

AULA 5b

Cálculo à fadiga segundo Norton /Shigley/ Marin)

5- Tensão Admissível à Fadiga

Peça terá vida infinita (isto é N > N_{crit}) se :

$$S_{\max} \leq S_{Fadm}$$

Modelo 1:

$$S_{Fadm} = S_F \, rac{b_1.b_2.b_3}{eta_k.\eta_1.\eta_2.\eta_3.\eta_4.\eta_5}$$

Modelo 2:

$$S_e = k_a k_b k_c k_d k_e k_f S_e$$

Adotado por : Shigley, J. E. et al. *Mechanical Engineering Design*. Norton R. L. *Projeto de máquinas* corpo de prova

FATORES DE CORREÇÃO

Equação de Marin (Shigley):

$$\mathbf{S}_{e} = K_{a}.K_{b}.K_{c}.K_{d}.K_{e}.K_{f}.\mathbf{S}_{e}$$

onde:

S_e= limite de resistência a fadiga para a peça

 S'_{e} = limite de resistência do corpo de prova em ensaio rotativo ($k=\infty$)

Formulação anterior:

$$S_{Fadm} = S_F \frac{b_1 . b_2 . b_3}{\beta_k . \eta_1 . \eta_2 . \eta_3 . \eta_4 . \eta_5}$$

k_a = fator de modificação de condição de superfície;

 k_b = fator de modificação de tamanho;

 k_c = fator de modificação de carga;

 k_d = fator de modificação de temperatura;

 $k_{\rm e}$ = fator de confiabilidade;

 k_f = fator de modificação por efeitos variados

FATORES DE CORREÇÃO

Segundo Norton:

$$S_e = C_{carreg} C_{tamanho} C_{superf} C_{temp} C_{conf} S_{e'}$$

onde:

 $S_e=$ limite de resistência a fadiga para a peça $S'_e=$ limite de resistência do corpo de prova em ensaio rotativo $(k=\infty)$

C_{superf} = fator de modificação de condição de superfície;

C_{tamanho} = fator de modificação de tamanho;

C_{carreg} = fator de modificação de carga;

C_{temp} = fator de modificação de temperatura;

 C_{conf} = fator de confiabilidade;

FATOR DE SUPERFÍCIE

k_a, C_{superf}:

Considera o fato de que os corpos de prova tem a superfície polida com um acabamento espelhado e as peças reais apresentam os mais diversos acabamentos.

Segundo Norton e Shigley:

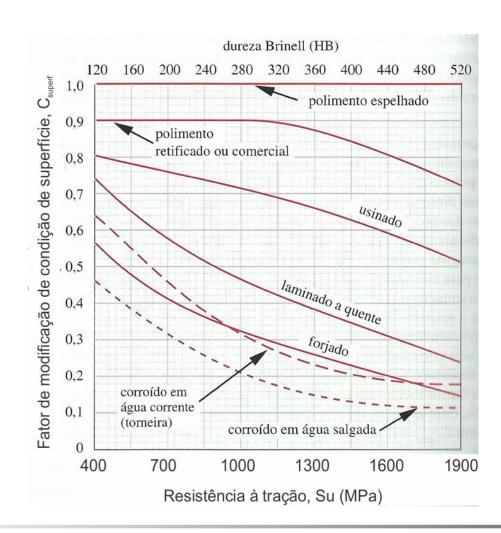
Acabamento superficial	Α	b
Retificado	1,58	-0,085
Usinado ou estirado à frio	4,51	-0,265
Laminado à quente	57,7	-0,718
Forjado	272	-0,995

$$C_{\mathrm{sup}erf} = A.(S_{ut})^b$$

 S_{ut} em MPa

FATOR DE SUPERFÍCIE

 k_a , C_{superf} :



C_{tamanho}:

Considera o fato de que as peças reais tem dimensões diferentes dos corpos de prova.

Quanto maior a peça, maior a probabilidade de defeitos. Conforme Norton:

 $para d \le 8 mm:$ $para 8 mm \le d \le 250 mm:$ $para d \ge 250:$

$$C_{tamanho} = 1$$
 $C_{tamanho} = 1,189. d^{-0,097}$
 $C_{tamanho} = 0,6$

k_b:

Conforme Shigley:

 $para 2,79 \ mm \le d \le 51 \ mm$: $para 51 \ mm < d \le 254 \ mm$:

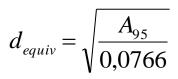
$$k_b = 1,24. d^{-0,107}$$

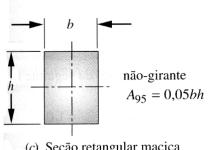
 $k_b = 1,51. d^{-0,157}$

k_b C_{tamanho}:

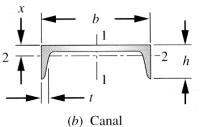
Para peças com seção transversal não circular, confome

Kuguel:





(c) Seção retangular maciça



não-girante

 $A_{95_{1-1}} = 0.05bh, \quad t > 0.025b$

$$A_{95_{2-2}} = 0.05bx + t(h - x)$$

(d) Viga I

não-girante

$$A_{95_{1-1}} = 0,10bt$$

$$A_{95_{2-2}} = 0.05bh, \quad t > 0.025b$$

 k_b , $C_{tamanho}$:

Para efeito de comparação, fazendo d = 65 mm:

Norton:

$$C_{tamanho} = 1,189. d^{-0,097} = 1,189.65^{-0,097} = 0,7931$$

Shigley:

$$k_b = 1,51.d^{-0,157} = 1,51.65^{-0,157} = 0,7841$$

FATOR DE SOLICITAÇÃO

C_{carreg}:

Considera o fato de que a maioria dos dados disponíveis sobre a resistência à fadiga se referem a ensaios de flexão rotativa.

Segundo Norton:

Flexão: $C_{carreg} = 1$

Força normal: $C_{carreg} = 0.7$

Torção pura: $C_{carreg} = 1$

FATOR DE SOLICITAÇÃO

 k_c :

Segundo Shigley:

$$\begin{array}{ll} Flex\~{ao} & k_c = 1 \\ Força Normal & k_c = 0,85 \\ Torç\~{ao} pura & k_c = 0,59 \end{array} \label{eq:kc}$$

(*): use somente este valor para carregamentos à fadiga em torção.

Para carregamentos combinados, utilizar $K_c = 1$

FATOR DE TEMPERATURA

C_{temp}:

Considera o fato de que o limite de fadiga na curva S x N desaparece a altas temperaturas.

Conforme Norton:

Para T $\leq 450^{\circ}$ C: $C_{temp} = 1$

Para $450^{\circ} \text{ C} < \text{T} < 550^{\circ} \text{ C}$: $C_{\text{temp}} = 1 - 0,0058.(\text{T} - 450)$

FATOR DE TEMPERATURA

k_d:

Conforme Shigley:

$$k_d = 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 + 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4$$
$$70 \le T_F \le 1000^{\circ} F$$

FATOR DE TEMPERATURA

$$C_{temp}, k_d$$
:

Para efeito de comparação, para T = 60°C = 140°F :

Norton:

$$C_{temp} = 1$$

Shigley:

$$k_d = 1,0156$$

FATOR DE CONFIABILIDADE

k_e, C_{conf}:

Considera a dispersão existente nos ensaios realizados com o mesmo material sob condições semelhantes.

Conforme Norton e Shigley:

Confiabilidade (%):	C_{conf}
50	1,000
90	0,897
99	0,814
99,9	0,753
99,99	0,702
99,999	0,659

FATOR POR EFEITOS VARIADOS

k_f:

Considera a influência de todos os outros fatores no limite de resistência da peça.

Alguns exemplos, conforme Shigley:

- Corrosão fretting
- Deposição eletrolítica
- Metal spraying

$$0.24 < k_{\rm f} < 0.90$$

$$k_f \sim 0.50$$

$$k_f \sim 0.86$$

FATOR DE CONCENTRAÇÃO DE TENSÃO TEÓRICO (ESTÁTICO)

 (K_t)

 α_k na formulação anterior

Entalhe: qualquer contorno geométrico que interrompe o "fluxo de forças" pela peça.

Exemplos: furo, ranhura, chanfro, mudança abrupta na seção

transversal.

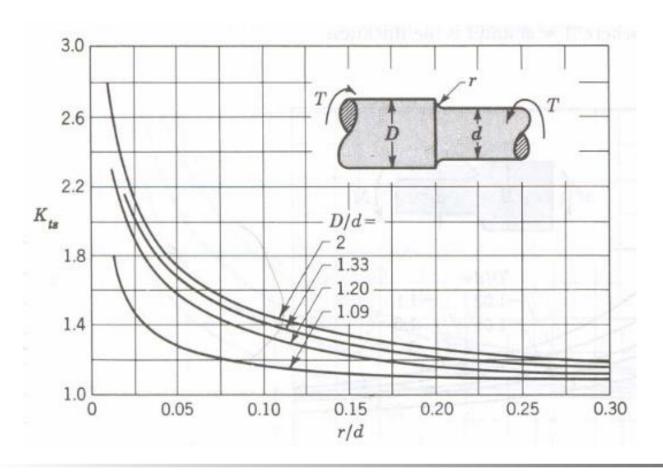
K_t: medida da concentração de tensões

$$K_{_t} = rac{oldsymbol{\sigma}_{ ext{max}}}{oldsymbol{\sigma}_{m}}$$

FATOR DE CONCENTRAÇÃO DE TENSÃO TEÓRICO (ESTÁTICO)

 (K_t)

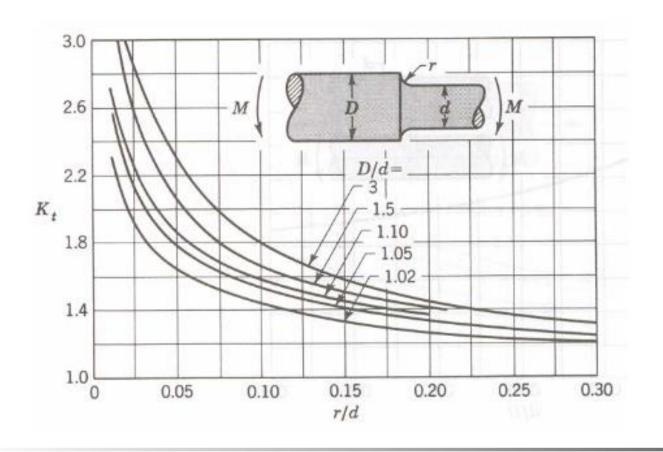
 α_k na formulação anterior



FATOR DE CONCENTRAÇÃO DE TENSÃO TEÓRICO (ESTÁTICO)

 (K_t)

 α_k na formulação anterior



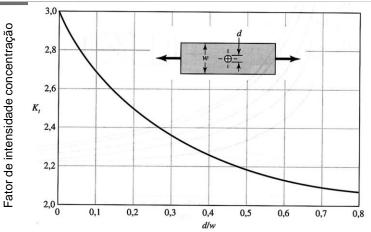


Figura 12 - Fator de concentração de tensão para uma barra retangular sujeito à tração ou compressão com um furo transversal

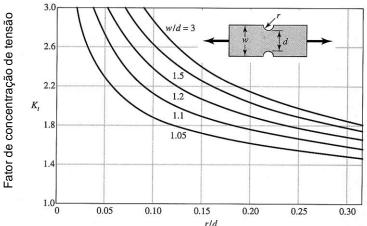


Figura 14 - Fator de concentração de tensão para uma barra com entalhes, sujeita a tração e compressão

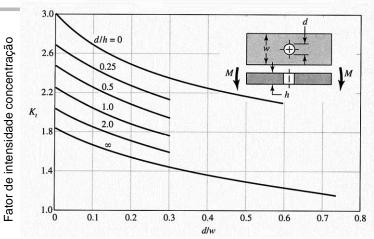


Figura 13 - Fator de concentração de tensão para uma barra retangular sujeito à flexão com um furo transversal

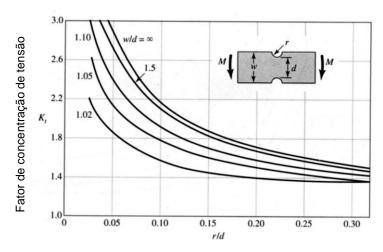


Figura 15 - Fator de concentração de tensão para uma barra retangular sujeito à flexão

Fonte: Shigley, J. E. et al. *Mechanical Engineering Design*. 7th ed. 2004 (appud Peterson, R.E. Design Factors for Stress Concentration, Parts 1 to 5 *Machine Design*, Feb-Jul. 1951.)

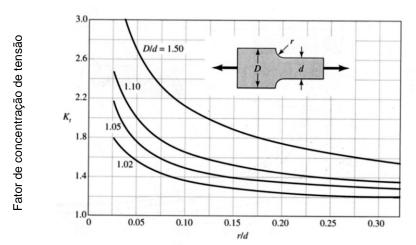


Figura 16 - Fator de concentração de tensão para uma barra com variação de secção sujeita a tração e compressão.

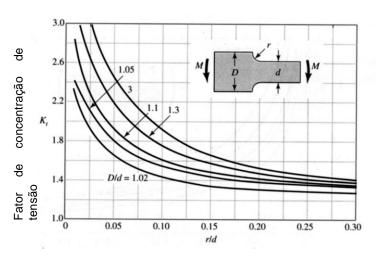


Figura 17 - Fator de concentração de tensão para uma barra com variação de secção sujeita a flexão.

Fonte: Shigley, J. E. et al. *Mechanical Engineering Design*. 7th ed. 2004 (appud Peterson, R.E. Design Factors for Stress Concentration, Parts 1 to 5 *Machine Design*, Feb-Jul. 1951.)

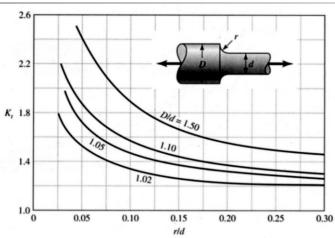
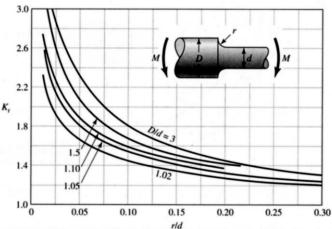
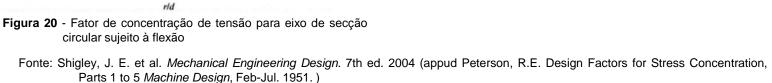


Figura 18 - Fator de concentração de tensão para eixo de secção circular sujeito a tração



circular sujeito à flexão



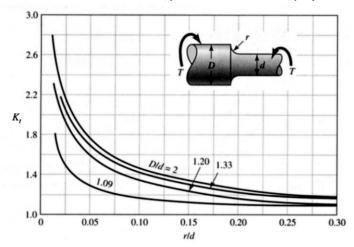


Figura 19 - Fator de concentração de tensão para eixo de secção circular sujeito a torção

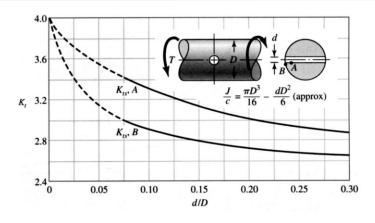


Figura 21 - Fator de concentração de tensão para eixo de secção circular, com um furo, sujeito à flexão

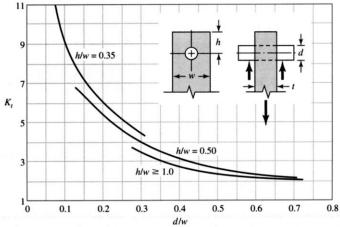


Figura 23 - Fator de concentração uma barra sujeita a tração através de um pino.

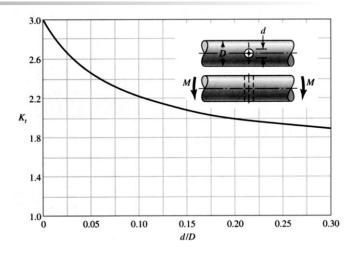


Figura 22 - Fator de concentração de tensão para eixo de seção circular, com um furo, sujeito à torção

Fonte: Shigley, J. E. et al. *Mechanical Engineering Design*. 7th ed. 2004 (appud Peterson, R.E. Design Factors for Stress Concentration, Parts 1 to 5 *Machine Design*, Feb-Jul. 1951.)

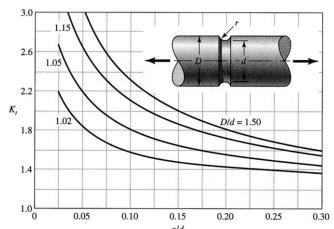


Figura 24 - Fator de concentração de tensão para eixo de secção circular, com um rasgo arredondado, sujeito à tração.

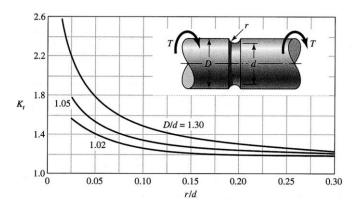
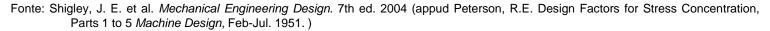


Figura 26 - Fator de concentração de tensão para eixo de seção circular, com rasgo arredondado, sujeito à torção.



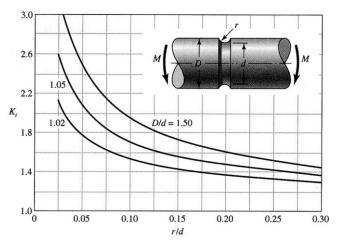


Figura 25 - Fator de concentração de tensão para eixo de seção circular, com rasgo arredondado, sujeito à flexão.

FATOR DE CONCENTRAÇÃO DE TENSÃO EM FADIGA (DINÂMICO)

$$(K_{ff} ou K_{ft})$$

 β_k na formulação anterior

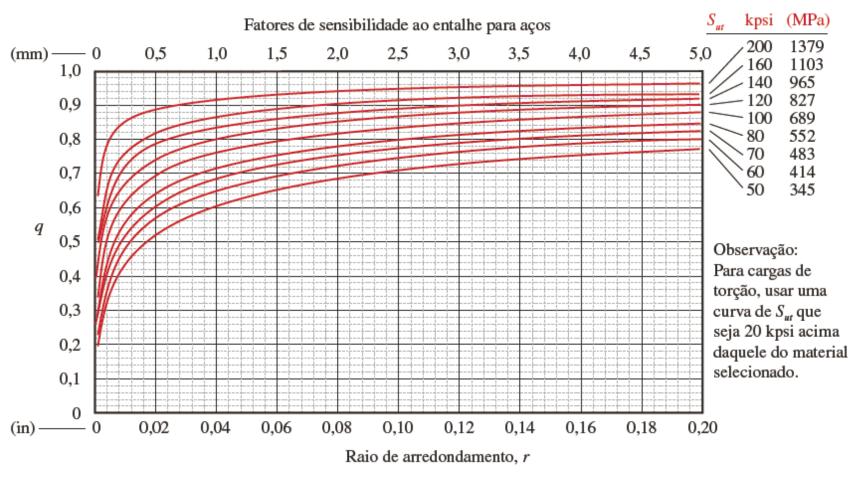
Os dois fatores são relacionados através do fator de sensibilidade ao entalhe q:

$$K_{ff} = 1 + q.(K_t - 1)$$
 $K_{ft} = 1 + q.(K_t - 1)$

A tensão nominal dinâmica para qualquer situação é então multiplicada pelo fator $K_{\rm f}$:

$$\sigma = K_{ff}.\sigma_{nom}$$
$$\tau = K_{ft}.\tau_{nom}$$

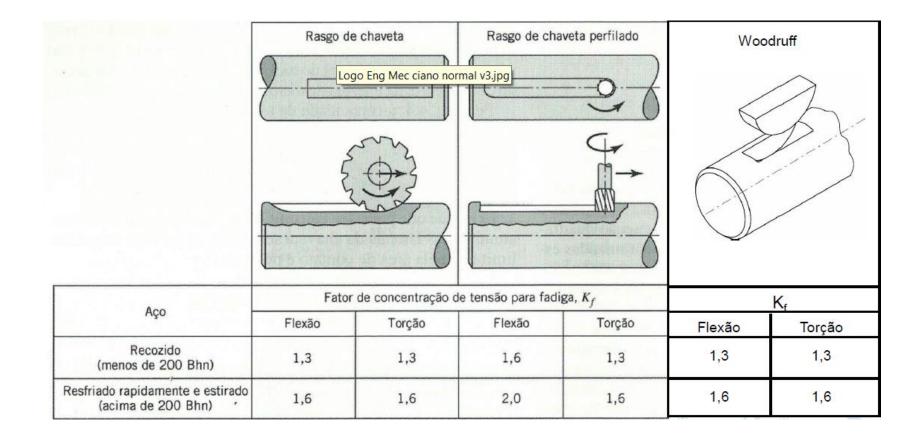
FATOR DE SENSIBILIDADE AO ENTALHE



Curvas de sensibilidade ao entalhe para aços calculadas, como originalmente proposto por R. E. Peterson em "Notch Sensitivity", Capítulo 13 em *Metal Fatigue* by G. Sines and J. Waisman, McGraw-Hill, New York,1959.

Fonte: NORTON, RL. "Projeto de Máquinas", 2.ed. Bookman, Porto Alegre, 2004. p.344.

Coeficiente de entalhe para solicitações dinâmicas para rasgos de chaveta:



Fonte: Adaptado de: Juvinal RC & Marshek KM. Fundamentos do Projeto de Componentes de Máquinas. LTC. 4 ed. 2008. p 398

6.4.3 - Resumo geral (Norton/Shigley)

$$\sigma^* \leq \sigma_{adm}$$

σ^*	Solicitação Estática	$\sigma^* = \sqrt{\sigma^2 + 3.\tau^2}$ $\sigma = \sigma_{max}$ $\tau = \tau_{max}$
	Solicitação Dinâmica	$\sigma^* = \sqrt{\sigma^2 + 3.\tau^2}$ $\sigma = K_{ff}.\sigma_{max}$ $\tau = K_{ft}.\tau_{max}$
σ_{adm}	Solicitação Estática	$\sigma_{adm} = \sigma_{Y} = rac{tens ilde{a}o\ limite}{s}$
	Solicitação Dinâmica	$\sigma_{adm} = S_e = K_a.K_b.K_c.K_d.K_e.K_f.S_e$

6.4.3 - Resumo geral (anterior)

$$\sigma^* \leq \sigma_{adm}$$

σ^*	Solicitação Estática	$\sigma^* = \sqrt{\sigma^2 + 3.\tau^2}$ $\sigma = \sigma_{max}$ $\tau = \tau_{max}$
	Solicitação Dinâmica	$\sigma^* = \sqrt{(\sigma \cdot \beta_{kf})^2 + H^2 \cdot (\tau \cdot \beta_{kt})^2}$ $H = \frac{\sigma_{faf} \cdot \beta_{kt}}{\tau_e \cdot \beta_{kf}}$
σ_{adm}	Solicitação Estática	$\sigma_{adm} = rac{tens ilde{a}o\ limite}{s}$
	Solicitação Dinâmica	$\sigma_{adm} = S_{Fadm} = S_F \cdot \frac{b_1 \cdot b_2 \cdot b_3}{\beta_k \cdot \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \eta_4 \cdot \eta_5}$