra. We shall adopt this specific algebra
which is isomorphic with the theory of sets. ,

‘To simplify the exposition, we shall first take a concrete example by
c?ns1dering the referential or universal set R, consisting of all the sounds of a
piano. We shall consider only the pitches; timbres, attacks, intensities, and
duratl?ns will be utilized in order to clarify the exposition of the logical
operations and relations which we shall impose on the set of pitches.

- Suppose, then, a set 4 of keys that have a characteristic property.
T}ns will be set A4, a subset of set R, which consists of all the keys of the
piano. This subset is chosen a priori and the characteristic property is the
particular choice of a certain number of keys.

For the amnesic observer this class may be presented by playing the
keys one after the other, with a period of silence in between. He will deduce
from this that he has heard a collection of sounds, or a listing of elements,
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Another class, B, consisting of a certain number of keys, is chosen in the
same way. It is stated after class 4 by causing the elements of B to sound.

The obscrver hearing the two classes, 4 and B, will note the temporal
fact: 4 before B; A T B, (T = before). Next he begins to notice relation-
ships betwceen the elements of the two classes. If certain elements or keys are
common to both classes the classes intersect. If none are common, they are
disjoint, If all the clements of B are common to one part of A he deduces that
B is a class included in A. If all the elements of B are found in 4, and all the
elements of A are found in B, he deduces that the two classes are indistin-
guishable, that they are equal.

Let us choose 4 and B in such a way that they have some clcments in
common. Let the observer hear first 4, then B, then the common part. He
will deduce that: 1. there was a choice of keys, 4; 2. there was a second choice
of keys, B; and 3. the part common to 4 and B was considered. The opera-
tion of intersection (conjunction) has therefore been used:

A-B or B-A.

This operation has thercfore engendered a new class, which was symbolized
by the sonic enumeration of the part common to 4 and B.

If the observer, having heard A and B, hears a mixture of all the ele-
ments of 4 and B, he will deduce that a new class is being considered, and
that a logical summation has been performed on the first two classes. This
operation is the union (disjunction) and is written

A+ B or B+ A

If class 4 has been symbolized or played to him and he is made to hear
all the sounds of R except those of A4, he will deduce that the complement
of 4 with respect to R has been chosen. This is a new operation, negation,
which is written 4.

Hitherto we have shown by an imaginary expcriment that we can
define and state classes of sonic events (while taking precautions for clarity
in the symbolization); and effect three operations of fundamental impor-
tance: intersection, union, and negation.

On the other hand, an observer must undertake an intellectual task
in order to deduce from this both classes and operations. On our planc of
immediate comprehension, we replaced graphic signs by sonic events. We
consider these sonic events as symbols of abstract entities furnished with
abstract logical relations on which we may effect at least the fundamental
operations of the logic of classes. We have not allowed special symbols for
the statement of the classes; only the sonic enumeration of the generic



172 Formalized Music

elements was allowed (though in certain cases, if the classes are already
known and if there is no ambiguity, shortcuts may be taken in the state-
ment to admit a sort of mnemotechnical or even psychophysiological
stenosymbolization).

We have not allowed special sonic symbols for the three operations
which are expressed graphically by -, +, — ; only the classes resulting from
these operations are expressed, and the operations are consequently deduced
mentally by the observer. In the same way the observer must deduce the
relation of equality of the two classes, and the relation of implication based
on the concept of inclusion. The empty class, however, may be symbolized
by a duly presented silence. In sum, then, we can only state classes, not the
operations. The following is a list of correspondepces between the sonic
symbolization and the graphical symbolization as we have just defined it:

Graphic symbols Sonic symbols
Classes 4, B, C, . ..

Sonic enumeration of the generic
elements having the properties 4, B,
€, ... (with possible shortcuts)

Intersection (-)
Union (+)
Negation (—)
Implication (—)
Membership (g)
4

1]

Sonic enumeration of the elements of
R not included in A

A-B Sonic enumeration of the elements of
A-B

A+ B Sonic enumeration of the elements of
A4+ B

A= B

A=2B —_—

This table shows that we can reason by pinning down our thoughts by
means of sound. This is true even in the present case where, because of a
concern for economy of means, and in order to remain close to that immedi-
ate .intuition from which all sciences are built, we do not yet wish to propose
sonic conventions symbolizing the operations -, +, —, and the relations
=, —>. Thus propositions of the form 4, E, I, O may not be symbolized by
sounds, nor may theorems. Syllogisms and demonstrations of theorems may
only be inferred.
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Besides these logical relations and operations outside-time, we have
seen that we may obtain temporal classes (T classes) issuing from the sonic
symbolization that defines distances or intervals on the axis of time. The role
of time is again defined in a new way. It serves primarily as a crucible, mold,
or space in which are inscribed the classes whose relations one must decipher.
Time is in some ways equivalent to the area of a sheet of paper or a black-
board. It is only in a secondary sense that it may be considered as carrying
generic elements (temporal distances) and relations or operations between
these elements (temporal algebra).

Relations and correspondences may be established between these
temporal classes and the outside-time classes, and we may recognize in-time
operations and relations on the class level.

After these general considerations, we shall give an example of musical
composition constructed with the aid of the algebra of classes. For this we
must search out a necessity, a knot of interest.

Construction

Every Boolean expression or function F (4, B, C), for example, of the
three classes 4, B, C can be expressed in the form called disjunctive canonic:

where 6, = 0; 1 and 4, = A-B.C, A-B.C, A-B.C, A-B-C, 4-B-C, A-B-C,
4.B-.¢, 4-B.C.

A Boolean function with n variables can always be written in such a way

as to bring in a maximum of operations +, +, —, equal to 32.2"72 — 1.
For n = 3 this number is 17, and is found in the function
F=A4BC+ A-B.C+ A4AB-C+ 4.B-C. (1

For three classes, each of which intersects with the other two, function (1)
can be represented by the Venn diagram in Fig. VI-11. The flow chart of
the operations is shown in Fig. VI-12.

This same function ¥ can be obtained with only ten operations:

F=(A-B+ A.B)C+ (4-B + 4-B).C. (2)

Its flow chart is given in Fig. VI-13,
If we compare the two expressions of /, each of which defines a different
procedure in the composition of classes 4, B, C, we notice a more clegant
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Fig. VI-11 —

Fig. VI-12
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symmetry in (1) than in (2). On the other hand (2) is more economical (ten
operations as against seventeen). It is this comparison that was chosen for
the realization of Herma, a work for piano. Fig. VI-14 shows the [low chart
that directs the operations of (1) and (2) on two parallel plancs, and Fig.
VI-15 shows the precise plan of the construction of Herma.

The three classes 4, B, C result in an appropriate set of keys of the piano.
There exists a stochastic correspondence between the pitch components and
the moments of occurrence in set 7, which themsclves follow a stochastic
law. The intensitics and densities (number of vectors/sec.), as well as the
silences, help clarify the levels of the composition. This work was composed
in 1960-61, and was first performed by the extraordinary Japancsc pianist
Yuji Takahashi in Tokyo in February 1962.
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Conclusions and Extensions
for Chapters I-VI

I have sketched the general framework of an artistic attitude which, for the
first time, uscs mathematics in three fundamental aspects: 1. as a philo-
sophical summary of the entity and its evolution, c.g., Poisson’s law; 2. as a
qualitative foundation and mechanism of the Logos, e.g., symbolic logic, set
theory, theory of chain events, game theory; and 3. as an instrument of
mensuration which sharpens investigation, possible realizations, and per-
ception, e.g., entropy calculus, matrix calculus, vector calculus.

To make music means to express human intelligence by sonic means.
This is intelligence in its broadest sense, which includes not only the pere-
grinations of pure logic but also the “logic’ of emotions and of intuition.
The technics set forth here, although often rigorous in their internal struc-
ture, leave many openings through which the most complex and mysterious
factors of the intelligence may penetrate. These technics carry on steadily
between two age-old poles, which are unified by modern science and
philosophy: determinism and fatality on the one hand, and free will and
unconditioned choice on the other. Between the two poles actual everyday
lifc goes on, partly fatalistic, partly modifiable, with the whole gamut of
intcrpenetrations and interpretations.

In reality formalization and axiomatization constitute a procedural
guide, better suited to modern thought. They permit, at the outset, the
placing of sonic art on a more universal plane. Once more it can be con-
sidered on the same level as the stars, the numbers, and the riches of the
human brain, as it was in the great periods of the ancient civilizations. The
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movements of sounds that cause movements in us in agreement with them
“procure a common pleasure for those who do not know how to reason; and
for those who do know, a reasoned joy through the imitation of the divine
harmony which they realize in perishable movements” (Plato, Timaeus).

The theses advocated in this exposition are an initial sketch, but they
have already been applied and extended. Imagine that all the hypotheses of
generalized stochastic composition as described in Chapter II were to be
applied to the phenomena of vision. Then, instead of acoustic grains, sup-
pose quanta of light, i.e., photons. The components in the atomic, quan-
tic hypothesis of sound—intensity, [requency, density, and lexicographic
time—are then adapted to the quanta of light,

A single source of photons, a photon gun, could theoretically reproduce
the acoustic screens described above through the emission of photons of a
particular choice of frequencies, energies, and densities. In this way we could
create a luminous flow analogous to that of music issuing from a sonic source.
If we then join to this the coordinates of space, we could obtain a spatial
music of light, a sort of space-light. It would only be necessary to activate
photon guns in combination at all corners in a gloriously illuminated area
of space. It is technically possible, but painters would have to emerge from
the lethargy of their craft and forsake their brushes and their hands, unless
a new type of visual artist were to lay hold of these new ideas, technics, and
needs.

A new and rich work of visual art could arise, whose evolution would
be ruled by huge computers (tools vital not only for the calculation of bombs
or price indexes, but also for the artistic life of the future), a total audiovisual
manifestation ruled in its compositional intelligence by machines serving
other machines, which are, thanks to the scientific arts, directed by man.



Chapter Vii

Towards a Metamusic

Today’s technocrats and their followers treat music as a message which the
composer (source) sends to a listener (receiver). In this way they believe
that the solution to the problem of the naturc of music and of the arts in
general lies in formulae taken from information theory. Drawing up an ac-
count of bits or quanta of information transmitted and received would thus
seem to provide them with “objective” and scientific critcria of aesthetic
value. Yet apart from elementary statistical recipes this theory—which
is valuable for technological communications—has proved incapable of
giving the characteristics of aesthetic value even for a simple melody of
J. 5. Bach. Identifications of music with message, with communication, and
with language are schematizations whose tendency is towards absurdities
and desiccations. Certain African tom-toms cannot be included in this
criticism, but they are an exception. Hazy music cannot be forced into too
precise a theoretical mold. Perhaps, it will be possible later when present
theories have been refined and new ones invented.

The followers of information theory or of cybernetics represent one
extreme. At the other end there are the intuitionists, who may be broadly
divided into two groups:

1. The “graphists,” who exalt the graphic symbol above the sound of
the music and make a kind of fetish of it. In this group it is the fashionable
thing not to write notes, but to create any sort of design. The “music” is
judged according to the beauty of the drawing. Related to this is the so-called
aleatory music, which is an abuse of language, for the true term should be

English translation of Chapter VII by G. W. Hopkins.
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the “improvised” music our grandfathers knew. This group is ignorant of
the fact that graphical writing, whether it be symbolic, as in traditional
notation, geometric, or numerical, should be no more than an image that
is as faithful as possible to all the instructions the composer gives to the
orchestra or to the machine.* This group is taking music outside itself.

2. Those who add a spectacle in the form of extra-musical scenic action
to accompany the musical performance. Influenced by the “happenings”
which express the confusion of certain artists, these composers take refuge
in mimetics and disparate occurrences and thus betray their very limited
confidence in pure music. In fact they concede certain defeat for their
music in particular.

The two groups share a romantic attitude. They believe in immediate
action and are not much concerned about its control by the mind. But
since musical action, unless it is to risk falling into trivial improvisation,
imprecision, and irresponsibility, imperiously demands reflection, these
groups are in fact denying music and take it outside itself.

Linear Thought

I shall not say, like Aristotle, that the mean path is the best, for in
music—as in politics—the middle means compromise, Rather lucidity and
harshness of critical thought—in other words, action, reflection, and self-
transformation by the sounds themselves—is the path to follow. Thus when
scientific and mathematical thought serve music, or any human creative
activity, it should amalgamate dialectically with intuition. Man is one,
indivisible, and total. He thinks with his belly and feels with his mind. I
would like to proposc what, to my mind, covers the term “music”:

1. It is a sort of comportment necessary for whoever thinks it and
makes it.

2. Itis an individual pleroma, a realization.

3. It is a fixing in sound of imagined virtualities (cosmological,
philosophical, . . ., arguments).

4. Itis normative, that is, unconsciously it is 2 modcl for being or for
doing by sympathctic drive.

5. Itis catalytic: its mere presence permits internal psychic or mental
transformations in the same way as the crystal ball of the hypnotist.

6. It is the gratuitous play of a child.

7. Itis a mystical (but atheistic) asceticism. Consequently expressions
of sadness, joy, love, and dramatic situations are only very limited particular
instances.
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Musical syntax has undergone considerable upheaval and today it
scems that innumerable possibilities coexist in a state of chaos. We have an
abundance of theories, of (sometimes) individual styles, of more or less
ancient “schools.” But how does one make music? What can be communi-
cated by oral teaching? (A burning question, if one is to reform musical
education—a reform that is necessary in the entire world.)

It cannot be said that the informationists or the cyberneticians—much
less the intuitionists—have posed the question of an ideological purge of the
dross accumulated over the centuries as well as by present-day develop-
ments. In general they all remain ignorant of the substratum on which they
found this theory or that action. Yet this substratum exists, and it will allow
us to establish for the first time an axiomatic system, and to bring forth a
formalization which will unify the ancient past, the prescht, and the future;
moreover it will do so on a planetary scale, comprising the still separate
universes of sound in Asia, Africa, etc.

In 1954% 1 denounced linear thought (polyphony), and demonstrated the
contradictions of serial music. In its place I proposed a world of sound-
masses, vast groups of sound-events, clouds, and galaxies governed by new
characteristics such as density, degree of order, and rate of change, which
required definitions and realizations using probability theory. Thus stochas-
tic music was born. In fact this new, mass-conception with large numbers
was more general than linear polyphony, for it could embrace it as a particu-
lar instance (by reducing the density of the clouds). General harmony ?
No, not yet.

Today these ideas and the realizations which accompany them have
been around the world, and the exploration seems to be closed for all
intents and purposes. However the tempered diatonic system—our musical
terra firma on which all our music is founded—seems not to have been
breached either by reflection or by music itself.® This is where the next stage
will come. The exploration and transformations of this system will herald
a new and immensely promising era. In order to understand its determina-
tive importance we must look at its pre-Christian origins and at its subse-
quent development. Thus I shall point out the structure of the music of
ancient Greece; and then that of Byzantine music, which has best preserved
it while developing it, and has done so with greater fidelity than its sister,
the occidental plainchant. After demonstrating their abstract logical con-
struction in a modern way, I shall try to express in a simple but universal
mathematical and logical language what was and what might be valid in
time (transverse musicology) and in space (comparative musicology)
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In order to do this I propose to make a distinction in musiFal arf:hi—
tecturesor categories between outside-time,* in-time, and temporal. A g.lven pitch
scale, for example, is an outside-time architecture, for no }?orlzontal f)r
vertical combination of its elements can alter it. The event in itself, that is,
its actual occurrence, belongs to the temporal category. Final_ly, a melody
or a chord on a given scale is produced by relating the outside—t.lme category
to the temporal category. Both are realizations in-time of outside-time con-
structions. I have dealt with this distinction already, but here I shall show
how ancient and Byzantine music can be analyzed with.the aid of thesF cate-
gories. This approach is very general since it permits both a umve.rsal
axiomatization and a formalization of many of the aspects of the various
kinds of music of our planet.

Structure of Ancient Music

Originally the Gregorian chant was founded on the structure. of anciFnt
music, pace Combarieu and the others who accused Huchald of being behind
the times. The rapid evolution of the music of Western Europe after the
ninth century simplified and smoothed out the plainchant, and.theory was
left behind by practice. But shreds of the ancient theory can st111_bc found
in the secular music of the [ilteenth and sixteenth centuries, w1tne§s t‘he
Terminorum Musicae diffinitorium of Johannis Tinctoris.®> To look at anthul.ty
scholars have been looking through the lens of the Gregorian char}t a‘nd its
modes, which have long ccased to be understood. We arc only beginning to
glimpse other directions in which the modes of the plainchant can .be ex-
plained. Nowadays the spccialists are saying that the modes arc not in fact
proto-scales, but that they are rather characterized by H'I'CIOdlC formulae.
To the best of my knowledge only Jacques Chailley® has introduced other
concepts complementary to that of the scale, and he would seem to be
correct. I believe we can go further and affirm that ancient music, at Icast
up to the first centuries of Christianity, was not based at all on scales and
modes related to the octave, but on tetrachords and systems. ‘

Experts on ancient music (with the above exception) have ignored this
fundamental reality, clouded as their minds have been by the tonal con-
struction of post-medicval music. However, this is what the Greeks used
in their music: a hierarchic structure whosc complexity proceeded by succes-
sive “nesting,” and by inclusions and interscctions from the pZ}r'ticular
to the general; we can trace its main outline if we follow the writings of
Aristoxenos:”

A. The primary order consists of the tone and its subdivisions. The whole
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tone is defined as the amount by which the interval of a fifth (the penta-
chord, or dia pente) excceds the interval of a fourth (the tetrachord, or dia
tessaron). The tone is divided into halves, called semifones; thirds, called
chromatic dieseis; and quarters, the extremely small enharmonic dieseis. No
interval smaller than the quarter-tonc was used.

B. The secondary order consists of the tetrachord. It is bounded by the
interval of the dia fessaron, which is equal to two and a half tones, or thirty
twelfth-tones, which we shall call Aristoxencan scgments. The two outer
notes always maintain the same interval, the fourth, while the two inner notes
are mobile. The positions of the inner notes determine the three genera of
the tetrachord (the intervals of the filth and thc octave play no part in it).
The position of the notes in the tetrachord are always counted from the
lowest note up:

1. The enharmonic genus contains two cnharmonic dieseis, or
3 + 3 + 24 = 30 scgments. If X cquals the value of a tone, we can express
the enharmonic as X/*. X1/%. X2 = X5/2,

2. The chromatic genus consists of three types: a. soft, containing two
chromatic dieseis, 4 + 4 + 22 = 30, or X¥3. X3 YWs+3/2) - X5/2; }
hemiolon (sesquialterus), containing two hemioloi dieseis, 4.5 + 4.5 + 21
= 30 segments, or X@DA/H, Y@I2010), ¥7/4 — X512; and ¢, “toniaion,” con-
sisting of two semitones and a trihemitone, 6 + 6 + 18 = 30 segments,
or X1/2.X1/2.X3/2 —_ X5I2.

3. The diatonic consists of: a. soft, containing a semitone, then three
enharmonic dieseis, then five enharmonic dieseis, 6 + 9 + 15 = 30 seg-
ments, or X1/2. X34. Y5i¢ — X5/2; 1, syntonon, containing a semitone, a
whole tone, and another whole tone, 6 + 12 + 12 = 30 segments, or
X1I2 _X_X — X5/2.

C. The tertiary order, or the system, is essentially a combination of the
elements of the first two—tones and tetrachords either conjuncted or
separated by a tone. Thus we get the pentachord (outer interval the perfect
fifth) and the octochord (outcr interval the octave, sometimes perfect). The
subdivisions of the system follow exactly those of the tetrachord. They are
also a function of connexity and of consonance.

D. The guaternary order consists of the tropes, the keys, or the modes,
which were probably just particularizations of the systems, derived by
means of cadential, melodic, dominant, registral, and other formulae, as in
Byzantine music, ragas, etc.

These orders account for the outside-time structure of Hellenic music.
After Aristoxenos all the ancicnt texts one can consult on this matter give
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this same hierarchical procedurc. Scemingly Aristoxenos was used as a
model. But later, traditions parallel to Aristoxenos, defective interpretatmn?,
and sediments distorted this hierarchy, even in ancient times. Moreover, it
seems that theoreticians like Aristides Quintilianos and Claudios Ptolemaeos
had but little acquaintance with music.

This hierarchical “tree” ‘was completed by transition algorithms—
the metabolae—from one genus to another, from one system to another, or
from one mode to another, This is a far cry from the simple modulations or
transpositions of post-medieval tonal music.

Pentachords are subdivided into the same genera as the tetrachord they
contain, They are derived from tetrachords, but nonetheless are used as
primary concepts, on the same footing as the tetrachord, in order to define
the interval of a tone. This vicious circle is accounted for by Aristoxenos’
determination to remain faithful to musical experience (on which he insists),
which alone defines the structure of tetrachords and of the entire harmonic
edifice which results combinatorially from them. His whole axiomatics
proceeds from there and his text is an example of a method to be followed.
Yet the absolute (physical) value of the interval dia tessaron is left undefined,
whereas the Pythagoreans defined it by the ratio 3/4 of the lengths of the
strings. I believe this to be a sign of Aristoxenos’ wisdom; the ratio 3/4
could in fact be a mean value.

Two Languages

Attention must be drawn to the fact that he makes use of the additive
operation for the intervals, thus foreshadowing logarithms bcfore their
time; this contrasts with the practice of the Pythagoreans, who used the
geometrical (exponential) language, which is multiplicative. Here, the
method of Aristoxenos is fundamental since: 1. it constitutes one of the two
ways in which musical theory has been expressed over the millennia; 2. b}/
using addition it institutes a means of ““calculation’ that is more cconomi-
cal, simpler, and better suited to music; and 3. it lays the foundation of the
tempered scale nearly twenty centuries before it was applied in Western
Europe.

Over the centuries the two languages—arithmetic (operating by
addition) and geometric (derived from the ratios of string lengths, and
operating by multiplication)—have always intermingled and interpene-
trated so as to create much uscless confusion in the reckoning of intervals
and consonances, and consequently in thcories. In fact they are both ex-
pressions of group structure, having two non-identical operations; thus they
have a formal equivalence.?



186 Formalized Music

There 1s a hare-brained notion that has been sanctimoniously repeated
by musicologists in recent times. “ The Greeks,” they say, “had descending
scales instead of the ascending oncs we have today.” Yet there is no trace
of this in either Aristoxenos or his successors, including Quintilianos® and
Alypios, who give a new and fuller version of the steps of many of the tropes,
On the contrary, the ancient writers always begin their theoretical explana-
tions and nomenclaturc of the steps from the bottom. Another bit of foolish.

ness is the supposed Aristoxenean scale, of which no trace is to be found in
his text.10

Structure of Byzantine Music

Now we shall look at the structure of Byzantine music. It can contribute
to an infinitely better understanding of ancient music, occidental plain-
chant, non-European musical traditions, and the dialectics of recent Euro-
pean music, with its wrong turns and dead-ends. It can also serve to foresee
and construct the future from a view commanding the remote landscapes
of the past as well as the electronic future. Thus new directions of research
would acquire their full value. By contrast the deficiencies of serial music in
f:crtain domains and the damage it has done to musical evolution by its
1gnorant dogmatism will be indirectly exposed,

Byzantine music amalgamates the two means of calculation, the
Pythagorean and the Aristoxenean, the multiplicative and the additive,11
The fourth is expressed by the ratio 3/4 of the monochord, or by the 30
tcmpered segments (72 to the octave).!? It contains three kinds of tones:
major (9/8 or 12 segments), minor (10/9 or 10 segments), and minima]
(16/15 or 8 segments). But smaller and larger intervals are constructed and
the. elementary units of the primary order are more complex than in
A'rlsto‘xenos. Byzantine music gives a preponderant role to the natural
fizatonzc scale (the supposed Aristoxenean scale) whose steps are in the follow-
Ing ratios to the first note: 1, 9/8, 5/4, 4/3, 27/16, 15/8, 2 (in segments 0
12, 22, 30, 42, 54, 64, 72; or 0, 12, 23, 30, 42, 54, 65, 72). The degrees of"
this scale bear the alphabetical names 4, B, U,AE Z and H. A is the
lowest note and corresponds roughly to G,. This scale was propounded at
least as far back as the first century by Didymos, and in the second century
by Ptolemy, who permuted one term and recorded the shift of the tetra-
chord (tone-tone-semitone), which has remained unchanged ever since,13
B}Jt apart from this dia pason (octave) attraction, the musical architecture ig
hierarchical and “nested” as in Aristoxenos, as follows:

A. The primary order is based on the three tones 9/8, 10/9, 16/15, a

Towards a Metamusic 187

supermajor tone 7/6, the trihemitonc 6/5, another major tonc 15/14, the
semitone or leima 256/243, the apotome of the minor tone 135/128, and
finally the comma 81/80. This complexity results from the mixture of the
two means of calculation.

B. The secondary order consists of the tetrachords, as defined in Aristox-
enos, and similarly the pentachords and the octochords. The tetrachords
are divided into three genera:

1. Diatonic, subdivided into: first scheme, 12 + 11 + 7 = 30 seg-
ments, or (9/8)(10/9)(16/15) = 4/3, starting on A, H, ctc; second scheme,
11 + 7 + 12 = 30 segments, or (10/9)(16/15)(9/8) = 4/3, starting on E,
A, ctc; third scheme, 7 + 12 + 11 = 30 segments, or (16/15)(9/8)(10/9) =
4/3, starting on Z, etc. Here we notice a developed combinatorial method
that is not evident in Aristoxenos; only three of the six possible permutations
of the three notes are used.

2. Chromatic, subdivided into:'* a. soft chromatic, derived from the
diatonic tetrachords of the first scheme, 7 + 16 + 7 = 30 segments, or
(16/15)(7/6)(15/14) = 4/3, starting on A, H, ctc.; b. syntonon, or hard
chromatic, derived from the diatonic tetrachords of the second scheme,
5 4+ 19 + 6 = 30 segments, or (256/243)(6/5)(135/128) = 4/3, starting on
E, A, cte.

3. Enharmonic, derived from the diatonic by alteration of the mobile
notes and subdivided into: first scheme, 12 + 12 + 6 = 30 segments, or
(9/8)(9/8)(256/243) = 4/3, starting on Z, H, T, etc.; sccond scheme,
12 + 6 + 12 = 30 scgments, or (9/8)(256/243)(9/8) = 4/3, starting on
A, H, 4, ctc.; third scheme, 6 4+ 12 + 12 = 30 scgments, or (256/243)(9/8)
(9/8) = 4/3, starting on E, 4, B, etc.

PARENTHESIS

We can sec a phenomenon of absorption of the ancient enharmonic
by the diatonic. This must have taken place during the first centuries of
Christianity, as part of the Church fathers’ struggle against paganism and
certain of its manifestations in the arts. The diatonic had always been con-
sidered sober, severe, and noble, unlike the other types. In fact the chromatic
genus, and espcecially the enharmonic, demanded a more advanced musical
culture, as Aristoxenos and the other theoreticians had already pointed out,
and such a culture was even scarcer among the masses of the Roman period.
Conscquently combinatorial speculations on the one hand and practical
usage on the other must have causcd the specific characteristics of the en-
harmonic to disappear in favor of the chromatic, a subdivision of which fell
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away in Byzantine music, and of the syntonon diatonic. This phenomenon
of absorption is comparable to that of the scales (or modes) of the Renais-
sance by the major diatonic scale, which perpetuates the ancient syntonon
diatonic.

However, this simplification is curious and it would be interesting to
study the cxact circumstances and causes. Apart from differences, or rather
variants of ancient intervals, Byzantine typology is built strictly on the
ancient. It builds up the next stage with tetrachords, using definitions which
singularly shed light on the theory of the Aristoxenean systems; this was
expounded in some detail by Ptolemy.®

THE SCALES

C. The tertiary order consists of the scales constructed with the help of
systems having the same ancient rules of consonance, dissonance, and asso-
nance (paraphonia). In Byzantine music the principle of iteration and
Jjuxtaposition of the system lcads very clearly to scales, a development which
is still fairly obscure in Aristoxenos and his successors, except for Ptolemy.
Aristoxenos seems to have seen the system as a category and end in itself;
and the concept of the scale did not emerge independently from the method
which gave rise to it. In Byzantine music, on the other hand, the system was
called a method of constructing scalcs. It is a sort of iterative operator, which
starts from the lower category of tetrachords and their derivatives, the
pentachord and the octochord, and builds up a chain of more complex
organisms, in the same manner as chromosomes based on genes. From this
point of view, system-scale coupling reached a stage of fulfillment that had
been unknown in ancient times. The Byzantines defined the system as the
simple or multiple repetition of two, several, or all the notes of a scale,
“Scale” here means a succession of notes that is already organized, such

as the tetrachord or its derivatives. Three systems are used in Byzantine
music:

the octachord or dia pason
the pentachord or wheel (trochos)
the tetrachord or triphony.

The system can unite elements by conjunct (synimenon) or disjunct
(diazeugmenon) juxtaposition. The disjunct juxtaposition of two tetra-
chords one tone apart form the dia pason scale spanning a perfect octave.
"The conjunct juxtaposition of several of these perfect octave dia pason leads
to the scales and modes with which we arc familiar. The conjunct juxta-
position of several tetrachords (triphony) produces a scale in which the
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octave is no longer a fixed sound in the tetrachord but one of its mobile
sounds. The same applies to the conjunct juxtaposition of several pentachords
(trochos).

The system can be applied to the three genera of tetrachords and to
each of their subdivisions, thus creating a very rich collection of scales.
Finally one may even mix the genera of tetrachords in the same scale (as in
the selidia of Ptolemy), which will result in a vast variety. Thus the scale
order is the product of a combinatorial method—indeed, of a gigantic
montage (harmony)—by iterative juxtapositions of organisms that are
already strongly differentiated, the tetrachords and their derivatives. The
scale as it is defined here is a richer and more universal conception than all
the impoverished conceptions of medieval and modern times. From this
point of view, it is not the tempered scale so much as the absorption by the
diatonic tetrachord (and itscorresponding scale) of all the othercombinations
or montages (harmonies) of the other tetrachords that represents a vast loss
of potential. (The diatonic scale is derived from a disjunct system of two
diatonic tetrachords scparated by a whole tone, and is represented by the
white keys on the piano.) It is this potential, as much scnsorial as abstract,
that we are seeking here to reinstate, albeit in a modern way, as will be
seen.

The following are examples of scales in segments of Byzantine tem-
pering (or Aristoxenean, since the perfect fourth is cqual to 30 scgments):

Diatonic scales. Diatonic tetrachords: system by disjunct tettachords,
12, 11, 7; 12; 11, 7, 12, starting on the lower A, 12, 11, 7; 12; 12, 11, 7,
starting on the lower H or A; system by tetrachord and pentachord, 7, 12,
1157, 12,12, 11, starting on the lower Z; wheel system (trochos), 11, 7, 12,
12; 11, 7, 12, 12; 11, 7, 12, 12; ete.

Chromatic scales. Soft chromatic tetrachords: wheel system starting on
H, 7,16,7,12;7,16,7,12; 7,16, 7, 12; ctc.

Enharmonic scales. Enharmonic tetrachords, second scheme: system by
digjunct tetrachords, starting on 4, 12, 6, 12; 12; 12, 6, 12, corresponding
to the modc produced by all the white keys starting with D, The enharmonic
scales produced by the disjunct system form all the ecclesiastical scales or
modes of the West, and others,for example: chromatic tetrachord, first
scheme, by the triphonic system, starting on low H: 12, 12, 6; 12, 12, 6; 12,
12, 6; 12, 12, 6.

Mixed scales. Diatonic tetrachords, first scheme + soft chromatic;
disjunct system, starting on low H, 12, 11, 7; 12; 7, 16, 7. Hard chromatic
tetrachord + soft chromatic; disjunct system, starting on low #1, 5, 19, 6;
1257, 16, 7; etc. All the montages arc not used, and onc can observe the



190

Formalized Music

phenomenon of the absorption of imperfect octaves by the perfect octave

by virtue of the basic rules of consonance. This is a limiting condition.

D. The quaternary order consists of the tropes or echoi (ichi). The echos

is defined by:

the genera of tetrachords (or derivatives) constituting it
the system of juxtaposition

the attractions

the bases or fundamental notes

the dominant notes

the termini or cadences (katalixis)

the apichima or melodies introducing the mode

the ethos, which follows ancient definitions.

We shall not concern ourselves with

the details *of this quaternary
order.

Thus we have succinctly cxpounded our analysis of the outside-time
structure of Byzantine music.

THE METABOLAE

But this outside-time structure could not be satisfied with a compart-
mentalized hierarchy. It was neccssary to have frec circulation between the
notes and their subdivisions, between the kinds of tetrachords, between the
genera, between the systems, and between the echoi—hence the need for a
sketch of the in-time structure, which we will now look at briefly. There
exist operative signs which allow alterations, transpositions, modulations,
and other transformations (metabolae). These signs are the phthorai and
the chroai of notes, tetrachords, systems (or scales), and echoi.

Note metabolae

The metathesis: transition from a tetrachord of
fourth) to another tetrachord of 30 segments.

The parachordi: distortion of the interval corresponding to the 30
segments of a tetrachord into a larger interval and vice versa; or again,
transition {from one distorted tetrachord to another distorted tetrachord.

Genus Metabolae

Phthora characteristic of the genus, not changing note names

Changing note names

Using the parachordi

Using the chroai.

System melabolae

30 segments (perfect

‘Transition from one system to another using the above metabolac,
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i ikai i or altera-
Echos metabolac using spccial signs, the martyrikai phthorai or
tions of the mode initialization. - catima
Because of the complexity of the mctab.olae, pcd?.l notes (1srot - itse]f)
cannot be “trusted to the ignorant.” Isokratima constitutes an at. : Ofthé
i in-t on
for its function is to emphasize and pick out all the in-time fluctuati
outside-time structure that marks the music.

First Comments

It can easily be seen that the consummat.ion of this Oludtstl)de'-rtll\:stit; u];:y
ture is the most complex and most reﬁnc'd thing that cou ! enl brought &6
monody. What could not be developed in .p.olyp}.mon?r has ec s vears
such luxuriant fruition that to become familiar with 1t'rcqulzle§nstrumcnta_
of practical studies, such as those followed by the vocalists ane 01f the special.
lists of the high cultures of Asia. It seems, however, tha‘t nton S T
ists in Byzantine music recognize the importance of t.hlS s} rL: Clair-ned their
appear that intcrpreting ancicnt systems of notation ha e ofthe
attention to such an extent that they have 1gnorcd. the living o e
Byzantine Church and have put their names to mcorr.ect a;Stff; Grc.gorian
it was only a few ycars ago that one of them*® t<.)ol.< the l1netc})1 e
specialists in attributing to the echoi characFerlsucs other ' :1 nle. They
oriental scales which had been taught them in the conforn;:s scteristi-c e
have finally discovercd that the echoi contained certain ;:1 aranot e
odic formulac, though of a sedimentary nature. But they avlc o amscripts,
or willing to go [urther and abandon their sc.)ft refugc among the and Greg-
Lack of understanding of ancient music,*” of both Byz?‘ntmethe wih
orian origin, is doubtless caused by th(la blindness resulting ro?uncu]%ivatcd
of polyphony, a highly original invention of the barbaroys anf e o and
Occident following the schism of the churches. The passing c; et and
the disappcarance of the Byzantine statc have sz.m,(,:tloncd tust}ntgiS L
this severance. Thus the effort to feel a “harmonic lar}guagc (d I
more refined and complex than that of the syntonon diatonic a_n e
in octaves is perhaps beyond the usual ability of a Westf:rt)r; n:usll;;) e};atc hin':
even though the music of our own day may han: bee-n d-h‘c k9n The only
partly from the overwhelming dominarncc of diatonic t1sm}loi.avc iovaye
exceptions are the specialists in the music ofthcl: Far East, IW 1  they were
remained in close contact with musical practice and, dealing la' lh}c’ e
with living music, have been able to look ff)r a harmony.otherb :: l;:)rlll PR
harmony with twelve semitones. The he.lght of error is to ron using the
transcriptions of Byzantine melodics'® into .Western ;0ta T completely
tempered system. Thus, thousands of transcribed mclodies ar
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wrong! But the real criticism one must level at the Byzantinists is that in
remaining aloof from the great musical tradition of the eastern church, they
have ignored the existence of this abstract and sensual architecture, both
complex and remarkably interlocking (harmonious), thisdeveloped remnant
and genuine achievemnent of the Hellenic tradition. In this way they have
retarded the progress of musicological rescarch in the areas of:

antiquity

plainchant

folk music of European lands, notably in the East2°

musical cultures of the civilizations of other continents

better understanding of the musical evolution of Western Europe from
the middle ages up to the modern period

the syntactical prospects for tomorrow’s music, its enrichment, and its
survival.

Second Comments

I am motivated to present this architecture, which is linked to antiquity
and doubtless to other cultures, because it is an elegant and lively witness
to what I have tried to define as an outside-time category, algebra, or struc-
ture of music, as opposed to its other two categories, in-time and temporal.
It has often been said (by Stravinsky, Messiaen, and others) that in music
time is everything. Those who express this view forget the basic structures on
which personal languages, such as “pre- or post-Webernian” serial music,
rest, however simplified they may be. In order to understand the universal
past and present, as well as prepare the future, it is necessary to distinguish
structures, architectures, and sound organisms from their temporal manifes-
tations. It is therefore necessary to take ‘“‘snapshots,” to make a series of
veritable tomographies over time, to compare them and bring to light their
relations and architectures, and vice versa. In addition, thanks to the
metrical nature of time, one can furnish it too with an outside-time structure,
leaving its true, unadorned nature, that of immediate reality, of instan-
taneous becoming, in the final analysis, to the temporal category alone.

In this way, time could be considered as a blank blackboard, on which
symbols and relationships, architectures and abstract organisms are in-
scribed, The clash between organisms and architectures and instantan-
eous immediate reality gives rise to the primordial quality of the living
consciousness.

The architectures of Greece and Byzantium are concerned with the
pitches (the dominant character of the simple sound) of sound entities.
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Here rhythms are also subjected to an organization, but a much simpler
one. Thercfore we shall not refer to it. Certainly these ancient and Byzantine
models cannot serve as examplcs to be imitated or copied, but rather to
exhibit a fundamental outside-time architecture which has been thwarted
by the temporal architectures of modern (post-medieval) polyphonic music.
These systems, including those of serial music, are still a somewhat confused
magma of temporal and outside-time structures, for no one has yet thought
of unravelling them. However we cannot do this here.

Progressive Degradation of OQutside-Time Structures

The tonal organization that has resulted from venturing into polyphony
and neglecting the ancients has leancd strongly, by virture of its very nature,
on the temporal category, and defined the hierarchies of its harmonic
functions as the in-time category. Outside-time is appreciably poorer, its
“harmonics” being reduced to a single octave scale (C major on the two
bases C and 4), corresponding to the syntonon diatonic of the Pythagorean
tradition or to the Byzantine enharmonic scales based on two disjunct
tetrachords of the first scheme (for €) and on two disjunct tetrachords of the
second and third scheme (for 4). Two metabolae have been preserved: that
of transposition (shifting of the scale) and that of modulation, which consists
of transferring the base onto steps of the same scale. Another loss occurred
with the adoption of the crude tempering of the semitone, the twelfth root
of two. The consonances have been enriched by the interval of the third,
which, until Debussy, had nearly ousted the traditional perfect fourths and
fifths. The final stage of the evolution, atonalism, prepared by the theory
and music of the romantics at the end of the nineteenth and the beginning
of the twentieth centuries, practically abandoned all outside-time structure.
This was endorsed by the dogmatic suppression of the Viennese school, who
accepted only the ultimate total time ordering of the tempered chromatic
scale. Of the four forms of the series, only the inversion of the intervals is
related to an outside-time structure, Naturally the loss was felt, consciously
or not, and symmetric relations between intervals were grafted onto the
chromatic total in the choice of the notes of the series, but these always
remained in the in-time category. Since then the situation has barely
changed in the music of the post-Webernians. This degradation of the
outside-time structures of music since late medieval times is perhaps the
most characteristic fact about the evolution of Western European music, and
it has led to an unparalleled excrescence of temporal and in-time structures.
In this lies its originality and its contribution to the universal culture. But
herein also lies its impoverishment, its loss of vitality, and also an apparent
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risk of reaching an impasse. For as it has thus far developed, European music
is ill-suited to providing the world with a field of expression on a planetary
scale, as a universality, and risks isolating and scvering itsell from historical
necessities. We must open our eyes and try to build bridges towards other
cultures, as well as towards the immediate future of musical thought, before
we perish suffocating from electronic technology, cither at the instrumental
level or at the level of composition by computers.

Reintroduction of the Qutside-Time Structure by Stochastics

By the introduction of the calculation of probability (stochastic music)
the present small horizon of outside-time structures and asymmetries was
completely explored and enclosed. But by the very fagt of its introduction,
stochastics gave an impetus to musical thought that carried it over this
enclosure towards the clouds of sound events and towards the plasticity of
large numbers articulated statistically. There was no longer any distinction
between the vertical and the horizontal, and the indeterminism of in-time
structures made a dignified entry into the musical edifice. And, to crown the
Herakleitean dialectic, indeterminism, by means of particular stochastic
functions, took on color and structure, giving risc to generous possibilities
of organization. It was able to in¢lude in its scope determinism and, still
somewhat vaguely, the outside-time structures of the past. The categories
outside-time, in-time, and temporal, unequally amalgamated in the history
of music, have suddenly taken on all their fundamental significance and for
the first time can build a coherent and universal synthesis in the past,
present, and future. This is, I insist, not only a possibility, but even a direc-
tion having priority. But as yet we have not managed to proceed beyond
this stage. To do so we must add to our arsenal sharper tools, trenchant
axiomatics and formalization.

SIEVE THEORY

It is necessary to give an axiomatization for the totally ordered struc-
ture (additive group structure = additive Aristoxenean structure) of the
tempered chromatic scale.?* The axiomatics of the tempered chromatic
scale is based on Peano’s axiomatics of numbers:

Preliminary terms. O = the stop at the origin; » = a stop; #»’ = a stop
resulting from elementary displacement of n; D = the set of values of the
particular sound characteristic (pitch, density, intensity, instant, speed,
disorder . . .). The values are identical with the stops of the displacements.
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First propositions (axioms).

1. Stop O is an element of D.

2. Ifstop nis an element of D then the new stop #’ is an element of D.

3. Ifstops # and m are elements of D then the new stops 2’ and m’ are
identical if; and only if] stops » and m are identical.

4. If stop z is an element of D, it will be different from stop O at the
origin.

5. If elements belonging to D have a special property P, such that
stop O also has it, and if, for every clement 7 of D having this property the
element n” has it also, all the elements of D will have the property P.

We have just defined axiomatically a tempered chromatic scale not
only of pitcly, but also of all the sound properties or characteristics referred
to above in D (density, intensity . ..). Moreover, this abstract scale, as
Bertrand Russell has rightly obscrved, 4 propos the axiomatics of numbers
of Peano, has no unitary displacement that is either predetermined or related
to an absolute size. Thus it may be constructed with tempered semitones,
with Aristoxenean segments (twelfth-tones), with the commas of Didymos
(81/80), with quarter-tones, with whole tones, thirds, fourths, fifths, octaves,
etc. or with any other unit that is not a factor of a perfect octave.

Now let us define another equivalent scale based on this one but having
a unitary displaccment which is a multiple of the first, It can be expressed
by the concept of congruence modulo m.

Definition. Two integers x and 7 are said to be congruent modulo m when
mis a factor of x — n. It may be expressed as follows: x = n (mod m). Thus,
two Integers are congruent modulo m when and only when they differ by
an exact (positive or negative) multiple of m; e.g., 4 = 19 (mod 5), 3 = 13
(mod 8), 14 = 0 (mod 7).

Consequently, every integer is congruent modulo m with one and with
only one value of n:

n=10(0,1,2,..,m~2 m—~1).

Of each of these numbers it is said that it forms a residual class modulo
m; they are, in fact, the smallest non-negalive residues modulo m. x =
n(mod m) is thus equivalent to x = n + km, where k is an integer.

keZ=1{0, £1, +2, +3,.. .}

For a given n and for any k € Z, the numbers x will belong by definition
to the residual class » modulo m. This class can be denoted m,.
In order to grasp these ideas in terms of music, let us take the tempered
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semitone of our present-day scale as the unit of displacement. To this we
shall again apply the above axiomatics, with say a value of 4 semitones
(major third) as the clementary displacement.22 We shall define a new
chromatic scale. If the stop at the origin of the first scale is a Df, the second
scale will give us all the multiples of 4 semitones, in other words a “scale”’
of major thirds: Df, G, B, D'#, G, B’; these are the notes of the first scale
whose order numbers are congruent with 0 modulo 4. They all belong to the
residual class 0 modulo 4. The residual classes 1, 2, and 3 modulo 4 will use
up all the notes of this chromatic total. These classes may be represented in
the following manner:

residual class 0 modulo 4:4,
residual class 1 modulo 4:4,
residual class 2 modulo 4:4,
residual class 3 modulo 4:4,
residual class 4 modulo 4:4,, etc.

Since we are dealing with a sieving of the basic scale (elementary dis-
placement by one semitone), each residual class forms a sicve allowing
certain elements of the chromatic continuity to pass through. By extension
the chromatic total will be represented as sieve 1,. The scale of fourths will
be given by sieve 5,, in which n = 0, 1, 2, 3, 4. Every change of the index 7
will entail a transposition of this gamut. Thus the Debussian whole-tone
scale, 2, with n = 0, 1, has two transpositions:

2—C, D, E, Fg, G, A#’C
21%0#, Dﬂ,F, G, A, B, C_JH*_

Starting from these elementary sieves we can build more complex
scales—all the scales we can imagine—with the help of the three operations
of the Logic of Classes: union (disjunction) expressed as v, intersection
(conjunction) expressed as A, and complementation (negation) expressed
as a bar inscribed over the modulo of the sieve. Thus

2o v 2, = chromatic total (also expressible as 1,)
25 A 2; = no notes, or emply sieve, expressed as &
20 = 21 and 21 = 20.

The major scale can be written as follows:

Bando) v BiAd) v B4, v (3o A 45).
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By definition, this notation does not distinguish between all the modes
on the white keys of the piano, for what we are defining here is the scale;
modes are the architectures founded on these scales. Thus the white-key
mode D, starting on D, will have tlic same notation as the C mode. But in
order to distinguish the modes it would be possible to introduce non-
commutativity in the logical expressions. On the other hand each of the
12 transpositions of this scale will be a combination of the cyclic permuta-
tions of the indices of sieves modulo 3 and 4. Thus the major scale transposed
a semitone higher (shift to the right) will be written

BoAd)v Bahda) v BoAds) v (3yA ),

and in general

(§n+2 A 4’1‘) v (§n+1 A 4'n+1) v (3n+2 A 4ﬂ+2) \ (gn A 4'n+3)a

where n can assume any value from 0 to 11, but reduced after the addition
of the constant index of each of the sieves (moduli), modulo the correspond-
ing sieve. The scale of D transposed onto C is written

BaAd) V Bust A i) V Ba A i) V Baiz A dprg):
Musicology

Now let us change the basic unit (elementary displacement ELD) of
the sieves and use the quarter-tone. The major scale will be written

(871 A §n+1) \ (8n+2 A §n+2) \ (8n+4 A 3n+1) \ (8n+6 A gﬂ)’

withn =0, 1, 2,..., 23 (modulo 3 or 8). The same scale with still finer
sieving (onc octave = 72 Aristoxenean segments) will be written

(871 A (971 v 9n+6)) v (8n+2 A (9n+3 \ 9n+6)) v (8"+4 A 9"+3)
v (8n+6/\ (gnv 9n+3)):

withn =0, 1,2,..., 71 (modulo 8 or 9).

One of the mixed Byzantine scales, a disjunct system consisting of a
chromatic tetrachord and a diatonic tetrachord, second scheme, separated
by a major tone, is notated in Aristoxenean segments as 5, 19, 6; 12; 11, 7,
12, and will be transcribed logically as

(8n A (91! v 9n+6)) v (9n+6 A (8n+2 \ 8n+4))
v (8n+5 A (9n+5 v 9n+8)) v (8n+6 v 9n+:3);

withn =0, 1,2,..., 71 (modulo 8 or 9).
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The Raga Bhairavi of the Andara-Sampurna type (pentatonic as-
cending, heptatonic descending),?® expressed in terms of an Aristoxenean
basic sieve (comprising an octave, periodicity 72), will be written as:
Pentatonic scale:

(B A (92 V 9ia) V Barn A (95 V 9ss)) V (Buss A nus)

Heptatonic scale:

(81! A (gn v 9n+3)) A (8n+2 A (911 \ 9n+6)) v (8n+4 A (9n+4 A 9n+6))
V (8r46 A (9ns3 V 9nte))

withn =0, 1,2,..., 71 (modulo 8 or 9).
These two scales expressed in terms of a sieve having as its elementary
displacement, ELD, the comma of Didymos, ELD = 81/80 (81/80 to the

power 53.8 = 2), thus having an octave periodicity of 56, will be written as:
Pentatonic scale:

(Ta A Ba V8iia)) V (Tusz A Brss V 8i00)) V (Tnus A 8au1)

Heptatonic scale:

(7oA (82 V 8.46) V (Tnaz A Brss V 8is7)) V (Tuss A 8nus)
N4 (7n+4 A (8n+4 v 8n+6)) v (7n+5 A 8n+1)

forn =0,1,2,...,55 (modulo 7 or 8).

We have just seen how the sieve theory allows us to express-any scale
in terms of logical (hence mechanizable) functions, and thus unify our study
of the structures of superior range with that of the total order. It can be
useful in entirely new constructions. To this end let us imagine complex,
non-octave-forming sicves.?* Let us take as our sieve unit a tempered
quarter-tone. An octave contains 24 quarter-tones. Thus we have to con-
struct a compound sieve with a periodicity other than 24 or a multiple of
24, thus a periodicity non-congruent with k-24 modulo 24 (for & = 0, 1,
2,...). An example would be any logical function of the sieve of moduli
11 and 7 (periodicity 11 x 7 = 77 # £-24), (11, v 11,,1) A 7n4+6. This
establishes an asymmetric distribution of the steps of the chromatic quarter-
tone scale. One can even use a compound sieve which throws periodicity
outside the limits of the audible area; for example, any logical function of
modules 17 and 18 (f[17, 18]), for 17 x 18 = 306 > (11 x 24).

Suprastructures

One can apply a stricter structure to a compound sieve or simply leave
the choice of elements to a stochastic function. We shall obtain a statistical
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coloration of the chromatic total which has a higher level of complexity.

Using metabolae. We know that at every cyclic combination of the sieve
indices (transpositions) and at every change in the module or moduli of the
sieve (modulation) we obtain a metabola. As examples of metabolic trans-
formations let us take the smallest residucs that are prime to a positive
number 7. They will form an Abeclian (commutative) group when the
composition law for these residucs is defined as multiplication with reduc-
tion to the least positive residue with regard to 7. For a numerical example
letr = 18; the residues 1, 5,7, 11, 13, 17 arc primes to it, and their products
after reduction modulo 18 will remain within this group (closure). The
finite commutative group they form can be exemplified by the following
fragment:

S x7=235;3%3 —-18 =17;
11 x 11 = 121; 121 — (6 x 18) = 13; etc.

Modules 1, 7, 13 form a cyclic sub-group of order 3. The following is a
logical expression of the two sicves having modules 5 and 13:

L(5,13) = (13,44 V 13,5 V 13,7 V 13,.,¢)
ADBps1 V (Brea V Onsa) A 13540 V 13,46

One can imagine a transformation of modules in pairs, starting from the
Abelian group defined above. Thus the cinematic diagram (in-time) will be

L(5,13) - L(11, 17) — L(7, 11) — L(5, 1) — L(5, 5) — - - - — L(5, 13)

so as to return to the initial term (closure).2%

This sieve thcory can be put into many kinds of architecture, so as to
create included or successively intersecting classes, thus stages of increasing
complexity; in other words, orientations towards increascd determinisms
in selection, and in topological textures of neighborhood.

Subscquently we can put into in-time practice this veritable histology
of outside-time music by means of temporal functions, for instance by giving
functions of change—of indices, moduli, or unitary displacement—in other
words, encased logical functions parametric with time.

Sieve theory is very general and consequently is applicable to any other
sound characteristics that may be provided with a totally ordered structure,
such as intensity, instants, density, degrees of order, speed, etc. I have al-
ready said this elsewhere, as in the axiomatics of sieves. But this method can
be applied equally to visual scales and to the optical arts of the futurc.

Morcover, in the immediate future we shall witness theﬁﬂ&lt‘@'b}pﬁ%m
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this theory and its widespread use with the help of computers, for it is
entirely mechanizable. Then, in a subsequent stage, there will be a study
of partially ordered structures, such as are to be found in the classification
of timbres, for example, by means of lattice or graph techniques.

Conclusion

I believe that music today could surpass itself by research into the out-
side-time category, which has been atrophied and dominated by the
temporal category. Morcover this method can unify the expression of
fundamental structures of all Asian, African, and European music. It has a
considerable advantage: its mechanization—hence tests and models of
all sorts can be fed into computers, which will effect great progress in the
musical sciences.

In fact, what we are witnessing is an industrialization of music which
has already started, whether we like it or not. It already floods our ears in
many public places, shops, radio, TV, and airlines, the world over. It
permits a consumption of music on a fantasticscale, never hefore approached.
But this music is of the lowest kind, made from a collection of outdated
clichés from the dregs of the musical mind. Now it is not a matter of stopping
this invasion, which, after all, increases participation in music, even if only
passively. It is rather a question of cflecting a qualitative conversion of this
music by exercising a radical but constructive critique of our ways of think-
ing and of making music. Only in this way, as I have tried to show in the
present study, will the musician succeed in dominating and transforming
this poison that is discharged into our ears, and only if he sets about it
without further ado. But one must also envisage, and in the same way, a
radical conversion of musical education, from primary studics onwards,
throughout the entire world (all national councils for music take ‘notc).
Non-decimal systems and the logic of classes are already taught in certain
countries, so why not their application to a new musical theory, such as is
sketched out here?

Chapter VIl

Towards a Philosophy of Music

PRELIMINARIES

We are going to attempt briefly: 1. an ‘““unveiling of the historical
tradition” of music,! and 2. to construct a music.

“Reasoning” about phenomena and their explanation was the greatest
step accomplished by man in the course of his liberation and growth. This
is why the Ionian pioneers—Thales, Anaximander, Anaximenes—must be

.considered as the starting point of our truest culture, that of “reason.”

When Isay “reason,” it is not in thc sense of a logical sequence of arguments,
syllogisms, or logico-technical mechanisms, but that very extraordinary
quality of feeling an uncasiness, a curiosity, then of applying the question,
éAeyyos. It is, in fact, impossible to imaginc this advance, which, in Ionia,
created cosmology from nothing, in spite of religions and powerful mystiques,
which were early forms of “reasoning.” For example, Orphism, which so
influenced Pythagorism, taught that the human soul is a fallen god, that
only ek-stasis, the departure from self; can reveal its true nature, and that
with the aid of purifications (kefepuoi) and sacraments (8pytx) it can regain
its lost position and escape the Wheel of Birth (1poyds yevéoews, bhavachakra)
that is to say, the {ate of reincarnations as an animal or vegetable. I am citing
this mystique because it seems to be a very old and widespread form of
thought, which existed independently about the same time in the Hinduism
of India.?

Above all, we must note that the opening taken by the Ionians has
finally surpassed all mystiques and all religions, including Christianity.

English translation of Chapter VIII by John and Amber Challifour.
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Never has the spirit of this philosophy been as universal as today: The
U.S., China, U.S.S.R., and Europe, the present principal protagonists,
restate it with a homogeneity and a uniformity that T would even dare to
qualify as disturbing.

Having becen established, the question (£Aeyyos) embodied a Wheel of
Birth sui generis, and the various pre-Socratic schools flourished by con-
ditioning all further development of philosophy until our time. Two are in
my opinion the high points of this period: the Pythagorean concept of
numbers and the Parmenidean dialectics—both unique expressions of the
same preoccupation,

As it went through its phases of adaptation, up to the fourth century
B.C., the Pythagorean concept of numbers affirmed that things are numbers,
or that all things are furnished with numbers, or that things are similar to
numbers. This thesis developed (and this in particular interests the musician)
from thc study of musical intervals in order to obtain the orphic catharsis,
for according to Aristoxenos, the Pythagoreans used music to cleanse the
soul as they used medicine to cleanse the body. This method is found in
other orgia, like that of Koryhantes, as confirmed by Plato in the Laws. In
every way, Pythagorism has permeated all occidental thought, first of all,
Greek, then Byzantine, which transmitted it to Western Europe and to the
Arabs.

All musical thearists, from Aristoxenos to Hucbald, Zarlino, and
Rameau, have returned to the same theses colored by expressions of the
moment. But the most incredible is that all intellectual activity, including
the arts, is actually immersed in the world of numbers (I am omitting the
few backward-looking or obscurantist movements). We are not far from the
day when genetics, thanks to the geometric and combinatorial structure of
PNA, will be able to metamorphise the Wheel of Birth at will, as we wish
1t, and as preconceived by Pythagoras. It will not be the ek-stasis (Orphic,
Hindu, or Taoist) that will havc arrived at one of the supreme goals of all
time, that of controlling the quality of reincarnations (hereditary rebirths
madiyyeveoia) but the very force of the “theory,” of the question, which is
the essence of human action, and whose most striking expression is Pythag-
orism. We are all Pythagoreans.?

' On the other hand, Parmenides was able to go to the heart of the ques-
tion of change by denying it, in contrast to Herakleitos. He discovered the
principle of the excluded middle and logical tautology, and this created
such a dazzlement that he used them as a means of cutting out, in the
evanescent change of senses, the notion of Being, of that which is, one,
motionless, filling the universe, without birth and indestructible; the
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not-Being, not existing, circumscribed, and spherical (which Melissos had
not understood).

[Flor it will be forever impossible to prove that things that are not
are; but restrain your thought from this route of inquiry. . . . Only one
way remains for us to spcak of, namely, that it is; on this route there
are many signs indicating that it is uncreated and indestructible, for
it is complete, undisturbed, and without end; it never was, nor will
it be, for now it is all at once complete, one, continuous; for what
kind of birth are you seeking for it? How and from where could it
grow? I will neither let you say nor think that it came from what is
not; for it is unutterable and unthinkable that a thing is not.
And what need would have led it to be created sooner or later if
it came from nothing? Therefore it must be, absolutely, or not at
all.

—TFragments 7 and 8 of Poem, by Parmenides*

Besides the abrupt and compact style of the thought, the method of the
question is absolute. It leads to denial of the sensible world, which is only
made of contradictory appearances that “two-faced” mortals accept as
valid without turning a hair, and to stating that the only truth is the notion
of reality itself. But this notion, substantiated with the help of abstract
logical rules, needs no other concept than that of its opposite, the not-
Being, the nothing that is immediately rendered impossible to formulate and
to conceive.

This concision and this axiomatics, which surpasses the deities and
cosmogonies fundamental to the first elements,® had a tremendous influence
on Parmenides’ contemporaries. This was the first absolute and complete
materialism. Immediate repercussions were, in the main, the continuity of
Anaxagoras and the atomic discontinuity of Leukippos. Thus, all intellectual
action until our time has been profoundly imbued with this strict axiomatics.
The principle of the conservation of energy in physics is remarkable. En-
ergy is that which fills the universe in electromagnctic, kinetic, or material
form by virtue of the equivalence matter—energy. It has become that which
is “par excellence.” Conservation implies that it does not vary by a single
photon in the entire universe and that it has been thus throughout eternity.
On the other hand, by the same reasoning, the logical truth is tautological:
All that which is affirmed is a truth to which no alternative is conceivable

(Wittgenstein). Modern knowledge accepts the void, but is it truly a non-
Being? Or simply the designation of an unclarified complement?

After the failures of the nineteenth century, scientific thought became

rather skeptical and pragmatic. It is this fact that has allowed it to adapt



204 Formalized Music

and develop to the utmost. *“ All happens as if . . .”” implies this doubt, which
is positive and optimistic. We place a provisional confidence in new theories,
but we abandon them readily for more cfficacious ones provided that the
procedures of action have a suitable explanation which agrees with the
whole. In fact, this attitude represents a retreat, a sort of fatalism. This is
why today’s Pythagorism is rclative (exactly like the Parmenidean axio-
matics) in all areas, including the arts.

Throughout the centuries, the arts have undergone transformations
that paralleled two essential creations of human thought: the hierarchical
principle and the principle of numbers. In fact, these principles have domi-
nated music, particularly since the Renaissance, down to present-day pro-
cedures of composition. In school we emphasize unify and recommend the
unity of themes and of their devclopment; but the serial system imposes
another hierarchy, with its own tautological unity embodied in the tone row
and in the principle of perpetual variation, which is founded on this
tautology . . .—in short, all these axiomatic principles that mark our lives
agree perfectly with the inquiry of Being introduced twenty-five centuries
ago by Parmenides.

It is not my intention to show that everything has already been dis-
covered and that we are only plagiarists. This would be obvious nonsense.
There is never repetition, but a sort of tautological identity throughout the
vicissitudes of Being that might have mounted the Wheel of Birth. It would
seem that some areas arc less mutable than others, and that some regions of
the world change very slowly indeed.

The Poem of Parmenides implicitly admits that necessity, need, causality,
and justice identify with logic; sincc Being is born from this logic, pure
chance is as impossible as not-Being. This is particularly clear in the phrase,
“And what need would have led it to be born sooner or later, if it came from
nothing?” This contradiction has dominated thought throughout the
millennia. Here we approach another aspect of the dialectics, perhaps the
most important in the practical plan of action—determinism. If logic indeed
implies the absencc of chance, then one can know all and even construct
everything with logic. The problem of choice, of decision, and of the future,
is resolved.

We know, moreover, that if an element of chance enters a deterministic
construction all is undone. This is why religions and philosophies every-
where have always driven chance back to the limits of the universe. And
what they utilized of chance in divination practices was absolutely not con-
sidered as such but as a mysterious web of signs, sent by the divinities (who
were often contradictory but who knew well what they wanted), and which
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could be read by elect soothsayers. This web of signs can take many forms—
the Chinese system of I-Ching, auguries predicting the future from the flight
of birds and the entrails of sacrificed animals, even tclling fortunes from tea
leaves. This inability to admit pure chance has even persisted in modern
mathematical probability theory, which has succeeded in incorporating it
into some deterministic logical laws, so that pure chance and pure determinism
are only two facets of one entity, as I shall soon demonstrate with an example.

To my knowledge, there is only onc “unveiling” of pure chance in all
of the history of thought, and it was Epicurus who dared to do it. Epicurus
struggled against the deterministic networks of the atomists, Platonists,
Aristoteleans, and Stoics, who finally arrived at the negation of free will and
believed that man is subject to nature’s will. For if all is logically ordered in
the universe as well as in our bodies, which are products of it, then our will
is subject to this logic and our freedom is nil. The Stoics admitted, for ex-
ample, that no matter how small, every action on earth had a repercussion
on the most distant star in the universe ; today we would say that the network
of connections is compact, sensitive, and without loss of information.

This period is unjustly slighted, for it was in this time that all kinds of
sophisms were debated, beginning with the logical calculus of the Megarians,
and it was the time in which the Stoics created the logic called modal, which
was distinct from the Aristotelian logic of classes. Moreover, Stoicism, by its
moral thesis, its fullncss, and its scope, is without doubt basic to the forma-
tion of Christianity, to which it has yielded its place, thanks to the substitu-
tion of punishment in the person of Christ and to the myth of eternal reward
at the Last Judgment—regal solace for mortals.

In order to give an axiomatic and cosmogonical foundation to the
proposition of man’s free will, Epicurus started with the atomic hypothesis
and admitted that “in the straight line fall that transports the atoms across
the void, . . . at an undetermined moment the atoms deviate ever so little
from the vertical . . . but the deviation is so slight, the lcast possible, that we
could not conceive of even seemingly oblique movements.””® This is the
theory of ekklisis (Lat. clinamen) set forth by Lucretius. A senseless principle
is introduced into the grand deterministic atomic structure. Epicurus thus
based the structurc of the universe on determinism (the inexorable and paral-
lel fall of atome) and, at the same time, on indeterminism (ekklisis). It is
striking to compare his theory with the kinetic theory of gases first proposed
by Daniel Bernoulli. It is founded on the corpuscular nature of matter
and, at the same time, on determinism and indeterminism. No onc but
Epicurus had ever thought of utilizing chance as a principle or as a typc of
behavior.
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It was not until 1654 that a doctrine on the use and understanding of
chance appeared. Pascal, and especially Fermat, formulated it by studying
‘“games of chance”—dice, cards, etc. Fermat stated the two primary rules
of probabilities using multiplication and addition. In 1713 Ars Conjectandi
by Jacques Bernoulli was published.” In this fundamental work Bernoulli
enunciated a universal law, that of Large Numbers. Here it is as stated by
E. Borel: “Let p be the probability of the favorable outcome and ¢ the
probability of the unfavorable outcome, and let  be a small positive num-
ber. The probability that the difference between the observed ratio of
favorable events to unfavorable events and the theoretical ratio p/q is larger
in absolute value than & will approach zero when the number of trials 7
becomes infinitely large.” ® Consider the example of the game of heads and
tails. If the coin is perfectly symmetric, that is to say, absolutely true, we
know that the probability p of heads (favorable outcome) and the probability
g of tails (unfavorable outcome) arc each equal to 1/2, and the ratio p/q to 1.
If we toss the coin n times, we will get heads P times and tails Q times, and
the ratio P/Q will generally be different from 1. The Law of Large Numbers
states that the more we play, that is to say the larger the number 7 becomes,
the closer the ratio P/Q will approach 1.

Thus, Epicurus, who admits the necessity of birth at an undetermined moment,
in exact contradiction to all thought, even modern, remains an isolated case ;*
for the aleatory, and truly stochastic event, is the result of an accepted
ignorance, as H. Poincaré has perfectly defined it. If probability theory ad-
mits an uncertainty about the outcome of each toss, it encompasses this
uncertainty in two ways. The first is hypothetical: ignorance of the tra-
jectory produces the uncertainty; the other is deterministic: the Law of
Large Numbers removes the uncertainty with the help of time (or of space).
However, by examining the coin tossing closely, we will see how the sym-
metry is strictly bound to the unpredictability. If the coin is perfectly
symmetrical, that is, perfectly homogencous and with its mass uniformly
distributed, then the uncertainty® at each toss will be a maximum and the
probability for each side will be 1/2. If we now alter the coin by redistribu-
ting the matter unsymmetrically, or by replacing a little aluminum with
platinum, which has a specific weight eight times that of aluminum, the
coin will tend to land with the heavier side down. The uncertainty will
decrease and the probabilities for the two faces will be unequal. When the
substitution of material is pushed to the limit, for example, if the aluminum
15 replaced with a slip of paper and the other side is entirely of platinum,
then the uncertainty will approach zero, that is, towards the certainty that

* Except perhaps for Heisenberg.

Towards a Philosophy of Music 207

the coin will land with the lighter side up. Here we have shown the inverse
relation between uncertainty and symmetry. This remark seems to be a
tautology, but it is nothing more than the mathcmatical dcfinition of prob-
ability: probability is the ratio of the number of favorable outcomes to the
numbcr of possible outcomes when all outcomes are regarded as equally
likely. Today, the axiomatic definition of probability does not remove this
difficulty, it circumvents it.

MUSICAL STRUCTURES EX NI/IHILO

Thus we are, at this point in the exposition, still immersed in the lines
of force introduced twenty-five centuries ago and which continue to regulate
the basis of human activity with the greatest efficacy, or so it seems. It is the
source of those problems about which we, in the darkness of our ignorance,
concern ourselves: determinism or chance,!® unity of style or eclecticism,
calculated or not, intuition or constructivism, a priori or not, a metaphysics
of music or music simply as a means of entertainment.

Actually, these are the questions that we should ask ourselves: 1. What
consequence does the awareness of the Pythagorean-Parmenidean field have
for musical composition? 2. In what ways? To which the answers are:
L. Reflection on that whick is leads us directly to the reconstruction, as much
as possible ex nihilo, of the ideas basic to musical composition, and above all
to the rejection of every idea that does not undergo the inquiry (¥Aeyyos,
8¢{nois). 2. This reconstruction will be prompted by modern axiomatic
methods.

Starting from certain premises we should be able to construct the
most general musical edifice in which the utterances of Bach, Beethoven,
or Schonberg, for example, would be unique realizations of a gigantic
virtuality, rendered possible by this axiomatic removal and reconstruc-
tion,

It 1s necessary to divide musical construction into two parts (see
Chapters VI and VII): 1. that which pertains to time, a mapping of entities
or structures onto the ordered structure of time; and 2. that which is inde-
pendent of temporal becomingness. There are, therefore, two categories:
in-time and outside-time. Included in the category outside-time are the dura-
tions and constructions (relations and operations) that refer to elements
(points, distances, functions) that belong to and that can be expressed
on the time axis. The temporal is then reserved to the instantaneous
creation.

In Chapter VII I made a survey of the structure of monophonic music,
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with its rich outside-time combinatory capability, based on the original
texts of Aristoxenos of Tarentum and the manuals of actual Byzantine mu-
sic. This structure illustrates in a remarkable way that which I understand
by the category outside-time.

Polyphony has driven this category back into the subconscious of
musicians of the European occident, but has not completely removed it;
that would have been impossible. For about three centuries after Monte-
verdi, in-time architectures, expressed chicfly by the tonal (or modal)
functions, dominated everywhere in central and occidental Europe. How-
ever, it isin France that the rebirth of outside-time preoccupations occurred,
with Debussy and his invention of the whole-tone scale. Contact with three
of the more conservative traditions of the Orientals was the cause of it: the
plainchant, which had vanished, but which had béen rediscovered by the
abbots at Solesmes; one of the Byzantine traditions, experienced through
Moussorgsky; and the Far East.

This rebirth continues magnificently through Messiacn, with his
“modes of limited transpositions” and ““non-retrogradable rhythms,” but
it never imposes itself as a general necessity and ncver goes beyond the
framework of the scales. However Messiaen himself abandoned this vein,
yielding to the pressure of serial music.

In order to put things in their proper historical perspective, it is
necessary to prevail upon more powerful tools such as mathematics and
logic and go to the bottom of things, to the structure of musical thought and
composition. This is what I have tried to do in Chapters VI and VII
and what I am going to develop in the analysis of Nomos alpha.

Here, however, I wish to emphasize the fact that it was Debussy and
Messiaen'! in France who reintroduced the category outside-time in the
face of the general evolution that resulted in its own atrophy, to the advan-
tage of structures in-time.?? In effect, atonality does away with scales and
accepts the outside-time neutrality of the half-tone scale.*® (This situation,
furthermore, has scarcely changed for fifty years.) The introduction of
in-time order by Schénberg made up for this impoverishment. Later, with
the stochastic processes that I introduced into musical composition, the
hypertrophy of the category in-time became overwhelming and arrived at
a dead end. It is in this cul-de-sac that music, abusively called aleatory,
improvised, or graphic, is still stirring today.

Questions of choice in the category outside-time are disregarded by
musicians as though they were unable to hear, and especially unable to
think. In fact, they drift along unconscious, carried away by the agitations
of superficial musical fashions which they undergo heedlessly. In depth,
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however, the outside-time structures do exist and it is the privilege of man
not only to sustain them, but to construct them and to go beyond them.

Sustain them ? Certainly; there are basic evidences of this order which
will permit us to inscribe our names in the Pythagorean-Parmenidcan ficld
and to lay the platform from which our ideas will build bridges of under-
standing and insight into thc past (we are after all products of millions of
years of the past), into the future (we are equally products of the future),
and into other sonic civilizations, so badly explained by the present-day
musicologies, for want of the original tools that we so graciously set up for
them,

Two axiomatics will open new doors, as we shall see in the analysis of
Nomos alpha. We shall start from a naive position concerning the perception
of sounds, naive in Europe as well as in Africa, Asia, or America. The
inhabitants of all these countries learned tens or hundreds of thousands of
years ago to distinguish (if the sounds were neither too long nor too short)
such characteristics as pitch, instants, loudness, roughness, rate of change,
color, timbre. They are even able to speak of the first three characteristics
in terms of intervals.

The first axiomatics leads us to the construction of all possible scales.
We will speak of pitch since it is more familiar, but the following arguments
will relate to all characteristics which are of the same nature (instants,
loudness, roughness, density, degree of disorder, rate of change).

We will start from the obvious assumption that within certain limits
men are able to recognize whether two modifications or displacements of
pitch are identical. For example, going from C to D is the same as going
from F to G. We will call this modification elementary displacement, ELD.
(It can be a comma, a halftone, an octave, etc.) It permits us to define any
Egqually Tempered Chromatic Gamut as an ETCHG sieve.’* By modifying the
displacement step ELD, we engender a new ETCHG sieve with the same
axiomatics. With this material we can go no farther. Here we introduce the
three logical operations (Aristotelean logic as seen by Boole) of conjunction
(“and,” intersection, notated A ), disjunction (“‘or,” union, notated v ), and
negation (“no,” complement, notated —), and use them to create classes of
pitch (various ETCHG sieves).

The following is the logical expression with the conventions as indicated
in Chapter VII:

The major scale (ELD = 1 tone):

(871. A §n+l) v (8n+2 A 3n+2) \ (8n+4 A 3n+l) \ (8n+6 A g11)

wheren = 0, 1,2, ..., 23, modulo 3 or 8.
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(It is possible to modify the step ELD by a “rational metabola.” Thus the
logical function of the major scale with an ELD equal to a quarter-tone can
be based on an ELD = 1/3 tone or on any other portion of a tone. These
two sieves, in turn, could be combined with the three logical operations to
provide more complex scales. Finally, “irrational metabolae” of ELD may
be introduced, which can only be applied in non-instrumental music.
Accordingly, the ELD can be taken from the field of real numbers).
The scale of limited transposition n° 4 of Olivier Messiaen®® (ELD =
1/2 tone):

371 A (4'n+1 v 4'n+3) v §n+1 A (411 v 4'n+2)

4'n+1 v 4'n+3 v 31|.+1 A (4'11 v 4'n+2)

where n = 0, 1, ..., modulo 3 or 4.

The second axiomatics leads us to vector spaces and graphic and
numerical representations.®

Two conjunct intervals @ and  can be combined by a musical operation
to produce a new interval ¢. This operation is called addition. To either an
ascending or a descending interval we may add a second conjunct interval
such that the result will be a unison; this second interval is the symmetric
interval of the first. Unison is a neutral interval; that is, when it is added to
any other interval, it does not modify it. We may also create intervals by
association without changing the result. Finally, in composing intervals we
can invert the orders of the intervals without changing the result. We have
just shown that the naive experience of musicians since antiquity (cf.
Aristoxenos) all over the earth attributes the structure of a commutative
group to intervals.

Now we are able to combine this group with a field structure. At least
two fields are possible: the set of real numbers, R, and the isomorphic set of
points on a straight line. It is moreover possible to combine the Abelian
group of intervals with the field C of complex numbers or with a field of
characteristic P. By definition the combination of the group of intervals
with a field forms a vector space in the following manner: As we have just
said, interval group G possesses an internal law of composition, addition.
Let 2 and 4 be two elements of the group. Thus we have:

l.La+b=0¢ceC

22a+b+c=(@+b +c=a+ b+ associativity
3.a+o=0+aq with o € G the neutral element (unison)
4. a+d =o, with ' = —a = the symmetric interval of a
5.a+b=0b+a commutativity
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We notate the external composition of elements in G with those in the
ficld Cby a dot -. If A, u & C (where C = the field of real numbers) then we
have the following properties:

6. la, poacCG

7.1-a=a-1=a (1 is the neutral element in C with respect to

multiplication)

8. \-(ua) = (A-n)-a

. A+pra=Xa+pa

Afa+b) =Xra+ A-b}

associativity of A, u

distributivity

MUSICAL NOTATIONS AND ENCODINGS

The vector space structure of intervals of certain sound characteristics
permits us to treat their elements mathematically and to express them by
the set of numbers, which is indispensable for dialogue with computers, or
by the set of points on a straight line, graphic expression often being very
convenient.

The two preceding axiomatics may be applied to all sound charac-
teristics that possess the same structure. For example, at the moment it
would not make sense to speak of a scale of timbre which might be univer-
sally accepted as the scales of pitch, instants, and intensity are. On the other
hand, time, intensity, density (number of events per unit of timc), the
quantity of order or disorder (mcasured by entropy), etc., could be put into
one-to-one correspondence with the set of real numbers R and the set of
points on a straight line. (See Fig. VIII-1.)

| | A [ |

s & s l 5

Fig. VIlI-1 Pitches Instants Intensities Densities Disorder

Moreover, the phenomenon of sound is a correspondence of sound
characteristics and therefore a corrcspondence of these axcs. The simplest
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correspondence may be shown by Cartesian coordinates; for example, the
two axes in Fig. VIII-2. The unique point (H, T') corresponds to the sound
that has a pitch H at the instant 7.

A

4

Fig. Viil-2 *

I must insist here on some facts that trouble many people and that are
used by others as false guides. We are all acquainted with the traditional
notation, perfected by thousands of years of effort, and which goes back to
Ancient Greece. Here we have just represented sounds by two new methods:
algebraically by a collection of numbers, and geometrically (or graphically
by sketches).

These three types of notation are nothing more than three codes, and
indeed there is no more reason to be dismayed by a page of figures than by a
full musical score, just as there is no reason to be totemically amazed by a
nicely elaborated graph. Each code has its advantages and disadvantages,
and the code of classical musical notation is very refined and precise, a
synthesis of the other two. It is absurd to think of giving an instrumentalist
who knows only notes a diagram to decipher (I am neglecting here certain
forms of regression—pseudomystics and mystifiers) or pages covered with
numerical notation delivered directly by a computer (unless a special coder
is added to it, which would translate the binary results into musical nota-
tion). But theoretically all music can be transcribed into these three codes
at the same time. The graph and table in Fig. VIII-3 are an example of
this correspondence: We must not lose sight of the fact that these three codes
are only visual symbols of an auditory reality, itself considered as a symbol.

Graphical Encoding for Macrostructures

At this point of this exposition, the unveiling of history as well as the
axiomatic reconstruction have been realized in part, and it would be useless
to continue. However, before concluding, I would like to give an example
of the advantage of a diagram in studying cases of great complexity.
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A~ 440 Y~
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T ¢
Fig. VIll-3 z=/ sec—d )7 |4 f ]é(
N 7 H |74 D /
1 1.00 1 0 0.66 3
2 1.66 6 0 033 5
3 2.00 6 +175 080 6
4 280 13 0 ? 5
N = note number
H = pitch in half tones with +10 2 A 2. 440 Hz
V = slope of glissando (if it exists) in semitones/sec,
positive if ascending, negative if descending
D = duration in seconds
! = number corresponding to a list of intensity

forms

Let us imagine some forms constructed with straight lines, using string
glissandi, for example.!” Is it possible to distinguish some elementary forms?
Several of these elementary ruled fields are shown in Fig. VIII-4. In fact,
they can constitute elements incorporated into larger configurations.
Moreover it would be interesting to define and use in scquence the inter-
mediary steps (continuous or discontinuous) from one element to another,
especially to pass from the first to the last element in a more or less violent
way. If one observes these sonic [ields well, one can distinguish the following

general qualities, variations of which can combine with these basic general
forms:

Registers (medium, shrill, etc.)
Overall density (large orchestra, small ensemble, etc.)
Overall intensity
Variation of timbre (arco, sul ponticello, tremolo, etc.)
Fluctuations (local variations of 1., 2., 3., 4. above)
- General progress of the form (transformation into other clementary
forms)

7. Degree of order. (Total disorder can only make sense ifitis calculated
according to the kinetic thcory of gases. Graphic representation is the most
convenient for this study.)

RGN
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Fig. vil-4

Let us now suppose the inverse, forms constructed by means of dis-
continuity, by sound-points; for example, string pizzicati. Our previous
remarks about continuity can be transferred to this case (see Fig. VIII-5).
Points 1.~7. are identical, so very broad is the abstraction. Besides, 2 mixture
of discontinuity and continuity gives us a new dimension.

Lo \
B

Fig. VIII-5
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GENERAL CASE
Organization Qutside-Time

Consider a set U and a comparison of U by U (a product U x U)
denoted (U, f). Then (U, f) < U x U and for all pairs (4, u,) e U x U
such that u, u; € U, either (u, u;) € (U, f), or (4, u,) ¢ (U, f). Itis reflexive
and (u~wu) = (u, ~u); (u~uy and u; ~u') >u~u' for u, o, u; €
(U, f).

Thus (U, f) is an equivalence class. In particular if U is isomorphic
to the set @ of rational numbers, then u ~ u, if |u — u,| < Au, for arbitrary
Auy.

Now we define (U, f) as the set of weak values of U, (U, m) as the set
of average values, and (U, p) as the strong values. We then have

p=PUNHVHUm) VU, p)cUx U

where ¢ is the quotient set of U by . The subsets of ¢ may intersect or be
disjoint, and may or may not form a partition of U x U. Here

(U, f) 3 (U, m) 3 WU, p)

are ordered by the relation 3 in such a way that the elements of (U, f) are

smaller than those of (U, m) and those of (U, m) are smaller than those of
$(U, p). Then

WU L) N (U, m) = @, $(U, m) N 4(U, p) = @.

In each of these subsets we define four new equivalence relations and
therefore four sub-classes:

YU U, f) with ot ~ ()’
if and only if
|uy — ()] < Au} with uf, (uf)" € (U, f)

for i =1, 2, 3, 4, with (U, f) < (U, f) and (U, f) 3 (U, f) 3
(U, f) 3 ¢*(U, f) ordered by the same relation 3. The same equivalence
relations and sub-classes are defined for (U, m) and (U, p).

For simplification we write

uf = {u: ue (U, [)}

and the same for «J and uf.
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In the same way, equivalence sub-classes are created in two other sets,
G and D. Here U represents the set of time values, G the set of intensity
values, and D the set of density values with

U= {u, u}, uf}
G = {el, &, e}
D = {df, djr_n’ d}
fore, 5,6 =1,2,38, 4
Take part of the triple product U x G x D composed of the points
(u, gf, d7). Consider the paths V1: {u?, gr', df}, V2: {uf, g?, dI"}, . . ., VS:
(o, u2), (e, 2, & 22), (4T, df B, dI)} for i = 1,2, 3, 4. VS will be
asubset of the triple product U x G x Dsplitinto 4® = 64 different points.
In each of these subsets choose a new subset K2 defined by the # points
K}j=12,...,nand X = V1, V2, ..., VS). These n points are considered
as the n vertices of a regular polyhedron. Consider the transformations which
leave the polyhedron unchanged, that is, its corresponding group.
To sum up, we have the following chain of inclusions:

w e S < Kr < A cy¢ycUxGx D.
element vertex of set of path A
of the poly- vertices  (subset of
UxGx D hedron K; ofthe Ux Gx D)
polyhedron

Consider the two other sets A (pitch) and X (sonic material, way of
playing, etc.). Form the product H x X x € in which C is the set of n
forms or complexes or sound types C;, (i = I, 2,..., n); for example, a
cloud of sound-points or a cloud of glissandi. Map the product # x X x C
onto the vertices of the polyhedron K}

1. The complexes C; traverse the fixed vertices and thus produce group
transformations; we call this operation 6.

2. The complexes C; are attached to corresponding vertices which
remain fixed, but the # x X traverse the vertices, also producing group
transformations; this operation is called 4,.

3. The product H x X x C traverses the vertices thus producing the
group transformations of the polyhedron; we call this operation 6, because
the product can change definition at each transformation of the polyhedron.

Organization In-Time

The last mapping will be inscribed in time in two possible ways in order
to manifest the peculiarities of this polyhedral group or the symmetric group
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to which it is isomorphic: operation t,—the vertices of the polyhedron are
expressed successively (model of the symmetric group); operation {,-—the
vertices are expressed simultaneously (n simultaneous voices).

Product ty x 8,:

The vertices K} are expressed successively with:

1. only one sonic complex C,, always the same one, for example, a
cloud of sound-points only,

2. several sonic complexes, at most #, in one-to-one attachment with
indices of vertices K3,

3. sevcral sonic complexes whose successive appearances express the
operations of the polyhedral group, the vertices 7 (defined by U x G x D)
always appearing in the same order,

4. several sonic complexes always in the same order while the order of
the vertices ¢ reproduces the group transformations,

5. several sonic complexes transforming independently from the
vertices of the polyhedron.

Product t; x 0,:

The list which this product generates may be obtained from the pre-
ceding one by substituting /4 x X in place of ¢;.

Product t, x 9:

This list may be readily established.

Casc ¢, and 6, is obtained from the preceding ones by analogy-

To thesc in-time operational products one ought to be able to add
in-space operations when, for example, the sonic sources are distributed in
space in significant manner, as in Terrétektorh or Nomos gamma.
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Organization Outside-Time

"The three sets, D (densitics), G (intensities), U (durations), are mapped
onto three vector spaces or onto a singlc three-dimensional vector space.
The following selection (subsect) of equivalence classes, called path V1, is
made: D (densities) strong, G (intcnsities) strong, U (durations) weak.
Precise and ordered valucs have been given to these classes:

Set D a b ¢ Set G Set U sec
(Elements/sec)
d, 1.0 05 1 a6 mf 1y 2
dy 1.5 1.08 2 g2 f iy 3
dg 20 232 3 ga Jf . ug 4
d, 25 5.00 4 ga N1l uy 5

A second selection (subset), called path V2, is formed in the following
manner: D strong, G average, U strong, with ordercd and precise values:

Set D Elements/sec Set G Set U sec
d, 0.5 & J/ u, 10
da ! 8o mp ugy 17
dq 2 &a mf Uy 21
dy 3 84 S Uy 30

Eight “points” of the triple product D x G x U are selected..
For path V1:

Ky =digu,; K= digquy; K = dygeay; K = dygiu;;
Ki = dygous; Ki = 28slz; Kb = dygauy; K = d3 gotto-
7 is the column (sub-class) of the table of set D, (r=oa,b,c)
For path V2:

Ky = dygauy; Ky = dygouy; Ky = dogaty; Ky = d, gous;
Ks = dugiuy; Ko = d3gauz; Kp = dygau,; Ky = dygqu;.

L. These cight points are regarded as solidly connected to each other
so as to form a cube (a mapping of these eight points onto the vertices of a
cube). The group formed by substitutions among these cight points, iso-

morphic to the symmetric group Py, is taken as the organizer principle. (See
Fig. VIII-6.)
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ANALYSIS OF NOMOS ALPHA

Organization In-Time

I. 'The symmetry transformations of a cube given by the elements K]
form the hexahcedral group isomorphic to the symmetric group P,. The
rules for in-time sctting are: 1. The vertices of the cube are sounded suc-
cessively at each transformation thanks to a onc-to-one correspondence. 2.
The transformations are themselves successive (for a larger ensemble of
instruments one could choose one of the possible simultancities as in Nomos
gamma). They follow various graphs (kinecmatic diagrams) inherent in the
internal structure of this particular group. (Sce Figs. VIII-6, 7, 8.)
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Example: DA = G on D the transformation of A. (Columns -> rows)
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Fig. VIII-6. Symmetric Group P4: (1, 2,3, 4)

Fig. VIlI-6. Hexahedral (Octahedral) Group

/12345678
A 21436587
B 34127856
C 43218765
D? 23146758
D 31247568
£? 24316875
.E 41328576

G2 32417685
G 42138657
L% 13425786
L 14235867
Q, 78653421
Q, 76583214
Q; 86754231
Q;,67852341

Q, 68572413
Qs 65782134
0, 87564312
Qs 75863142
0, 58761432
0,, 57681324
Q, 85674123
0,2 56871243

The numbers in roman type
also correspond to Group Py = 4!
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Organization Qutside-Time

II. Eight elements from the macroscopic sound complexes are mapped
onto the letters C; in threc ways, «, B, y:

a By

¢, C; €, = ataxic cloud of sound-points

C;, C, C, = relatively ordered ascending or descending cloud of sound-
points

Cy Cs Cg = relatively ordered cloud of sound-points, neither ascending
nor descending

Cy, Cs; C, = ataxic field of sliding sounds

Cs Ce¢ C; = relatively ordered ascending or descending ficld of sliding
sounds

Cy C; C, = relatively ordered field of sliding sounds, necither ascending
nor descending

Cy Cs C, = atom represented on a cello by interferences of a quasi-
unison

C, C, C, = ionized atom represented on a cello by interferences,
accompanied by pizzicati

III. These letters are mapped one-to-one onto the eight vertices of a
second cube. Thus a second hexahedral group is taken as the organizer
principle.
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Organization In-Time

I1. The mapping of the eight forms onto the letters C, change cyclically

in the order «, 8, v, «, . . . after each three substitutions of the cube.

ITI. The same is true for the cube of the letters C,.

Vi Vo Vs Vg oprore
vilvi Va W Ve ¥

VszVJV/VE'VNVr A‘c VI=-Z"L/4""'B"‘—C
AQ ValVs Vs Va Vi Ve Vi Vo= D+ FEHF G + 1P
AlaQ Yelvy VEVL Vi Va Iy Vi =05+ & £ GEp L
U 4 s o Q Vy = P - Pt b+ @,
/a7 Vv Vo Vo v Vi Vr= Qo+ 4’;7‘@57‘-@5‘
Ye =G+ By 8yt 4’;
Ay Q
'} Vi

V2 vz Vi
Vi v O
Va . Vy Vy
)
vy
wOve
vy
Y OVA

v va

vy Ve vr Vu v

vé \/4 Yy Ve 173
Vs vy

Fig. VIII-8
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Organization Outside-Time

IV. Take the products K} x C; and K; x C,. Then take the product
set H x X. Set H is the vector space of pitch, while sct X is the set of ways
of playing the C,. This product is given by a table of double entries:

Extremely
High
Medium
High
Medium
Low
Extremely
Low
: : £ X
T
i : ; o s . . =
83 2 8 ¢ 5§ 0 g & ¢ £
=¥ [ 31 o, < ] = = < « < <
Cl: Cz, CB C4, CS) Cs C7’ CS
pizz. = pizzicati hr trem. = harmonic sound with
f.cl. = struck with the wood of the tremolo
bow asp = arco sul ponticello
an = normal arco asp trem. = arco sul ponticello
pizz. gl. = pizzicato-glissando tremolo

a trem. = normal arco with tremolo a interf. = arco with interferences
harm. = harmonic sound

Various methods of playing are attributed to the forms Cy, . . ., Cy, as
indicated in the table. The first and fourth rows, extremely high and
extremely low pitches, are reserved for path V2. A sub-space of H’ is
attributed to path V1. It consists of the second and third rows of the pre-
ceding table, each divided into two. These four parts are defined in terms
of the playing range of the corresponding column.

V. The mapping of C; onto the product set H x X is relatively in-
dependent and will be determined by a kinematic diagram of operations
at the moment of the in-time setting.
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Organization In-Time

IV. The products Kf x C; and K, x C, are the result of the product
of two graphs of closed transformations of the cube in itself. The mapping
of the graphs is one-to-one and sounded successively; for example:

—
o graph (D Q)
e — |

H

—
graph (D @,)
(See Figs. VIII-9, 10.)

vs

Va

va

Fig. VIII-9

V. Each C; is mapped onto one of the cells of H x X according to
two principles: maximum expansion (minimum repetition), and maximum
contrast or maximum resemblance. (See Fig. VIII-11,)
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Organization Outside-Time
VI. The products K] x C; x H' x X and K; x €, x H™"me o X

are formed.

VII. The set of logical functions (a) is used in this piece. Its moduli
are taken from the subset formed by the prime residual classes modulo
18, with multiplication, and reduction modulo 18.

Limn) = (m v n; v v a)AmyV (mgVv m) A ngv (v, vn,) (a)

Its clements are developed:

1. From a departure function:

L(11,13) = (135 v 135 v 13, v 135) A 11, v (11, v 1lg)
A 139 v (13, v 13; v 13)

2. From a “metabola” of moduli which is identical here to the graph
coupling the clements of the preceding subsct. This metabola gives the
following functions: L(11,13), L(17,5), L(13,11), L(17,7), L(11,5),
L(1,5), L(5, 7), L(17, 11), L(7,5), L(17,13), L(5, 11), L(1, 11). (See Fig.
VIII-12, and Table of the Sieve Functions and Their Mctaholae.)

3. From three substitution rules for indices (residual classes):

Rule a: my—ny,,

Rule b: If all indices within a set of parentheses are equal, the next
function L(m, n) puts them in arithmetic progression modulo the cor-
responding sicve.

Rule ¢: Conversion of indices as a consequence of moduli metabolae

(see Rule c. Table):

m;

>, X = j(n/m); for example, 7,— 11, x = 4(11/7) ~ 6.
4. From a metabola of ELD (clementary displacement: one quarter-
tone for path V1, three-quarters of a tone for path V2).

The two types of metabolae which generate the elements of set L(m, n)
can be used outside-time or inscribed in-time. In the first case, they give us
the totality of the elements; in the second case, these elements appear in a
temporal order. Nevertheless a structure of temporal order is subjacent even
in the first case.

5. From a special metabola that would simultaneously attribute differ-
ent notes to the origins of the sieves constituting the function L{m, n).
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Organization In-Time

VI. The elements of the product K x C; x H' x X of the path V1
are sounded successively, except for interpolation of elements of the product
K, x C; x H®tme » X from path V2, which are sounded intermittently.

VII. Each of the three substitutions of the two cubes K; and C;, the
logical function L(m, ) (see Fig. VIII-11), changes following its kinematic
diagram, developed from the group: multiplication by pairs of residual
classes and reduction modulo 18. (See Fig. VIII-10.)

Table of the Sieve Functions and Their Metabolae

L(11,13) = (135 + 13, + 13, + 139)11, + (11, + 114)13,
+ 134 + 13, + 134
L(17,5) = (5, + 53 + 55 + 54)171 + (17, + 1713)54 + 51 + 55 + 5,
L(13,11) = (11, + 11, + 11, + 114)13, + (135 + 1350)11,
4+ 11, + 11, + 11,
LO7,7) = (7, + Ta + 75 + 117, + (17g + 17,3)76 + 71 + To + Tg
L(11,5) = (8¢ + 55 + 55 + 5115 + (114 + 115)54 + 50 + 51 + 5,
L(1,5) = (5, + 5, + 55 + 5015 4+ (I + 1)54 + 5, + 52 + 55
L5, 7) = (73 + T3 + 74 + Tg)dg + (50—+—5—1)76 + 7+ T3+ 7,
L(17,11) = (11, + 115 + g + 1g)11, + (17, + 17511,
+ 1, + 115 + 114
L(7,5) = (5; + 5z + 55 + 54)75 + (Tg + 71)54 + 51 + 55 + g
L(17,13) = (135 + 135 + 135 + 13.5)17, + (17, + 17,13y,
+ 135 + 135 + 134 :
L(5,11) = (Mg + I, + 115 + 11g)5 + (5g + 5y) 11 + 115 + 11, + 11,
L(1,11) = (TTg + 1, + 11, + g1, + (T, + 1)1l + 115 + 11, + 11,

Rule c. Table

£: —2-:1
%=l.4~ ;:l
Be22 Lo o=
?:2.6 1—7?’=1.85 %:1.2 %:1
Te34 Doow o1 %: 1.3
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Group and sub-group of residual classes obtained by ordinary multiplication S = % K; =283 f
followed by reduction relative to the modulus 18 Ss = % Ko =372 ff
1 5 7 11 13 17 . 1 7 13
Sy = — K, =798 ff
1 1 5 7 11 13 17 1 1 7 13
5 5 7 17 1 11 13 7 7 13 1 Sg = =—=—Z K =608 f
7 717 13 5 1 11 13113 1 7 (In this text C, is replaced by §,.)
mj1mn 1 5 13 17 7
13113 11 1 17 7 5 First sequence (see Fig. VIII-13):
17 117 13 11 7 5 1 1 2 3 4 5 6 7 8

N 2 T 2
D(Sn) = Sz S5 8y A Se S7 Ss Ss
D(K,‘) =K, K 1 K, K¢ K Ks K

225 225 1 10 3.72 798 2.83 6.08

g o o mf O f S

This part begins with a pizzicato glide on the note C, fff (the
sliding starts ppp). The slope of the glide is zero at first and then very

weak (1/4 tone per 2.5 seconds).
S5 consists of C#~ C#£ D struck col legno, fff (with p in the
middle). In S, there is an introduction of beats obtained by raising

By

3

DETAILED ANALYSIS OF THE BEGINNING OF THE SGORE (L(11,13))8

Thanks to the metabola in 5. of the outside-time organization, the G towards 4.
origins of the partial sieves (13; v 135 v 13, v 135) A 11, v (11, v 115) A
134 and 13, v 13, v 134 correspond to Az;# and A, , respectively, for Second sequence, beginning at @;,/@5:
A; = 440 Hz. Hence the sieve L(11, 13) will produce the following pitches: i 9 3 4 5 6 7 8
<+ Cof, Co#, Do, Do || F, Fo, Gz: Gz# 4, th Cs, CHf; Dot Daﬁ’ Fat { } { } { { $ 4
F#t, G, AT, A#t, By, Cat Dyt Eyy EoT- Gy, Ay, Ay #, A3 . .. QualS) =S5 Se S S S S S S

Qa(Kn) = Ks K, Kv Ks Kq, Kz K, K,
6.08 3.72 7.98 283 10 225 225 1.0
S 8 K f W MO

The order applied to the sonic complexes (S,) and to the density,
intensity, and duration combinations (K,) are for transformation 8:

S = .:;{_:._’. K =1 mf Note, as in the preceding part, the previously calculated con-
e traction of the values of duration.
S = il K, =225 S §; is ataxic, lasting more than a second.
Sy = i - 99. o
B Ko =225 JHf Third sequence, beginning at Q,/Q:
Ss=—=.  Ki=10 mf 1 2 3 4 5 6 7 8

VT 2T 2 SR TR T
Q4(S,,) = Sg Sq Se Ss S, Sa S4 Sl
Q7(Kn) = Ky K, K K, K, Ky K, K,

6.08 7.98 283 372 10 225 1.0 225

f o m o om S
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In $; the slopes of the glissandi in opposite directions cancel each
other. The enlargement in S, is produced by displacement of the
lower line and the inducement of beats. The cloud is introduced by a
pizzicato on the C string; the index finger of the left hand is placed
on the string at the placc where one would play the notc in square
brackets; then by plucking that part of the string between thc nut
and the index finger with the left thumb, the sound that results will
be the note in parentheses.

NOMOS GAMMA—A GENERALIZATION OF NOMOS ALPHA

The finite combinatorial construction expressed by finite groups and
performed on one cello in Nomos alpha is transposed to full orchestra in
Nomos gamma (1967/68). The ninety-eight musicians are scattered in the
audiencc; this scattering allows the amplification of Nomos alpha’s structure.
Terrétektorh (1965/66), which preceded Nomos gamma, innovated the
scattering of the orchestra and proposed two fundamental changes:

Towards a Philosophy of Music

Terrétektorh is thus a “‘Sonotron’’: an accelerator of sonorous
particles, a disintegrator of sonorous masses, a synthesizer. It puts the
sound and the music all around the listener and close up to him. It
tears down the psychological and auditive curtain that separates him
from the players when positioned far ofl on a pedestal, itself frequently
enough placed inside a box. The orchestral musician rediscovers his
responsibility as an artist, as an individual.

b. The orchestral colour is moved towards the spectrum of dry
sounds, full of noise, in order to broaden the sound-palette of the
orchestra and to give maximum effect to the scattering mentioned
above. For this cffect, cach of the 90 musicians has, besides his
normal string or wind instrument, three percussion instruments, viz.
Wood-block, Maracas, and Whip as well as small Siren-whistles,
which are of three registers and give sounds resembling flames. So if
necessary, a shower of hail or even a murmuring of pine-forests can
encompass each listener, or in fact any other atmosphere or linear
concept cither static or in motion. Finally the listcner, cach one
individually, will find himself either perched on top of a mountain in

237

a. The quasi-stochastic sprinkling of the orchestral musicians
among the audience. The orchestra is in the audience and the audience
is in the orchestra. The public should be free to move or to sit on
camp-stools given out at the entrance to the hall. Each musician of
the orchestra should be seated on an individual, but unresonant, dais
with his desk and instruments. The hall where the piece is to be per-
formed should be cleared of every movable object that might cause
aural or visual obstruction (scats, stage, ctc.) A large ball-room having
(if it were circular) a minimum diameter of 45 yards would serve in
default of a new kind of architecture which will have to be devised for
all types of present-day music, for ncither amphitheatres, and still less
normal theatres or concert-halls, arc suitable.

The scattering of the musicians brings in a radically new kinetic
conception of music which no modern electro-acoustical means could
match.*® For ifit is not possible to imagine 90 magnetic tape tracks re-
laying to 90 loud speakers disseminated all over the auditorium, on
the contrary it is quite possible to achieve this with a classical orchestra
of 90 musicians. The musical composition will thercby be entirely
cnriched throughout the hall both in spatial dimension and in move-
ment. The speeds and accelerations of the movement of the sounds
will be realized, and new and powerful functions will be able to be
made use of, such as logarithmic or Archimedean spirals, in-timc and
geometrically. Ordered or disordercd sonorous masses, rolling one
against the other like waves . . . etc., will be possiblc.

the middle of a storm which attacks him from all sides, or in a frail
barque tossing on the open sea, or again in a universe dotted about
with little stars of sound, moving in compact nebulae or isolated.2°

Now the crux or thesis of Nomos gamma is a combinatorial organization
of correspondences, finite and outside the time of the sets of sound
characteristics. Various groups are exploited; their inner structure and
their interdependency are put in relief musically: cyclic group of order 6,
groups of the rectangle (Klein), the triangle, the square, the pentagon, the
hexagon, the tetrahedron, and the hexahedron.

The isomorphisms are established in many ways, that is, each one of
the preceding groups is expressed by different scts and correspondences,
thus obtaining structures set up on scveral interrelated levels. Various
groups are interlocked, intermingled, and interwoven, Thus a vast sonic
tapestry of non-temporal essence is formed (which incidentally includes the
organization of time and durations). The space also contributes, and is
organically treated, in the same manner as the more abstract sets of sound
elements.

A powerful deterministic and finite machinery is thus promulgated. Is it
symmetrical to the probabilistic and stochastic machineries already proposed ?
The two poles, one of pure chance, the other of pure determinacy, are
dialectically blended in man’s mind (and perhaps in naturc as well, as
Epicurus or Heisenberg wished it). The mind of man should be able to
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travel back and forth constantly, with ease and elegance, through the
fantastic wall, of disarray caused by irrationality, that separates determinacy
from indeterminacy.

We will now consider some examples. It goes without saying that
Nomos gamma is not entirely defined by group transformations. Arbitrary
ranges of decisions are disseminated into the piece, as in all my works
except for those originated by the stochastic program in Chap. V. However
Nomos gamma rcpresents a stage in the method of mechanization by com-
puters for this category of problem.

Measures 1-16 (three oboes, then three clarinets)

OUTSIDE-TIME STRUCTURE

Set of pitches: H = {H,, H,, Hy, H,, H;}. Origins: D, G4, D,, G#,,
D, respectively, with range + 3 semitones. N : J’
Set of durations: U = {U,, U,, U,, U,}. Origins: Jv" ) O, o o
o , respectively, with range + one sixteenth-note and a half note
~Tsec,

Set Of ]ntCHSItles = {GD G2: GS’ G4} Gl - {pﬁpa Pﬂﬁ ppa PP, Pl’s p}
G2 = {4, b, mp, mp, mp, mﬂ mf}, Ga = {mf,f,ff, S5 17) Ga = U IF 1,
T4, 51, fff} Origins: pp, mp,]:ﬁ?’, respectively.

Product sets: K = H x U x G. Each one of the points of the product
set is defined by a sieve modulo 7 considered as an element of an additive
group (e.g., n=3,...,3,—3, >3 >33 >3, >33 —>--.)
and by its unit, that is, the elementary displacement ELD:

Ky=Hy; x Gy x Uy Ky=H, x Gy x U, Ky =Hy x G x U,

Moduli: 2 2 2 2 2 2 2 2 2
ELD: § tone Fsee % tone +sec X tone % sec
Ky=H, x Gy x U Kyz=Hy x Gy x U, Ke=Hy x Gg x U,
Moduli: 3 2 3 3 2 3 3 2 3
ELD: } tone $sec ) tone +sec Jtone & sec

In addition, K, and Kj are deformed by trauslations and homothetic trans-
formations of the H values.

Let us now consider the three points K, K,, Kj of the product H x
G x U, and map them one-to-onc onto three successive moments of time.
We thus define the triangle group with the following clements:

{I, 4, 4%, B, BA, BA% {123, 312, 231, 132, 213, 321}
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IN-TIME STRUCTURE

For each transformation of the triangle the vertices are stated by X,
K,, K;, which are played successively by the oboes and the clarinets,
according to the above permutation group and to the following circuit:

BA, BA, A, B, BA2, A2

Measures 16—22 (three oboes and three clarinets)

QUTSIDE-TIME STRUCTURE

Form the product K; x C;: Ky x Cy, Ky x Cy, K3 x Cg, in which the
C; are the ways of playing. C; = smooth sound without vibrato, C, = flutter
tongue, C; = quilisma (irregular oscillations of pitch).

Consider now two triangles whose respective vertices are the three
oboes and the three clarinets. The K; x C, values are the names of the
vertices. All the one-to-one mappings of the X; x C; names onto the three
space positions of the three oboes or of the three clarinets form one triangle
group.

IN-TIME STRUGTURE

To each group transformation the names K; x C; are stated simul-
taneously by the three oboes, which alternate with the three clarinets. The
circuits are chosen to be 1, BA, BA, I, A%, B, BA, A, BA? and I, B, B.

Measures 404-42—A Sound Tapestry

The string orchestra (sixteen first violins, fourteen second violins,
twelve violas, ten cellos, and eiglit double basses) is divided into two times
three teams of eight instruments each: ¢, ¢y, ¢a, thy, o, 5. The remaining
twelve strings duplicate the ones sitting ncarest them. In the text that
follows the ¢; and ¢; are considered equivalent in pairs (¢; ~ ;). Therefore
we shall only deal with the ¢,.

LEVEL I—OUTSIDE-TIME STRUCTURE

The eight positions of the instruments of each ¢; are purposely taken
into consideration. Onto these positions (instruments) we map one-to-onc
eight ways of playing drawn from set X = {on the bridge tremolo, on the
bridge tremolo and trill, sul ponticcllo smooth, sul ponticello tremolo,
smooth natural harmonic notes, irregular dense strokes with the wood of
the bow, normal arco with tremolo, pizzicato-glissando ascending or
descending}. We have thus formed a cube: KVBOS 1.

Onto these same eight positions (instruments) of ¢; we map one-to-one
cight dynamic forms of intensity taken from the following sets: g, =
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{ppp crescendo, ppp diminuendo, pp cresc, ,5/) dim, p cresc, p dim, mp cresc,
mp dim}, g, = {mf cresc, mf dim,fcresc,fdim,ff cresc, ff dim, fff cresc,
Jf dim}, g. = {p dim, p cresc, mp dim, rip cresc, mf dim, 7f cresc, £ dim,
Feresc). We have thus defined a second cube: KVBOS 2.

LEVEL |—IN-TIME STRUGTURE

Eacli one of these cubes is transformed into itsclf following the kinematic
diagrams of the hexahedral group (cf. Nomos alpha, p. 225); for example,
KVBOS 1 following D?@Q,, . ..and KVBOS 2 ollowing @,,@7. . ..

LEVEL 2—OUTSIDE-TIME STRUCTURE

The three partitions ¢;, ¢,, ¢, are now considerdd as a triplet of points
in space. We map onto them, one-to-one, threc distinct pitch ranges /7,
H;, H, in which the instrumentalists of the preceding cubes will play. We
have thus formed a triangle TRIA 1.

Onto these same three points we map one-to-one three elements drawn
from the product (durations x intensities), U x G = {2.0 sec g,, 0.5 sec g,,
1.5 sec g.}. We have thus defined a second triangle TRIA 2.

LEVEL 2—IN-TIME STRUCTURE

When the two cubes play a Level 1 transformation, the two triangles
simultaneously perform a transformation of the triangle group. If 7, A,
A%, B, BA, BA® are the group elements, then TRIA 1 proceeds according
to the kinematic diagram 4, B, BA% A2, BA, BA2 and TRIA 2 proceeds
simultancously according to 4, BA?, BA, 42, B, AB.

LEVEL 3—OUTSIDE-TIME STRUCTURE

Form the product C; x M, with three macroscopic types: C; =
clouds of webs of pitch glissandi, C; = clouds of sound-points, and C; =
clouds of sounds with quilisma. Three sieves with modulus A = 3 are taken:
34, 31, 35. From this product we select five elements: C; x 3, = I, C; x
3, =4,C, x 3, = 43, C, x 3, = 4%, C; x 3; = A%, which could belong
to the cyclic group of order 6.

LEVEL 3—IN-TIME STRUCTURE

The nested transformation of Levels 1 and 2 are plunged into the
product C; x M, which traverses suecessively C; x 3,5, Cy x 34, Cy x 34,
Cy x 33, C; x 354 A3, A%, 4, A5, I, during the corresponding arbitrary
durations of 20 sec, 7.5 sec, 12.5 sec, 12.5 sec, 7.5 sec.
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LEVEL 4—OUTSIDE-TIME STRUCTURE

The partition of the string orchestra into teams ¢;, ¢; is done in two
modes: compact and dispersed. The compact mode is itself divided into two
cases: Compact I and Compact II. For example,

in Compact I, ¢, = {VI,q, VII,, VIL,, VIL,4, A, VCy, VCe, CB,}
in Compact 11, ¢, = {VI,, VI, VI, VIg, VI, 45, VCq, CB,}
in the dispersed mode, ¢, = {VI,, VI;, VI, VII,, VI, VII,;, CBy, CB;}

(VI; = ith first violin, VII, = ith second violin, 4; = ith viola, VC, = ith
cello, CB; = ith double bass.) These partitions cannot occur simultaneously.

LEVEL 4—IN-TIME STRUCTURE

All the mechanisms that sprang from Levels 1, 2, 3 are in turn plunged
into the various above definitions of the ¢; and ¢; teams, and successively
into Compact I during the 27.5 scc duration, into the dispersed mode during
the 17.5 sec duration, into Compact II during 5 sec, into the dispersed mode
during 3 sec, and into Compact I during 5 sec.

DESTINY’'S INDICATORS

Thus the inquiry applicd to music leads us to the innermost parts of our
mind. Modern axiomatics disentangle once more, in a more precise manner
now, the significant grooves that the past has etched on the rock of our
being. These mental premises confirm and justify the billions of years of
accumulation and destruction of signs. But awarcness of their limitation,
their closure, forces us to destroy them.

All of a sudden it is unthinkable that the human mind forges its con-
ception of time and space in childhood and never alters it.2* Thus the
bottom of the cave would not reflect the beings who are behind us, but
would be a filtering glass that would allow us to gucss at what is at the very
heart of the universe. It is this bottom that must be broken up.
Consequences: 1. It would be necessary to change the ordered structures of
time and space, those of logic, . . . 2. Art, and scicnces annexed to it, should
realize this mutation.

Let us resolve the duality mortal-eternal: the future is in the past and
vice-versa; the evanescence of the present is abolished, it is everywhere at
the same time; the Aere is also two billion light-years away. . . .

The space ships that ambitious technology have produced may not
carry us as far as liberation from our mental shackles could. This is the
fantastic perspective that art-science opens to us in the Pythagorcan-
Parmenidean field.



Chapter IX

New Proposals in Microsound
Structure

FOURIER SERIES--BASIC IMPORTANCE AND INADEQUACY

The physico-mathematical apparatus of acoustics [2, 23] is plunged into the

theories of energy propagation in an elastic medium, in which harmonic
analysis is the cornerstone.

The same apparatus finds in the units of electronic circuit design the
practical medium where it is realized and checked.

‘The prodigious development of radio and TV transmissions has expanded
the Fourier harmonic analysis to very broad and heterogencous domains.

Other theories, quite far apart, e.g., servomechanisms and probability, find
nccessary backing in Fourier scries.

In music ancient traditions of scales, as well as those of string and pipe
resonances, also lead to circular functions and their linear combinations [24].

In consequence, any attempt to produce a sound artificially could not be
conceived outside the framework of the above physico-mathematical and
clectronic apparatus, which relies on Fourier series.

Indced the long route traversed by the acousmatics of the Pythagoreans
seemed to have found its natural bed. Musical theoreticians did base their
theories on Fourier, more or less directly, in order to support the argument
about the nalural harmony of tonality. Moreover, in defining tonality, the
20th-century deprecators of the new musical languages based their argu-
ments on the theory of vibration of elastic bodies and media, that is, in the
cnd, on Fourier analysis. But they were thus crcaling a paradox, for al-
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though they wanted to keep music in the intuitive and instinctive domain,
in order to legitimatize the tonal universe they made use of physico-
mathematical arguments!

The Impasse of Harmonic Analysis and Some Reasons
Two major difficultics compel us to think in another way:

1. The defeat by the thrust of the new languages of the theory accord-
ing to which harmony, counterpoint, etc., must stem, just from the basis
formed by circular functions. E.g., how can we justify suchi harmonic con-
figurations of rccent instrumental or clectro-acoustic music as a cloud of
gliding sounds? Thus, harmonic analysis has been short-circuited in
spitc of touching attempts like Hindemith’s explanation of Schénberg’s
system [25]. Lifc and sound adventures jostle the traditional theses, which
are nevertheless still being taught in the conservatories (rudimentally, of
course). It is therefore natural to think that the disruptions in music in tlie
last 60 years tend to prove once again that music and its ‘“‘rules” are socio-
cultural and historical conditionings, and hence modifiable. These conditions
scem to be based roughly on a. the absolute limits of our senses and their
dcforming power (c.g., Fletcher contours); 4. our canvass of mental struc-
tures, somc of which were treated in the preceding chapters (ordering,
groups, etc.); ¢. the means of sound production (orchestral instruments,
electro-acoustic sound synthesis, storage and transformation analogue
systems, digital sound synthesis with computers and digital to analogue
converters). 1If we modify any onc of these three points, our socio-cultural
conditioning will also tend to change in spite of an obvious inertia inherent
in a sort of “entropy”” of the social facts.

2. The obvious failure, since the birth of oscillating circuits in clec-
tronics, to reconstitute any sound, even the simple sounds of some orchestral
instruments! a. The Trautoniums, Theremins, and Martenots, all pre-
World War IT attempts, prove it. 4. Since the war, all “electronic’” music
has also failed, in spite of the big hopes of the fifties, to pull clectro-acoustic
music out of its cradle of the so-called clectronic pure sounds produced by
frequency generators. Any electronic music hased on such sounds only, is
marked by their simplistic sonority, which resembles radio atmospherics or
licterodyning. The serial system, which has been used so much by clectronic
music composers, could not by any means improve the result, since it itsell
is much too clementary. Only when the “purc” clectronic sounds were
framed by other “concrete” sounds, which were much richer and much
morec interesting (thanks to E. Varese, Picrre Schacffer, and Picrre Henry),
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could electronic music become really powerful. ¢. The most recent attempts
to use the flower of modern technology, computers coupled to converters,
have shown that in spite of some relative successes [26], the sonorous results
are even less interesting than those made ten years ago in the classic
electro-acoustic studios by means of frequency gencrators, filters, modula-
tors, and reverberation units.

In line with these critiques, what arc the causes of these failures? In
my opinion the following are some of them:

1. Meyer-Eppler’s studics [1] have shown that the spectral analysis
of even the simplest orchestral sounds (they will form a reference system for
a long time to come) presents variations of spectral lines in frequency as
well as in amplitude. But these tiny (second orderj variations are among
those that make the difference between a lifeless sound made up of a sum of
harmonics produced by a frequency generator and a sound of the same sum
of harmonics played on an orchestral instrument. These tiny variations,
which take place in the permancnt, stationary part of a sound, would
certainly require new theorics of approach, using another functional basis
and a harmonic analysis on a higher level, e.g., stochastic processes, Markov
chains, correlated or autocorrelated relations, or theses of pattern and form
recognition. Even so, analysis theorics of orchestral sounds [27] would
result in very long and complex calculations, so that if we had to simulate
sueh an orchestral sound from a computer and from harmonic analysis on a
ﬁrst level, we would need a tremendous amount of computer time, which is
1mpossible for the moment.

2. It seems that the transient part of the sound is far more important
than the permanent part in timbre recognition and in music in general [28].
Now, the more the music moves toward complex sonorities close to “noise,”
the more numerous and complicated the transients become, and the more
their synthesis from trigonometric functions becomes a mountain of diffi-
cu}ties, even more unacceptable to a computer than the permanent states.
Itis as though we wanted to express a sinuous mountain silhouette by using
poruions of circles. In fact, it is thousands of times more complicated. The
intelligent car is infinitely demanding, and its voracity for information is
far from having been satisfied. This problem of a considerable amount of
calculation is comparable to the 19th-century classical mechanics problem
that led to the kinctic gas theory.

3. There is no pattern and form recognition theory, dependent on
.armonic analysis or not, that would cnable us to translate curves synthe-
sized by means of trigonometric functions in the perception of forms or

h
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configurations. For instance, it is impossible for us to define equivalence
classes of very diversified oscilloscope curves, which the car throws into the
same bag. Furthermore, the ear makes no distinction between things that
actual acoustic thecories differentiate (c.g., phasc differences, diflerential
sensitivity ahility), and vice versa.

The Wrong Concept of Juxtaposing Finite Elements

Perhaps the ultimate reason for such difficultics lies in the improvised
entanglement of notions of finity and infinity. For example, in sinusoidal
oscillation therc is a unit element, the variation included in 27. Then this
Sinite variation is repeated endlessly. Scen as an economy of means, this
procedurc can be one of the possible optimizations. We labor during a
limited span of time (one period), then repeat the product indefinitely with
almost no additional labor. Basically, therefore, we have a mechanism
(e.g., the sine function) engendering a finite temporal object, which is
repeated for as long as we wish. This long object is now considered as a new
element, to which we juxtapose similar ones. The odds are that onc can
draw any variation of onc variable (c.g., atmospheric pressurce) as a function
of time by mcans of a finite superposition (sum) of the preceding clements.
In doing this we expect to obtain an irregular curve, with increasing irregu-
larity as we approach ““noises.” On the oscilloscope such a curve would
look quitc complex. If we ask the cye to recognize particular forms or
symmetrics on this curve it would almost certainly be unable to make any
judgment from samples lasting say 10 microscconds because it would have to
follow them too fast or too slowly: too fast for the cveryday limits of visual
attention, aud (oo slow for the TV limits, which plunge the instantancous
judgment into the level of global perception of forms and colors. On the
other hand, for the samc sample duration, the car is made to recognize
forms and patterns, and thiercfore scnses the correlations between fragments
of the pressure curve at various levels of understanding. We ignore the
laws and rules of this ability of the car in the more complex and gencral
cases that we arce interested in. However, in the casc in which we superpose
sine curves, we know that below a certain degree of complexity the car
disentangles the constituents, and that above it the sensation is transformed
into timbre, color, power, movement, roughness, and degree of disorder;
and this brings us into a tunnel of ignorance. To summarize, we expect that
by judiciously piling up simple clements (pure sounds, sine functions) we
will create any desired sounds (pressurc curve), cven those that come close
to very strong irrcgularitics—almost stochastic ones. This same statement
holds even when the unit clement of the iteration is taken from a function
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other than the sine. In general, and regardless of the specific function of the
unit element, this procedure can be called synthesis by finite juxtaposed elements.
In my opinion it is from here that the decp contradictions stem that should
prevent us from using it.*

NEW PROPOSAL IN MICROCOMPOSITION BASED ON
PROBABILITY DISTRIBUTIONS

We shall raise the contradiction, and by doing so we hope to open a

new path in microsound synthesis research—one that without pretending

to be able to simulate already known sounds, will nevertheless launch
music, its psychophysiology, and acoustics in a direction that is quite inter-
esting and unexpected.

Instead of starting from the unit element concept and its tircless iteration
and from the increasing irregular superposition of such iterated unit ele-
ments, we can start from a disorder concept and then introduce means that
would increase or reduce it. This is like saying that we take the inverse road :
We do not wish to construct a complex sound edifice by using discontinuous
unit elements (bricks = sine or other functions); we wish to construct
sounds with continuous variations that are not made out of unit elements.
"This method would use stochastic variations of the sound pressure directly.
We can imagine the pressure variations produced by a particle capriciously
moving around equilibrium positions along the pressure ordinate in a non-
deterministic way. Therefore we can imagine the use of any “random
walk” or multiple combinations of them.

Method 1. Every probability function is a particular stochastic varia-
tion, which has its own personality (personal behavior of the particle). We
sha'll then use any one of them. They can be discontinuous or continuous;e.g.,
Pmss.on, exponential (ce™°%), normal, uniform, Cauchy (t[=(22+x2)]"1),
arcsin (7~ [x(1 - x)] =12, logistic [(«e=2=-#)(1 +e~**=£)-1] distributions.

Method 2. Combinations of a random variable X with itself can be
established. Example: If f(x) is the probability function of X we can form
S =X + X; +- + X, (by means of the n-fold convelution of S

with itself) or Py = X,-X,-.. X, or any linear, polynomial, . . ., function
of the variable X.

* In spite of this criticism T would like to draw attention to the magnificent manipu-
latory language Music V of Max V. Mathews, which achieves the final step in this
procedure and automates it [29]. This language certainly represents the realjzation of
the dream of an electronic music composer in the fifties.
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Method 3. The random variables (pressure, time) can be functions of
other variables (elastic forces), even of random variables. Example: The
pressure variable x is under the influence of a centrifugal or centripetal
force ¢(x, ). For instance, if the particle (pressure) is influenced by a force
wx (w being a constant) and also obeys a Wiener-Lévy process, then its
density will be

(2 y) = ([@"2[r(l — e7>)] 71 exp [—w(y — xe™¥)7(1 — 7)),

where x and y are the values of the variable at the instants 0 and ¢,
respectively. (This is also known as the Ornstein-Uhlenbeck process.)

Method 4. The random variable moves between two reflecting (elastic)
barriers. Example: If we again have a Wiener-Lévy process with two
reflecting barriers at @ > 0 and zero, then the density of this random
walk will be

) = (200) % 3 (oxp [ (y — & + k)20
C texp[—(y + x + 2ka)%2]),

where x and y are the values of the variables at the instants 0 and ¢,
respectively, and k = 0, +1, +£2,....

Method 5. The parameters of a probability function can be considered
as variables of other probability functions (randomization, mixtures) [30].
Examples:

a. tis the parameter of a Poisson distribution f(k) = (at)¥(k!)~Te~%,
and the random variable of the exponential density g(¢) = Be~#'. The
combination is

J (k) x g(t) =w(k) =f () (k1) ~te“tPe =4 di =B+ B) " (e + B) 7T,
which 1s a geometric distribution.

b. p and ¢ arc the probabilities of a random walk with jumps +1
{Bernoulli distribution). The time intervals between successive jumps are
random variables with common density e~ (Poisson distribution). Then the
probability of the position » at instant ¢ will be f,(t) = I,(20/pgle=*(plq)™"?,

where
L(x) = i (KD + n 4+ 1)]7H(x)2)% "
k=0

is the modified Bessel function of the first kind of order n.
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Method 6. Linear, polynomial, ..., combinations of probability
functions f; are considered as well as composite functions (mixtures of a
family of distributions, transformations in Banach space, subordination,
etc.).

a. If A and B arc any pair of intervals on the line, and Q{A, B) =
prob {X € 4, Y € B} with ¢(x, B) = prob {X = x, Y€ B} (g, under appro-
priate regularity conditions being a probability distribution in B for a
given x and a continuous function in x for a fixed B; that is, a conditional
probability of the event {¥ € B}, given that X' = x), and p{4} is a probability
distribution of x€ 4, then Q(4, B) = |A ¢(x, B)uldx} represents a mixture
of the family of distributions ¢(X, B), which depends on the parameter x,
with p serving as the distribution of the randomized parameter [30].

6. Interlocking probability distributions (modulation). If £;, f3, - .
Jn are the probability distributions of the random variables X!, X2, ..
X", respectively, then we can form

>

]

3

So= X+ Xj+ -+ XL and SDSL) =S+ 5L+ + Sn
1

or

n
Py = X{-XE---Xf and P kﬂp-f‘}c) =P -Ph P,

=1
or any combination (functional or stochastic) of these sums and products.
Furthermore, the of and yk could be gencrated by either independent
determined functions, independent stochastic processes, or interrelated
determined or indetermined processes. In some of these cases we would
have the theory of rencwal processes, if, for instance, the o were considered
waiting times 7i. From another point of view, some of these cases would
also correspond to the time series analysis of statistics. In reality, the ear
seems to realize such an analysis when in a given sound it recognizes the
fundamental tone pitch together with timbre, fluctuation, or casual
irregularities of that sound! In fact, time scries analysis should have been
invented by composers, if they had—.

¢. Subordination [30]. Suppose {X(t)}, a Markovian process with
continuous transition probabilities

Qx,T) = prob {X(T(t + 5)) e T|X(T(s)) = x}

(stochastic kernel independent of s), and {T'(1)}, a process with non-
negative independent increments. Then {X(T(1))} is a Markov process
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with transition probabilitics

P(xT) = f 0., T) Uds),

where U, is the infinitely divisible distribution of T'(t). This P, issaid to be
subordinated to {X (1)}, using the operational time 7 (¢) as the directing process.

Method 7. The probability functions can be filed into classe.s, that is,
into parent curve configurations. These classes are then considered as
elements of higher order sets. The classification is obtained through at
least three kinds of criteria, which can be interrelated: a. analytical source
of derived probability distribution; gamma, beta, ..., and rclated densi-
ties, such as the density of y2 with n degrees of freedom (Pearson); Student’s
¢ density; Maxwell’s density; 4. other mathematical criteria, such as
stability, infinite divisibility; and ¢. characteristic features of the curve
designs: at level 0, where the values of the random variable are accepted
as such; at level 1, where their values are accumulated, etc.

Macrocomposition

Method 8. Further manipulations with classes of distributions envisaged
by Method 7 introduce us to the domain of macrocomposition. But we
will not continue these speculations since many things that have been ex-
posed in the preceding chapters could be used fruitfully in obvious ways.
For example, sound molecules produced by the above methods could.bc
injected into the ST(ochastic) program of Chap. V, the program forming
the macrostructure. The same could be said about Chaps. I and III
(Markovian processes at a macrolevel). As for Chaps. VI and VIII (sym-
bolic music and group organization) establishing a complex microprogram
is not as casy, but it is full of rich and unexpected possibilities.

All of the above new proposals are being investigated at the Centers
for Mathematical and Automated Music (CMANMI) at both the School of
Music of Indiana University, Bloomington, Indiana, and the Nuclcar
Research Center of the Collége de France, in Paris. Digital to analogue
converters with 16 bits resolution at a rate of 0.5-10% samples per second
are available in both places.

Figs. IX, 1-8 were calculated and plotted at the Rescarch Computing
Center of Indiana University under the supervision of Corncelia Colyer.
These graphs could correspond to a sound duration of 8 milliscconds, the
ordinates being the sound pressurcs.
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Chapter X

Concerning Time, Space and Music*

WHAT IS A COMPOSER?

A thinker and plastic artist who expresses himself through sound beings.
These two realms probably cover his entire being.

A few points of convergence in relation to time and space between the
sciences and music:

First point:

In 1954, [ introduced probability theory and calculus in musical
composition in order to control sound masses both in their invention and in
their evolution. This inaugurated an entirely new path in music, more global
than polyphony, serialism or, in general, “discrete” music. From hence came
stochastic music. T will come back to that. But the notion of entropy, as
formulated by Boltzmann or Shannon,! became fundamental. Indeed, much
like a god, a composer may create the reversibility of the phenomena of
masses, and apparently, invert Eddington’s “arrow of time.”? Today, 1 use
probability distributions either in computer generated sound synthesis on a
micro or macroscopic scale, or in instrumental compositions. But the laws of
probability that T use are often nested and vary with time whicli creates a

*Excerpts of Chapter X originally appeared in English in Perspectives of New Music,

Fig. IX-7. Hyperboli i i e .
and Determin‘ég Timéc Cosine x Exponential x Cauchy Densities with Barriers Vol. 27, N9 1. Those excepts appeared originally in French in Redécouvrir le Temps,
_'Fl'rge IX-8. Logistic x Exponential Densities with Barriers and Randomized Editions de 'Université de Bruzelles, 1958, Vol. 1-2.
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256 Formalized Music

stochastic dynamics which is aesthetically interesting. This procedure is akin
to the mathematical analysis of Liouville’s equation on non-unitary
transformations proposed essentially by I. Prigogine;? namely, if the
microscopic entropy M exists, then M = A2, where A acts on the distribution
function or the density matrix. A is non-unitary which means that it does not
maintain the size of probabilities of the states considered during the evolution
of the dynamic system, although it does maintain the average values of those
which can be observed. This implies the irreversibility of the system to the
equilibrium state; that is, it implies the irreversibility of time.

Second point:

This point has no obvious relationship to music, except that we could
make use of Lorentz-Fitzgerald and Einstein transformations in the
macroscopic composition of music.* I would nevertheless like to make some
comments related to these transformations.

We all know of the special theory of relativity and the equations of
Lorentz-Fitzgerald and Einstein, which link space and time because of the
finite velocity of light. From this it follows that time is not absolute. Yet time
is always there. It “takes ime” to go from one point to another in space, even
if that time depends on moving reference frames relative to the observer.
There is no instantaneous jump from one point to another in space, much
less “spatial ubiquity”—that is, simultaneous presence of an event or an
object in two sites in space. On the contrary, one posits the notion of
displacement. Within a local reference frame, what then does displacement
signify? If the notion of displacement were more fundamental than that of
time, one could undoubtedly reduce all macro and microcosmic
transformations to extremely short chains of displacement. Consequently
(and this is an hypothesis that I freely advance), if we were to adhere to
quantum mechanics and its implications accepted now for decades, we would
perhaps be forced to admit the notion of quantified space and its corollary,
quantified time. But then, what could a quantified time and space signify, a
time and space in which contiguity would be abolished? What would the
pavement of the universe be if there were gaps between the paving stones,
inaccessible and filled with nothing? Time has already been proposed as
having a quantic structure by T. D. Lee of Columbia University.

Let us return to the notion of time considered as duration. Even after
the experimental demonstration of Yang and Lee which has abolished the
parity symmetry P it seems that the CPT theorem still holds for the
symmetries of the electron (C) and of time (T), symmetries that have not yet
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been completely annulled. This remains so even if the “arrow of time”
appears to be nonreversible in certain weak interactions of particles. We
might also consider the poetic interpretation of Feynman,® who holds that
when a positron (a positively charged particle created simultaneously with an
electron) collides with an electron, there is, in reality, only onc electron
rather than three elementary particles, the positron being nothing but the
temporal retrogression of the first electron. Let us also not forget the theory
of retrograde time found in Plato’s Politices—or in the future contraction of
the universe. Extraordinary visions!

Quantum physics will have difficulty discovering the reversibility of
time, a theory not to be confused with the reversibility of Boltzmann’s “arrow
of entropy.” This difficulty is reflected in the explanations that certain
physicists are attempting to give even today for the phenomenon called the
“delayed choice” of the two states—corpuscular or wave —of a photon. It has
been proven on many occasions that the states depend entirely on
observation, in compliance with the theses of quantum mechanics. These
explanadons hint at the idea of an “interventon of the present into the past,”
contrary to the fact that casuality in quantum mechanics cannot be inverted.
For, if the conditions of observation are established to detect the particle,
then one obtains the corpuscular state and never the wave state, and vice
versa. A similar discussion on non-temporality and the irreversibility of the
notion of causality was undertaken some time ago by Hans Reichenbach.”

Another fundamental experiment has to do with the correlation of the
movement of two photons emitted in opposite directions by a single atom.
How can one explain that both either pass through two polarizing f{ilms, or
that both are blocked? It is as if each photon “knew” what the other was doing
and instantaneously so, which is contrary to the special theory of relativity.

Now, this experiment could be a starting point for the investigation of
more deeply scated properties of space, freed from the tutelage of time. In
this case, could the “nonlocality” of quantum mechanics perhaps be explained
not by the hypothesis of “hidden variables” in which time still intervenes, but
rather by the unsuspected and extravagent properties of nontemporal space,
such as “spatial ubiquity,” for example?

Let us take yet one more step. As space is perceptible only across the
infinity of chains of energy transformations, it could very well be nothing but
an appearance of these chains. In fact, let us consider the movement of a
photon. Movement means displacement. Now, could this displacement be
considered an autogenesis of the photon by itself at each step of its trajectory
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(continuous or quantized)? This continuous auto- creation of the photon,
could it not, in fact, be space?

Third point: Case of creating something from nothing

In musical composition, construction must stem from originality which
can be defined in extreme (perhaps inhuman) cases as the creation of new
rules or laws, as far as that is possible; as far as possible meaning original, not
yet known or 