

Exercício

A figura abaixo representa um eixo de um determinado mecanismo utilizado em uma máquina ferramenta que trabalha continuamente durante 8 horas diárias. Durante seu funcionamento as cargas atuantes variam conforme a tabela abaixo:

Tempo [min]	Fr A [N]	Fr _B [N]	F a [N]	Rotação [rpm]
12	7600	6400	4000	400
26	6400	6100	3700	630
22	7200	5200	2400	500

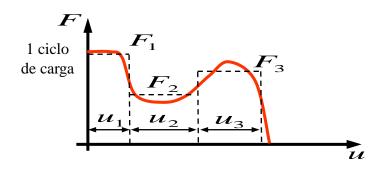
São dados:

- diâmetro do assento de rolamento no eixo: 50 mm, em ambos os lados;
- temperatura de serviço: 80° C;
- Vida requerida dos rolamentos : 10.000 h
- direção das forças constantes; existe inversão do sentido de rotação e conseqüente variação do sentido da força axial;
- adotar **f** = **1,1**;
- montagem e lubrificação confiáveis;
- ambiente de serviço com muita poeira e líquidos;
- fixações dos rolamentos, dimensões e tolerâncias nas partes em contato com rolamento.

Efetuar o dimensionamento completo (estático e dinâmico) dos rolamentos com uma confiabilidade de 95 %.

Resolução:

Dimensionar os rolamentos, o que significa?


- Dimensionamento estático;
- 2. Dimensionamento dinâmico;
- 3. Escolher o óleo e método de lubrificação;
- 4. Verificar rotação (n_{máx});
- Calcular momentos de atrito;
- 6. Escolher vedadores;
- 7. Fazer desenho ilustrativo de montagem no eixo.

1. Dimensionamento estático

a. cálculo da carga média

$$F_{med} = \sqrt[3]{rac{\sum F_i^3 u_i}{\sum u_i}}$$

u_i: número de rotações

Rotação média:
$$n_{medio} = \frac{total \ rotações}{tempo}$$

Cargas nos rolamentos (F_r, F_a)

Cargas teóricas x Cargas reais de serviço

Incertezas:

- valor real da carga (choque por exemplo)
- direção da carga
- montagem (folga / apertos excessivos)lubrificação, temperatura
- desbalanceamento, vibrações

$$F_{calc} = f \cdot F_{teoricas}$$

$$f = 1.0 \sim 3.0$$

dependendo das incertezas acima

Tempo (min)	R_A	R_{B}	Axial	rpm	u (n. rotações)
12	7600	6400	4000	400	4800
26	6400	6100	3700	630	16380
22	7200	5200	2400	500	11000
	R _A medio	R _B medio	Axial medio	Total u	32180
cargas medias	6886	5874	3422		
f=1,1	7574	6462	3764		

Rotação média:

$$n_{medio} = \frac{total\ rotações}{tempo} = \frac{32180}{60} = 536,33\ rpm$$

Rotação média: 540 rpm (adotado) (Catálogo SKF, pg. Xxx)

b. Cálculo da carga estática equivalente e escolha inicial

Dada a configuração mostrada, escolhe-se inicialmente rolamento rígido de esferas (pg. 312), para ambos os apoios (A e B).

Considerando o mesmo rolamento para ambos os lados, escolher-se-á aquele com maiores cargas,

$$F_r = 7574 \text{ N}$$
 e $F_a = 3764 \text{ N}$

Carga estática equivalente no rolamento (pg. 316):

$$P_0 = X_0 F_r + Y_0 F_a$$

$$P_0 = 0.6F_r + 0.5F_a$$

se
$$P_0 < F_r$$
 \rightarrow $P_0 = F_r$

Neste caso:
$$P_0 = 0.6.7574 + 0.5.3764 = 6427 \text{ N}$$
 como $P_0 < Fr$ \rightarrow $P_0 = 7574 \text{ N}$

como
$$P_0 < Fr$$
 \rightarrow $P_0 = 7574$ N

Capacidade de carga estática C₀:

$$C_0 \ge s_0 P_0$$

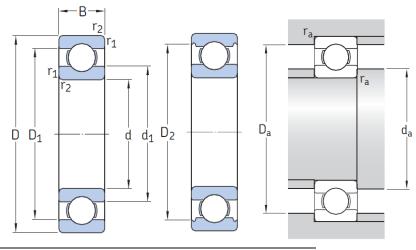
									Tabela 1	11
Valores de referência para o f	ator de segu	rança estáti	ca s	0						
Tipo de operação	ação	Rolamento	sem rotaçã	0						
	Rolamentos Rolamentos Rolamentos Rolamentos Rolamentos de esferas de rolos de esferas de rolos de esferas de rolos								Rolamentos de rolos	s
Sem problemas, sem vibração	0,5	1	1		1,5	2	3	0,4	0,8	
Normal	0,5	1	1		1,5	2	3,5	0,5	1	
Cargas de choque pronunciadas ¹⁾	≥ 1,5	≥ 2,5	≥1	,5	≥ 3	≥ 2	≥ 4	≥1	≥2	
Para rolamentos axiais de rolos de esferas, é aconselhável utilizar s₀ ≥ 4.										

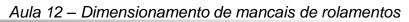
raia rotalileticos axiais de rotos de esteras, e aconsethavet diffizar 50 2 4.

Portanto: $s_0 = 1$

 $C_0 \ge 1.7574 = 7574 \text{ N}$

Catálogo


¹⁾ Onde a magnitude da carga de choque for desconhecida, os valores de s₀ pelo menos tão grandes quanto os citados acima, devem ser utilizados. Se a magnitude das cargas de choque for conhecida com precisão, valores menores que s₀ podem ser aplicados. (pg. 89)


Sabendo-se que o diâmetro do eixo no assento do rolamento é 50mm, e da capacidade de carga estática C_0 calculada, Faz-se a escolha inicial do rolamento no catálogo, pg. 328:

1.1 Rolamentos rígidos de uma carreira de esferas d de 40 a 55 mm

Dimer	ısões prin	·		Classifica básicas d dinâmica	e carga estática	Limite de carga de fadiga	Classifica de velocid Velocidade	l ade · Velocidade	Massa -	Des	ignação
d	D	В		С	C ₀	P _u	de referên	cia limite			
mm				kN		kN	r/min		kg	_	
	Dimensões										
Dime	nsões						Dimensões	de encosto e	raio	Fatores	de cálculo
Dime	nsões d ₁		D ₁	D,	2	r _{1,2} mín.	d _{a,}	D _{a,} r _a		Fatores	s de cálculo f ₀

	Dimen	sões prin	cipais	Classifica básicas d	e carga	Limite de carga de	Classificações de velocidade	/-111	Massa	Designação
I R- -I	d	D	В	dinâmica C	estática C ₀	fadiga P _u		/elocidade- imite		
r_1	mm			kN		kN	r/min		kg	_
r_1	50	65 72	7 12	6,76 14,6	6.8	0,285	20 000 19 000	13 000 12 000	0.052 0,14	61810 61910
	ļ ^ι	80 80	10 16	16,8 22,9	11,8 11,4 16	0,5 0,56 0,71	18 000 18 000 18 000	11 000 11 000	0,14 0,18 0,26	* 16010 * 6010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α ₁	90	20	37,1	23,2	0,71	15 000	10 000	0,45	* 6210
	<u> </u>	110 130	27 31	65 87,1	38 52	1,6 2,2	13 000 12 000	8 500 7 500	1,1 1,95	* 6310 6410
		~				-	. ~ ,			

Dimer	ısões				Dimenso	ões de enco	sto e raio	Fatores de cálculo		
d	d ₁ ~	D ₁ ~	D ₂	r _{1,2} min.	d _{a,} mín.	D _a máx.	r _a máx.	k _r	f ₀	
mm					mm			_		
50	55,1 56,9	59,9 65,1	-	0,3 0,6	52 53,2	63 68,8	0,3 0,6	0,015 0,02	17 16	
	60 59,7	70 70,3	- 72,8	0,6 1	53,2 54,6	76,8 75,4	0,6 1	0,02 0,025	14 15	
	62,5 68,7 75,4	77,4 91,1 105	81,7 95,2 -	1,1 2 2,1	57 61 64	83 99 116	1 2 2	0,025 0,03 0,035	14 13 12	

Rolamento escolhido: SKF 61910

características: d = 50 mm; D = 72 mm; C = 14600 N; $C_0 = 11800 \text{ N}$; Carga de Fadiga: $P_u = 500 \text{ N}$

Velocidades: referência:19000 rpm; limite: 12000 rpm; $K_r = 0.02$; $f_0 = 16$

2. Dimensionamento dinâmico

a. Cálculo da carga dinâmica equivalente

Carga dinâmica equivalente no rolamento (pg. 316):

$$\operatorname{se} F_a/F_r \leq \operatorname{e} \rightarrow P = F_r$$

se
$$F_a/F_r > e$$
 $\rightarrow P = X F_r + Y F_a$

$$F_a/F_r = 3764 / 7574 = 0,497$$

Valores de e, X e Y, Tabela pg.315:

$$f_0.F_a/C_0 = 16.3764/11800 = 5,10$$

										Tabela 8
Fatores d	e cálculo	para rola	amentos rígidos de esfera	s						
		entos de normal	uma e de duas carreiras	Rolam Folga (uma carreira	Folga C4			
$f_0 F_a/C_0$	е	X	Υ	е	X	Υ	е	Х	Υ	
0,172 0,345 0,689	0,19 0,22 0,26	0,56 0,56 0,56	2,3 1,99 1,71	0,29 0,32 0,36	0,46 0,46 0,46	1,88 1,71 1,52	0,38 0,4 0,43	0,44 0,44 0,44	1,47 1,4 1,3	
1,03 1,38 2,07	0,28 0,3 0,34	0,56 0,56 0,56	1,55 1,45 1,31	0,38 0,4 0,44	0,46 0,46 0,46	1,41 1,34 1,23	0,46 0,47 0,5	0,44 0,44 0,44	1,23 1,19 1,12	
3,45 5,17 6,89	0,38 0,42 0,44	0,56 0,56 0,56	1,15 1,04 1	0,49 0,54 0,54	0,46 0,46 0,46	1,1 1,01 1	0,55 0,56 0,56	0,44 0,44 0,44	1,02 1 1	

Como: $F_a/F_r = 0.497 > e = 0.42 \rightarrow P = X F_r + Y F_a$

P = 0.56.7574 + 1.04.3764 = 8156 N

b. Cálculo da vida

Vida em milhões de ciclos (L):

$$L = a_1. a_2. a_3. \left(\frac{C}{P}\right)^p \to a_1. a_{23}. \left(\frac{C}{P}\right)^p \to a_1. a_{skf}. \left(\frac{C}{P}\right)^p$$

Vida em horas (L_h):

$$L_h = \frac{10^6}{60.n}.L$$

$$p = \begin{cases} 3 & -\text{ elementos rolantes esféricos} \\ 10/3 & -\text{ elementos rolantes de rolos} \end{cases}$$

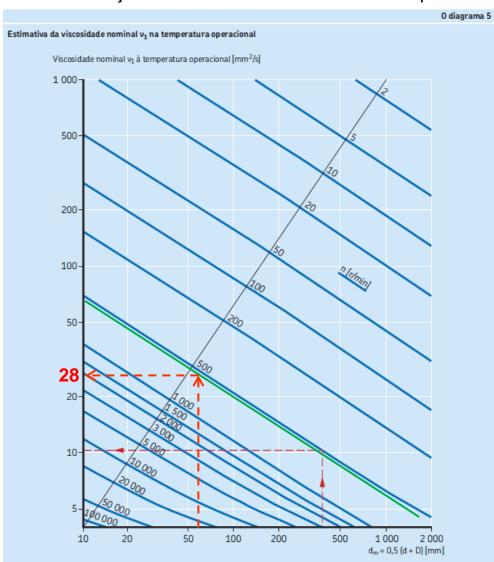
b1. Confiabilidade

 a_1 = fator de ajuste de vida para confiabilidade (valores de acordo com a norma ISO 281), pg. 65.

$$a_1 = 0.64$$

			Tabela 1								
Valores para o fator de ajuste de vida útil a ₁											
Confiabili- dade	Probabilidade de falha	Vida nominal SKF	Fator								
	n	L _{nm}	a ₁								
%	%	milhões de revoluções	-								
90	10	L _{10m}	1								
95	5	L _{5m}	0,64								
96	4	L _{4m}	0,55								
97 98 99	3 2 1	L _{3m} L _{2m} L _{1m}	0,47 0,37 0,25								

b2. Fator a_{skf} (a_{23} método anterior catálogo)


Passos (a_{skf}) :

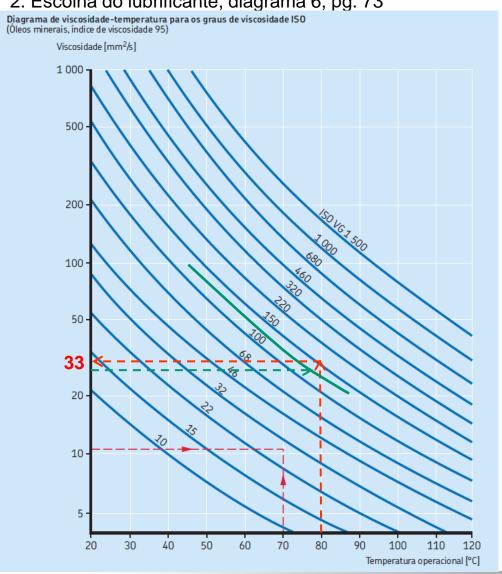
- 1. Determinação da viscosidade necessária à temperatura operacional, diagrama 5, pg. 72
- 2. Escolha do lubrificante, diagrama 6, pg. 73
- 3. Cálculo das relações de viscosidades e fator de contaminação;
- 4. Determinação do fator a_{skf}, diagrama 1, pg. 66

. Determinação da viscosidade necessária à temperatura operacional (80° C), diagrama 5, pg. 72

Diâmetro médio do rolamento (d_m):

$$d_m = 0.5.(d+D)$$

$$d_m = 0.5.(50 + 72) = 61 \, mm$$


rotação (n): 540 rpm

Viscosidade = 28 mm²/s

2. Escolha do lubrificante, diagrama 6, pg. 73

Viscosidade desejada a 80° C = 28 mm²/s

Óleo escolhido: ISO VG150, cuja viscosidade a 80° C é 33 mm²/s, valor aproximado retirado do diagrama 6, ao lado.

Lubrificação a óleo: ISO VG150

3. Cálculo das relações de viscosidades e fator de contaminação

$$v_1$$
 = Viscosidade desejada a 80° C = 28 mm²/s (v_1)

$$k = \frac{\vartheta}{\vartheta_1} = \frac{33}{28} = 1,178$$

υ = viscos. óleo escolhido: ISO VG150, viscosidade = 33 mm²/s

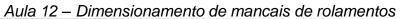
Para o cálculo do fator de ajuste para lubrificação a SKF sugere a relação: $\eta_c \cdot \frac{P_0}{P}$ (diagrama 1, pg.66)

 η_c : fator de contaminação, tabela 4, pg74 $\rightarrow \eta_c$ = 0,6 a 0,5 $\rightarrow \eta_c$ = 0,55

 P_u : carga limite de fadiga (tabela de rolamentos)

P; carga dinâmica equivalente

$$\eta_c.\frac{P_u}{P} = 0.55.\frac{500}{8156} = \mathbf{0.033}$$



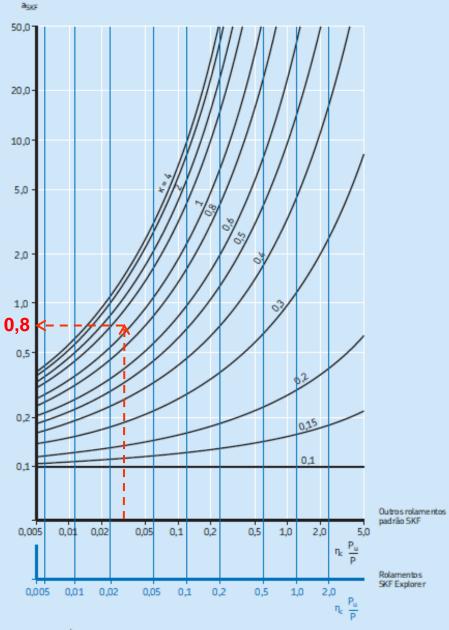


Tabela 4

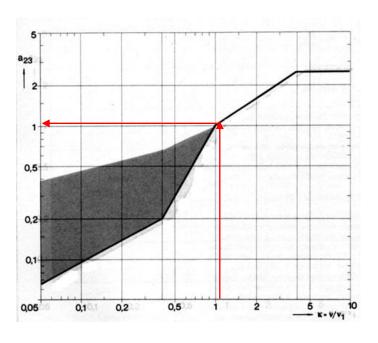
		Tabela 4
Valores de referência para o fator η_c para diferentes níveis de contaminação		
Condições	Fator $\eta_c^{(1)}$ para rolamentos com diâmetro $d_m < 100 \text{ mm}$	o médio d _m ≥ 100 mm
Limpeza extrema tamanho aproximado das partículas da mesma espessura do filme lubrificante condições laboratoriais	1	1
Alto nível de limpeza	0,8 0,6	0,9 0,8
Limpeza normal	0,6 0,5	0,8 0,6
Leve contaminação condições típicas: rolamentos sem vedações integradas, filtragem grosseira, partículas de desgaste e leve infiltração de contaminantes	0,5 0,3	0,6 0,4
Contaminação típica condições típicas de rolamentos sem vedações integradas, filtragem grosseira, partículas de desgaste e entrada de contaminantes	0,3 0,1	0,4 0,2
Contaminação grave condições típicas: altos níveis de contaminação, devido a desgaste excessivo e/ou vedações ineficientes arranjo de rolamentos com vedações ineficientes ou com danos	0,1 0	0,1 0
 Contaminação muito grave condições típicas: níveis de contaminação tão severas que os valores de η_c estão fora da escala, o que reduz significativamente a vida do rolamento 	0	0

¹⁾ A escala para η_c refere-se apenas a contaminantes sólidos típicos. Contaminantes como água ou outros fluidos prejudiciais à vida do rolamento não está incluída. Devido ao desgaste abrasivo em ambientes altamente contaminados (η_c = 0), a vida útil de um rolamento pode ser significativamente mais curta que a vida nominal.

 $a_{\rm skf} = 0.8$

Se K > 4, utilize a curva para K = 4.

Conforme o valor de η_c (P_u/P) tender a zero, a_{SNF} tende a 0,1 para todos os valores de κ

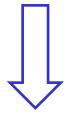


OBS: Para o cálculo do a23 (método anterior catálogo).

$$v_1$$
 = Viscosidade desejada a 80° C = 28 mm²/s (v_1)

$$k = \frac{\vartheta}{\vartheta_1} = \frac{33}{28} = 1,178$$

$$a_{23} = 1,1$$



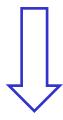
Vida em milhões de ciclos (*L*):
$$L = a_1.a_{skf}.\left(\frac{C}{P}\right)^p = 0,64.0,8.\left(\frac{14600}{8156}\right)^3 = 29,369$$

Vida em horas (
$$L_h$$
): $L_h = \frac{10^6}{60.n}$. $L = \frac{10^6}{60.540}$. 29,369 = **906**, **47** h

Vida requerida em horas (enunciado): 10.000 h

Rolamento não atende !!!

Escolher outro rolamento e refazer !!!


OBS: Para o cálculo do a₂₃ (método anterior catálogo).

Vida em milhões de ciclos (*L*):
$$L = a_1. a_{23}. \left(\frac{C}{P}\right)^p = 0,64.1,1. \left(\frac{14600}{8156}\right)^3 = 40,382$$

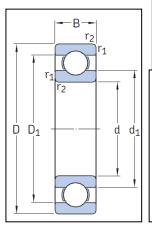
Vida em horas (
$$L_h$$
): $L_h = \frac{10^6}{60.7}$. $L = \frac{10^6}{60.540}$. 40,382 = **1246**, **38** h

Vida requerida em horas (enunciado): 10.000 h

Rolamento não atende !!!

Escolher outro rolamento e refazer !!!

Como refazer ???


- Ir à tabela de rolamentos e escolher rolamento com maior capacidade de carga (mas qual?) → Tentativa e erro...
- 2. Cálculo indireto (para facilitar a escolha)

1. Ir à tabela de rolamentos e escolher rolamento com maior capacidade de carga (mas

qual?) → Tentativa e erro...

Dime	Dimensões principais		Classificações básicas de carga dinâmica estática		Limite de carga de fadiga	,		Massa	Designação
d	D	В	C	C ₀	P _u		imite		
mm			kN		kN	r/min		kg	-
50	65 72 80 80	7 12 10 16	6,76 14,6 16,8 22,9	6.8 11,8 11,4 16	0.285 0,5 0,56 0,71	20 000 19 000 18 000 18 000	13 000 12 000 11 000 11 000	0.052 0,14 0,18 0,26	61810 61910 * 16010 * 6010
	90 110 130	20 27 31	37,1 65 87,1	23,2 38 52	0,98 1.6 2,2	15 000 13 000 12 000	10 000 8 500 7 500	0,45 1.1 1,95	* 6210 * 6310 6410

2. Cálculo dinâmico indireto (para facilitar a escolha)

Vida em milhões de ciclos (*L*):
$$L = a_1. a_2. a_3. \left(\frac{C}{P}\right)^p \rightarrow a_1. a_{23}. \left(\frac{C}{P}\right)^p \rightarrow a_1. a_{skf}. \left(\frac{C}{P}\right)^p$$

Vida em horas
$$(L_h)$$
:

$$L_h = \frac{10^6}{60.n}.L$$

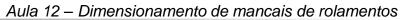
Vida requerida em horas (enunciado): 10.000 h

$$10000 = \frac{10^6}{60.540} \cdot L \to L = 324$$

 $p = \begin{cases} 3 & -\text{ elementos rolantes esféricos} \\ 10/3 & -\text{ elementos rolantes de rolos} \end{cases}$

Considerações:

$$a_1 = 0.64$$
 (confiabilidade)


$$a_{skf} = 1,0$$
 (aproximação)

$$P = P_r$$
 (no mínimo) = 7574 N (aproximação)

$$324 = 0.64.1, 0. \left(\frac{C}{7574}\right)^3 \to C = 60365 N$$

Tabela de rolamentos!

 R	Dimen s	s ões prin o	c ipais B	Classifica básicas d dinâmica C		Limite de carga de fadiga P _u		/elocidade- mite	Massa	Designação
r_2	mm			kN		kN	r/min		kg	_
r_1	50	65 72	7 12	6,76 14,6	6,8 11,8	0,285 0,5	20 000 19 000	13 000 12 000	0,052 0,14	61810 61910
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 1 ₁ 	80 80	10 16	16,8 22,9	11,4 16	0,56 0,71	18 000 18 000	11 000 11 000	0,18 0,26	* 16010 * 6010
	_	90	20	37,1	23,2	0,98	15 000	10 000	0.45	* 6210
	,	110	27	65	38	1,6	13 000	8 500	1,1	* 6310
1		130	31	87,1	52	2,2	12 000	7 500	1,95	6410

Dimer	ısões				Dimensô	Dimensões de encosto e raio			le cálculo
d	d ₁ ~	D ₁	D ₂	r _{1,2} min.	d _a mín.	D _a máx.	r _a máx.	k _r	f_0
mm					mm			_	
50	55,1 56,9 60 59,7	59,9 65,1 70 70,3	- - - 72,8	0,3 0,6 0,6 1	52 53,2 53,2 54,6	63 68,8 76,8 75,4	0,3 0,6 0,6 1	0,015 0,02 0,02 0,025	17 16 14 15
	62.5	77.4	81.7	11	57	83	11	0.025	14
	68.7	91.1	95.2	2	61	99	2	0.03	13
	75,4	105	_	2,1	64	116	2	0,035	12

Rolamento escolhido: SKF 6310

características: d = 50 mm; D = 110 mm; C = 65000 N; $C_0 = 38000 \text{ N}$; Carga de Fadiga: $P_u = 1600 \text{ N}$

Velocidades: referência:13000 rpm; limite: 8500 rpm; $K_r = 0.03$; $f_0 = 13$

2. Dimensionamento dinâmico para o novo rolamento

a. Cálculo da carga dinâmica equivalente

Carga dinâmica equivalente no rolamento (pg. 316):

$$\operatorname{se} F_a/F_r \leq \operatorname{e} \rightarrow P = F_r$$

se
$$F_a/F_r > e \rightarrow P = X F_r + Y F_a$$

$$F_a/F_r = 3764 / 7574 = 0,497$$

Valores de e, X e Y, Tabela pg.315:

$$f_0.F_a/C_0 = 13.3764/38000 = 1,287$$

										Tabela 8
Fatores d	e cálculo	para rola	mentos rígidos de esfera	s						
		entos de (normal	uma e de duas carreiras	Rolam Folga (uma carreira	Folga (C 4		
$f_0 F_a/C_0$	е	Х	Υ	е	Х	Υ	е	Х	Υ	
0,172 0,345 0,689	0,19 0,22 0,26	0,56 0,56 0,56	2,3 1,99 1,71	0,29 0,32 0,36	0,46 0,46 0,46	1,88 1,71 1,52	0,38 0,4 0,43	0,44 0,44 0,44	1,47 1,4 1,3	
1.03	0.28	0.56	1 55	0.38	0.46	1 41	0.46	0.44	1 23	
1,38	0,3	0,56	1,45	0,4	0,46	1,34	0,47	0,44	1,19	
2,07	0,34	0,56	1,31	0,44	0,46	1,23	0,5	0,44	1,12	
3,45 5,17 6,89	0,38 0,42 0,44	0,56 0,56 0,56	1,15 1,04 1	0,49 0,54 0,54	0,46 0,46 0,46	1,1 1,01 1	0,55 0,56 0,56	0,44 0,44 0,44	1,02 1 1	

Como: $F_a/F_r = 0.497 > e = 0.3 \implies P = X F_r + Y F_a$

P = 0.56.7574 + 1.45.3764 = 9700 N

b. Cálculo da vida

Vida em milhões de ciclos (L):

$$L = a_1. a_2. a_3. \left(\frac{C}{P}\right)^p \to a_1. a_{23}. \left(\frac{C}{P}\right)^p \to a_1. a_{skf}. \left(\frac{C}{P}\right)^p$$

Vida em horas (L_h):

$$L_h = \frac{10^6}{60.n}.L$$

$$p = \begin{cases} 3 & -\text{ elementos rolantes esféricos} \\ 10/3 & -\text{ elementos rolantes de rolos} \end{cases}$$

b1. Confiabilidade

 a_1 = fator de ajuste de vida para confiabilidade (valores de acordo com a norma ISO 281), pg. 65.

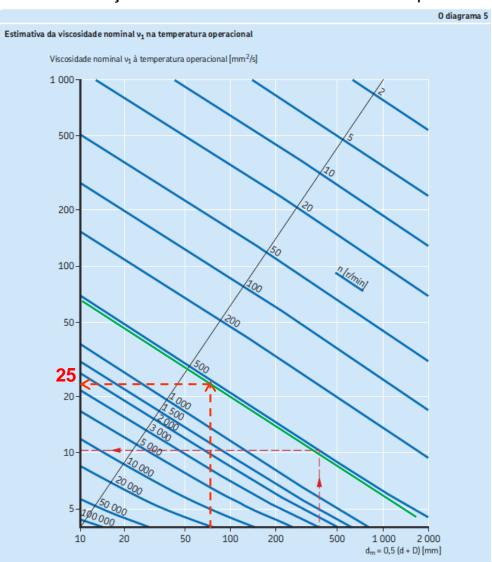

$$a_1 = 0.64$$

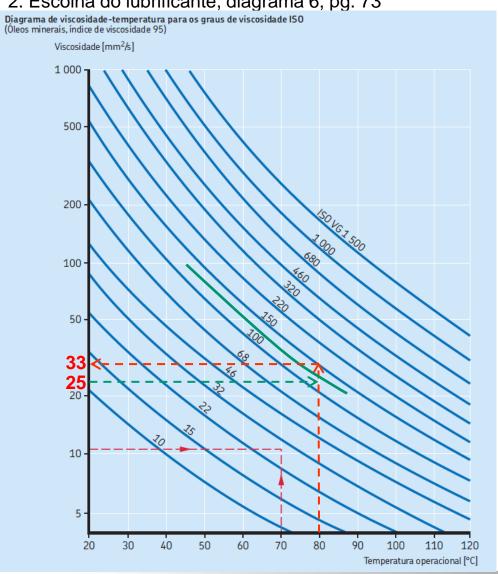
			Tabela 1
Valores par	a o fator de ajus	ste de vida útil a ₁	
Confiabili- dade	Probabilidade de falha	Vida nominal SKF	Fator
	n	L _{nm}	a ₁
%	%	milhões de revoluções	-
90	10	L _{10m}	1
95	5	L _{5m}	0,64
96	4	L _{4m}	0,55
97 98 99	3 2 1	L _{3m} L _{2m} L _{1m}	0,47 0,37 0,25

. Determinação da viscosidade necessária à temperatura operacional (80° C), diagrama 5, pg. 72

Diâmetro médio do rolamento (d_m):

$$d_m = 0.5.(d + D)$$

$$d_m = 0.5.(50 + 110) = 80 \ mm$$


rotação (n): 540 rpm

Viscosidade = 25 mm²/s

2. Escolha do lubrificante, diagrama 6, pg. 73

Viscosidade desejada a 80° C = 25 mm²/s

Óleo escolhido: ISO VG150, cuja viscosidade a 80° C é 33 mm²/s, valor aproximado retirado do diagrama 6, ao lado.

3. Cálculo das relações de viscosidades e fator de contaminação

$$v_1$$
 = Viscosidade desejada a 80° C = 25 mm²/s (v_1)

$$k = \frac{\vartheta}{\vartheta_1} = \frac{33}{25} = 1,32$$

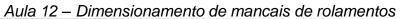
Para o cálculo do fator de ajuste para lubrificação a SKF sugere a relação: η (diagrama 1, pg.66)

 η_c : fator de contaminação, tabela 4, pg74 $\rightarrow \eta_c$ = 0,6 a 0,5 $\rightarrow \eta_c$ = 0,55

 P_u : carga limite de fadiga (tabela de rolamentos)

P; carga dinâmica equivalente

$$\eta_c.\frac{P_u}{P} = 0.55.\frac{1600}{9700} = \mathbf{0.090}$$



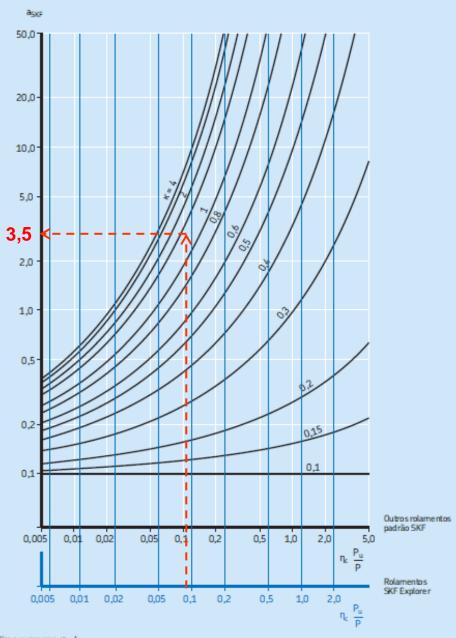


Tabela 4

		Tabela 4
Valores de referência para o fator η_c para diferentes níveis de contaminação		
Condições	Fator η_c^{-1}) para rolamentos com diâmeto $d_m < 100 \text{ mm}$	ro médio d _m ≥ 100 mm
Limpeza extrema tamanho aproximado das partículas da mesma espessura do filme lubrificante condições laboratoriais	1	1
Alto nível de limpeza • óleo filtrado através de filtro extremamente fino • condições típicas: os rolamentos vedados são lubrificados para toda a vida útil	0,8 0,6	0,9 0,8
Limpeza normal • óleo filtrado através de um filtro fino • condições típicas: os rolamentos com placas de proteção são lubrificados para a vida	0,6 0,5	0,8 0,6
Leve contaminação • condições típicas: rolamentos sem vedações integradas, filtragem grosseira, partículas de desgaste e leve infiltração de contaminantes	0,5 0,3	0,6 0,4
Contaminação típica • condições típicas de rolamentos sem vedações integradas, filtragem grosseira, partículas de desgaste e entrada de contaminantes	0,3 0,1	0,4 0,2
Contaminação grave condições típicas: altos níveis de contaminação, devido a desgaste excessivo e/ou vedações ineficientes arranjo de rolamentos com vedações ineficientes ou com danos	0,1 0	0,1 0
Contaminação muito grave condições típicas: níveis de contaminação tão severas que os valores de η _c estão fora da escala, o que reduz significativamente a vida do rolamento	0	0

¹⁾ A escala para η_c refere-se apenas a contaminantes sólidos típicos. Contaminantes como água ou outros fluidos prejudiciais à vida do rolamento não está incluída. Devido ao desgaste abrasivo em ambientes altamente contaminados (η_c = 0), a vida útil de um rolamento pode ser significativamente mais curta que a vida nominal.

 $a_{skf} = 3,5$

Se K > 4, utilize a curva para K = 4.

Conforme o valor de ∏; (Pu/P) tender a zero, a_{SK}e tende a 0,1 para todos os valores de K.

Vida em milhões de ciclos (*L*):
$$L = a_1. a_{skf}. \left(\frac{C}{P}\right)^p = 0,64.3,5. \left(\frac{65000}{9700}\right)^3 = 674,02$$

Vida em horas (
$$L_h$$
): $L_h = \frac{10^6}{60.n}$. $L = \frac{10^6}{60.540}$. 674,02 = **20803** h

Vida requerida em horas (enunciado): 10.000 h

Rolamento adequado!

Lubrificação a óleo: ISO VG150

$$k = \frac{\vartheta}{\vartheta_1} = \frac{23}{25} = \mathbf{0}, \mathbf{92}$$
 $a_{skf} = 1.8$

Vida em milhões de ciclos (*L*):
$$L = a_1.a_{skf}.\left(\frac{C}{P}\right)^p = 0,64.1,8.\left(\frac{65000}{9700}\right)^3 = 346,63$$

Vida em horas (
$$L_h$$
): $L_h = \frac{10^6}{60.7}$. $L = \frac{10^6}{60.540}$. 346,63 = **10698** h Rolamento adequado!

Lubrificação a óleo: ISO VG100

3. Escolher o óleo e método de lubrificação

Lubrificação: óleo / graxa ? (pg.239, catálogo) Lubrificação a óleo: ISO VG100

Métodos de lubrificação: pg.262, catálogo

- Banho de óleo;
- Anel de coleta de óleo;
- Óleo circulante;
- Jato de óleo;
- Ar-óleo;
- Vapor de óleo.

Escolher em função do projeto!!

4. Verificar rotação (n_{máx})

A velocidade de referência ajustada para lubrificação com óleo pode ser estimada usando-se a equação (diagrama 2, pg.121), Na qual são utilizados os seguintes parâmetros:

 η_{ar} : velocidade de referência ajustada (rpm);

 η_r : velocidade de referência nominal (rpm) (catálogo);

 f_p : fator de ajuste para carga do rolamento (P);

 f_{v} : fator de ajuste para viscosidade do óleo.

 $\eta_{ar} = \eta_r.f_p.f_v$

Os valores dos eixos das abscissas é obtido pela relação:

$$\frac{P}{C_0} = \frac{9700}{38000} = 0.25$$

0,3

0,5

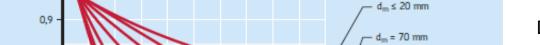
0,3

0,1

1,4

1,2

1,0


0,6

0,4

0,82

0,1

d_m ≥ 120 mm 0,7 0,58 0,5

0,7

ISO VG 15

ISO VG 32

ISO VG 68

ISO VG 150

ISO VG 220

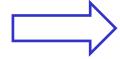
ISO VG 460

0,9

Todos os outros rolamentos ra diais de esferas $d_m \le 20 \text{ mm}$

 $d_{m} = 70 \text{ mm}$

Rola mentos autocompen-sadores de esferas


 $d_{m} = 120 \text{ mm}$

d_m ≥ 600 mm

Diâmetro médio: $d_m = 80 \text{ mm}$

Lubrificação a óleo: ISO VG100

$$\frac{P}{C_0} = 0.255$$

$$f_p = 0.58$$

 $f_v = 0.82$

$$f_{v} = 0.82$$

$$\eta_{ar} = \eta_r. f_p. f_v = 13000.0,58.0,82 = 6182 \text{ rpm} < n_{lim} = 8500 \text{ rpm}$$
 Ok!

Portanto a velocidade de referência ajustada (6182 rpm) é menor que a velocidade limite do rolamento (8500 rpm, dada no catálogo), além disso a máxima velocidade de utilização dos rolamentos (630 rpm) é menor que a velocidade de referência ajustada (6182 rpm)!

5. Calcular momento de atrito

Sob certas condições, o momento de atrito pode ser estimado com precisão suficiente, usando-se o coeficiente constante de atrito µ. As condições são:

- carga do rolamento P ≈ 0,1 C;
- boa lubrificação ;
- condições operacionais normais

O momento de atrito sob essas condições pode ser estimado por:

 $M = 0.5. \mu. P. d$

Sendo:

M = momento de atrito [N.mm]

P = carga dinâmica equivalente do rolamento [N]

d = diâmetro do furo do rolamento [mm]

 μ = coeficiente constante de atrito para o rolamento

O coeficiente de atrito é obtido pela tabela 1, pg.98,

para rolamentos de esferas

		Tabel
	Coeficiente constante de atrito µ para rolame (rolamentos sem vedações de contato)	entos aberto
	Tipo de rolamento	Coeficiente de atrito µ
L	Rolamentos rígidos de esferas	0,0015
	Rolamentos de esferas de contato angular – uma carreira – de duas carreiras – de quatro pontos de contato	0,0020 0,0024 0,0024
	Rolamentos autocompensadores de esferas	0,0010
	Rolamentos de rolos cilíndricos – com uma gaiola, quando $F_a \approx 0$ – número máximo de rolos, quando $F_a \approx 0$	0,0011 0,0020
	Rolamentos de rolos de agulhas com gaiola	0,0020
	Rolamentos de rolos cônicos	0,0018
	Rolamentos autocompensadores de rolos	0,0018
	Rolamentos de rolos toroidais CARB com gaiola	0,0016
	Rolamentos axiais de esferas	0,0013
	Rolamentos axiais de rolos cilíndricos	0,0050
	Rolamentos axiais de rolos de agulhas	0,0050

$$M = 0.5$$
. μ . P . $d = 0.5$.0,0015.9700.50

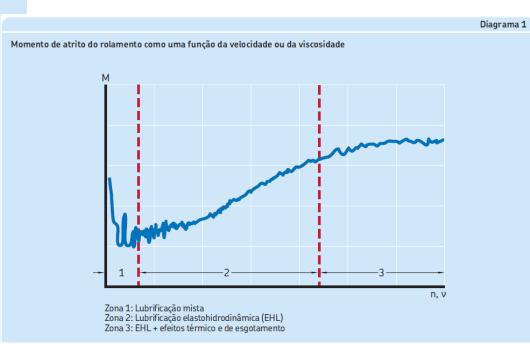

$$M = 363, 75 \text{ N. mm}$$

Tabela 1

0,0018

Importância: conhecer tipo de lubrificação no rolamento quando em serviço.

Maiores detalhes no catálogo, pg.98

Rolamentos axiais autocompensadores

de rolos

Resolução:

Dimensionar os rolamentos, o que significa?

- 1. Dimensionamento estático;
- 2. Dimensionamento dinâmico;
- 3. Escolher o óleo e método de lubrificação;
- 4. Verificar rotação (n_{máx});
- 5. Calcular momento de atrito;
- Escolher vedadores (pg.226);
- 7. Fazer desenho ilustrativo de montagem no eixo .

Problema extra: recalcular para uma vida de 30.000h.

2. Cálculo dinâmico indireto (para facilitar a escolha)

Vida em milhões de ciclos (*L*):
$$L = a_1. a_2. a_3. \left(\frac{C}{P}\right)^p \rightarrow a_1. a_{23}. \left(\frac{C}{P}\right)^p \rightarrow a_1. a_{skf}. \left(\frac{C}{P}\right)^p$$

Vida em horas (L_h) :

$$L_h = \frac{10^6}{60.n}.L$$

Vida requerida em horas (enunciado): 30.000 h

$$p = \begin{cases} 3 & -\text{ elementos rolantes esféricos} \\ 10/3 & -\text{ elementos rolantes de rolos} \end{cases}$$

$$30000 = \frac{10^6}{60.540} \cdot L \rightarrow L = 972$$

$$a_1 = 0.64$$
 (confiabilidade)

$$a_{skf} = 1,0$$
 (aproximação)

$$P = P_r$$
 (no mínimo) = 7574 N (aproximação)

$$972 = 0,64.1,0. \left(\frac{C}{7574}\right)^3 \to C = 181095 N$$

Tabela de rolamentos!

Aula 12 – Dimensionamento de mancais de rolamentos

R	Dimens	ões princi D	pais B	Classifica básicas d dinâmica C	e carga	Limite d carga de fadiga P _u	e de Ve	assificações e velocidade elocidade V e referência li	elocidade- mite	Massa	Desig	nação
r_2	mm			kN		kN	r/r	min		kg .	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	65 72 80 80	7 12 10 16	6,76 14,6 16,8 22,9	6,8 11,8 11,4 16	0,285 0,5 0,56 0,71)	20 000 19 000 18 000 18 000	13 000 12 000 11 000 11 000	0,052 0,14 0,18 0,26		61810 61910 16010 6010
		90 110 130	20 27 31	37,1 65 87,1	23,2 38 52	0,98 1,6 2,2		15 000 13 000 12 000	10 000 8 500 7 500	0,45 1,1 1,95		6210 6310
	Dimens	ões					Dimen	nsões de enc	osto e raio		4	-
	d	d ₁ ~	D ₁ ~	D ₂		r _{1,2} min.	d _a mín.	D _a máx.	r _a máx.		1)	
	mm						mm				2	Ŏ
	50	55,1 56,9 60 59,7	59,9 65,1 70 70,3	-	2,8	0,3 0,6 0,6 1	52 53,2 53,2 54,6	63 68,8 76,8 75,4	0,3 0,6 0,6 1	(0,015 0,02 0,02 0,025	17 16 14 15
		62,5 68,7 75,4	77,4 91,1 105			1,1 2 2,1	57 61 64	83 99 116	1 2 2	(0,025 0,03 0,035	14 13 12

I B- - -I	Dimen d	sões prin	n cipais B		cações de carga a estática C ₀	Limite de carga de fadiga P _u	Classificações de velocidade Velocidade V de referência li	elocidade- mite	Massa	Desig	nação
r_2	mm			kN		kN	r/min		kg	_	
r ₁	50	65 72 80 80	7 12 10 16	6,76 14,6 16,8 22.9	6,8 11,8 11,4 16	0,285 0,5 0,56 0,71	20 000 19 000 18 000 18 000	13 000 12 000 11 000 11 000	0,052 0,14 0,18 0.26	*	61810 61910 16010 6010
		A 14			a da	ralar	nanta	1			6210 6310
		Alt	eral	rtip	o ue	rolar	nento:				0310
CO	nta			-)S,	C	5520
CO	nta	to a	ang	ular,	, rolo	os, ro	los cô)\$,		
CO	nta	to a	ang uto(ular,	, role	os, ro sador 0,3 5 0,6 5				0,015 0,02 0,02 0,02 0,025	17 16 14 15