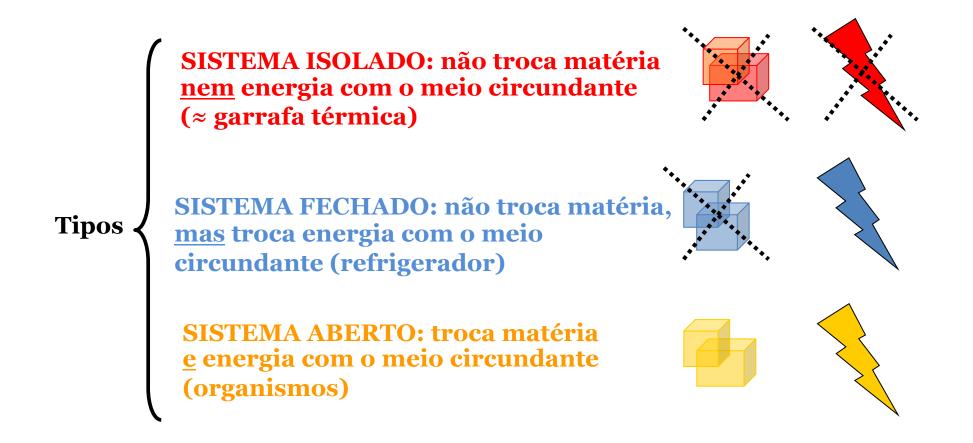

Bioenergética - A Balança Energética das Reações Bioquímicas

Profa. Dra. María Eugenia Guazzaroni

A Bioenergética estuda:


Transduções e usos da energia pelas células vivas (in vivo e in vitro)

Ao estudar as trocas de energia ela procura, sobretudo, fornecer meios que permitam prever a ocorrência, ou não, de determinados fenômenos, isto é, ela procura dizer se esses fenômenos são POSSÍVEIS ou IMPOSSÍVEIS em termos energéticos.

Leitura recomendada: pág. 19-26, Cap 1 (Fundamentos físicos), Cap 13 (Bioenergética e tipos de reações bioquímicas), Lehninger quinta ed.

Classificação dos sistemas termodinâmicos

Sistema termodinâmico é qualquer conjunto de matéria e energia; pode tratar-se de um compartimento real, ou também de um compartimento imaginário, ideal, para fins de raciocínio.

As transformações biológicas de energia seguem as leis da Termodinâmica

"Now, in the second law of thermodynamics . . . "

Leis da Termodinâmica

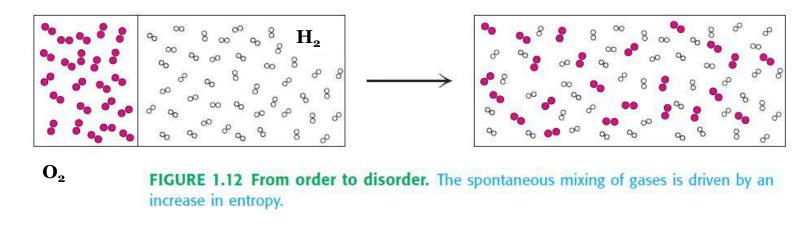
1a) para qualquer transformação física ou química, a energia do ambiente permanece constante

2ª) em todos os processos naturais a entropia (desordem) do universo aumenta

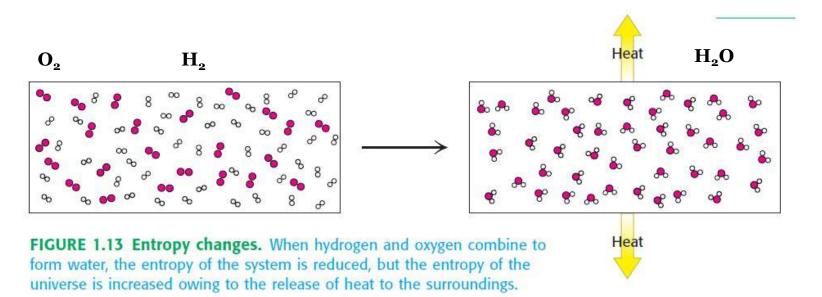
Nos sistemas biológicos, as variações de energia livre, entalpia e entropia estão quantitativamente relacionadas pela equação:

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$$

Parâmetros termodinámicos importantes


G (Energia Livre de Gibbs) – expressa a energia disponível para realizar trabalho durante uma reação a temperatura e pressão constantes.

H (Entalpia) – é o potencial para gerar calor do sistema reagente.


S (Entropia) – expressa o grau de liberdade dos componentes de uma reação. (Quando os produtos de uma reação são mais desordenados que os reagentes, a reação ocorre com um ganho de entropia).

Unidades: energia/mol

Exemplo do aumento da entropia (ΔS = positiva)

Exemplo: diminuição da entropia do sistema com aumento da entropia do ambiente (ΔS = negativa)

Prever se uma reação ou processo são espontâneos é muito importante na química e na bioquímica

Podemos usar para isto a variação de entalpia (ΔH)?

RELEMBRANDO: H (Entalpia) é o conteúdo de calor do sistema reagente

Classificação dos processos quanto ao sinal da ΔH

 $\Delta H < 0$

diz-se que o processo (ou reação) é EXOTÉRMICO (libera calor)

 $\Delta H > 0$

diz-se que o processo (ou reação) é ENDOTÉRMICO (absorve calor)

A variação de entalpia (ΔH) não é um bom parâmetro para tentar prever a espontaneidade; existem reações espontâneas que são endotérmicas (o tubo de ensaio esfria) e outras que são exotérmicas (o tubo de ensaio esquenta)

A variação da energia livre de Gibbs (G) é bom parâmetro para prever a espontaneidade das reações

Lembram da equação?

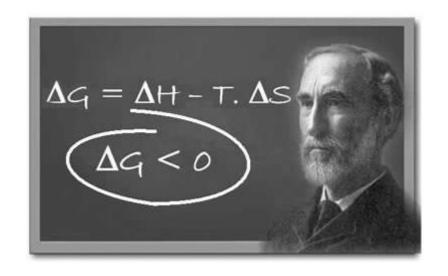
$$\Delta G = \Delta H - T\Delta S$$

onde: H é a ENTALPIA, T a temperatura absoluta (em Kº) e S é a ENTROPIA Um dos enunciados possíveis da segunda lei da termodinâmica é:

Reações ESPONTÂNEAS são aquelas que, quando realizadas sob condições apropriadas, podem realizar trabalho

O que é espontaneidade em termos termodinâmicos? Vejamos a reação abaixo:

$$A+B \longrightarrow C+D$$


Dizemos que ela ocorre *espontaneamente* da esquerda para a direita (→) quando houver transformação de (A + B) em (C + D)

Dizemos que ela ocorre *espontaneamente* da direita para a esquerda (←) quando houver transformação de (C + D) em (A + B)

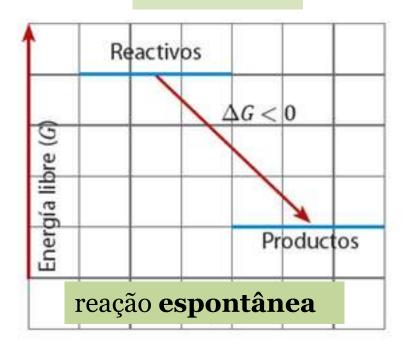
São espontâneas as reações ou processos para os quais houver um decréscimo na energia livre, isto é, nas quais △G < o (negativa) Estes processos são ditos EXERGÔNICOS

Os processos não espontâneos, que na verdade não ocorrem, são chamados de ENDERGÔNICOS; para eles, $\Delta G > o$ (positiva)

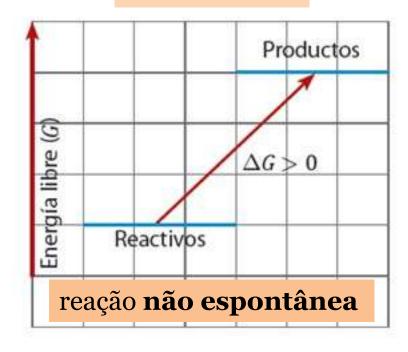
Para um processo em EQUILÍBRIO, $\Delta G = 0$

Quando um sistema se move do estado inicial ao estado de equilíbrio, a variação de energia é dada pela ΔG (T e P ctes).

A energia livre é a energia apta a realizar trabalho!


Um ΔG negativo significa que os **reagentes**, ou estado inicial, têm mais energia livre do que os **produtos**, ou estado final.

As **reações exergônicas** (ΔG negativo) também são chamadas de reações **espontâneas**, porque **podem ocorrer sem a adição de energia**.


$$\Delta G = G_{\text{final}} - G_{\text{inicial}}$$

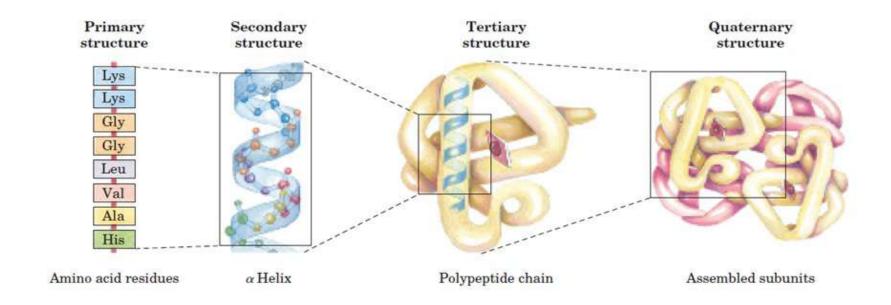
$$\Delta G = G_{\text{produtos}} - G_{\text{reagentes}}$$

E é liberada

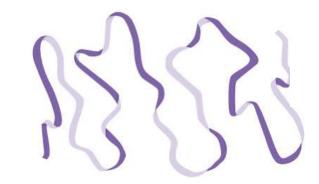
E é consumida

A entropia e as leis da termodinâmica

Os organismos vivos são estruturas altamente organizadas. Como eles podem criar a ORDEM a partir da DESORDEM?


Eles não obedecem as Leis da Termodinâmica?

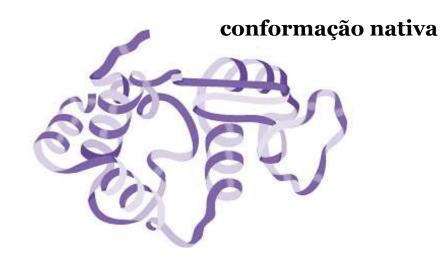
A síntese de macromoléculas complexas como as proteínas a partir de compostos mais simples aparentemente viola a segunda lei da termodinâmica!


A violação entretanto é apenas aparente. De fato, a entropia em um sistema (não isolado) pode diminuir desde que a entropia do universo aumente em igual proporção.

A termodinâmica do dobramento de uma proteína

A termodinâmica do dobramento de uma proteína

Para que o processo seja espontâneo, $\Delta G'$ **TEM** que ser negativo ($\Delta G' < o$): $\Delta G' = \Delta H' - T\Delta S' < o$



proteína desnaturada

Dobramento

Logo, a variação de **entalpia TEM que ser negativa**,
isto é, o processo é
necessariamente exotérmico
(ΔH' < 0)

É óbvio, no entanto, que a **entropia diminui**, isto \acute{e} , $\Delta S < o e (-T\Delta S') > o$

A variação de energia livre de uma reação química

Consideremos a seguinte reação química: $aA + bB \implies cC + dD$

$$aA + bB \longrightarrow cC + dD$$

A e B são os "reagentes"; C e D são os "produtos" a, b, c e d são os coeficientes estequiométricos

A variação de energia livre de Gibbs de quaisquer concentrações iniciais dos reagentes é dada por:

$$\Delta \mathbf{G'} = \Delta \mathbf{G^{o'}} + \mathbf{RT In} \left(\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \right) \qquad \begin{cases} \mathbf{R} = \text{constante dos gases} \\ \mathbf{T} = \text{temperatura absoluta} \\ \text{(em K)} \end{cases}$$

 $\Delta G^{o'} \Rightarrow variação de energia livre padrão, é uma constante física específica de cada$ reação; válida para [A] = [B] = 1 M, $[água] = 1 M e [H^+] = 10^{-7} M (pH 7) em energia/mol$.

∆G' ⇒ **variação de energia livre da reação** em energia/ mol

Reação fora do equilíbrio:

$$\Delta G' = \Delta G^{o'} + RT \ln \left(\frac{[C]^c [D]^d}{[A]^a [B]^b} \right)$$

No equilíbrio ∆G'=0

$$\Delta G^{o'} = -RT \ln K_{eq}$$

Onde **R** (8,315 J/mol.K) é a constante dos gases e **T** a temperatura absoluta (em K)

 $\Delta G^{o'} \Rightarrow$ variação de energia livre padrão, é uma constante física específica de cada reação relacionada à constante de equilíbrio pela equação ΔG^{o} =-RT In K_{eq}

 $O \Delta G^{\circ}$ expressa a K_{eq} em termos de energia

Quais previsões podem ser feitas a partir do sinal do ΔG° ?

$$\Delta G^{o'} = -RT \ln K_{eq}$$

 $\Delta G^{o'}$ <0 \Rightarrow uma vez atingido o equilíbrio, haverá mais produtos do que reagentes, isto é K_{eq} > 1:

 $\Delta G^{o'}>0 \Rightarrow$ uma vez atingido o equilíbrio, haverá mais reagentes do que produtos, isto é $K_{eq}<1$:

$$R \longrightarrow F$$

 $\Delta G^{o'}=o \Rightarrow$ uma vez atingido o equilíbrio, reagentes e produtos serão igualmente favorecidos, isto é, $K_{eq}=1$:

Matematicamente

$$\mathbf{K} = \left(\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}\right)$$

$$\Delta G^0 = -RT \ln K$$

Table 18.4 Relation between ΔG° and K as Predicted by the Equation $\Delta G^{\circ} = -RT \ln K$

K	ln K	ΔG°	Comments
> 1	Positive	Negative	Products are favored over reactants at equilibrium.
= 1	0	0	Products and reactants are equally favored at equilibrium.
< 1	Negative	Positive	Reactants are favored over products at equilibrium.

As enzimas existem apenas para acelerar reações espontâneas!

Ao longo de centenas de milhões de anos de evolução inúmeros mecanismos enzimáticos surgiram para fazer transformações espontâneas

Por exemplo, a transformação abaixo requer **altíssimas concentrações dos reagentes** para se tornar espontânea:

Fosfato + glicose
$$\longrightarrow$$
 glicose 6-fosfato + H_2O

A solução foi "inventar" uma reação nova que produz glicose 6-fosfato:

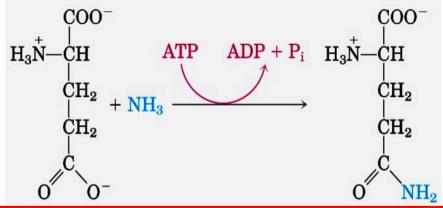
Esta reação torna-se facilmente espontânea nas condições celulares.

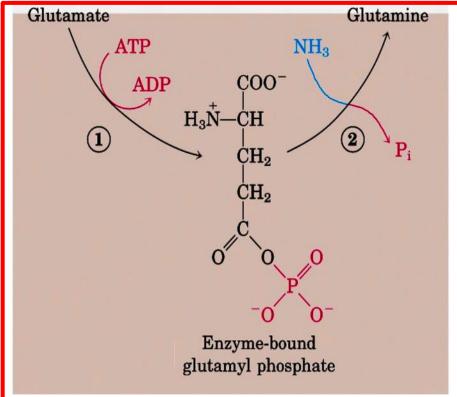
Ligação fosfodiéster Anatomia da NH_2 molécula de ATP **Adenina** nucleotídeo responsável pelo Ligações armazenamento de energia em fosfoanidrido suas ligações químicas Ligação N-glicosídica \mathbf{H} **Ribose** Estas ligações têm uma tendência muito grande OH OH de rompimento! Adenosina Adenosina 5'-monofosfato (AMP) Adenosina 5'-difosfato (ADP)

Adenosina 5'-trifosfato (ATP)

As ligações fosfo-anidrido têm uma tendência muito grande de rompimento!

Atenção: a tendência nada tem a ver com a velocidade! A velocidade depende da enzima! Significa, na verdade, que o $\Delta G'$ para o seu rompimento é muito menor que o, a menos que a concentração do ATP "reagente" seja muitíssimo menor do que a dos produtos


Não devemos esquecer: o valor de ΔG' é função da concentração de produtos e reagentes:


$$A \rightarrow B$$

$$\Delta G' = \Delta G^{o'} + RT \ln (B/A)$$

É uma forma de manter sempre uma concentração disponível de ATP, para a célula nunca ficar sem ATP

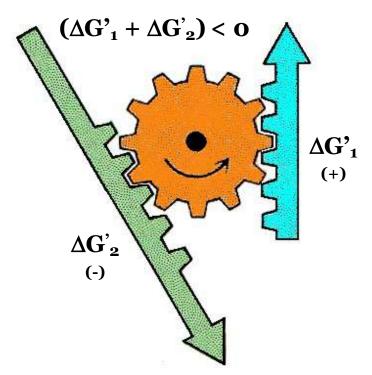
a) Escrita como reação de um passo

O ATP fornece energia não apenas por simples hidrólise, mas por transferência de grupos

Parte da molécula do ATP é transferida para um substrato aumentando o seu conteúdo de energia livre.

Em uma segunda etapa, este intermediário de alta energia é hidrolisado com liberação de energia livre, que impulsiona a reação na direção dos produtos

Para poder efetivamente utilizar a grande tendência de rompimento da ligação entre os fosfatos do ATP é indispensável um mecanismo adequado


Ex: reação de carboxilação, catalisada pela piruvato quinase,

Piruvato + ATP +
$$CO_2$$
 + $H_2O \longrightarrow$ oxaloacetato + ADP + P_i

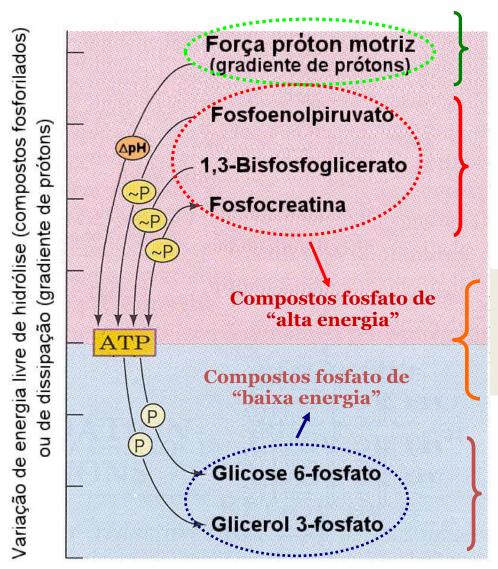
pode ser analisada como a soma das reações:

$$CO_2$$
 + piruvato \longrightarrow oxaloacetato $\Delta G'_1 > o$ (positiva)
 $ATP + H_2O \longrightarrow ADP + P_i$ $\Delta G'_2 < o$ (negativa)

A primeira das duas reações não pode ocorrer separadamente, pois ela NÃO é espontânea; ela só poderá ocorrer se houver algum mecanismo de acoplamento com a segunda.

Reações acopladas à conversão de ATP em ADP + Pi

O princípio de reações seqüenciais:


(1)
$$A \longrightarrow B$$
 $\Delta G_1^{\prime \circ}$
(2) $B \longrightarrow C$ $\Delta G_2^{\prime \circ}$
 $Sum: A \longrightarrow C$ $\Delta G_1^{\prime \circ} + \Delta G_2^{\prime \circ}$

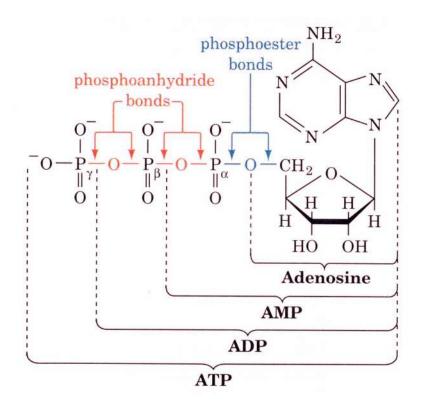
Acoplamento de uma reação desfavorável com uma reação favorável

(1) Glicose + Pi
$$\rightarrow$$
 glicose-6-P + H₂O 13.8
(2) ATP + H₂O \rightarrow ADP + Pi -30.5
Soma: Glicose + ATP \rightarrow glicose-6-P + ADP

A soma dos ΔG´º é negativa; favorável

Se as ligações fosfato do ATP têm grande tendência de rompimento, para fazê-las serão necessárias ligações com tendência ainda maior de rompimento! Quais são elas e onde estão?

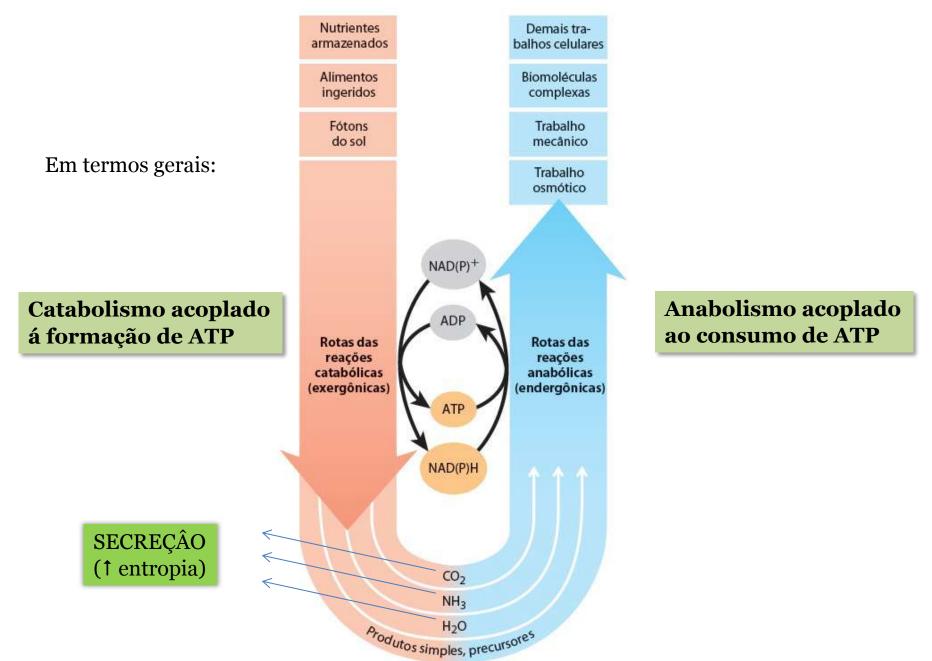
A principal fonte: em mitocôndrias e cloroplastos


Fontes secundárias, importantes no metabolismo anaeróbico

Há quem afirme que o ATP foi "escolhido" pela evolução justamente por causa de sua posição intermediária!

Os "destinatários" podem ser ligações fosfato ou outras (tio-ésteres, por exemplo)

Energia é liberada com a hidrolise de ATP e ADP


*Para a formação de uma molécula de AMP se precisam $\Delta G = +25$ KJ/mol. (muito endergónica!) a hidrólise de AMP gera menos E que a necessária para sua síntese.

Reação	ΔG [kJ/mol]
$ATP + H_2O \rightarrow ADP + P_i$	-30.5
$ADP + H_2O \rightarrow AMP + P_i$	-32.8
$ATP + H_2O \rightarrow AMP + PP_i$	-45.6
$PP_i + H_2O \rightarrow 2 P_i$	-19.2
$AMP + H_2O \rightarrow A + P_i$	-14.2*

O ciclo de ATP

Ciclo de ATP é acoplado às vias catabólicas e anabólicas

O fluxo de ATP

A quantia de ATP na célula é suficiente para segundos/minutos.

Portanto, a formação de ATP (bem como o seu consumo) é continua.

Em condições de repouso, o fluxo de ATP em média é 3 moles/hr

3 mol/hr; PM (ATP) = 503 g/mol

= 1.5 kg/hr

= 36 kg/dia

 $= \sim 1080 \text{ kg/mês de ATP}$

Conclusão:

ATP transporta energia química, não age como reservatório de energia