Ácidos e Bases

• Os ácidos e bases fortes encontram-se completamente ionizados quando em solução aquosa.

- $HC1 - > H^+ + C1^-$
- NaOH ----> $Na^+ + OH^-$

Em sistemas biológicos os ácidos e bases fracas são bastante importantes

Os ácidos e bases fracas não estão completamente ionizados quando dissolvidos na água

Par ácido-base conjugado

• Um doador de próton e seu receptor = par ácidobase conjugado.

$$CH_3COOH = H^+ + CH_3COO^-$$

Doador de prótons	Receptor de prótons CH ₃ COO-	
CH ₃ COOH (ácido acético)		
H ₃ PO ₄ (ácido fosfórico)	$\mathrm{H_{2}PO_{4}^{-}}$	
H ₂ PO ₄ (fosfato biácido)	HPO_4^{2-}	
HPO ₄ ²⁻ (fosfato monoácido)	PO_4^{3-}	
NH ₄ (amônio)	NH ₃	
H ₂ CO ₃ (ácido carbônico)	$HCO_{\overline{3}}$	
HCO3 (bicarbonato)	CO_3^{2-}	
+NH ₃ O (glicina) OH	+NH ₃ O CH ₂ -C	
+NH ₃ O	NH ₂ O CH ₂ —C	
0-	,0-	

Cada ácido tem uma tendência para perder o seu próton em solução aquosa. Quanto mais forte é o ácido, maior a tendência para perder o próton.

 A tendência de qualquer ácido perder um próton e formar a sua base conjugada é definida pela constante de equilíbrio da reação reversível.

$$HA = \frac{H^{+} + A^{-}}{K = \frac{[H^{+}][A^{-}]}{[HA]}}$$

As constantes de equilíbrio para reações de ionização são chamadas de constante de dissociação

São geralmente designadas por K_a

Os valores de pKa são análogos ao pH e são definidos pela equação:

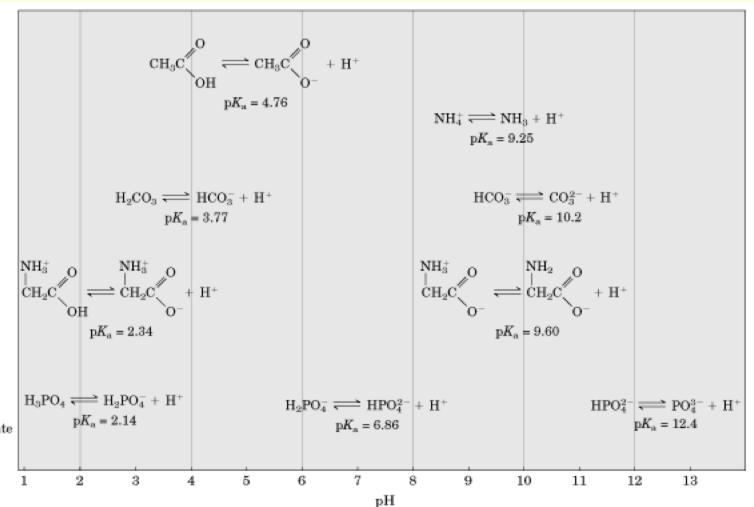
$$pK_{a} = \log \frac{1}{K_{a}} = -\log K_{a}$$

 Quanto mais fortemente um ácido se dissocia, menor é o seu pKa Constantes de dissociação de alguns ácidos. Os ácidos mais fortes como o fórmico tem constante de dissociação maiores

Ácido	K _a (M)	pK_a
HCOOH (ácido fórmico)	$1,78 \times 10^{-4}$	3,75
CH ₃ COOH (ácido acético)	$1,74 \times 10^{-5}$	4,76
CH ₃ CH ₂ COOH (ácido propiônico)	$1,35 \times 10^{-5}$	4,87
CH ₃ CH(OH)COOH (ácido láctico)	$1,38 \times 10^{-4}$	3,86
H ₃ PO ₄ (ácido fosfórico)	$7,25 \times 10^{-3}$	2,14
H ₂ PO ₄ (fosfato biácido)	$1,38 \times 10^{-7}$	6,86
HPO ₄ ²⁻ (fosfato monoácido)	$3,98 \times 10^{-13}$	12,4
H ₂ CO ₃ (ácido carbônico)	$1,70 \times 10^{-4}$	3,77
HCO3 (bicarbonato)	$6,31 \times 10^{-11}$	10,2
NH ₄ (amônio)	$5,62 \times 10^{-10}$	9,25

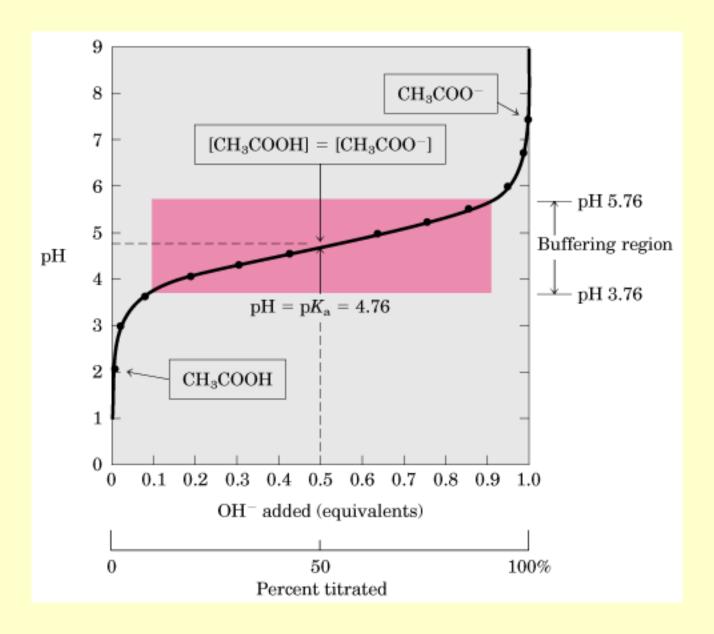
Acetic acid $(K_a = 1.74 \times 10^{-5} \text{ M})$

Ammonium $(K_a = 5.62 \times 10^{-10} \text{ M})$

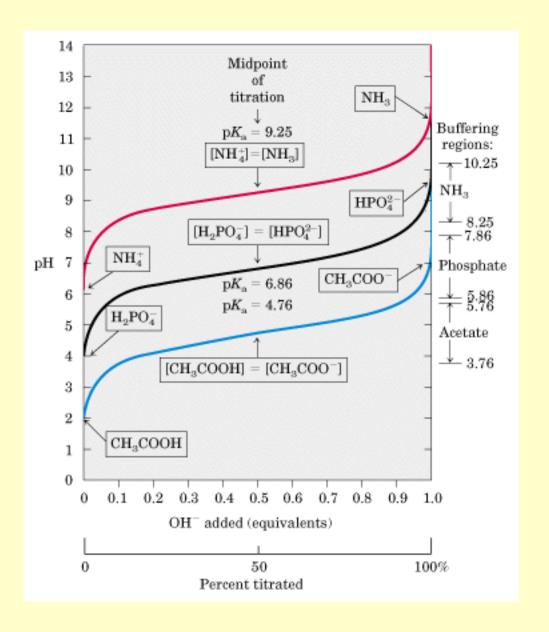

Diprotic acids

Carbonic acid $(K_a = 1.70 \times 10^{-4} \text{ m});$ Bicarbonate $(K_a = 6.31 \times 10^{-11} \text{ m})$

Glycine, carboxyl $(K_a = 4.57 \times 10^{-3} \text{ M})$; Glycine, amino $(K_a = 2.51 \times 10^{-10} \text{ M})$


Triprotic acids

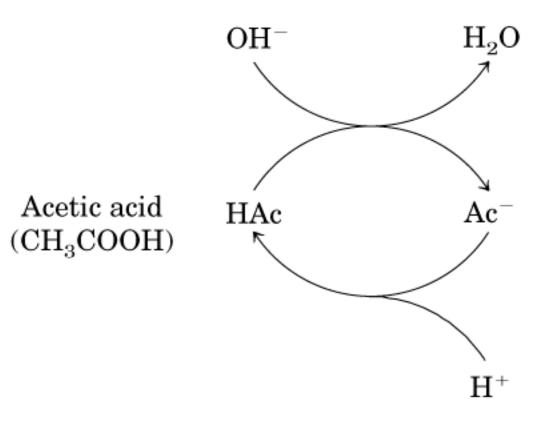
Phosphoric acid $(K_a = 7.25 \times 10^{-3} \text{ M})$; Dihydrogen phosphate $(K_a = 1.38 \times 10^{-7} \text{ M})$; Monohydrogen phosphate $(K_a = 3.98 \times 10^{-13} \text{ M})$


A curva de titulação revela o pKa dos ácidos fraços

• A curva de titulação é usada para determinar a concentração de um ácido em uma solução.

No início da titulação, antes que qualquer NaOH seja adicionado, o ácido acético já está ligeiramente ionizado, em uma extensão que pode ser calculada a partir da sua constante de ionização.

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm Ac}^-]}{[{\rm HAc}]} = 1,74 \times 10^{-5} {\rm M}$$


Ação tamponante contra variações de pH

- Quase todos os processos biológicos são dependentes de pH
- As enzimas que catalisam as reações celulares e muitas das biomoléculas possuem grupos ionizáveis com valores de pKa característicos
- As células e os organismos mantêm um pH citosólico constante e específico, geralmente próximo de pH 7,0, que mantém as biomoléculas em seu iônico ótimo

Os tampões são misturas de ácidos fracos e suas bases conjugadas

- Os tampões são misturas que em solução aquosa dão a estas soluções a propriedade de resistir às variações de pH
- A região de tamponamento pode ser reconhecida na curva de titulação de um ácido fraco.
- No ponto médio da região tamponante, onde a concentração do doador se iguala a do receptor, o poder tamponante é máximo.

$$K_{\mathrm{w}} = [\mathrm{H^+}][\mathrm{OH^-}]$$

 $\begin{array}{c} {\rm Acetate} \\ ({\rm CH_3COO^-}) \end{array}$

$$K_{\rm a} = \frac{[{
m H}^+][{
m Ac}^-]}{[{
m HAc}]}$$

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

A equação de Henderson-Hasselbalch

- A relação quantitativa entre o valor do pH, a ação tamponante da mistura ácido-fraco/base conjugada e o pka do ácido graco é dada pela equação de Henderson-Hasselbalch.
- As curvas de titulação dos ácidos fracos têm formas quase idênticas sugerindo que todas elas refletem uma relação fundamental.
- As curvas são expressas pela equação de Henderson-Hasselbalch.

é apenas uma forma útil de redefinir a expressão para a constante de dissociação de um ácido fraco.

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm A}^-]}{[{\rm HA}]}$$

primeiro resolve-se para [H+]:

$$[H^+] = K_a \frac{[HA]}{[A^-]}$$

calculando-se o logaritmo negativo dos dois lados:

$$-\log [H^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$

substituindo- log [H+] por pH, e -log K_a por p K_a :

$$pH = pK_a - \log \frac{[HA]}{[A^-]}$$

invertendo-se a fração – log [HA]/[A⁻] inverte-se o sinal, e obtemos a equação de Henderson-Hasselbalch:

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

de uma forma mais genérica:

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

a qual pode ser escrita em sua forma genérica:

$$pH = pK_a + log \frac{[receptor de prótons]}{[doador de prótons]}$$

Com essa equação, fica fácil demonstrar que:

$$pH = pK_a + log 1,0 = pK_a + 0 = pK_a$$

Calcule o p K_a do ácido láctico sabendo-se que quando a concentração de ácido láctico livre em uma solução é 0,010M e a concentração de lactato é 0,087M, o pH desta solução é 4,80.

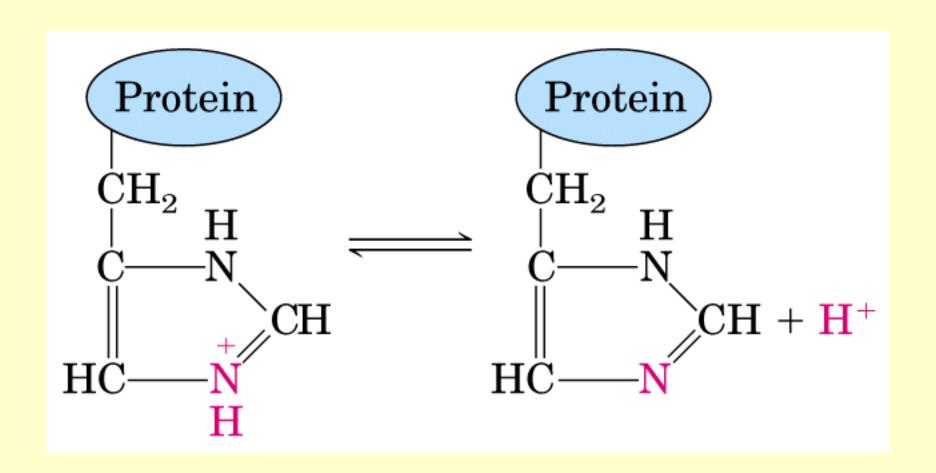
$$pH = pK_a + \log \frac{[lactato]}{[ác. láctico]}$$

$$pK_a = pH - \log \frac{[lactato]}{[ác. láctico]}$$

$$= 4,80 - \log \frac{0,087}{0,010} = 4,80 - \log 8,7$$

$$= 4,80 - 0,94 = 3,86 \quad (resposta)$$

Calcule o pH de uma mistura contendo ácido acético 0,1M e acetato de sódio 0,2M. O p K_a do ácido acético é 4,76.


$$\begin{aligned} \text{pH} &= \text{p}K_{\text{a}} + \log \frac{[\text{acetato}]}{[\text{ácido acético}]} \\ &= 4,76 + \log \frac{0,2}{0,1} = 4,76 + 0,301 \\ &= 5,06 \quad (resposta) \end{aligned}$$

Calcule a relação entre as concentrações de acetato e de ácido acético necessária para que esse sistema tampão tenha pH 5,30.

$$pH = pK_a + \log \frac{[acetato]}{[ácido acético]}$$

$$\log \frac{[acetato]}{[ácido acético]} = pH - pK_a$$

$$= 5,30 - 4,76 = 0,54$$

$$\log \frac{[acetato]}{[ácido acético]} = antilog 0,54 = 3,47 (resposta)$$

Os ácidos gracos e as bases fracas tamponam as células e os tecidos

- O citoplasma das células contém altas concentrações de proteínas, que possuem muitos aminoácidos com grupos funcionais que são ou ácidos ou bases fracas.
- A cadeia lateral do aminoácido histidina, por exemplo, tem um pKa de 6,0 e proteínas contendo resíduos de histidina podem tamponar ao redor do pH neutro.

O fosfato e o bicarbonato são tampões biológicos importantes

- A primeira linha de defesa dos organismos contra variações do pH interno é fornecida pelos tampões.
- Dois dos tampões biológicos importantes são o sistema fosfato e bicarbonato.
- O sistema tampão fosfato, age no citoplasma de todas as células.

O tampão fosfato

$$H_2PO_4^- = H^+ + HPO_4^{2-}$$

- é tamponante efetivo dos fluidos intracelulares
- pKa= 6,86 (resiste às variações entre pH 6,4-7,4)
- nos mamíferos, os fluidos extracelulares e a maioria dos compartimentos citoplasmáticos tem pH n aregião de 6,9-7,4

O plasma sanguíneo é tamponado em parte, pelo sistema tampão bicarbonato, que consiste de ácido carbônico como doador de prótons (H₂CO₃) e do bicarbonato (HCO₃-) como receptor.

$$H_2CO_3 \rightleftharpoons H^+ + HCO_3$$

este sistema tem uma constante de equilíbrio dada por:

$$K_1 = \frac{[\mathrm{H}^+][\mathrm{HCO}_3^-]}{[\mathrm{H_2CO}_3]}$$

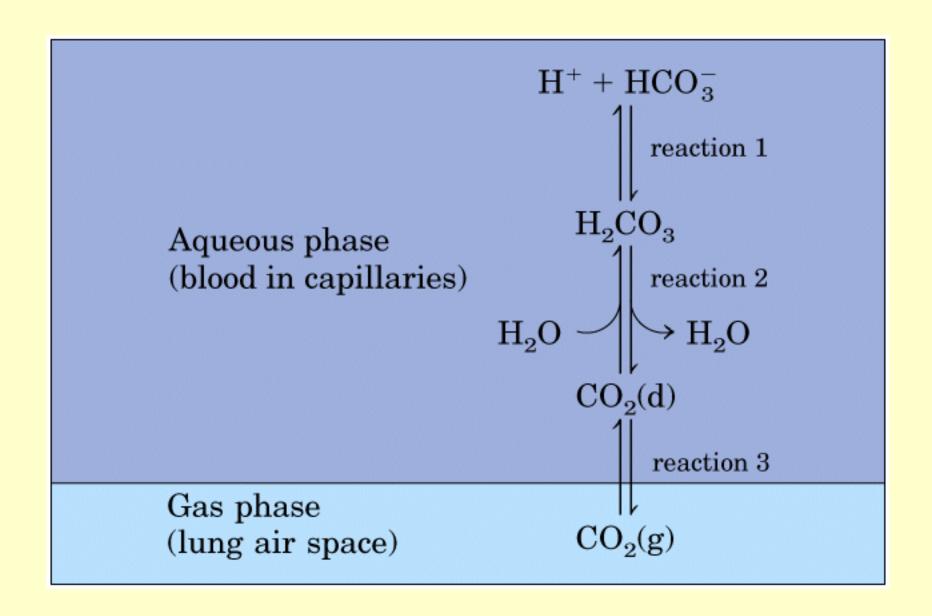
e funciona como um tampão da mesma forma como outros pares ácido-base conjugados. Entretanto, ele é único no fato de um de seus componentes, o ácido carbônico, ser composto de dióxido de carbono dissolvido (d) e água. De acordo com a reação reversível

$$CO_2(d) + H_2O \Longrightarrow H_2CO_3$$

$$CO_2(d) + H_2O \Longrightarrow H_2CO_3$$

a qual tem uma constante de equilíbrio dada pela expressão

$$K_2 = \frac{[H_2CO_3]}{[CO_2(d)][H_2O]}$$


o CO₂ é um gás em condições normais e a concentração de CO₂ dissolvido é:

$$CO_2(g) = CO_2(d)$$

$$K_3 = \frac{[\text{CO}_2(d)]}{[\text{CO}_2(g)]}$$

o pH do sistema tampão bicarbonato

- O pH do sistema tampão bicarbonato depende da [H₂CO₃] e [HCO₃⁻]
- A [H₂CO₃] depende do CO₂ (d)
- O CO₂ (d) depende da concentração ou da pressão parcial do CO₂ na fase gasosa.

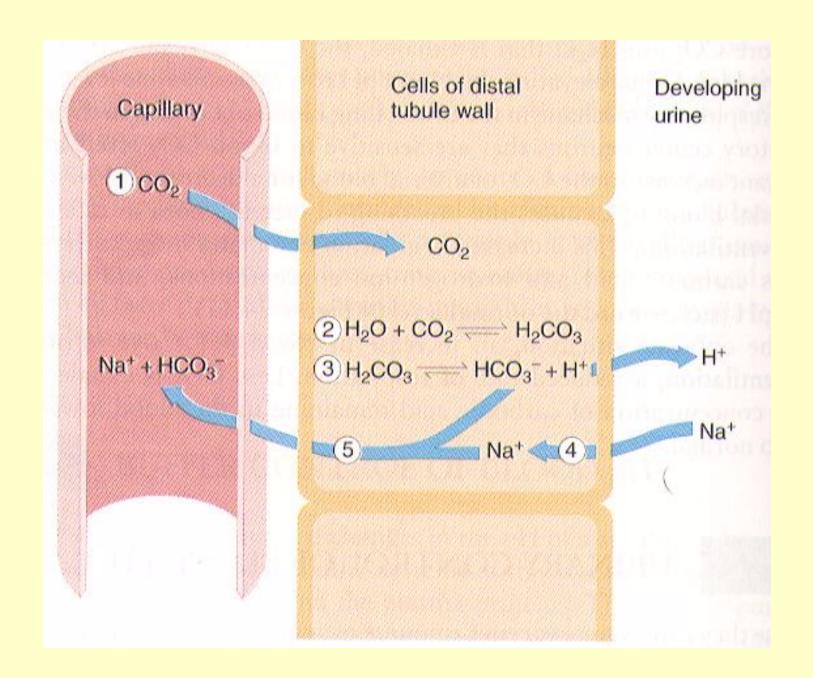
Sangue, pulmões e tampões

- Nos animais com pulmões, o sistema tampão bicarbonato é um tampão fisiológico efetivo em pH próximo a 7,4
- O pKa do ácido carbônico $(H_2CO_3) = 3,77$
- Isso é possível porque o H₂CO₃ do plasma sanguíneo está em equilíbrio com um grande reservatório de CO₂ localizado no espaço aéreo do pulmão.
- A concentração de CO₂ dissolvido pode ser ajustada rapidamente através da respiração pulmonar.

O controle do pH sanguíneo

- O tampão bicarbonato é um importante tampão dos fluidos corporais.
- A concentrações de bicarbonato e ácido carbônico são reguladas pelo sistema respiratório e pelos rins.

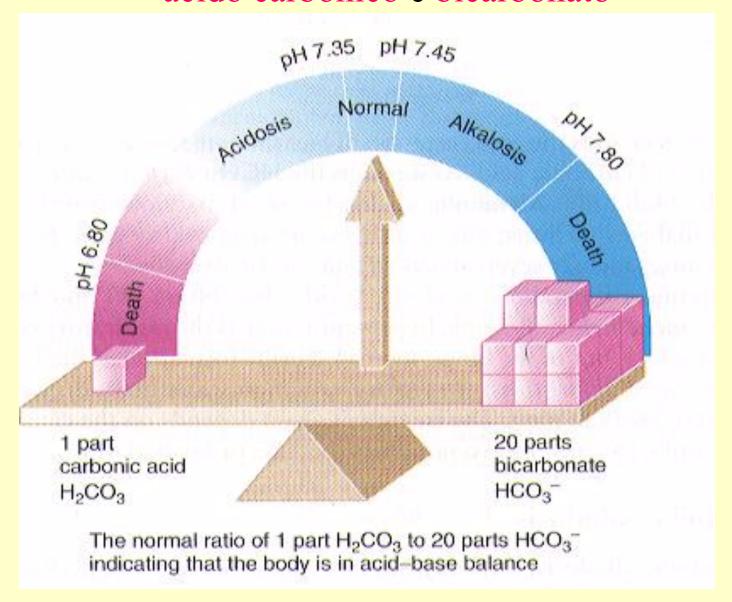
O controle respiratório do pH


- O mecanismo de controle respiratório do pH do sangue começa no cérebro com neurônios de controle do centro respiratório que são sensíveis aos níveis de CO₂ do sangue e ao pH.
- Um aumento do CO₂ arterial, ou um decréscimo do pH para 7.38 leva a uma hiperventilação que elimina o CO₂.
- Em oposição, um aumento no pH do sangue causa hipoventilação.

O controle urinário do pH

 Por sua capacidade de poder excretar quantidades diversas de ácidos e bases, o rim, como o pulmão, tem papel importante no controle do pH

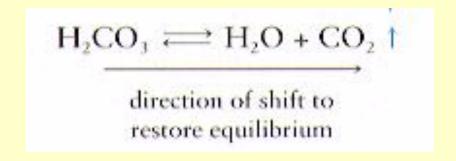
Excreção de H⁺ pelo rim


- CO₂ difunde dos capilares sanguíneos para o rim
- H₂O e CO₂ reagem para dar ácido carbônico reação catalisada pela anidrase carbônica.
- O ácido carbônico se ioniza dando H+ e bicarbonato.
- O H⁺ se difunde na urina
- Para cada H⁺ que entra na urina, um íon sódio entra nos capilares da corrente sanguínea.

O resultado é a conversão de CO₂ em bicarbonato

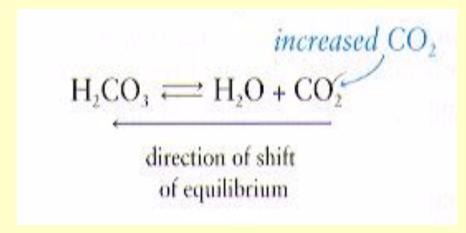
- Tanto o decréscimo do CO₂, quanto o aumento do HCO₃- elevam os níveis do pH sanguíneo para valores normais.
- A urina que estava se formando, ficou com os H⁺ que reagem com tampões presentes na urina, como o fosfato
- $H^+ + HPO_4^{2-} H_2PO_4^{-}$
- A presença do tampão fosfato previne a urina de ficar muito ácida (pH<6)

O pH do sangue depende da concentração relativa de ácido carbônico e bicarbonato

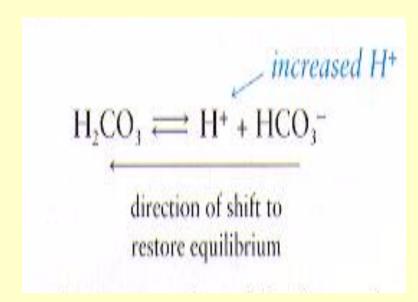


Acidose e Alcalose

- Dois adjetivos descrevem a origem geral do desbalanço no pH dos fluidos do corpo.
- Acidose e alcalose respiratória resulta de padrões respiratórios anormais.
- Acidose e alcalose metabólica resulta de outros fatores metabólicos que não a respiração.


Alcalose Respiratória

- Causada por hiperventilação, respiração rápida e profunda. Muito CO₂ é exalado.
- Histeria, ansiedade, choro prolongado
- O tratamento consiste em re-respirar o próprio ar, administração de CO₂ ou eliminar as causas.


Acidose respiratória

- Causada por respiração lenta (hipoventilação) que pode ser resultante de overdose de narcóticos ou barbitúricos.
- Anestesistas tem que estar bastante atentos a esse problema. Doenças pulmonares como enfisema e pneumonia também provocam acidose.
- O tratamento consiste na administração intravenosa de solução de bicarbonato de sódio.

Acidose Metabólica

- Diversos processos metabólicos produzem substâncias ácidas que liberam H⁺
- A difusão dessas substâncias na corrente sanguínea causa um deslocamento no equilíbrio ácido carbônicobicarbonato
- Esse é um problema sério em diabete mellitus e também pode ocorrer temporariamente durante exercícios físicos pesados.
- Os sintomas são hiperventilação, aumento da formação de urina, sede, etc.
- O tratamento depende da causa e pode envolver terapia com insulina, bicarbonato intravenoso ou hemodiálise.

Ácido lático produzido durante a contração muscular

$$HLac \rightarrow H^+ + Lac^-$$

$$H^+ + HCO_3 \rightarrow H_2CO_3$$

$$HLac + HCO_3^- \rightarrow H_2CO_3 + Lac^-$$

Alcalose Metabólica

- Neste caso, o corpo perdeu ácido de alguma forma. Pode ser por vômitos prolongados, ou a ingestão de substâncias alcalinas. Uso exessivo de bicarbonato de sódio para o estômago, etc.
- Neste caso, os centros respiratórios respondem com hipoventilação.

Condition	Causes
Respiratory	
Acidosis: CO₂↑ pH↓	Hypoventilation, blockage of diffusion within lungs, respiratory center depressants
Alkalosis: CO₂↓ pH↑	Hyperventilation, excitement, trauma
Metabolic	
Acidosis: H⁺↑ pH↓	Kidney failure, prolonged diarrhea, ketone bodies from diabetes mellitus
Alkalosis: H+↓ pH↑	Kidney disease, prolonged vomiting, excessive intake of baking soda